371 research outputs found

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    An intra-vehicular wireless multimedia sensor network for smartphone-based low-cost advanced driver-assistance systems

    Get PDF
    Advanced driver-assistance system(s) (ADAS) are more prevalent in high-end vehicles than in low-end vehicles. Wired solutions of vision sensors in ADAS already exist, but are costly and do not cater for low-end vehicles. General ADAS use wired harnessing for communication; this approach eliminates the need for cable harnessing and, therefore, the practicality of a novel wireless ADAS solution was tested. A low-cost alternative is proposed that extends a smartphone’s sensor perception, using a camera-based wireless sensor network. This paper presents the design of a low-cost ADAS alternative that uses an intra-vehicle wireless sensor network structured by a Wi-Fi Direct topology, using a smartphone as the processing platform. The proposed system makes ADAS features accessible to cheaper vehicles and investigates the possibility of using a wireless network to communicate ADAS information in a intra-vehicle environment. Other ADAS smartphone approaches make use of a smartphone’s onboard sensors; however, this paper shows the application of essential ADAS features developed on the smartphone’s ADAS application, carrying out both lane detection and collision detection on a vehicle by using wireless sensor data. A smartphone’s processing power was harnessed and used as a generic object detector through a convolution neural network, using the sensory network’s video streams. The network’s performance was analysed to ensure that the network could carry out detection in real-time. A low-cost CMOS camera sensor network with a smartphone found an application, using Wi-Fi Direct, to create an intra-vehicle wireless network as a low-cost advanced driver-assistance system.DATA AVAILABLITY STATEMENT : Publicly available datasets were analysed in this study. There data can be found here: https://github.com/TuSimple/tusimple-benchmark and https://boxy-dataset.com/ boxy/ accessed on 25 November 2021.https://www.mdpi.com/journal/sensorsam2023Electrical, Electronic and Computer Engineerin

    An intra-vehicular wireless multimedia sensor network for smartphone-based low-cost advanced driver-assistance systems

    Get PDF
    Advanced driver-assistance systems (ADAS) are more prevalent in high-end vehicles than in low-end vehicles. The research proposes an alternative for drivers without having to wait years to gain access to the safety ADAS offers. Wireless Multimedia Sensor Networks (WMSN) for ADAS applications in collaboration with smartphones is non-existent. Intra-vehicle environments cause difficulties in data transfer for wireless networks where performance of such networks in an intra-vehicle network is investigated. A low-cost alternative was proposed that extends a smartphone’s sensor perception, using a camera- based wireless sensor network. This dissertation presents the design of a low-cost ADAS alternative that uses an intra-vehicle wireless sensor network structured by a Wi-Fi Direct topology, using a smartphone as the processing platform. In addition, to expand on the smartphone’s other commonly available wireless protocols, the Bluetooth protocol was used to collect blind spot sensory data, being processed by the smartphone. Both protocols form part of the Intra-Vehicular Wireless Sensor Network (IVWSN). Essential ADAS features developed on the smartphone ADAS application carried out both lane detection and collision detection on a vehicle. A smartphone’s processing power was harnessed and used as a generic object detector through a convolution neural network, using the sensory network’s video streams. Blind spot sensors on the lateral sides of the vehicle provided sensory data transmitted to the smartphone through Bluetooth. IVWSNs are complex environments with many reflective materials that may impede communication. The network in a vehicle environment should be reliable. The network’s performance was analysed to ensure that the network could carry out detection in real-time, which would be essential for the driver’s safety. General ADAS systems use wired harnessing for communication and, therefore, the practicality of a novel wireless ADAS solution was tested. It was found that a low-cost advanced driver-assistance system alternative can be conceptualised by using object detection techniques being processed on a smartphone from multiple streams, sourced from an IVWSN, composed of camera sensors. A low-cost CMOS camera sensors network with a smartphone found an application, using Wi-Fi Direct to create an intra-vehicle wireless network as a low-cost advanced driver-assistance system.Dissertation (MEng (Computer Engineering))--University of Pretoria, 2021.Electrical, Electronic and Computer EngineeringMEng (Computer Engineering)Unrestricte

    Sistema inalámbrico de seguimiento de puertas para estaciones en el Sistema Transmilenio

    Get PDF
    Trabajo de InvestigaciónEl presente trabajo consiste en un sistema inalámbrico de seguimiento de puertas, especializado en el monitoreo del estado (abierto,cerrado) en tiempo real de las puertas de las estaciones de Transmilenio, permitiendo tener información continua para evitar accidentes o inconvenientes de seguridad que se puedan presentar en una estación. Esto por medio de un sistema elaborado con tecnología inalámbrica Bluetooth y una interface elaborada en Raspberry PI.INTRODUCCIÓN 1. GENERALIDADES 2. SELECCIÓN DE TECNOLOGÍA Y DISPOSITIVOS A EMPLEAR 2.8 IMPLEMENTACION Y DESARROLLO 3. PRESUPUESTO DE TRABAJO Y RECURSOS FINANCIEROS 4. CONCLUSIONES 5. RECOMENDACIONES 6. BIBLIOGRAFÍA 7. ANEXOSPregradoIngeniero Electrónic

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems

    Get PDF
    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use casesinfo:eu-repo/semantics/publishedVersio

    SIMULATION AND ANALYSIS OF VEHICULAR AD-HOC NETWORKS IN URBAN AND RURAL AREAS

    Get PDF
    According to the American National Highway Traffic Safety Administration, in 2010, there were an estimated 5,419,000 police-reported traffic crashes, in which 32,885 people were killed and 2,239,000 people were injured in the US alone. Vehicular Ad-Hoc Network (VANET) is an emerging technology which promises to decrease car accidents by providing several safety related services such as blind spot, forward collision and sudden braking ahead warnings. Unfortunately, research of VANET is hindered by the extremely high cost and complexity of field testing. Hence it becomes important to simulate VANET protocols and applications thoroughly before attempting to implement them. This thesis studies the feasibility of common mobility and wireless channel models in VANET simulation and provides a general overview of the currently available VANET simulators and their features. Six different simulation scenarios are performed to evaluate the performance of AODV, DSDV, DSR and OLSR Ad-Hoc routing protocols with UDP and TCP packets. Simulation results indicate that reactive protocols are more robust and suitable for the highly dynamic VANET networks. Furthermore, TCP is found to be more suitable for VANET safety applications due to the high delay and packet drop of UDP packets.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    • …
    corecore