179 research outputs found

    Robust Linear Temporal Logic

    Get PDF
    Although it is widely accepted that every system should be robust, in the sense that "small" violations of environment assumptions should lead to "small" violations of system guarantees, it is less clear how to make this intuitive notion of robustness mathematically precise. In this paper, we address this problem by developing a robust version of Linear Temporal Logic (LTL), which we call robust LTL and denote by rLTL. Formulas in rLTL are syntactically identical to LTL formulas but are endowed with a many-valued semantics that encodes robustness. In particular, the semantics of the rLTL formula φψ\varphi \Rightarrow \psi is such that a "small" violation of the environment assumption φ\varphi is guaranteed to only produce a "small" violation of the system guarantee ψ\psi. In addition to introducing rLTL, we study the verification and synthesis problems for this logic: similarly to LTL, we show that both problems are decidable, that the verification problem can be solved in time exponential in the number of subformulas of the rLTL formula at hand, and that the synthesis problem can be solved in doubly exponential time

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous Büchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness

    Lazy Probabilistic Model Checking without Determinisation

    Get PDF
    The bottleneck in the quantitative analysis of Markov chains and Markov decision processes against specifications given in LTL or as some form of nondeterministic B\"uchi automata is the inclusion of a determinisation step of the automaton under consideration. In this paper, we show that full determinisation can be avoided: subset and breakpoint constructions suffice. We have implemented our approach---both explicit and symbolic versions---in a prototype tool. Our experiments show that our prototype can compete with mature tools like PRISM.Comment: 38 pages. Updated version for introducing the following changes: - general improvement on paper presentation; - extension of the approach to avoid full determinisation; - added proofs for such an extension; - added case studies; - updated old case studies to reflect the added extensio

    Verification of temporal properties of infinite state systems

    Get PDF
    No es ningún secreto que tanto los sistemas software como hardware generalmente presentan errores. Los métodos de testeo y simulación pueden identificar muchos problemas importantes, pero para sistemas que tienen requerimientos de seguridad o que son económicamente críticos, es indispensable llevar a cabo una verificación exhaustiva. Tal análisis se puede realizar utilizando métodos de verificación formal. Un enfoque de la verificación formal es la verificación de modelos, que es un proceso totalmente automático basado en la construcción de modelos abstractos para representar sistemas. Poste- riormente, sobre estos modelos se comprueban propiedades deseadas del sistema, normalmente expresadas en alguna lógica temporal, como por ejemplo lógica linear temporal. Las propiedades expresadas con fórmulas de lógica linear temporal pueden describir el orden de los eventos en el tiempo sin describir el tiempo explícitamente. Por eso mismo, son útiles a la hora de verificar las posibles ejecuciones de un sistema. Este proyecto pretende implementar algoritmos de verificación de modelos que determinen si una fórmula de lógica linear temporal que exprese una propiedad de un cierto sistema es satisfecha por éste.It is no secret that computer software programs, computer hardware designs, and computer sys- tems in general exhibit errors. Testing and simulation methods can identify many significant problems, but for systems that have safety or economically critical requirements, exhaustive ver- ification is indispensable. Such exhaustive analysis can be performed with the use of formal verification methods. One approach to formal verification is model checking, which is a fully automated process based on the construction of abstract models to represent systems. These models are then checked against desired properties defining a specification, usually expressed in some temporal logic, such as linear temporal logic (LTL). Temporal properties can describe the ordering of events in time without introducing time explicitly, thereby being useful when verifying the possible executions of a system. This project aims to implement model checking algorithms that determine whether an LTL formula expressing a desired property is satisfied in a computing system

    starMC: an automata based CTL* model checker

    Get PDF
    Model-checking of temporal logic formulae is a widely used technique for the verification of systems. CTL [Image: see text] is a temporal logic that allows to consider an intermix of both branching behaviours (like in CTL) and linear behaviours (LTL), overcoming the limitations of LTL (that cannot express “possibility”) and CTL (cannot fully express fairness). Nevertheless CTL [Image: see text] model-checkers are uncommon. This paper presents (1) the algorithms for a fully symbolic automata-based approach for CTL [Image: see text] , and (2) their implementation in the open-source tool starMC, a CTL [Image: see text] model checker for systems specified as Petri nets. Testing has been conducted on thousands of formulas over almost a hundred models. The experiments show that the fully symbolic automata-based approach of starMC can compute the set of states that satisfy a CTL [Image: see text] formula for very large models (non trivial formulas for state spaces larger than 10(480) states are evaluated in less than a minute)

    Proceedings of SUMo and CompoNet 2011

    Get PDF
    International audienc

    Index appearance record with preorders

    Get PDF
    Transforming ω-automata into parity automata is traditionally done using appearance records. We present an efficient variant of this idea, tailored to Rabin automata, and several optimizations applicable to all appearance records. We compare the methods experimentally and show that our method produces significantly smaller automata than previous approaches
    corecore