301 research outputs found

    IDMoB: IoT Data Marketplace on Blockchain

    Full text link
    Today, Internet of Things (IoT) devices are the powerhouse of data generation with their ever-increasing numbers and widespread penetration. Similarly, artificial intelligence (AI) and machine learning (ML) solutions are getting integrated to all kinds of services, making products significantly more "smarter". The centerpiece of these technologies is "data". IoT device vendors should be able keep up with the increased throughput and come up with new business models. On the other hand, AI/ML solutions will produce better results if training data is diverse and plentiful. In this paper, we propose a blockchain-based, decentralized and trustless data marketplace where IoT device vendors and AI/ML solution providers may interact and collaborate. By facilitating a transparent data exchange platform, access to consented data will be democratized and the variety of services targeting end-users will increase. Proposed data marketplace is implemented as a smart contract on Ethereum blockchain and Swarm is used as the distributed storage platform.Comment: Presented at Crypto Valley Conference on Blockchain Technology (CVCBT 2018), 20-22 June 2018 - published version may diffe

    Data trust framework using blockchain and smart contracts

    Get PDF
    Lack of trust is the main barrier preventing more widespread data sharing. The lack of transparent and reliable infrastructure for data sharing prevents many data owners from sharing their data. Data trust is a paradigm that facilitates data sharing by forcing data controllers to be transparent about the process of sharing and reusing data. Blockchain technology has the potential to present the essential properties for creating a practical and secure data trust framework by transforming current auditing practices and automatic enforcement of smart contracts logic without relying on intermediaries to establish trust. Blockchain holds an enormous potential to remove the barriers of traditional centralized applications and propose a distributed and transparent administration by employing the involved parties to maintain consensus on the ledger. Furthermore, smart contracts are a programmable component that provides blockchain with more flexible and powerful capabilities. Recent advances in blockchain platforms toward smart contracts' development have revealed the possibility of implementing blockchain-based applications in various domains, such as health care, supply chain and digital identity. This dissertation investigates the blockchain's potential to present a framework for data trust. It starts with a comprehensive study of smart contracts as the main component of blockchain for developing decentralized data trust. Interrelated, three decentralized applications that address data sharing and access control problems in various fields, including healthcare data sharing, business process, and physical access control system, have been developed and examined. In addition, a general-purpose application based on an attribute-based access control model is proposed that can provide trusted auditability required for data sharing and access control systems and, ultimately, a data trust framework. Besides auditing, the system presents a transparency level that both access requesters (data users) and resource owners (data controllers) can benefit from. The proposed solutions have been validated through a use case of independent digital libraries. It also provides a detailed performance analysis of the system implementation. The performance results have been compared based on different consensus mechanisms and databases, indicating the system's high throughput and low latency. Finally, this dissertation presents an end-to-end data trust framework based on blockchain technology. The proposed framework promotes data trustworthiness by assessing input datasets, effectively managing access control, and presenting data provenance and activity monitoring. A trust assessment model that examines the trustworthiness of input data sets and calculates the trust value is presented. The number of transaction validators is defined adaptively with the trust value. This research provides solutions for both data owners and data users’ by ensuring the trustworthiness and quality of the data at origin and transparent and secure usage of the data at the end. A comprehensive experimental study indicates the presented system effectively handles a large number of transactions with low latency

    Consortium framework using blockchain for asthma healthcare in pandemics

    Get PDF
    Producción CientíficaAsthma is a deadly disease that affects the lungs and air supply of the human body. Coronavirus and its variants also affect the airways of the lungs. Asthma patients approach hospitals mostly in a critical condition and require emergency treatment, which creates a burden on health institutions during pandemics. The similar symptoms of asthma and coronavirus create confusion for health workers during patient handling and treatment of disease. The unavailability of patient history to physicians causes complications in proper diagnostics and treatments. Many asthma patient deaths have been reported especially during pandemics, which necessitates an efficient framework for asthma patients. In this article, we have proposed a blockchain consortium healthcare framework for asthma patients. The proposed framework helps in managing asthma healthcare units, coronavirus patient records and vaccination centers, insurance companies, and government agencies, which are connected through the secure blockchain network. The proposed framework increases data security and scalability as it stores encrypted patient data on the Interplanetary File System (IPFS) and keeps data hash values on the blockchain. The patient data are traceable and accessible to physicians and stakeholders, which helps in accurate diagnostics, timely treatment, and the management of patients. The smart contract ensures the execution of all business rules. The patient profile generation mechanism is also discussed. The experiment results revealed that the proposed framework has better transaction throughput, query delay, and security than existing solutions

    Secure authentication and data aggregation scheme for routing packets in wireless sensor network

    Get PDF
    Wireless sensor networks (WSNs) comprise a huge number of sensors that sense real-time data; in general, WSNs are designed for monitoring in various application mainly internet of things based (IoT) application. Moreover, these sensors possess a certain amount of energy i.e., they are battery based; thus, the network model must be efficient. Furthermore, data aggregation is a mechanism that minimizes the energy; however, in addition, these aggregated data and networks can be subject to different types of attacks due to the vulnerable characteristics of the network. Hence it is important to provide end-to-end security in the data aggregation mechanism in this we design and develop dual layer integrated (DLI)-security architecture for secure data aggregation; DLI-security architecture is an integration of two distinctive layers. The first layer of architecture deals with developing an authentication for reputation-based communication; the second layer of architecture focuses on securing the aggregated data through a consensus-based approach. The experiment outcome shows that DLI identifies the correct data packets and discards the unsecured data packets in energy efficient way with minimal computation overhead and higher throughput in comparison with the existing model

    Blockchain in a Business Model: Exploring Benefits and Risks

    Get PDF
    Although a blockchain has the potential to redefine value creation, delivery and capture activities in organisations, research on business model innovation from a blockchain perspective is still developing. This paper provides an analysis of literature on the use of blockchain in business model innovation. This analysis reconciles the technological and management perspectives to explore blockchain technology characteristics in relation to benefits and risks for business models. The findings contribute to the emerging stream of research discussing the business implications of innovative technologies, describing how blockchain networks can have an impact on business processes

    Data interoperability and privacy schemes in healthcare data using Blockchain technology

    Get PDF
    Abstract. Electronic Health/Medical Records (EHR/EMR) lay the foundation for securely maintaining medical records. The traditional EHR systems are not effectively managed data manipulation, delayed communication, trustless data storage, data cooperation, and distribution. Blockchain technology can play a major role in healthcare cases. This is because it uses decentralized distributed ledgers to securely manage all parties within the network. It also handles individual data through smart contracts, which can be pre-programmed by the patient for access and maintenance of healthcare data. This thesis focuses on exploring the blockchain in digital healthcare services such as Electronic Health/Medical Records (EHR/EMR). Blockchain-based implementations of Ethereum allow patients to store their medical data with smart contracts that can perform activities such as Registration, Data Append, and Data Retrieve. The challenges faced during the implementation of blockchain protocols are discussed and analyzed in the scope of finding sustainable solutions to develop secure and reliable operation

    Blockchain: A Business Model Innovation Analysis

    Get PDF
    The adoption of blockchain-based technologies by organisations can bring benefits in terms of firms' profitability, productivity and efficiency, making companies rethink their existing business models. However, as the technology is still developing and the research on the implications of the different types of blockchain networks (i.e. public, private, consortium) is scarce, their role in business model innovation requires closer attention. To address this gap, the paper provides a conceptual insight into the role of blockchain technology in companies with different value configurations by examining the technological conditions that can impact business models and probing the role of technology benefits in driving company value. The analysis contributes to the literature by discussing the business implications of innovative technologies and uncovering their positive and negative consequences for the value creation, delivery and capture activities. Such analysis sheds light on the functions of blockchains that have a differentiating impact on business processes. Also, the paper puts forward managerial implications by discussing the paths of business model innovation using blockchain technologies

    Sapiens Chain: A Blockchain-based Cybersecurity Framework

    Full text link
    Recently, cybersecurity becomes more and more important due to the rapid development of Internet. However, existing methods are in reality highly sensitive to attacks and are far more vulnerable than expected, as they are lack of trustable measures. In this paper, to address the aforementioned problems, we propose a blockchain-based cybersecurity framework, termed as Sapiens Chain, which can protect the privacy of the anonymous users and ensure that the transactions are immutable by providing decentralized and trustable services. Integrating semantic analysis, symbolic execution, and routing learning methods into intelligent auditing, this framework can achieve good accuracy for detecting hidden vulnerabilities. In addition, a revenue incentive mechanism, which aims to donate participants, is built. The practical results demonstrate the effectiveness of the proposed framework

    Blockchain Enabled Platforms for the Internet of Things

    Get PDF
    The Blockchain and the Internet of Things (IoT) have gained a lot of attention in the last few years, since both technologies enable the possibility of creating a more connected and independent world. This combination enables the design of computing systems and cyber-physical environments without the need of centralized trusted entities, giving users the freedom and control of their operations, in a decentralized ledger model. By using storing and logging mechanisms supported by the Blockchain, data is immutable and independently audited, guaranteeing that it is neither modified nor deleted. At the same time, applications can benefit from the reliability and fault-tolerance assumptions provided by the Blockchain in supporting transactions between users and involved devices. In this thesis, it was studied and proposed a generic solution for a Blockchain-enabled IoT software architecture. The proposed solution enables the advantages of using decentralized logging and ledgering, without the interference of central authorities, inherently supported by the base Blockchain reliability, availability and security foundations. These capabilities are envisaged as key-benefits for a new generation of clean-slate approaches for IoT applications with the required scalability criteria. The research conducted in the dissertation work, studied the base software foundations, relevant components and implementation options that enable the identified advantages of using Blockchain components and services, to leverage more scalable and trustable IoT platforms. Our proposed solution aims to provide an architecture that contributes to a more appropriate design for secure and reliable IoT systems. In this trend we propose a better use of edge-based support for local-enabled processing environments supporting IoT devices and users’ interactions, with operations intermediated by proximity hubs acting as gateways to the Blockchain, where the operations are regulated and controlled by verifiable smart-contracts involving data and transactions

    MOF-BC: A Memory Optimized and Flexible BlockChain for Large Scale Networks

    Full text link
    BlockChain (BC) immutability ensures BC resilience against modification or removal of the stored data. In large scale networks like the Internet of Things (IoT), however, this feature significantly increases BC storage size and raises privacy challenges. In this paper, we propose a Memory Optimized and Flexible BC (MOF-BC) that enables the IoT users and service providers to remove or summarize their transactions and age their data and to exercise the "right to be forgotten". To increase privacy, a user may employ multiple keys for different transactions. To allow for the removal of stored transactions, all keys would need to be stored which complicates key management and storage. MOF-BC introduces the notion of a Generator Verifier (GV) which is a signed hash of a Generator Verifier Secret (GVS). The GV changes for each transaction to provide privacy yet is signed by a unique key, thus minimizing the information that needs to be stored. A flexible transaction fee model and a reward mechanism is proposed to incentivize users to participate in optimizing memory consumption. Qualitative security and privacy analysis demonstrates that MOF-BC is resilient against several security attacks. Evaluation results show that MOF-BC decreases BC memory consumption by up to 25\% and the user cost by more than two orders of magnitude compared to conventional BC instantiations
    corecore