3 research outputs found

    Who is Gambling? Finding Cryptocurrency Gamblers Using Multi-modal Retrieval Methods

    Full text link
    With the popularity of cryptocurrencies and the remarkable development of blockchain technology, decentralized applications emerged as a revolutionary force for the Internet. Meanwhile, decentralized applications have also attracted intense attention from the online gambling community, with more and more decentralized gambling platforms created through the help of smart contracts. Compared with conventional gambling platforms, decentralized gambling have transparent rules and a low participation threshold, attracting a substantial number of gamblers. In order to discover gambling behaviors and identify the contracts and addresses involved in gambling, we propose a tool termed ETHGamDet. The tool is able to automatically detect the smart contracts and addresses involved in gambling by scrutinizing the smart contract code and address transaction records. Interestingly, we present a novel LightGBM model with memory components, which possesses the ability to learn from its own misclassifications. As a side contribution, we construct and release a large-scale gambling dataset at https://github.com/AwesomeHuang/Bitcoin-Gambling-Dataset to facilitate future research in this field. Empirically, ETHGamDet achieves a F1-score of 0.72 and 0.89 in address classification and contract classification respectively, and offers novel and interesting insights

    Preparing construction supply chains for blockchain technology:An investigation of its potential and future directions

    Get PDF
    Blockchain, a peer-to-peer, controlled, distributed database structure, has the potential to profoundly affect current business transactions in the construction industry through smart contracts, cryptocurrencies, and reliable asset tracking. The construction industry is often criticized for being slow in embracing emerging technologies and not effectively diffusing them through its supply chains. Often, the extensive fragmentation, traditional procurement structures, destructive competition, lack of collaboration and transparency, low-profit margins, and human resources are shown as the main culprits for this. As blockchain technology makes its presence felt strongly in many other industries like finance and banking, this study investigates the preparation of construction supply chains for blockchain technology through an explorative analysis. Empirical data for the study were collected through semistructured interviews with 17 subject experts. Alongside presenting a strengths, weaknesses, opportunities, and threats analysis (SWOT), the study exhibits the requirements for and steps toward a construction supply structure facilitated by blockchain technology

    IvyCross: A Privacy-Preserving and Concurrency Control Framework for Blockchain Interoperability

    Get PDF
    Interoperability is a fundamental challenge for long-envisioned blockchain applications. A mainstream approach is to use Trusted Execution Environment (TEEs) to support interoperable off-chain execution. However, this incurs multiple TEEs configured with non-trivial storage capabilities running on fragile concurrent processing environments, rendering current strategies based on TEEs far from practical. The purpose of this paper is to fill this gap and design a practical interoperability mechanism with simplified TEEs as the underlying architecture. Specifically, we present IvyCross, a TEE-based framework that achieves low-cost, privacy-preserving, and race-free blockchain interoperability. Specifically, IvyCross allows running arbitrary smart contracts across heterogenous blockchains atop only two distributed TEE-powered hosts. We design an incentive scheme based on smart contracts to stimulate the honest behavior of two hosts, bypassing the requirement of the number of TEEs and large memory storage. We examine the conditions to guarantee the uniqueness of the Nash Equilibrium via Sequential Game Theory. Furthermore, a novel extended optimistic concurrency control protocol is designed to guarantee the correctness of concurrent execution of off-chain contracts. We formally prove the security of IvyCross in the Universal Composability framework and implement a proof-of-concept prototype atop Bitcoin, Ethereum, and FISCO BOCS. The experiments indicate that (i) IvyCross is able to support privacy-preserving and multiple-round smart contracts for cross-chain communication; (ii) IvyCross successfully decreases the off-chain costs on storage and communication of a TEE without using complex cryptographic primitives; and (iii) the total on-chain transaction fees in cross-chain communication are relatively low, within ranges of 0.2 USD ~ 1 USD
    corecore