265 research outputs found

    A uniform framework for modelling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences

    Get PDF
    Labeled transition systems are typically used as behavioral models of concurrent processes, and the labeled transitions define the a one-step state-to-state reachability relation. This model can be made generalized by modifying the transition relation to associate a state reachability distribution, rather than a single target state, with any pair of source state and transition label. The state reachability distribution becomes a function mapping each possible target state to a value that expresses the degree of one-step reachability of that state. Values are taken from a preordered set equipped with a minimum that denotes unreachability. By selecting suitable preordered sets, the resulting model, called ULTraS from Uniform Labeled Transition System, can be specialized to capture well-known models of fully nondeterministic processes (LTS), fully probabilistic processes (ADTMC), fully stochastic processes (ACTMC), and of nondeterministic and probabilistic (MDP) or nondeterministic and stochastic (CTMDP) processes. This uniform treatment of different behavioral models extends to behavioral equivalences. These can be defined on ULTraS by relying on appropriate measure functions that expresses the degree of reachability of a set of states when performing single-step or multi-step computations. It is shown that the specializations of bisimulation, trace, and testing equivalences for the different classes of ULTraS coincide with the behavioral equivalences defined in the literature over traditional models

    Markovian Testing Equivalence and Exponentially Timed Internal Actions

    Full text link
    In the theory of testing for Markovian processes developed so far, exponentially timed internal actions are not admitted within processes. When present, these actions cannot be abstracted away, because their execution takes a nonzero amount of time and hence can be observed. On the other hand, they must be carefully taken into account, in order not to equate processes that are distinguishable from a timing viewpoint. In this paper, we recast the definition of Markovian testing equivalence in the framework of a Markovian process calculus including exponentially timed internal actions. Then, we show that the resulting behavioral equivalence is a congruence, has a sound and complete axiomatization, has a modal logic characterization, and can be decided in polynomial time

    An algebra of discrete event processes

    Get PDF
    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper

    Specification, simulation, and verification of component connectors in Reo

    Get PDF
    Coordination and composition of components is an essential concern in component-based software engineering. In this paper, we present an operational semantics for a component composition language called Reo. Reo connectors exogenously compose and coordinate the interactions among individual components, that unawarely comprise a complex system, into a coherent collaboration. The formal semantics we present here paves the way for studying the behavior of component composition mechanisms rigorously. To demonstrate the feasibility of such a rigorous approach, we give a faithful translation of Reo semantics into the Maude term rewriting language. This translation allows us to exploit the rewriting engine and the modelchecking module in the Maude tool-set to symbolically run and model-check the behavior of Reo connectors

    How Reversibility Can Solve Traditional Questions: The Example of Hereditary History-Preserving Bisimulation

    Get PDF

    Resources in process algebra

    Get PDF
    The Algebra of Communicating Shared Resources (ACSR) is a timed process algebra which extends classical process algebras with the notion of a resource. It takes the view that the timing behavior of a real-time system depends not only on delays due to process synchronization, but also on the availability of shared resources. Thus, ACSR employs resources as a basic primitive and it represents a real-time system as a collection of concurrent processes which may communicate with each other by means of instantaneous events and compete for the usage of shared resources. Resources are used to model physical devices such as processors, memory modules, communication links, or any other reusable resource of limited capacity. Additionally, they provide a convenient abstraction mechanism for capturing a variety of aspects of system behavior. In this paper we give an overview of ACSR and its probabilistic extension, PACSR, where resources can fail with associated failure probabilities. We present associated analysis techniques for performing qualitative analysis (such as schedulability analysis) and quantitative analysis (such as resource utilization analysis) of process-algebraic descriptions. We also discuss mappings between probabilistic and non-probabilistic models, which allow us to use analysis techniques from one algebra on models from the other

    13th international workshop on expressiveness in concurrency

    Get PDF

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin
    • …
    corecore