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Abstract: Advanced driver-assistance system(s) (ADAS) are more prevalent in high-end vehicles
than in low-end vehicles. Wired solutions of vision sensors in ADAS already exist, but are costly
and do not cater for low-end vehicles. General ADAS use wired harnessing for communication;
this approach eliminates the need for cable harnessing and, therefore, the practicality of a novel
wireless ADAS solution was tested. A low-cost alternative is proposed that extends a smartphone’s
sensor perception, using a camera-based wireless sensor network. This paper presents the design
of a low-cost ADAS alternative that uses an intra-vehicle wireless sensor network structured by a
Wi-Fi Direct topology, using a smartphone as the processing platform. The proposed system makes
ADAS features accessible to cheaper vehicles and investigates the possibility of using a wireless
network to communicate ADAS information in a intra-vehicle environment. Other ADAS smartphone
approaches make use of a smartphone’s onboard sensors; however, this paper shows the application
of essential ADAS features developed on the smartphone’s ADAS application, carrying out both
lane detection and collision detection on a vehicle by using wireless sensor data. A smartphone’s
processing power was harnessed and used as a generic object detector through a convolution neural
network, using the sensory network’s video streams. The network’s performance was analysed to
ensure that the network could carry out detection in real-time. A low-cost CMOS camera sensor
network with a smartphone found an application, using Wi-Fi Direct, to create an intra-vehicle
wireless network as a low-cost advanced driver-assistance system.

Keywords: ADAS; ADAS and smartphones; IVWSN; object detection; WMSN

1. Introduction

Vision from inside vehicles is becoming more common, especially in autonomous
vehicles. Sensory networks used within vehicles, and how their applications improve the
awareness of vehicles on the road, were investigated. Smartphones are used in forward,
lateral, and inside assistance ADAS applications, in object and lane detection, tracking,
and traffic sign detection. Forward assistance includes autonomous cruise control (ACC),
which assists drivers in automatically keeping a safe driving distance, and forward collision
avoidance (FCA), which provides a warning to the driver in the event of a potential accident.
Forward assistant methods use radar and LiDAR. FCA also uses sensors, such as radar
and LiDAR, but car manufacturers are using video in conjunction with radar, which has
opened up a wide range of topics in research studies, i.e., using image processing in object
detection, while sensor fusion techniques can be used to complement sensor devices for
vehicle detection [1–4].

Smartphones are cheaper alternatives to forward assistance ADAS. Many methods
of monitoring road and traffic conditions, using smartphones, have been proposed; the
first approaches used sensors, three-axis accelerometers, and GPS [5–8]. Vehicle detection
has been conducted using image processing, as well as alternatives to radar and LiDAR by
using local binary patterns (LBP) and Haar-like features to train AdaBoost classifiers [9].

Sensors 2022, 22, 3026. https://doi.org/10.3390/s22083026 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22083026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7567-4518
https://doi.org/10.3390/s22083026
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22083026?type=check_update&version=1


Sensors 2022, 22, 3026 2 of 22

Monocular vision avenues have been investigated, detecting pedestrians and vehicles,
using Haar-like features and “cascaded” weak classifiers with distance estimation [10].
In [11], stereo vision involved two cameras carrying out 3D reconstruction, in such a way
that the cameras were calibrated to compute extrinsic parameters to calculate the necessary
coordinate system in front of the vehicle.

A technique used extensively by ADAS in smartphones is the Viola–Jones algorithm,
which uses a sliding window over the whole image, looks for Haar-like features selected
by AdaBoost, and uses weak classifiers to detect objects [12]. Object detection using convo-
lutional neural networks (CNNs) is used in smartphones that use pre-trained CNNs [13].
Object detection using CNNs is improving, since the R-CNN inception—which uses a re-
gion proposal to extract potential bounding-boxes to run classifiers on these boxes, instead
of scanning the whole image to you only look once (YOLO)—uses the entire image. It
divides the image, predicts bounding-boxes and their confidence in being objects, and then
predicts class probabilities. The images are analysed, and predictions are informed by the
global context of the image [14–17]. YOLO was shown to be the fastest real-time detector
on PASCAL VOC at speeds of up to 155 FPS for fast YOLO, which is currently the best
general detector that detects a variety of objects simultaneously and performs well to detect
vehicles and other objects, with its superior precision to recall ratio [17]. The mentioned
CNN-trained models are too large for portable mobile devices and are improved by using
MobileNets that use depth-wise separable convolutions to build lightweight deep neural
networks [18].

Lane detection ensures that the vehicle orientates between lanes and, if required,
keeps the vehicle within the middle of the lanes by warning the driver if the vehicle is
diverging. Different approaches to lane detection by using smartphones exist, such as
LaneQuest, which uses the smartphone’s GPS and inertial sensors [19]. DeepLane uses
GPS and camera-assisted vision from the camera at the back of the smartphone to estimate
the vehicle’s lane position [13]. Lane detection technologies, such as SmartLDWS, showed
successful lane tracking, consisting of a lane detection module that used image processing
to conduct edge detection through the Hough transformation, where the processing was
conducted on a smartphone attached to a vehicle’s windscreen, thereby facing the front of
the vehicle [20]. The real-time lane detection was also conducted in [21], with the addition
of a rear-end collision warning by using the camera of the smartphone to detect vehicles
and their distances, using the Canny edge detector and triangulation, respectively. Other
vehicle detection techniques implemented on the DriveSafe application, initially developed
for scoring driver behaviours [22], were expanded by using different detection windows to
detect vehicles with the help of AdaBoost classifiers and tracking, using Kalman filters [9].
DeepLane ignores road lanes entirely, which is beneficial in rural areas or crowded traffic
lanes where lines are not visible. DeepLane does not track the lanes but uses optical flow
(OF) to detect the flow of pixels and the flow of objects where the objects are detected, using
YOLO [17].

Lateral assistance in ADAS attempts to avoid collisions with vehicles in the driver’s
blind spot or when the driver is unable to anticipate the speed of (and the possible collision
with) another vehicle outside of the driver’s view. IVWSNs have been used to develop
low-cost substitutes of side blind zone alert (SBZA) systems that monitor blind spots of
vehicles and alert users. An IVWSN uses Bluetooth Low Energy (BLE), which is a low-cost
and low-power Bluetooth technology [23]. Blind spot detection, using cameras pointing in
the area of a vehicle’s blind spots, has been studied, showing valid detection results using
image processing techniques from the cameras mounted on side mirrors of vehicles [24–26].
The application of smartphone involvement with blind-spot detection is limited: SideEye
attempted blind-spot detection on the driver’s side of the car, using the front camera of
the smartphone. The front camera captures some of the blind-spot areas where image
processing is used to detect other vehicles [27].

Inside assistance includes analysing driving behaviour, such as drowsiness, sleepiness,
and fatigue that could be detrimental to the driver [28]. A seminal paper on driver monitor-
ing for intelligent vehicles categorises causes of inattention as a distraction and fatigue [29].
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Smartphone-embedded hardware and cost-efficiency benefits have been used to address
these driving behaviours [10,30–33]. Algorithms are used to detect driving events while
using the front camera of the smartphone to monitor the driver’s facial expressions and
gestures; intervention can be triggered before an accident occurs [34]. CarSafe was the first
driver safety smartphone application on smartphones to use dual cameras where the front
camera was used for monitoring the driver and the rear camera to detect the following
distance and lane drifting [10].

ADAS applications on smartphones have been implemented, using iOS, as well
as Android operating systems, including CarSafe, SideEye, and DeepLane [9,10,13,27].
Android smartphones have an extensive range of hardware combinations, but as shown
by DeepLane, smartphones with better GPUs run at higher frame rates, making real-time
applications reachable [13].

Wired architectures in vehicles are the most traditional, but new wireless network
alternatives exist, such as IVWSN, which are being considered by the automotive industry.
With the help of wireless technologies, the vehicle’s harnessing is reduced, thereby lowering
costs and fuel consumption [23]. CAN are shown to have bandwidth limitations on the
CAN bus with the introduction of camera-based ADAS [35]. Other wired networks used in
vehicles exist with varying bitrates, which have higher bandwidths and are capable of trans-
mitting vision information, such as media-oriented system transport (MOST) [36]. IEEE
802 and ultra-wideband (UWB) solutions are currently being investigated, but because they
still require electrical power sources from the vehicles, the advantages are mitigated [35].
However, the inner vehicle is a challenging environment for radio propagation because of
metal objects and passengers inside the vehicle [37]. As a result of this complex environ-
ment, design considerations should be carefully considered when developing a wireless
sensor network inside a vehicle where the reliability of the network diminishes as traffic
on the network increases, causing delays in information being transferred [38,39]. Cur-
rently, different network compatible devices are available, e.g., Wi-Fi, Bluetooth, UWB,
and Zigbee.

An IoT-IVWSN network consisting of end-devices, control unit, and a display that has
a large number of end-device sensors, was shown to be a good alternative in vehicles to
control and manage sensors [39]. Zigbee technology was shown to be useful for sensors that
do not require high data transmission rates. However, when transferring multimedia and
real-time video streaming, it would not be a practical solution. UWB and Wi-Fi are better
solutions for high data rate implementations, such as multimedia video, because of the high
data rate and low power [40]. A network of wirelessly interconnected devices that retrieve
video and audio streams is known as wireless multimedia sensor networks (WMSN),
where low-cost CMOS cameras, supplying multiple media streams, can provide a multi-
resolution description of scenes. Sensors that are capable of collecting multimedia data
require computation-intensive processing, which may require processing to be conducted
on the sensor nodes or computational hubs where WMSNs enable a new approach to
perform distributed computations on nodes [41].

Vision-based sensors have become very popular in ADAS because of their low costs,
compared to radar and LiDAR, but vision-based sensors perform poorly in unfavourable
weather conditions. Measuring the distance of an object using vision sensors is also less
accurate than LiDAR and radar, whereby using stereo vision (dual cameras) requires
a wide base length between cameras for triangulation purposes; a radar’s robustness
against weather and the ability to determine distance more accurately can be harnessed
instead, and is shown to work well in multi-sensor scenarios that lower false positives in
detection [2,42,43].

ADAS depend on sensor information from the surrounding environment, processed
by the electronic control unit (ECU) in high-end vehicles. These sensors include radar,
LiDAR, ultrasonic sensors, and IR sensors, and the accommodate ADAS features, such as
lane departure warning, parking assistance, and blind spot monitoring [44,45]. Ultrasonic
sensors are among the cheapest sensors in ADAS, which are primarily used to find distances
of static objects at a short-range and at slower speeds [44]. Ultrasonic sensors have a shorter
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range than radar, limited to a range of 2 metres, but could serve as a cheaper, less power
consuming alternative for low-cost ADAS.

In this paper, we propose using a wireless ADAS, as shown in Figure 1; the ECU and
display unit in a high-end ADAS are merged into FU 2, consisting of a smartphone. The
sensors, FU 1 and FU 3, communicate with the smartphone through a wireless network
where the ADAS techniques and processing are carried out (FU 2.4). By using the standard
connection capabilities, the network can consist of Wi-Fi and Bluetooth protocols. Wi-Fi
is a better-suited protocol for transferring information from camera sensors where an IP
network is required to establish communication. The smartphone in FU 2.2 becomes an
access point (AP), and the camera sensor’s hosted video server allows the smartphone to
access video through the Wi-Fi network (FU 1.2).

The network also consists of blind spot sensors that are not as data-intensive as
the camera sensors. The blind spot sensors only require the distances to be sent to the
smartphone and require minimum data throughput. FU 3.2 is used by the blind spot sensor
to transfer data to the smartphone. Finally, the display and audio of the smartphone are
used to interact with the driver, warning about potential risks.

Figure 1. Functional diagram of a proposed wireless ADAS, using a smartphone.

There is no active research on WMSN for ADAS applications, and its collaboration
with smartphones is non-existent. Complementary metal-oxide semiconductor (CMOS)
camera sensors have become more affordable and were shown to be helpful in ADAS,
but they only exist as wired solutions; a wireless network of vision sensors has research
potential [46]. Ultra-wideband (UWB) and Wi-Fi have high transmission rates that can
be used for video transfer in smartphones, making them excellent additions to vision
sensor networks. UWB would be the ideal choice because of the low power usage, high
transmission rate, and low cost of UWB. However, UWB modules in smartphones have
only recently become commercially available in high-end models, such as the iPhone 11,
subsequently leading to new research avenues. An intra-vehicular wireless sensor network
(IVWSN) can expand a smartphone’s limited sensor perception to a cost-efficient, camera-
based ADAS that uses real-time object detection to detect potential hazards around the
vehicle’s rear, blind spots, and front spatial areas.

The ADAS is wholly dependent on the data received by the IVWSN. Wireless technolo-
gies available on smartphones are considered, namely Wi-Fi and Bluetooth. This paper is
organised as follows, in Section 2, these two wireless technologies are explored to use their
capabilities and technology stacks that sensors will then implement in the IVWSN. Network
topologies for multiple sensor uses are examined, followed by detailed communication
methods and protocols to communicate with different sensors in the network. Detailed
designs of the proposed camera nodes that use video streaming through the network are
presented. Additional sensory data are also provided via a detailed design of the blind spot
nodes. A comprehensive explanation of a developed smartphone ADAS application follows
the hardware development, realising the complete solution. Different ADAS techniques
implemented on the smartphone are shown with detailed explanations.
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In the concluding sections, the systems being designed and developed, are discussed.
The network’s results are divided into: simulated environment, inta-vehicle environment,
and power consumption. Simulated and actual environments are shown, which are com-
pared with controlled environments and actual intra-vehicle counterparts. The performance
results of the ADAS techniques implemented on the smartphone are illustrated and dis-
cussed for lane, collision, and blind spot detection.

2. Materials and Methods

Using an intra-vehicle wireless sensor network, structured by a Wi-Fi Direct and
Bluetooth topology, a low-cost ADAS alternative extends a smartphone’s sensory percep-
tion by using a camera-based wireless sensor network. As previously shown in Figure 1,
the Bluetooth sensors and Wi-Fi sensors communicate directly with the smartphone. A
smartphone’s processing power is harnessed, where the sensors are placed around the
vehicle at areas of interest shown, as in Figure 2. The figure contains vision sensors with
a focus on the front and the rear of the vehicle. The sensors on either lateral side of the
vehicle ensure that the vehicle’s blind spots are covered.

Figure 2. Illustration of the wireless sensors being placed in areas of interest for the ADAS.

An IVWMSN network for an intra-vehicle environment that uses a low-cost camera,
blind spot nodes, and a smartphone device, is discussed in the following section. By using
smartphone-implemented Wi-Fi technologies, such as Wi-Fi Direct, the smartphone can
act as the network host onto which video sensors can directly connect without adding a
physical router as part of the architecture. By using the Wi-Fi protocol, higher transfer rates
can send sensory data from a video sensor to enable advanced object detection around a
vehicle. Three camera node prototypes and an Android phone are shown in Figure 3.

Video streaming from the network can then be used for real-time object detection
applications for an ADAS on a smartphone device. Detection has successfully been carried
out on video being sourced from a simulated video stream and network-sourced video
streams. Due to large models not being able to run on smaller embedded devices, such as
smartphones, they used a faster and lighter CNN, such as MobileNet, instead.

Lane detection and collision avoidance have been implemented for the ADAS, running
on Android. It has been shown that a low-cost ADAS, using a smartphone, can carry out
image processing techniques capable of detecting lanes on a real-time video stream. It has
also been shown that a low-cost ADAS, using a smartphone, is able to carry out object
detection techniques where distance estimation and collision risk can be calculated on a
real-time video stream. The real-time video stream being sourced from the intra-vehicular
wireless video network, is used to assist the driver by detecting lanes and warning the
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driver when he/she is moving closer to the centre of that lane. The implemented system
helps the driver by warning him/her visually on the screen, i.e., about lane divergence
to the left or right of the vehicle. The real-time video stream also assists the driver by
warning the driver when his/her vehicle is moving closer to hazardous objects. The
implemented system helps the driver by warning him/her visually on the screen about a
possible collision in the front or rear of the vehicle.

Figure 3. Android device and the three camera node sensors.

2.1. Intra-Vehicular Wireless Multimedia Sensor Network
2.1.1. Network Topology

The network’s main objective is to supply video feed to the processing unit, which is
the Android device in the topology previously described. Wi-Fi Peer-to-Peer (P2P), also
known as Wi-Fi Direct, is used in the design architecture to avoid having to use a physical
router in the topology. A P2P 1:n topology is used where multiple clients are connected to
one group owner with a single SSID, with a single security domain [47]. Not all devices
support Wi-Fi Direct, but group owners support client legacy devices that fall outside the
directional multi-gigabit (DMG) support. The transfer will still operate at IEEE 802.11 g or
newer 2.4 GHz, supporting maximum physical bit rates of 54 Mbit/s. The legacy device
supporting Wi-Fi identifies the group owner as a standard AP, as long as the smartphone
supports Wi-Fi Direct. Most off-the-shelf Wi-Fi modules do not support Wi-Fi Direct, and
using a legacy approach is more attainable. The basic topology is shown graphically in
Figure 4.

The network consists of another Bluetooth network used by both the blind spot sensors
and vision sensors. The primary purpose of the Bluetooth network is discussed in the
following sections. The camera nodes wait for the AP to start and then connect to the
group owner. Depending on whether the network has been created before in the Android
application’s life-cycle, the network can be re-established with a created SSID and passcode,
but when the Android API creates a new network, a randomly generated SSID passcode
is created. This caveat of Wi-Fi Direct prevents hard coding of the AP credentials to the
camera node. A means of communication is needed to update the credentials on the camera
nodes, in order to update network security details. Bluetooth pairing between the sensors
and the smartphone is used for this communication. Bluetooth has shown unsatisfactory
results when used for video transfer, but many low-cost Wi-Fi modules include Bluetooth
communication as well [40]. Bluetooth protocol has been used as a serial communicator
between devices, leaving the Wi-Fi protocol exclusively for video streaming. Using the
Bluetooth serial communicator, information, such as the mentioned random generated
passcode AP credentials, can be passed securely to the Bluetooth-paired camera nodes from
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the Android device. Figure 5 provides the overview of the communication between the
camera node and Android smartphone.

Figure 4. P2P topology 1:n, used by the camera nodes and smartphone.

Figure 5. Network communication overview.
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2.1.2. Bluetooth Communication

The Bluetooth protocol RFCOMM, in addition to L2CAP protocol, emulates an RS-232
serial port. The serial communication between the Android device and the camera node
is used with a simple data stream and registered serial port service universally unique
identifier (UUID) to allow communication and use of this service [48]. After the connection
to the camera node through Bluetooth, protocol is established. The IP addresses are saved
in the local cache of the Android application to be retrieved when streaming is initiated.

2.1.3. Wi-Fi Communication

The network is managed and hosted by the Android application as the group owner.
The camera nodes are seen as legacy devices as they do not support Wi-Fi Direct, but
this does not negatively affect the architecture, since other intricate Wi-Fi Direct features
are not needed. The camera node works within 2.4 GHz networks only. Such a 2.4 GHz
network creation will cause miscommunication if the group owner establishes a network
set at newer 5 GHz networks, as seen on high-end Android devices, which will cause the
scan phase that has been initiated by the camera node to fail in connecting to the network.
For this reason, the Android application is set to change the bandwidth on the creation
of the network at 2.4 GHz channel 1 between the frequency range 2401–2423 MHz. Other
channels, 1 to 14, can be explored if the need arises. The Wi-Fi network is hosted in a
background thread of the Android application.

2.1.4. Video Streaming

The camera nodes host an HTTP server that serves JPEG images from the CMOS
camera. Once the camera node is connected to the network, the Android application can
request data from the camera node, using the IP address acquired from the previously
mentioned Bluetooth engagement. The images taken by the CMOS camera are streamed
through TCP on the Wi-Fi network that is hosted by the group owner. A port and HTTP end-
point are opened on the camera node HTTP server, allowing GET requests with multipart
content-type “multipart/x-mixed-replace” to stream the image frames to the mobile phone.
A boundary parameter is passed to the content-type as a delimiter to separate body parts
of data, coming from frames [49]. The connection is kept open as long as the client requests
packets, allowing the motion-JPEG (M-JPEG) stream to be processed by the Android device.
The M-JPEG is not handled by the Android device as a video file, but is received as an
image bitmap instead. A raw bitmap supports future object detection implementation
without stripping frames from a video file, thereby requiring extra processing on the
Android application.

An ADAS requires real-time capabilities concerning where delays can be hazardous
to the driver. The safety of the driver is an uncompromising factor that needs to take
priority. Acceleration and deceleration time (ADRT) is used when the driver adjusts
his/her speed. The time difference between the driver having received the visual signal,
and his/her reaction, needs to be slower than the video feed, which alternatively would
serve as no use to the driver [40]. For the video streams to be helpful in a real-time
application, the frame rate experienced by the driver on the ADAS assistance display should
be at a minimal delay. Previous testing calling tasks, such as Bluetooth communication,
has caused the Android video output view experience to be staggered, due to shared
processing. The camera capturing an HTTP server was placed on a dedicated core on the
camera node’s microcontroller to prioritise the video stream, in order to improve upon this
problem. Another interaction, such as Bluetooth communication, was placed on another
core with lower prioritisation. Prioritisation and core tainting were conducted by using
FreeRTOS, a real-time operating system kernel for embedded devices and the previously
used microcontroller’s dual-core capability. Each camera node consists of the state machine,
as shown in Figure 6.
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Figure 6. State machine of two cores for communication and dedicated video feed.

2.1.5. Camera Node

The functional diagram shown in Figure 7 illustrates the design of the camera node. A
low-cost OV2640 CMOS image sensor (FU1.1) captures images with an image array capable
of maximum image transfer rates of 30 fps at SVGA and up to 60 fps in CIF [5]. The OV2640
camera chip also gives users control over image quality and formatting for future results
optimisations (FU1.2). The off-the-shelf component ESP32-CAM development board that is
used contains the aforementioned image sensor, as well as the ESP32 32 bit microcontroller
(FU2.1), capable of running the HTTP server housed with the Wi-Fi MAC and Bluetooth
controller (FU3.1 and FU3.2).

Figure 7. Functional diagram of the camera node, transferring the image stream over Wi-Fi.

2.1.6. Design Schematics and PCB Layouts

A breakout board for the ESP32-CAM board has been designed that allows the devel-
opment board to mount the camera node to a vehicle PCB, shown in Figure 8. The camera
node should be able to withstand outdoor elements to be able to take proper field readings.
The PCB is concealed in a protective container with ingress protection (IP), protected from
dust and water. Figure 9 shows the designed schematic, where FT232RL IC is a TTL/RS232
converter used to program the ESP32 through a USB connection. The camera node con-



Sensors 2022, 22, 3026 10 of 22

sumes power through the USB connection, but jumpers have been placed on consuming
battery power for future field testing.

Figure 8. Designed camera node PCB board for ESP32-CAM breakout.

Figure 9. Schematic of the camera node.

2.1.7. Camera Node Embedded Logic

The camera node’s software was written in C to communicate with the ESP32 mi-
crocontroller. Before the camera node hosts the HTTP server, the Bluetooth controller is
engaged by starting the Bluetooth serial service by broadcasting the device name. The
device name is prefixed with “ADAS_CAMERA”, which the Android application uses
to filter paired devices for the ADAS application. The camera nodes remain in this state
until the Android application sends the aforementioned SSID and passcode that has been
terminated by consecutive 0x23 hex values to indicate the successful transfer for both the
SSID and passcode.

After credentials are received successfully, the camera is initialised, and the Wi-Fi
module attempts to connect to the Android-hosted network. If a successful connection
to the network is complete, the local IP of the camera node is transmitted to the Android
application, and the node’s HTTP server starts. The lightweight HTTP server creates a
listening socket on TCP for HTTP traffic, where user-registered handlers are invoked, and
sends back HTTP response packets to the Android application. The server has one purpose,
which is to feed the image feed from the camera, where the server’s port socket is set at
80, and the user-registered handler is an HTTP GET method at the root “/”. The Android
application then requests the feed from the URL “http://<camera node ip>:80”. When the
user-registered handler is invoked, an image is requested from the camera and converted
to JPEG compression, which is then sent to the Android application. The invoked handler
continues this process indefinitely until the connection is closed by the smartphone client.

Upon booting of the camera node, the Bluetooth communication is initialised with
Wi-Fi communication. This only happens once during the camera node’s life cycle, but
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this can fall over to a restart if a failure occurs, such as brownouts or system locks. Added
handshaking is implemented to force the video streaming to restart on the Android device
command “CMD=9”. This mechanism of using “CMD” with a number is reserved to carry
out other functionalities in the future. After initialisation, FreeRTOS is used to initiate a task
pinned to core 0 of the microcontroller. This core deals with Bluetooth communication only.
The state machine on core 0’s side receives the group owner’s (GO) SSID and password
from the Android application by implementing the handshaking mechanism shown in
Figure 10.

Figure 10. Bluetooth communication between the Android application and camera node.

2.1.8. Blind Spot Node

The functional diagram shown in Figure 11 illustrates the design of the blind spot
node. The node consists of three main components, namely the proximity sensor (FU1),
microcontroller (FU2), and Bluetooth communication (FU3). Focusing on keeping the entire
ADAS at a low cost, an ultrasonic sensor is used as the proximity sensor, which provides a
2 to 400 cm non-contact measurement with a ranging accuracy of 3 mm [50]. The ultrasonic
sensor uses an echo and trigger mechanism that has been acquired by the microcontroller
(MCU), where the distance is calculated by using the speed of sound. The same ESP32
development board, being used for the camera node from previous investigations, was used
as the MCU of the blind spot node. The ESP32 32 bit microcontroller can run the Bluetooth
controller (FU3.1), which is used to send through the calculated distance received from the
ESP32 microcontroller and ultrasonic transceivers, using an RFCOMM Bluetooth serial.

The ultrasonic sensors pointing out from the side of the casing are directed to the blind
spot area of the vehicle. The final prototype is shown in Figure 12.
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Figure 11. Functional diagram of the blind spot node, expressing the manner in which the distance
measurement is streamed through Bluetooth.

Figure 12. Left and right blind spot nodes.

2.2. Smartphone-Based ADAS
2.2.1. Lane Detection

As an experimental implementation, the lane detection was written in Python, which
was then written in JAVA on Android. OpenCV is a well-known library that focuses on
real-time computer vision and was used in this implementation [51]. The same library is
ported and available to the Android environment, where the same implementation logic
is used for the Android development after a simulation experimentation is successful.
The implemented Python streamer uses a previously developed simulator to simulate the
oncoming road video stream. Each frame is captured and passed through the process
shown by Figure 13.

An edge detection mechanism is used to detect lanes. Hough transform assists in
detecting imperfect straight lines, which will provide further assistance when dotted lanes
are at play.

In this implementation, the preprocessed frame is passed through a Hough transfor-
mation that returns an array of lines. A gradient is then calculated for each line in the array,
where a slope smaller than a set acute angle is rejected. This slope is expressed by

θ =

∣∣∣∣arctan(
y2 − y1

x2 − x1
)

∣∣∣∣ (1)

By rejecting angles that are not within the set bounds, errors are avoided, such as
horizontal lines that do not serve as possible road lanes.

Furthermore, to determine an estimate of where the vehicle is positioned relative to
the lanes, a simple approach was taken by using the x-intercept of the detected lane and
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the centre of the width of the frame. The intercept of the lane was calculated by using
the following

xintercept =
x1∇− y1 − I

∇ ;∇ =
y2 − y1

x2 − x1
, (2)

where I is the image height in pixels, assuming a Cartesian plane of the image where a
(0, 0) point starts at the top left corner, and the x-intercept is then used to calculate the
distance from the centre by using half the width of the image. Essential lane assistance is
then added, which will trigger a warning when the driver exceeds a certain tolerance of the
left or right side lanes. The tolerance can be set as a percentage of half the width. Once the
driver exits the safe zone, the driver will be warned that the vehicle is diverging lanes.

Figure 13. Functional diagram of the designed lane detection for lane assistance.

2.2.2. Collision Detection

A multi-scale approach to optimise detection discovery by using different detection
windows to detect objects in proximity to the driver’s vehicle was shown to deliver good
results [9]. In this paper, however, “detection” does not use the windows as detection
windows. Instead, it uses them as collision potentials because the detection was already
done through a convolution neural network. The different regions are used as collision
levels, namely near, intermediate, and far, to warn drivers that a collision could occur.
The far region wraps the vanishing point area in the horizon, where the closer regions
wrap a larger area of the images. The overlapping region is calculated for each detection
to determine whether a detected box falls within a particular region. The two metrics
Overlapx and Overlapy are used to compute the OverlapArea, which can be calculated as
the product by

Overlapx = max(min(Ax(right); Bx(right))−max(Ax(le f t); Bx(le f t))) (3)

Overlapy = max(min(Ay(bottom); By(bottom))−max(Ay(top); By(top))) (4)

OverlapArea = Overlapx ×Overlapy. (5)

2.2.3. Distance Estimation

A manual calibration process is required to determine the focal length, which is
required before distance estimation can be carried out. After the focal length is calculated
through a calibration process, the distance of the objects can be estimated by using the same
equation, with the extension of adding a right angle calculation to determine the deviation
from the centre of the image, which is better illustrated by Figure 14.
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Figure 14. Projection of the camera, capturing the incoming scene.

The figure shows how the distance is recalculated when an object has been detected
and deviates from the centroid of the image. The recalculated object is calculated by using
the adjusted equation

d2 =

√
(

widthobject × f
widthpixels

)2 + (
∣∣∣CentroidXimage − CentroidXobject

∣∣∣)2. (6)

The distance to the centre of a detect box is calculated by using the aforementioned
pinhole method. If the detected box deviates from the centre, the distance is adjusted by
using Equation (6).

3. Results
3.1. Simulated Environment

Tests were carried out, using different environments. Firstly, the nodes were simulated
by using simulator nodes, hosting streams at different resolutions. The different streams
consisted of low, medium, high and ultra-high resolutions, tested at concurrent connection
combinations of one to six streams. The simulator ensures that each stream acts as a
camera node by looping the same video at different resolutions. Network performance
was then shown for the actual hardware camera nodes in a controlled environment to
illustrate the manner in which the network and camera nodes performed without an intra-
vehicle environment. Lastly, an intra-vehicle environment was used where camera nodes
were placed inside the vehicle’s front and rear to take the same readings as the controlled
environment.

Six streams were run, from one to six concurrent streams at different resolutions, and
then the averages of the frame rates per second were calculated, as shown in Table 1. At
the lowest resolution, frame rates were the highest, with decreasing frame rates as the
streams increased. As the resolutions increased, frame rates dropped to rates that did not
accommodate real-time applications.

At high resolutions, the current solution cannot support an ADAS. Improved trans-
mission methods, such as HTTP live streaming (HLS) and real time streaming protocol
(RTSP), would improve this by incorporating improved encoding and decoding strategies,
but would require more demanding hardware and increased costs.
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Table 1. Average frames per second of different resolutions at different streamed nodes.

Resolution 1 Stream 2 Streams 3 Streams 4 Streams 5 Streams 6 Streams

120p 522.22 265.91 175.64 131.91 107.31 87.73
320p 47.02 38.90 22.76 20.35 14.64 13.47
720p 3.57 2.65 2.43 2.02 1.71 1.52

1080p 1.04 1.00 1.00 1.00 1.00 1.00

3.2. Intra-Vehicle Environment

The intra-vehicle environment was tested by placing the sensors externally at the
front and at the rear of the vehicle. The tests were carried out on a stationary vehicle. An
extra camera node was also placed on the passenger seat to be compared to the controlled
environment. Readings were then taken during the 10 min. The smartphone was mounted
inside the vehicle at the driver’s seat near the vehicle’s dashboard. Figure 15 shows the
throughput of all three sensors and Figure 16 reveals the density plot. The throughput of
the network hovers at under 300 kbit/s. Figure 17 shows the frame rate of all three camera
nodes fed to the Android device.

Figure 15. Throughput of three camera nodes in an intra-vehicle environment where readings were
taken over 10 min.

Figure 16. Density plot of the throughput of three camera nodes in an intra-vehicle environment over
10 min.

Figure 17. Frame rate of all three camera nodes mounted on the vehicle, being fed to the Android
device over a 10-minute period.
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3.3. Android Battery Consumption

Multiple streams, as well as different resolutions, were tested to record current draws
at different combinations. Figure 18 shows the matrix of current draw averages at different
stream to resolution combinations. As expected, as streams and resolutions increased, the
current draw increased, due to more processing on the smartphone.

Figure 18. A heat map of average current draws on the Android device while running a number
of streams.

3.4. Testing Environment
3.4.1. Collision Avoidance

Collision detection uses a MobileSSDv1 model, pre-trained on the COCO dataset to
detect vehicles from the video network stream. The detector uses three different areas to
inform the driver about a potential collision. The performance of the detector was tested by
implementing the Bosch Boxy data set, which consists of annotated vehicles for training and
evaluating object detection methods for self-driving cars on freeways [52]. By comparing
the annotated frames with the detection carried out by the collision detector, a confusion
matrix, as shown in Figure 19, was constructed. The matrix was divided into three regions
to illustrate different binary outcomes.

Figure 19. Confusion matrix of three detection regions and their binary outcomes.

3.4.2. Distance Detection

A test vehicle was used to carry out the distance estimation algorithm. Three different
intervals were marked on the road at 3 metre intervals. The focal length was calibrated at a
measured 9 metres, and then the distance was estimated at ground truth measurements of
3, 6, and 9 metres, respectively. Table 2 shows the different intervals, and the accuracies of
the readings after the distance estimation was carried out. Distance errors aggravate as the
distance from the original 9 metre calibration point changes.
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Table 2. Results for a test vehicle with a width of 155 cm.

Test Interval Actual Distance (cm) Calculated Distance (cm) Error (cm) Accuracy %

3 metre mark 300 362 62 83%
6 metre mark 600 604 4 99%
9 metre mark 900 902 2 100%

3.4.3. Lane Detection

Forming part of the ADAS, the driver is warned when potentially entering a lane on
the left or right. If the warning tolerance is too high, then every lane being detected will
fire a warning to the driver. Too high a tolerance is not ideal because only lanes close to the
vehicle, which are assumed as drifting of the vehicle, should be used to warn the driver. On
the other hand, if the tolerance is too low, the detected lanes will never enter the tolerance
area that should trigger a warning. The tolerance is set at an estimate of the width of the
ADAS-equipped vehicle. Figure 20 shows the area where warnings to the driver will be
fired if the lane’s x-intercepts fall within the hatched areas.

Figure 20. An example of a left lane warning where the hatched area represents the tolerance of the
position where lanes can be detected.

Accuracy is the number of correctly classified lanes, divided by the total number of
examples in the test set. Accuracy is helpful but does not cater for subtleties of imbalances
or weighting of false negatives and false positives. The F-score helps to solve this by placing
more emphasis on recall or precision. By setting β = 2, recall is twice as important as
precision, considering that it is much worse to miss a lane than to give a false alert for a
non-existing lane.

Fscore =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
= 0.94 (7)

Accuracy =
TP + TN
samples

= 96% (8)

3.4.4. Blind Spot Detection

A distance experiment was set up where intervals separated by a metre, starting from
the vehicle, were tested, to test the accuracy and performance of the developed blind spot
nodes. Raw Bluetooth distance sample outputs were taken at every metre interval, using
the blind spot node and a Bluetooth Android terminal application. Figure 21 shows the
distribution plots of two intervals at 1, 2, and 2.5 metres, respectively. The samples decrease
at distances larger than 2.5 metres, due to the ultrasonic sensors diminishing echo signal
returns. The accuracy also decreases as the distance increases. The distance accuracy
degradation is expected, as the sensor’s specifications only support 2 metres.
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Figure 21. Distribution plot for samples measured at two different distance intervals to the car.

3.5. Android Application

By using the Wi-Fi protocol, higher transfer rates can send sensory data from a video
sensor to enable advanced object detection around a vehicle. Video streaming from the
network can then be used for real-time object detection applications for an ADAS on a
smartphone device. Detection was successfully carried out on video being sourced from
a simulated video stream and network-sourced video streams. Due to large models not
being able to run on smaller embedded devices, such as smartphones, they used a faster
and lighter CNN, such as MobileNet, instead.

Lane detection and collision avoidance were implemented for the ADAS, running
on Android. It has been shown that a low-cost ADAS, using a smartphone, can carry out
image processing techniques capable of detecting lanes on a real-time video stream. It has
also been shown that a low-cost ADAS, using a smartphone, is able to carry out object
detection techniques where distance estimation and collision risk can be calculated on a
real-time video stream. The real-time video stream, being sourced from the intra-vehicular
wireless video network, is used to assist the driver by detecting lanes and warning the
driver when he/she is moving closer to the centre of that lane. The implemented system
helps the driver by warning him/her visually on the screen about lane divergence to the
left or right of the vehicle which can be seen in Figure 22. The real-time video stream also
assists the driver by warning the driver when his/her vehicle is moving closer to hazardous
objects. The implemented system helps the driver by warning him/her visually on the
screen about a possible collision in the front or rear of the vehicle.

Blind spot detection is added to the implemented ADAS running on Android. It has
been shown that a low-cost ADAS, using a smartphone, can carry out blind spot detection
where ultrasonic sensors can detect the distance of a vehicle in the driver’s blind spot,
in order to prevent a collision. The Bluetooth devices form an addition to the already
developed network that provides a real-time video stream being sourced from the intra-
vehicular wireless video network. The blind spot addition will assist the driver with the
help of visual warnings on a screen if a possible collision in the blind spot of the vehicle is
going to occur which can be seen in Figure 22.

Figure 22. Screenshots of different detection types running the ADAS on Android.

The collision and lane detection processing speeds are measured for each frame before
and after detection. The sample rate of the blind spot detector is calculated by the number
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of packets received per second. Figure 23 shows the density plot of the lane, collision, and
blind spot inference times for the ADAS, being run on a middle-range Android smartphone.

Figure 23. Density distribution plot, showing the processing times for collision, lane, and blind
spot detection.

Collision detection has the most significant average delay processed on a middle-range
Android smartphone, running the collision avoidance module. The network delay and the
collision detection delay have caused the drop in frames but are still usable in a real-time
application. A summary of the proposed system’s processing times is shown in Table 3,
which includes the corresponding frame rates. The network delay is the most significant
contributing factor to frames being dropped.

Table 3. Processing times for the proposed system.

Delay Type FPS Average (ms) Standard Deviation (ms)

Collision detection 44.1 22.7 20.1
Lane detection 82.6 12.1 4.8

Blind spot detection 65.7 15.2 25.4
Camera node (including network) 25.6 39 1.1

4. Conclusions

ADAS are prevalent in high-end vehicles, and low-cost ADAS have not been widely
available. Most drivers have smartphones that are capable of carrying out complex pro-
cessing, and can perform network communications. Smartphones are helpful in ADAS,
but sensors are limited to the peripherals on the smartphone device. In this paper, a
low-cost smartphone-based ADAS was developed using a high speed IVWMSN as the
communication backbone, thereby extending the smartphone’s onboard sensors and using
the smartphone as a processing platform. It was demonstrated how the proposed system
consumes sensory data received from the IVWSN and performs accurate lane detection,
collision detection, and blind spot detection in real-time, while Bluetooth communication
was used for lower data rate sensors, such as proximity sensors. Data transmission rates
required for camera-based sensors in WMSN were achieved. Data transmission rates
and the performance of each individual ADAS function were analysed and found to be
adequate for the enablement of a functional low-cost smartphone-based ADAS.

It was found that an inexpensive advanced driver-assistance system alternative can
be conceptualised by using object detection techniques processed on a smartphone from
multiple streams, sourced from an intra-vehicle wireless sensor network, composed of
camera sensors. To allow the smartphone application to be used by a driver in real-time,
the frame rate is required to be high enough to accommodate the user to react to an ADAS
warning. Table 3 shows a summary of the average processing times of the proposed system,
which uses the IVWSN network. The Wi-Fi network can reach high throughput rates, but
real-time processing is a trade-off that can be improved by using encoding and compression
techniques for transferring video streams at higher resolutions. Even though the detectors
prefer lower resolution images, other WSN applications might benefit from transferring
video streams at higher resolutions. More efficient management of video streams can
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be implemented to alleviate processing strain and power usage by the smartphone. A
switching algorithm can accommodate multiple camera streams by focusing on detection
areas of higher priority, depending on driving scenarios determined by the object detection.
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