535 research outputs found

    Location- and collision avoidance system technologies, providers and potential applications

    Get PDF

    Location- and collision avoidance system technologies, providers and potential applications

    Get PDF

    Sisäpaikannus: Teknologiat ja käyttötapaukset vähittäiskaupan alalla

    Get PDF
    Indoor positioning systems (IPS) are required in buildings to offer the possibility to position people and assets indoors, as the widely utilized GPS signal cannot penetrate through walls. IPSs are already implemented in many indoor environments. Several indoor positioning technologies exist, but none of them is clearly a dominant technology over the others. Consequently, this study identifies the different kinds of indoor positioning technologies and methods as well as the use cases they are used in. For this purpose, six companies using or developing indoor positioning systems were interviewed. The interviews were held in person, and they were 60-minute long semi-structured interviews with a set of questions in Appendix 1. In addition, two companies interested in indoor positioning, and that are working with retail were interviewed in 30-minute semi-structured interviews with questions in Appendix 2. Indoor positioning is employed in the interviewed companies to help users to navigate in public spaces; raise employee satisfaction in an office; improve customer service and satisfaction in malls, stores, and restaurants and develop processes and safety in warehouses. These different use cases have distinctive specifications and needs for indoor positioning, and thus, there is not a simple solution as to which technology is the right choice for a particular use case. Nevertheless, three points affecting the choice of indoor positioning technology were concluded from the interviews: 1) the accuracy of a technology, 2) whether the positioning happens through a tag or a mobile device, and 3) if positioning infrastructure, such as anchor nodes, can be installed in the building. Finally, based on the interviews, a suggested model for an indoor positioning system for a retail company is presented in a form of a Value Network Configuration.Sisäpaikannusjärjestelmiä tarvitaan rakennuksissa, jotta ihmisiä ja tavaroita voidaan paikantaa sisätiloissa, sillä ulkona yleisesti käytetty GPS signaali ei pysty läpäisemään rakennusten seiniä. Vaikka sisäpaikannusta käytetäänkin jo useissa eri sisätiloissa ja useita eri sisäpaikannusteknologioita on olemassa, mikään niistä ei ole selvästi hallitseva teknologia. Tässä tutkimuksessa tunnistetaan eri sisäpaikannusteknologiat ja –tekniikat kuten myös niitä hyödyntävät käyttötapaukset. Tätä varten haastateltiin kuutta eri yritystä, jotka käyttävät tai tarjoavat sisäpaikannusjärjestelmiä. Haastattelut olivat puolistrukturoituja, kestivät 60 minuuttia ja ne pidettiin kasvotusten. Lisäksi haastateltiin 30 minuutin puolistrukturoiduissa haastatteluissa kahta kaupan alaan liittyvää yritystä, jotka ovat kiinnostuneita sisäpaikannuksesta. Haastattelukysymykset ovat liitteissä 1 ja 2. Sisäpaikannusta käytetään haastatelluissa yrityksissä käyttäjien navigoinnin helpottamiseksi julkisissa tiloissa, työntekijöiden tyytyväisyyden kasvattamiseen toimistossa, asiakaspalvelun ja asiakkaiden tyytyväisyyden parantamiseen ostoskeskuksissa, kaupoissa ja ravintoloissa sekä prosessien ja turvallisuuden kehittämiseen varastoissa. Näillä eri käyttötapauksilla on hyvin erilaiset vaatimukset ja tarpeet sisäpaikannukselle, joten ei ole olemassa vain yhtä hyvää teknologista ratkaisua tietylle käyttötapaukselle. Haastatteluista oli kuitenkin mahdollista muodostaa kolme sisäpaikannusteknologian valintaan vaikuttavaa asiaa: 1) sisäpaikannusteknologian tarkkuus, 2) tapahtuuko paikannus mobiililaitteen vai käyttäjän kantaman tunnisteen kautta ja 3) voiko paikannusjärjestelmän tukiasemia asentaa rakennukseen. Lopuksi esitellään ehdotelma sisäpaikannusmallista arvoverkkokonfiguraatiolla (Value Network Configuration) vähittäiskaupan alan yritykselle haastatteluiden perusteella

    Optimizing Indoor Location Based Tracking through Proper Filter Selection and Wireless Sensor Network Design

    Get PDF
    Indoor positioning system (IPS) is a topic that is coming up more and more for various reasons, such as allowing companies to track important objects using radio frequency identification (RFID) and employees with Bluetooth devices inside a facility. Geofencing is one of the biggest topics with IPS and is meant to limit access to a network in specified areas. Devices that incorporate indoor tracking are not initially precise when objects and employees are on the move. This movement requires devices to have a reliable filter for noise and package lose. For this paper, the comparison between extended Kalman filters and unscented Kalman filter in a controlled environment will help indicate which is ideal for IPS tracking. Both filters will be applied and compared on location accuracy metrics. The proper design of the wireless network is also crucial for having an effective IPS method. This will show the difference in wireless networks and how the initial design will lead to greater chance of success for IPS

    Feasibility and Efficacy of BLE Beacon IoT Devices in Inventory Management at the Shop Floor

    Get PDF
    Inventory Management is a key area for customer service and cost optimization in any manufacturing setup. As companies turn global and have thousands of components and hundreds of warehouses the inventory becomes a nightmare and a lot of time is spend in tracking inventory and ensuring right shipments. Traditional systems of robotic arms for inventory pick and drop have been based on premises of marking areas of the warehouse and tracking it. However with the advent of IoT all this is set to change as inventory objects become more self-aware and self-broadcasting. This paper technically suggests an approach of managing inventory using low energy blue tooth beacons and also does a statistical case research on two groups of the same organization one before the pilot run where traditional barcode scanners are used to track inventory and other one where the pilot trial BLE beacon technology was used. Statistically the IoT-beacon users are much more efficient and accurate and save lot of time and costs in the short run itself

    Feasibility study of the new Bluetooth 5.1 location functions and the development of a business plan based on the application of this technology as a form of indoor positioning.

    Get PDF
    The objective of this final Master's thesis is to carry out a feasibility study, both at a technical and commercial level, of the new Bluetooth Direction Finding technology based on the novelties provided by the Bluetooth 5.1 version. The specifications of the Bluetooth 5.1 version improve location services with a direction finding feature that makes it possible to detect the direction of a Bluetooth signal. Using this new function, the idea of the project is to make a study of this function at the technical level and in addition to developing a possible business plan based on this technology with the idea of indoor positioning or even item finding. Including a study of the ecosystem of competent RTLS systems implemented in the market at the national level. In addition to doing a review of the state of the art of IoT and in particular of RTLS technologies and the evolution that this can bring to current logistics. Taking into account that logistics is a key area in the Industry 4.0 environment and that the application of an RTLS system on it can result in an optimization of processes and time

    Internet of Things in Asset Management: Insights from Industrial Professionals and Academia

    Get PDF
    The emerging Internet of Things (IoT) technologies could rationalize data processes from acquisition to decision making if future research is focused on the exact needs of industry. This article contributes to this field by examining and categorizing the applications available through IoT technologies in the management of industrial asset groups. Previous literature and a number of industrial professionals and academic experts are used to identify the feasibility of IoT technologies in asset management. This article describes a preliminary study, which highlights the research potential of specific IoT technologies, for further research related to smart factories of the future. Based on the results of literature review and empirical panels IoT technologies have significant potential to be applied widely in the management of different asset groups. For example, RFID (Radio Frequency Identification) technologies are recognized to be potential in the management of inventories, sensor technologies in the management of machinery, equipment and buildings, and the naming technologies are potential in the management of spare parts.</jats:p

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table
    corecore