
How Reversibility Can Solve Traditional Questions:
The Example of Hereditary History-Preserving
Bisimulation
Clément Aubert
School of Computer and Cyber Sciences, Augusta University, GA, USA
http://spots.augusta.edu/caubert/
caubert@augusta.edu

Ioana Cristescu
Tarides, Paris, France
ioana@tarides.com

Abstract
Reversible computation opens up the possibility of overcoming some of the hardware’s current
physical limitations. It also offers theoretical insights, as it enriches multiple paradigms and models
of computation, and sometimes retrospectively enlightens them. Concurrent reversible computation,
for instance, offered interesting extensions to the Calculus of Communicating Systems, but was still
lacking a natural and pertinent bisimulation to study processes equivalences. Our paper formulates
an equivalence exploiting the two aspects of reversibility: backward moves and memory mechanisms.
This bisimulation captures classical equivalences relations for denotational models of concurrency
(history- and hereditary history-preserving bisimulation, (H)HPB), that were up to now only partially
characterized by process algebras. This result gives an insight on the expressiveness of reversibility,
as both backward moves and a memory mechanism – providing “backward determinism” – are
needed to capture HHPB.

2012 ACM Subject Classification Theory of computation → Program semantics; Computing method-
ologies → Concurrent programming languages

Keywords and phrases Formal semantics, Process algebras and calculi, Distributed and reversible
computation, Configuration structures, Reversible CCS, Bisimulation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.7

Related Version A complete but preliminary research report containing all the proofs can be found
at https://hal.archives-ouvertes.fr/hal-02568250.

Acknowledgements The authors would like to thank John Natale for correcting the definition of
postfixing and the reviewers of an earlier version of this work and of this version for their precious
comments that greatly improved the paper. We were unfortunately not able to accomodate all of
their suggestions, but have tried to reflect their comments in the body of the paper.

1 Introduction

The Benefits of Reversible Computation. Future progresses in computing may heavily rely
on reversibility [17]. The foreseeable limitations of conventional semiconductor technology,
Landauer’s principle [22] – promising low-energy consumption for reversible computers – and
quantum computing [26] – intrinsically reversible and now within reach [1] – motivated a
colossal push toward a better understanding of reversible computation. Those efforts have
given birth to new paradigms [16], richer models of computation (e.g. for automata [20],
Petri nets [14, 27], Turing machines [3]) and richer semantics, sometimes for preexisting
calculi like the Calculus of Communicating Systems (CCS) [11, 28], the π-calculus [9, 10]
and the higher-order π-calculus [25]. Those new perspectives sometimes additionally give in
retrospect a better understanding of “traditional” (i.e., irreversible) computation, and our
contribution illustrates this latter aspect.

© Clément Aubert and Ioana Cristescu;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-6346-3043
http://spots.augusta.edu/caubert/
mailto:caubert@augusta.edu
mailto:ioana@tarides.com
https://doi.org/10.4230/LIPIcs.CONCUR.2020.7
https://hal.archives-ouvertes.fr/hal-02568250
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 How Reversibility Can Solve Traditional Questions

Summary. In brief terms, we offer a solution to an open problem on classes of equivalence
of (non-reversible) concurrent processes thanks to reversibility. Hereditary history-preserving
bisimulation (HHPB) is considered “the gold standard” for establishing equivalence classes
on “true” models of concurrency [21, 36]. However, no relation expressed in syntactical terms
(e.g. on CCS) was known to capture it, despite intensive efforts: previous results [2, 29]
characterized HHPB on limited classes of processes, that excluded CCS terms as simple as
a.a, a+ a, a | a or containing similar patterns. We prove in this paper a somewhat expected
result, namely that adding mechanisms to reverse the computation and keep track of the
past enables syntactical characterizations of HHPB. This result uses natural reformulations
of canonical CCS bisimulations, provides a “meaningful” bisimulation for reversible calculi,
and furthermore validates the mechanism we use to reverse the computation in a concurrent
set-up. It also connects with previous semantics of reversible processes [2, 18] and supports
categorical treatment.

Reversing Concurrent Computation. Reversible systems can backtrack and return to a
previous state. Implementing reversibility often requires a mechanism to record the history
of the execution. Ideally, this history should be complete, so that every forward step can
be backtracked, and minimal, so that only the relevant information is saved. Concurrent
programming languages have additional requirements: the history should be distributed, to
avoid centralization, and should prevent steps that required a synchronization with other
parts of the program to backtrack without undoing this synchronization. To fulfill those
requirements, Reversible CCS (RCCS) [11, 12] uses memories attached to the threads of a
process1, and CCS with Communication Keys (CCSK) [30] “marks” each occurrence of an
action. The two calculi are equi-expressive [24] and are conservative extensions over CCS,
and in this paper we will use RCCS, to benefit from its previous denotational semantics [2].
Reversible calculi are also backward deterministic, a term introduced [6, p. 15] to denote the
fact that only one piece of information – in RCCS, the identifier in a memory – is enough
to undo a particular action. It should be noted that using only the labels is not enough, as
it can be the case that multiple events with the same label have taken place and could be
undone.

Equivalences for Denotational Models of Concurrency. A theory of concurrent computa-
tion, be it reversible or irreversible, relies not only on a syntax and a model, but also on
“meaningful” behavioral equivalences. This paper defines new bisimulations on RCCS, and
proves their relevance by connecting them to bisimulations on configuration structures [40],
a classical denotational model for concurrency. In configuration structures, an event repre-
sents an execution step, and a configuration – a set of events that occurred – represents a
state. A forward transition is then represented as moving from a configuration to one of its
supersets. Backward transitions have a “built-in” representation: it suffices to move from
a configuration to one of its subsets. Among the behavioral equivalences on configuration
structures, some of them, like history- and hereditary history-preserving bisimulation (HPB
and HHPB) [6, 32, 34, 35], use that “built-in” notion of reversibility. HPB and HHPB
are usually regarded as the “canonical” [29, p. 94] or “strongest desirable true” [31, p. 2]
concurrency equivalences because they preserve causality, branching, their interplay, and are

1 In this system, the distribution of the memory is given precedence over the minimality: while there is
some redundancy in the memories, they are maximally distributed, and hence every thread carries its
own complete history.

C. Aubert and I. Cristescu 7:3

the coarser (or finer, for HHPB) reasonable equivalences with these properties [37, p. 309].
HHPB also naturally equals path bisimulations [21], an elegant notion of equivalence relying
on category theory, and can be captured concisely using event identifier logic [31]. However,
no relation on operational semantics, e.g. on the labeled transition systems (LTS) of CCS,
RCCS, or CCSK, was known to capture it on all processes.

Encoding Reversible Processes in Configuration Structures. There have been multiple
attempts [2, 30] to transfer equivalences defined on denotational models, by construction
suited for reversibility, into reversible process algebras. Showing that an equivalence on
configuration structures corresponds to one on processes starts by defining an encoding of
the latter in the former. Encodings, for RCCS [2] and CCSK [18] alike, generally consider
only reachable reversible processes, and map them to one particular configuration in the
encoding of its origin, the CCS “memory-less” process to which it can backtrack. We come
back to the relation between this encoding and our current work in the conclusion.

Contribution. This paper improves on previous results [2, 29] by defining relations on
syntactical terms that correspond to HHPB on all processes, and hence are proven to be
“the right” bisimulation to study reversible computation2. This result relies on encoding the
processes’ memories into identified configuration structures, an extension to configuration
structures that constitutes our second contribution.

RCCS is exploited as a syntactic tool to decide HHPB for CCS processes, by endowing
them with
1. backtracking capabilities and
2. a memory mechanism.
This gives a precious insight on the expressiveness of reversibility, as we show that having
only one of those tools is not enough to define relations that capture HHPB. The memories
attached to a process are no longer only a syntactic layer to implement reversibility, but
become essential to define and capture equivalences, thanks to the backward determinism
they provide.

Recursion is not treated in this paper: its treatment amounts to unfolding processes and
structures up to a certain level, and it strongly suggests that there are not much insight to
gain from its development, that we reserve as a technical appendix for future work.

Related Work. The correspondences between HHPB and back-and-forth bisimulations
for restricted classes of processes [2, 29] inspired some of the work presented here. This
correspondence has been studied in the denotational world, on structures without auto-
concurrency [6].

The insight that backward determinism is essential to capture HHPB is also used in the
event identifier logic [31] and in one if its sub-systems [5], that both characterize HHPB
without restricting the structures considered. As in our case, the authors exploit identifiers
to eliminate constraints due to label “duplication”. Our work is similar, taking place in the
operational world instead of the logical one. Note that we do not introduce extra syntax
constructions on the LTS, but simply use the ones provided by RCCS, that we use “as is”.

2 Of course, this claim is open for discussion [23, Conclusion], nevertheless HHPB is to the best of our
knowledge the strongest form of bisimulation one can obtain on truly concurrent systems, which makes
it, at the very least, a point of comparison when studying other relations.

CONCUR 2020

7:4 How Reversibility Can Solve Traditional Questions

In the operational semantics, the previous attempts to characterize HHPB wrongly
focused on the backward capabilities of processes and considered the memory mechanisms
only as a tool to achieve it. As a result, those bisimulations could not decide that the
encoding of (a.a) | b and a | a | b were not HHPB. Instead, their characterizations of HHPB
were applicable only on “non-repeating” [29] or “singly-labeled” [2] processes. By integrating
the memory mechanism, the equivalence relation we introduce and consider can correctly
determine that these two processes are not HHPB, as we detail in Example 27.

Finally, our approach shares similarity with causal trees – in the sense that only part of
the execution, its “past”, is encoded in a denotational representation – which were used to
characterize HPB for CCS terms [13]. Capturing (H)HPB with novel techniques can also
impact model-checking and decidability issues [5], but we leave this as future work.

2 Denotational and Operational Models for the Reversible CCS

We write ⊆ for the set inclusion, P for the power set, \ for the set difference, f : A → B

(resp. f : A ⇀ B) for the (resp. partial) function from A to B, f�C for the restriction of f to
C ⊆ A, and f ∪ {a 7→ b} for the function defined as f on A that additionally maps a /∈ A
to b.

2.1 Identified Configuration Structures
Labeled configuration structures [38, 39] are a classical non-interleaving model of concur-
rent computation – also known as “stable configuration structures” [37, Definition 5.5] or
“completed stable families” [41, Section 3.2] – , that we enrich here with identifiers. We then
show that they support categorical understanding and the usual operations just as well as
their “un-identified” variations.

I Definition 1 ((Identified) Configuration structure). A configuration structure C is a tuple
(E,C,L, `) where E is a set of events, L is a set of labels, ` : E → L is a labeling function
and C ⊆ P(E) is a set of subsets satisfying:

∀x ∈ C,∀e ∈ x, ∃z ∈ C finite, e ∈ z, z ⊆ x (Finiteness)
∀x ∈ C,∀d, e ∈ x, d 6= e⇒ ∃z ∈ C, z ⊆ x, d ∈ z ⇐⇒ e /∈ z (Coincidence Freeness)
∀X ⊆ C, ∀x, y ∈ X,∃z ∈ C finite, x ∪ y ⊆ z ⇒

⋃
X ∈ C (Finite Completeness)

∀x, y ∈ C, x ∪ y ∈ C ⇒ x ∩ y ∈ C (Stability)
If C also has a set of identifiers I and an identifying function m : E → I satisfying:
∀x ∈ C,∀e1, e2 ∈ x,m(e1) 6= m(e2) (Collision Freeness)

then we write C⊕m, and say that I = (E,C,L, `, I,m) is an identified configuration structure,
or I-structure, and call C the underlying configuration structure of I.

We denote with 0 both the I-structure and its underlying configuration structure with
C = {∅}, and, for x, y ∈ C, we write x−−→e y and y ::→e x if x = y ∪ {e} and e /∈ x.

We omit the identifiers when representing I-structures and write the label for the event
(with a subscript if multiple events shares a label).

I Definition 2 (Causality, concurrency, and maximality). For all I, x ∈ C and d, e ∈ x, the
causality relation on x is given by d <x e iff d 6x e and d 6= e, where d 6x e iff for all y ∈ C
with y ⊆ x, we have e ∈ y ⇒ d ∈ y. The concurrency relation on x is given by d cox e iff
¬(d <x e ∨ e <x d). Finally, x is a maximal configuration in I if ∀y ∈ C, x = y or x 6⊆ y.

C. Aubert and I. Cristescu 7:5

∅

{a1} {a2}

(a)

∅

{a1} {a2}

{a1, a2}

(b)

∅

{a} {a}

{a, a}{a, b}

{a, a, b}

{τ}

{τ, b}

(c)

Figure 1 Examples of I-structures.

I Example 3. Consider Fig. 1, where we let the events have distinct arbitrary identifiers: if
two events with complement names as labels can happen at the same time (Fig. 1c), then
they are “merged” into a single event labeled with τ , as is usual in CCS (Sect. 2.2). In
Fig. 1c, a <{a,b} b, a <{a,a,b} b and τ <{τ,b} b; and in Fig. 1b, a1 co{a1,a2} a2. An I-structure
can have one (Fig. 1b) or multiple (Fig. 1a and 1c) maximal configurations.

Categorical point of view. We remind in Appendix A that configuration structures and
“structure-preserving” functions form a category. We also prove that a similar category
can be defined with I-structures as objects and define a forgetful functor that returns the
underlying configuration structure. This development supports the interest and validity of
studying I-structures, but can be omitted, except for the notion of morphisms:

I Definition 4 (Morphism of I-structure). A morphism f = (fE , fL, fC , fm) between I1 and
I2 is given by fE : E1 → E2 such that `2(fE(e)) = fL(`1(e)), for fL : L1 → L2; fC : C1 → C2
defined as fC(x) = {fE(e) | e ∈ x}, and fm : I1 → I2 such that fm(m1(e)) = m2(fE(e)). We
often write f for all the components, and write I1 ∼= I2 if f is an isomorphism.

Operations on I-configurations. Operations on I-structures are conservative extensions
over their counterparts on configuration structures – forgetting about event identifiers gives
back the “un-identified” definition [39] – , except for the parallel composition. The intuition
here is that configuration structures encode CCS processes, and I-structures encode memories
of RCCS processes, where parallel composition has a different meaning. Examples of those
operations will be given in Sect. 2.4, after introducing the calculi in Sect. 2.2 and the
encodings in Sect. 2.3. Sect. C.1 gives intuitions on the correctness of those operations.

Given two sets A, B, and a symbol ? /∈ A∪B denoting undefined, we write C? = C ∪{?}
if ? /∈ C and define the partial product [39, Appendix A] of A and B to be

A×? B = {(a, ?) | a ∈ A} ∪ {(?, b) | b ∈ B} ∪ {(a, b) | a ∈ A, b ∈ B}

and the two projections to be π1 : A×? B → A? and π2 : A×? B → B?.

I Definition 5 (Operations on I-structures). Given Ii = (Ei, Ci, Li, `i, Ii,mi), for i = 1, 2,
The relabeling of I1 along `′ : E1 → L is I1[`′/`1] = (E1, C1, L, `

′, I1,m1).
The reidentifiying of I1 along m : E1 → I is I1[m/m1] = (E1, C1, L1, `1, I,m), provided
I1[m/m1] respects the Collision Freeness condition.

The restriction of a set of events A ⊆ E1 in I1 is I1�A = (E,C,L, `1�E , I,m1�E) , where
E = E1\A, C = {x | x ∈ C1 and x ∩ A = ∅}, L = {a | ∃e ∈ E1\A, `1(e) = a} and
I = {i | ∃e ∈ E1\A,m1(e) = i}.

CONCUR 2020

7:6 How Reversibility Can Solve Traditional Questions

The restriction of a set of labels L ⊆ L1 in I1 is I1�L = I1�EL
1
where EL1 = {e ∈ E1 |

`1(e) ∈ L}. We write I1�a, when the restricting set of labels L is the singleton {a}.
The prefixing of I1 by the label a is a.I1 = (E,C,L, `, I,m) where

E = E1 ∪ {e}, for e /∈ E1,
C = {x | x = ∅ or ∃x′ ∈ C1, x = x′ ∪ e},
L = L1 ∪ {a},

` = `1 ∪ {e 7→ a},
I = I1 ∪ {i}, for i /∈ I1
m = m1 ∪ {e 7→ i}.

The postfixing of (a, i) to I1 is defined if i /∈ I1 as I1 : :(a, i) = (E,C,L, `, I,m) where
everything is as in a.I1, except that C = C1 ∪ {x ∪ {e} | x ∈ C1 is maximal and finite}.

The nondeterministic choice of I1 and I2 is I1 + I2 = (E,C,L, `, I,m), where
E = {{1} × E1} ∪ {{2} × E2} with
π1 : E → {1, 2} and π2 : E → E1 ∪ E2,
C = {{i} × x | x ∈ Ci},
L = L1 ∪ L2,

`(e) = `i(π2(e)) for π1(e) = i,

I = I1 ∪ I2,

m(e) = mi(π2(e)) for π1(e) = i.

The product of I1 and I2 is I1 × I2 = (E,C,L, `, I,m), where:
E = E1 ×? E2, with πi : E → E?i the projections of the partial product,
For i ∈ {1, 2}, define the projections γi : I1 × I2 → Ii and the configurations x ∈ C:

∀e ∈ E, γi(e) = πi(e), γi(`i(e)) = `i(πi(e)), γi(mi(e)) = mi(πi(e))
γi(x) ∈ Ci, with γi(x) = {ei | πi(e) = ei 6= ? and e ∈ x}
∀e, e′ ∈ x, π1(e) = π1(e′) 6= ? or π2(e) = π2(e′) 6= ?⇒ e = e′

∀e ∈ x,∃z ⊆ x finite, γi(z) ∈ Ci, e ∈ z
∀e, e′ ∈ x, e 6= e′ ⇒ ∃z ⊆ x, γi(z) ∈ Ci, e ∈ z ⇐⇒ e′ /∈ z

` : E → L = L1 ×? L2 is `(e) =

(`1(e1), ?) if π2(e) = ?

(?, `2(e2)) if π1(e) = ?

(`1(e1), `2(e2)) otherwise

m : E → I = I1 ×? I2 is m(e) =

(m1(π1(e)), ?) if π2(e) = ?

(?,m2(π2(e))) if π1(e) = ?

(m1(π1(e)),m2(π2(e))) otherwise

We now recall the definition of parallel composition for configuration structures, and
detail the definition for I-structures. Parallel composition consists of a combination of
product, relabelling, reidentifiying for the I-structures, and restriction. For the relabelling
operation, we use a synchronization algebra [42] (S, ?,⊥) consisting of a commutative and
associative operation • on a set of labels S∪{?,⊥}, where {?,⊥} /∈ S and such that a•? = a

(i.e. ? is the identity element) and a • ⊥ = ⊥ (i.e. ⊥ is the zero element), for all a ∈ S. To
avoid repetition, below we assume given (S, ?,⊥), such that S ⊆ L1 ∪ L2. We give examples
of synchronization algebras in Sect. 2.3.

I Definition 6 (Parallel composition of configuration structures). The parallel composition of C1
and C2 is C1 |S C2 =

(
(C1×C2)[`′/`]

)
�⊥ where ` : E1×?E2 → L1 ∪L2 is the labeling function

from the product, and `′ : E1 ×? E2 → L1 ∪ L2 ∪ {⊥} is defined as `′(e) = `1(e1) • `2(e2).

C. Aubert and I. Cristescu 7:7

I Definition 7 (Parallel composition of I-structures). The parallel composition of I1 and I2,
is I1 |S I2 = (I3[m′/m3][`′/`3])�⊥ where I3 = (E3, C3, L3, `3, I3,m3) is I1 × I2, and
m′ : E3 → I1 ∪ I2 ∪ {⊥k | k ∈ I1 ×? I2} is defined as follows, for i 6= ?:

m′(e) =

i if m3(e) = (i, i)
i if m3(e) = (i, ?) ∧ ∀e2 ∈ E2,m2(e2) 6= i

i if m3(e) = (?, i) ∧ ∀e1 ∈ E1,m1(e1) 6= i

⊥k otherwise, with m3(e) = k

(Sync. or Fork)
(Extra ?. 1)
(Extra ?. 2)

(Error)

`′ : E3 → L1 ∪ L2 ∪ {⊥} maps e to ⊥ if m′(e) = ⊥k, and to `1(e1) • `2(e2) otherwise.

Parallel composition removes from the product the pairs of events that represent “non-
realizable” interactions: for configuration structures, pairs of events that do not represent
possible and future synchronizations; for I-structures, pairs of events that do not represent
past synchronizations or forks. Definitions 11 and 12 will detail how those operations are used
to encode a process or a memory, and both types of parallel compositions will be illustrated
in Examples 14 and 15.

2.2 Concurrent Communicating Calculi
Let I = N be a set of identifiers and i, j range over it. Let N = {a, b, c, . . . } be a set of names
and N = {a, b, c, . . . } its set of co-names. We let N ∪ N ∪ {τ} be the set of labels, and use α
(resp. λ, µ, ν) to range over them (resp. over N ∪ N). The complement of a name is given by
a bijection · : N→ N, whose inverse is also written ·, and that we extend to τ , i.e. τ = τ .

I Definition 8 (RCCS Processes). The set of reversible processes R is built on top of the set
of CCS processes by adding memory stacks to the threads:

P,Q := P | Q ‖
∑
i>0λi.Pi ‖ P\a (CCS Processes)

e := 〈i, λ, P 〉 (Memory Events)
m := ∅ ‖ g .m ‖ e.m (Memory Stacks)
T := m� P (Reversible Threads)

R,S := T ‖ R | S ‖ R\a (RCCS Processes)

We denote I(e) (resp I(m), I(R)) the set of identifiers occurring in e (resp. m, R), and let
nm(m) = {α | α ∈ N or α ∈ N occurs in m} be the set of (co-)names occurring in m.

Note that the nullary case of the sum3 gives the inactive process, denoted 0, and that
the unary case gives the “usual” prefixing of a process by a label, and we write e.g. a.P for∑

1λi.Pi with λ1 = a and P1 = P . We assume sum to be associative and often consider only
its binary case, that we denote with the + sign. We often forget about the trailing ∅ in the
memory stack, or the inactive process 0 and write e.g. e�a | (b+c) for e.∅� (a.0 | (b.0+c.0)).
We work up to the structural congruence ≡ of CCS – that we suppose familiar to the reader –
in CCS processes under the memory, and write e.g. ∅�(P1 | P2 | P3) without parenthesis since
(P1 | P2) | P3 ≡ P1 | (P2 | P3). Finally, the only binder is restriction, and alpha-equivalence,
written =α and supposed familiar, equates e.g. ((a+ a) | b)\a with ((c+ c) | b)\c.

3 This version of sum is used for simplifying the presentation of the LTS in Fig. 2, and always written
with at least one prefix to ease remembering its particular form.

CONCUR 2020

7:8 How Reversibility Can Solve Traditional Questions

i /∈ I(m) act.
(m� λ.P +Q)−−−→i:λ 〈i, λ,Q〉.m� P

R−−−→i:λ R′ S −−−→i:λ S′
syn.

R | S −−−→i:τ R′ | S′

i /∈ I(m) act.∗
〈i, λ,Q〉.m� P :::→i:λ m� (λ.P +Q)

R :::→i:λ R′ S :::→i:λ S′
syn.∗

R | S :::→i:τ R′ | S′

R===⇒i:α R′
i /∈ I(S) par.L

R | S ===⇒i:α R′ | S

S ===⇒i:α S′
i /∈ I(S) par.R

R | S ===⇒i:α R | S′

R===⇒i:α R′ a /∈ α
res.

R\a===⇒i:α R′\a

R1 ≡ R R===⇒i:α R′ R′ ≡ R′1 ≡
R1 ===⇒i:α R′1

Figure 2 Rules of the labeled transition system (LTS).

In a memory event 〈i, λ, P 〉, the P component represents the process that was not chosen
in a non-deterministic transition, but that can be restored if the process wants to go back.
The “fork” symbol g tracks when a memory stack is split between two threads.

I Definition 9 (Structural equivalence [2, 11]). Structural equivalence on R is the smallest
equivalence relation generated by the following rules:

P =α Q

m� P ≡ m�Q
(α-Conversion)

m� (P | Q) ≡ (g.m� P | g.m�Q) (Distribution of Memory)
m� P\a ≡ (m� P)\a with a /∈ nm(m) (Scope of Restriction)

The labeled transition system for RCCS is given by the rules of Fig. 2. We use ===⇒i:α

for the union of −−−→i:α (forward) and :::→i:α (backward transition), and if there are indices
i1, . . . , in and labels α1, . . . , αn such that R1 ====⇒i1:α1 · · ·====⇒in:αn

Rn, then we write R1 ==⇒⇒ Rn.
Sect. 2.4 will provide examples of executions, but it should be noted that a process m� a.P
is allowed to make a transition with label a and identifier i /∈ I(m) using act. and add the
event 〈i, a, 0〉 to the memory stack m if i /∈ I(m). Conversely, a process 〈i, a, 0〉.m� P can
do a backward transition using act.∗ with label a and identifier i and become m� a.P . This
system is a conservative extension over the LTS of CCS with prefixed sum, simply adding
indices and backward transitions: in this sense, CCS can be seen as a sublanguage of RCCS,
namely by identifying ∅� P with P and using only forward transitions.

I Definition 10 (Reachable [2, Lemma 1]). For all R, if there is a CCS process P such that
∅� P ==⇒⇒ R, we say that R is reachable, that P is the unique origin of R and write it OR.

An important result [11, Lemma 10] furthermore states that a forward-only4 trace
∅� P ==⇒⇒ R exists. Also, note that multiple RCCS processes can have the same origin, but
that reachable RCCS processes have one unique origin (up to structural equivalence). We
consider only reachable terms: unreachable terms are “dysfunctional” and their memory is
considered not coherent [12], as they can not “rewind” back to an origin process.

4 Traces and trace equivalences for RCCS are reminded in Appendix B: they are needed for some proofs
and they are similar to their CCS’s counterpart [8], but are not required to understand our results.

C. Aubert and I. Cristescu 7:9

In RCCS, identifiers are needed to distinguish between events that have the same label.
In CCS, events are considered “the same” up to labels: two events can synchrionise if they
have the same label. Therefore, in the forward computation, events are free to choose a
synchronization partner as long as they have the same label. Undoing a synchronization,
however requires a precise pairs of events to backtrack: an event cannot change its synchro-
nization partner when going backwards. Reversibility therefore needs to distinguish events
are considered “the same” in the non-reversible setting. This constraint of using identifiers
to distinguish events with the same label makes RCCS backward deterministic.

2.3 Processes and Memories as (Identified) Configuration Structures
In the definitions below, we write S for a synchronization algebra (S, ?,⊥) with S = N∪N∪{τ}.

I Definition 11 (Encoding CCS processes [42]). Given a CCS process P , its encoding JP K as
a configuration structure is built inductively:

Jλ.P +QK = Jλ.P K + JQK JP | QK = JP K |S JQK JP\aK = JP K�{a,a}
Jλ.P K = λ.JP K J0K = 0

where S includes α • α = τ and α • β = ⊥, if β 6= α.

I Definition 12 (Encoding RCCS memories). Given a RCCS process R, the encoding dRe of
its memory as an I-structure is built by induction on the process and on the memory:

dm� P e = bmc dR1 | R2e = dR1e |S dR2e dR\ae = dRe
b〈i, λ, P 〉.mc = bmc : :(λ, i) b∅c = 0 bg.mc = bmc

where S includes α • α = τ ; α • α = α and α • β = ⊥ if β /∈ {α, α}.

Intuitively, a memory is a linear sequence of events executed by a process, which has
resolved choices (i.e. in the sum or in synchronizations). The encoding of a memory is a
chain of configurations. Appending a memory event corresponds to adding an event on top of
the chain, and parallel composition combines two chains by fusing “partial” events resulting
from a fork or a synchronization. We show examples in the following section and make this
argument more formal in Lemma 17.

2.4 Examples
We now illustrate the execution of RCCS processes, the encoding of CCS processes and of
RCCS memories, and how they relate.

I Example 13 (Executing a RCCS process). An example of forward-only trace is:

∅� (a.b | c.a) ≡ (g.∅� a.b) | (g.∅� c.a) (Distribution of Memory)
−−−→1:c (g.∅� a.b) | (〈1, c, 0〉.g .∅� a) (act.)
−−−→2:τ (〈2, a, 0〉.g .∅� b) | (〈2, a, 0〉.〈1, c, 0〉.g .∅� 0) (syn.)

−−−→3:b (〈3, b, 0〉.〈2, a, 0〉.g .∅� 0) | (〈2, a, 0〉.〈1, c, 0〉.g .∅� 0) (act.)

Reading it from end to beginning and replacing −−−→_:_ with :::→_:_ gives a backward-only trace,
that would rewind the process back to its origin. Of course, a trace can mix forward and
backward transitions, as we illustrate in Example 20. The memory of this process is encoded
in Example 15.

CONCUR 2020

7:10 How Reversibility Can Solve Traditional Questions

∅

{a}

{a, b}

(a) Ja.bK

∅

{c}

{c, a}

(b) Jc.aK

∅

{a} {c}

{a, b} {a, c} {c, a} {c, τ}

{a, b, c} {a, c, a} {c, τ, b}

{a, b, c, a}

(c) J(a.b) | (c.a)K

∅

{a}

{a, b} {c, a}

{c}

{a, b, c}

(d) Ja.b | cK

Figure 3 I-structures for Examples 14, 15, 16 and 20, with the CCS term encoded by their
underlying configuration in caption.

I Example 14 (Encoding CCS processes). We can see the I-structures from Fig. 1 as
configuration structures obtained by encoding the CCS processes a+ a, a | a, and (a.b) | a.
Similarly, we can consider the I-structures from Fig. 3 – ignoring the grayed out parts for now
– as configuration structures. The interested reader can check that the encoding of (a.b) | (c.a)
in Fig. 3c is indeed the result of applying the parallel composition of configurations structures
(Definition 6) to the encoding of a.b in Fig. 3a and of c.a in Fig. 3b. Lastly, Fig. 3d shows
the encoding of (a.b) | c.

The parallel composition of I-structures (Definition 7) differs slightly and is new, and
hence deserves a detailed example.

I Example 15 (Encoding RCCS memories). The process obtained at the end of Example 13
has its memory encoded as follows:

d(〈3, b, 0〉.〈2, a, 0〉.g .∅� 0) | (〈2, a, 0〉.〈1, c, 0〉.g .∅� 0)e
=d〈3, b, 0〉.〈2, a, 0〉.g .∅� 0e | d〈2, a, 0〉.〈1, c, 0〉.g .∅� 0e
=b〈3, b, 0〉.〈2, a, 0〉.g .∅c | b〈2, a, 0〉.〈1, c, 0〉.g .∅c

Letting E = L = {a, a, b, c}, ` = id, I = {1, 2, 3}, using bg.∅c = b∅c = 0 and the postfixing:
b〈3, b, 0〉.〈2, a, 0〉.g .∅c = ({a, b}, {∅, {a}, {a, b}}, L, `, I, {a 7→ 2, b 7→ 3}
b〈2, a, 0〉.〈1, c, 0〉.g .∅c = ({c, a}, {∅, {c}, {c, a}}, L, `, I, {c 7→ 1, a 7→ 2})

Those are displayed in Fig. 3a and 3b, and their product (which is the first step to
compute their parallel composition) gives the following sets of events and identifiers:

Event (a, ?) (b, ?) (?, c) (?, a) (a, c) (a, a) (b, c) (b, a)
Identifier (2, ?) (3, ?) (?, 1) (?, 2) (2, 1) (2, 2) (3, 1) (3, 2)

Re-identifying and re-labeling according to the definition of parallel composition gives:

Event (a, ?) (b, ?) (?, c) (?, a) (a, c) (a, a) (b, c) (b, a)
Re-identified ⊥(2,?) 3 1 ⊥(?,2) ⊥(2,1) 2 ⊥(3,1) ⊥(3,2)
Re-labeled ⊥ b c ⊥ ⊥ τ ⊥ ⊥

Indeed, if two events occur at the same time with the same identifier (Sync. or Fork),
then their identifier is simply picked. Hence, m′(a, a) = 2. If only one event is present in the
pair, and no event on the other component have the same identifier (Extra ?. 1, Extra ?. 2),

C. Aubert and I. Cristescu 7:11

then this event’s identifier is picked. Hence, m′(b, ?) = 3 and m′(?, c) = 1. The remaining
cases get re-identified with ⊥k (Error). Finally, (b, ?), (?, c) and (a, a) gets relabeled with b,
c and τ respectively, and after restricting to the label ⊥ we obtain the grayed out part of
Fig. 3c.

Observe that in this last example, the structure underlying the encoding of the memory
is just a particular “path” in the encoding of the origin. We can observe this intuition again
with the following example:

I Example 16 (Memory and origin). The encoding of the memory resulting from the execution
∅� ((a.b) | c)−−−→1:c −−−→2:a (〈2, a, 0〉.g .∅�b) | (〈1, c, 0〉.g .∅�0) is the grayed out part in Fig. 3d,
with m(c) = 1 and m(a) = 2. We name this process R1 and come back to it in Example 20.

2.5 Operational Correspondence
Before studying bisimulations on configuration structures and processes, we prove the
operational correspondence5 between RCCS processes and the encodings of their memories in
I-structures (Lemma 19, cf. also Sect. C.2). Events in I-structures resulting from the encoding
of a process have different identifiers, and they are either causally linked or concurrent.

I Lemma 17 (Memories give posets). For all R, letting x be the maximal configuration in
dRe (Definition 2), (dRe,⊆) is a partially ordered set (poset) with maximal element x.

This is proved by induction on R and illustrated by Examples 15 and 16. However, having
at most one maximal configuration does not imply that one particular event has to be “the
last one” introduced. We use the following definition to make it formal.

I Definition 18 (Maximal event). An event e is maximal in I if there is no event e′ such
that e <x e′, for x a maximal configuration of I.

For instance, the encoding of the memory of Example 16, pictured in Fig. 3d, has two
maximal events, labeled a and c. We can now state the main result of this section:

I Lemma 19 (Operational Correspondence). For all R and S, writing (ER, CR, `R, IR,mR)
for dRe and similarly for S, if R−−−→i:α S or S :::→i:α R, then there exists e ∈ ES maximal in
dSe with mS(e) = i s.t. dRe ∼= dSe�{e}. For all R and e a maximal event in dRe, there is a
transition R::::::::→mR(e):`R(e)

S with dSe ∼= dRe�{e}.

For the first part, it suffices to show that the forward transition triggers the creation
of a maximal event with the same identifier, and nothing else, and that this event can be
“traced” in dSe. It uses intermediate lemma (Lemmas 43–45) showing how maximal events
are preserved by certain operations on I-structures. The result follows easily for backward
transitions, but the last part is more involved: it requires to show that e can be mapped to a
particular transition in the trace from OR to R, and, using a notion of trace equivalence, that
this particular transition can be “postponed” and done last, so that R can backtrack on it.

I Example 20 (Forward and backward transitions). Looking back at the process of Example 16,
we could further have R1 :::→1:c R2−−−→3:b R3, i.e.

(〈2, a, 0〉.g .∅� b) | (〈1, c, 0〉.g .∅� 0) :::→1:c (〈2, a, 0〉.g .∅� b) | g.∅� c)) (act.∗)

−−−→3:b (〈3, b, 0〉.〈2, a, 0〉.g .∅� 0) | g.∅� c)) (act.)

We can see using Fig. 3d that dR1e�c = dR2e and that dR2e = dR3e�b.

5 Similar to the operational correspondance between configuration structures and CCS processes [7,
Section 3] i.e., if P −−→α Q, then JP K = JQK�{e}, where e is an event in JP K such that `(e) = α.

CONCUR 2020

7:12 How Reversibility Can Solve Traditional Questions

∅

{a}

{a, b1} {a, b2}

(a) Ja.(b+ b)K

∅

{a1} {a2}

{a1, b1} {a2, b2}

(b) J(a.b) + (a.b)K

∅

{a1} {b}

{a1, b}{a1, a2}

{a1, a2, b}

(c) J(a.a) | bK

∅

{a1} {a2} {b}

{a1, a2} {a1, b} {a2, b}

{a1, a2, b}

(d) Ja | a | bK

Figure 4 Configuration structures for Examples 23 and 27.

3 Reversible and Truly Concurrent Bisimulations Are the Same

3.1 History-Preserving Bisimulations in Configuration Structures
History-preserving bisimulation (HPB) [4, 31, 32] and hereditary history-preserving bisim-
ulation (HHPB) [4, 6] are equivalences on configuration structures that use label- and
order-preserving bijections on events. Below, assume given Ci = (Ei, Ci, Li, `i) for i = 1, 2.

I Definition 21 (Label- and order-preserving functions (l&o-p)). A function f : x1 → x2, for
xi ∈ Ci, i ∈ {1, 2} is label-preserving if `1(e) = `2(f(e)) for all e ∈ x1. It is order-preserving
if e1 6x1 e2 ⇒ f(e1) 6x2 f(e2), for all e1, e2 ∈ x1. We write that f is l&o-p if it is both.

I Definition 22 (HPB and HHPB). A relation R ⊆ C1 × C2 × (E1 ⇀ E2) such that
(∅, ∅, ∅) ∈ R, and if (x1, x2, f) ∈ R, then f is a l&o-p bijection between x1 and x2 and
(1) and (2) (resp. (1–4)) hold is called a history- (resp. hereditary history-) preserving
bisimulation (HPB, resp. HHPB) between C1 and C2.

∀y1, x1−−→
e1 y1 ⇒ ∃y2, g, x2−−→

e2 y2, g�x1 = f, (y1, y2, g) ∈ R (1)
∀y2, x2−−→

e2 y2 ⇒ ∃y1, g, x1−−→
e1 y1, g�x1 = f, (y1, y2, g) ∈ R (2)

∀y1, x1 ::→
e1 y1 ⇒ ∃y2, g, x2 ::→

e2 y2, g = f�y1 , (y1, y2, g) ∈ R (3)
∀y2, x2 ::→

e2 y2 ⇒ ∃y1, g, x1 ::→
e1 y1, g = f�y1 , (y1, y2, g) ∈ R (4)

We write that C1 and C2 are HHPB (resp. HPB) if there exists a HHPB (resp. HPB)
relation between them.

Note that HPB and HHPB are two different relations, as e.g. (a | (b+c))+(a | b)+((a+c) |
b) and (a | (b+ c)) + ((a+ c) | b) have HPB but not HHPB encodings [37] .

I Example 23. The encoding of the two processes a.(b + b) and (a.b) + (a.b), in Fig. 4a
and 4b, are HHPB: the relation can start by mapping a to a1 or a2, and then maps b1 or b2
(depending on the superset reached) to b1 or b2, according to the first choice made. This
relation can “follow” the forward and backward movements in both structures, giving a l&o-p
bijection. This example also proves that HHPB is not CCS’s structural congruence.

3.2 Back-And-Forth Bisimulations in Reversible CCS
This section presents the relations we will be using, explain the restrictions on previous
attempts to capture HHPB as a relation on process algebra terms [2, 29], and shows why
both backward transitions and identifiers are needed to capture HHPB.

C. Aubert and I. Cristescu 7:13

Below, assume given two reachable processes R1 and R2, and if f : A→ B is such that
f(a) = b, we write f \ {a 7→ b} for f�A\{a}.

I Definition 24 (B&F and SB&F bisimulations). A relation R ⊆ R× R× (I ⇀ I) such that
(∅ � OR1 , ∅ � OR2 , ∅) ∈ R and if (R1, R2, f) ∈ R, then f is a bijection between I(R1) and
I(R2) and (5–8) hold is called a back-and-forth bisimulation (B&F) between R1 and R2.

∀S1, R1−−−→i:α S1 ⇒ ∃S2, g, R2−−−→
j:α

S2, g = f ∪ {i 7→ j}, (S1, S2, g) ∈ R (5)

∀S2, R2−−−→i:α S2 ⇒ ∃S1, g, R1−−−→
j:α

S1, g = f ∪ {i 7→ j}, (S1, S2, g) ∈ R (6)

∀S1, R1 :::→i:α S1 ⇒ ∃S2, f, R2 :::→
j:α

S2, g = f\{i 7→ j}, (S1, S2, g) ∈ R (7)

∀S2, R2 :::→i:α S2 ⇒ ∃S1, g, R1 :::→
j:α

S1, g = f\{i 7→ j}, (S1, S2, g) ∈ R (8)

If we remove the requirements on f and g in the second part of (5–8), we call R a simple
back-and-forth bisimulation (SB&F). We write that R1 and R2 are B&F (resp. SB&F) if
there exists a B&F (resp. SB&F) relation between them.

Other back-and-forth bisimulations have been studied for a variety of systems [15, 25],
and are similar to SB&F bisimulation in the sense that they focus on backward and forward
moves, but did not took the identifiers into account.

Restrictions and Previous Results.

I Definition 25 (Constraints). Given C, if ∀x ∈ C, ∀e1, e2 ∈ x, `(e1) = `(e2) implies
e1 = e2, then C is non-repeating [29, Definition 3.5]. If, ∀x ∈ C, ∀e1, e2 ∈ x, e1 cox e2 and
`(e1) = `(e2) implies e1 = e2, then C is without auto-concurrency [37, Definition 9.5]. A
process R is non-repeating (resp. without auto-concurrency) if JORK is.

Those are the constraints used in showing equivalences between process algebra and
configuration structures. We omitted the definition of singly labeled [2, Definition 26], as
it does not contribute to the understanding of our results. Every non-repeating process is
without auto-concurrency, but being non-repeating events and singly labeled are incomparable
features. Simple processes can be repeating (e.g. a.a), with auto-concurency (e.g. (a.b) | a),
not singly labeled (e.g. a+ a), and the same can be said of more complex processes using
similar patterns.

The first syntactical characterization of HHPB was obtained on non-repeating processes,
using the “forward-reverse bisimulation” (FR) [30, Definition 6.5], which is essentially defined
as B&F, with the additional requirement that f = id. The theorem states that non-repeating
CCSK processes are FR iff their encoding are HHPB [29, Theorem 5.4]. We argue that FR
gives too much importance to the technical apparatus implementing reversibility. To the best
of our knowledge, freshness is the only constrain imposed on identifiers in reversible works.
Hence, to obtain meaningful FR equivalences, one would have to force a particular strategy
for choosing the identifiers6. We prefer instead to impose only the freshness constraint on
the identifiers, and use bijections (instead of equality on identifier) in our equivalences.

6 For example, a possible strategy is to always pick the smallest available identifier, which then guarantees
that both events labelled a in (a.b) + (a.b) of Example 23 picks the same identifier, in their respective
execution trace. Using this strategy we have then that (a.b) + (a.b) and a.(b+ b) are FR equivalent.
However, this strategy makes selecting an identifier a bottleneck of the system, as all the processes have
to check which is the smallest available from the same “pool”.

CONCUR 2020

7:14 How Reversibility Can Solve Traditional Questions

A second attempt [2] to capture HHPB used a back-and-forth barbed congruence on RCCS
processes which was proven to correspond to HHPB on their encodings for a restricted class
of processes as well, the class of singly-labeled processes.

Pinpointing the Right Reversible Bisimulation. We lift both restrictions in Corollary 31,
by proving that B&F captures HHPB on all processes. Before doing so, let us note that
even though B&F is the right notion to capture HHPB, when restricted to non-repeating
processes, which are also without auto-concurrency, it does not use in a meaningful way the
identifiers.

I Theorem 26 (Collapsing B&F and SB&F). If R1 and R2 are without auto-concurrency,
then they are B&F iff they are SB&F.

The intuition is that since two concurrent transitions sharing the same label can not be
fired at the same time, the identifiers do not add any information. The proof is easy for
the forward transitions, and uses an order on the transitions enforced by causality for the
backward traces. In the presence of auto-concurrency, the relations differ, e.g. the process
with auto-concurrency a | a and a.a are SB&F but not B&F.

I Example 27 (Reversibility is not “just back and forth”). Observe that the bisimulation
relation obtained by only considering (5–6) and ignoring the identifiers in Definition 24 is the
“standard” CCS bisimulation. Hence, it could seem natural to assume that “simply adding
the backwards transitions”, i.e. taking (5–8) without the identifiers, giving SB&F, would be
“the right” bisimulation for RCCS. Processes like (a.a) | b and a | a | b are SB&F, but their
encodings, presented in Fig. 4c and 4d, are not HPB and hence not HHPB: SB&F does not
account for reversibility in a satisfactory manner.

Both the bijection on identifiers and backward transitions are necessary to capture HHPB.
Indeed, as suggested by Example 27, “simply” considering forward and backward transitions
is not enough. Let us now consider the role of the bijection on identifiers a bit further. A
first remark is that Theorem 26 shows that it is easy to overlook the role of identifiers when
restricting the class of processes considered. Secondly, we can prove, as an immediate corollary
of Theorems 29 and 30, that considering only (5–6) (with the identifiers) in Definition 24
gives a characterization of HPB (Corollary 49): if anything, having a bijection between
identifiers – thanks to the order on events that can be deducted from it – helps getting closer
to “truly concurrent” bisimulation than adding backward transitions does. However, as HPB
and HHPB do not coincide, the identifiers are not enough either.

Of course, similar mechanisms could achieve similar results, but it is our hope that
reversibility is fully understood as not “just” being about adding backward transitions or
memories, but to use both to obtain backward determinism.

3.3 History-Preserving Bisimulations in (R)CCS

Proving our main result (Corollary 31) will use intermediate relations on processes – called
HPB and HHPB as well – that use the encoding of the memories into I-structures. Those
relations are proven to correspond to (H)HPB on the encoding of the processes on one
hand (Theorem 29), and the one that characterizes HHPB is proven to coincide with B&F
(Theorem 30) on the other hand. The connections between formalisms and additional
discussion are gathered in Sect. C.3.

C. Aubert and I. Cristescu 7:15

I Definition 28 (HPB and HHPB on RCCS). A relation R ⊆ R× R× (E1 ⇀ E2) such that
(∅ � OR1 , ∅ � OR2 , ∅) ∈ R and if (R1, R2, f) ∈ R then f is an isomorphism between dR1e
and dR2e and (9) and (10) (resp. (9–12)) hold is called a history-(resp. hereditary history-)
preserving bisimulation between R1 and R2.

∀S1, R1−−−→i:α S1 ⇒ ∃S2, g, R2−−−→
j:α

S2, g�dR1e = f, (S1, S2, g) ∈ R (9)

∀S2, R2−−−→i:α S2 ⇒ ∃S1, g, R1−−−→
j:α

S1, g�dR1e = f, (S1, S2, g) ∈ R (10)

∀S1, R1 :::→i:α S1 ⇒ ∃S2, f, R2 :::→
j:α

S2, g = f�dS1e, (S1, S2, g) ∈ R (11)

∀S2, R2 :::→i:α S2 ⇒ ∃S1, g, R1 :::→
j:α

S1, g = f�dS1e, (S1, S2, g) ∈ R (12)

where we write g�dRe for the restriction of each component of g to dRe.
We write that R1 and R2 are (H)HPB if there exists a (H)HPB relation between them.

Note that the definitions above reflect the definition of (H)HPB (Definition 22): the condition
(∅�OR1 , ∅�OR2 , ∅) ∈ R is intuitively the counterpart to the condition that (∅, ∅, ∅) has to
be included in the relation on configuration structures. Also, f shares similarity with the
l&o-p bijection, in the sense that it exists, with the identity as the component on the labels,
iff there exists a l&o-p bijection between the unique maximal configurations in dR1e and
dR2e (Lemma 46).

Relations defined on RCCS (B&F, SB&F, HPB and HHPB) straightforwardly extend to
CCS, by simply stating that P1 and P2 are in it if ∅� P1 and ∅� P2 are too. Therefore we
can state below our results in terms of CCS processes.

I Theorem 29 (Equivalences). P1 and P2 are HHPB (resp. HPB) iff JP1K and JP2K are.

This result can easily be extended to weak-HPB and weak-HHPB [6, 31], which are
defined by removing from (H)HPB on configuration structures (Definition 22) and on RCCS
(Definition 28) the condition that f must be preserved from one step to the next one.

I Theorem 30 (Equivalence (contd)). P1 and P2 are B&F iff they are HHPB.

Theorem 29 (resp. Theorem 30) uses our operational correspondence between RCCS
processes (resp. RCCS memories) and their encodings as configuration structures [2, Lemma 6]
(resp. as I-structure (Lemma 19)) to transition between the semantic and syntactic worlds.

Our main result will come as an immediate corollary of Theorems 29 and 30.

I Corollary 31 (Main result). P1 and P2 are B&F iff JP1K and JP2K are HHPB.

4 Concluding Remarks

This work offers a “definitive” answer to the question of finding a meaningful bisimulation
for reversible LTS by providing relations that correspond to (H)HPB on their encodings on
all processes. We believe this contribution is of value because:
1. This result solves a problem that was open since HHPB was defined [6], nearly 30 years

ago, for which despite the use of multiple techniques, only partial results were obtained,
2. This idea in appearance simple still requires a lot of technical work, as sketched in the

Appendix and detailed in https://hal.archives-ouvertes.fr/hal-02568250,
3. The use of reversibility (both the backtracking capability and the memory mechanism) is

critical to characterize HHPB on syntactical terms.

CONCUR 2020

https://hal.archives-ouvertes.fr/hal-02568250

7:16 How Reversibility Can Solve Traditional Questions

This result also enforces the importance of identifiers in general and not just as part of a
backtracking mechanism. Indeed, they are generally already present when concurrency is
implemented, e.g. when two Unix threads terminate with the same signal, the parent process
have the capacity of determining which process sent which signal.

As a byproduct of our result, we also proposed an encoding of RCCS memories into an
“enriched” configuration structure, called identified configuration structure. This observation
echoes our previous formalism [2] and similar encoding [18] in an interesting way: as
mentioned in the Introduction, a reversible process R was encoded as a pair (JORK, xR)
made of the configuration structure encoding the origin of R, and a configuration xR in
it, called the address of R. The intuition was that we could “match” a partially executed
process with a configuration. We can now go further by observing that dRe is isomorphic to
the I-structure generated by xR, which is everything “below” it. This result (Lemma 48)
is used in our proof, and exemplified by Example 16: the encoding of the memory of
(〈2, a, 0〉. g .∅ � b) | (〈1, c, 0〉. g .∅ � 0) corresponds to the “past” of the process, whose
underlying structure is grayed out in Fig. 3d, and what is left to execute – b | 0 – corresponds
to the “future” of that process, and is represented by the configuration {c, a, b} in Fig. 3d.

References

1 Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett,
Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth,
Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff,
Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus
Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang,
Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander
Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi,
Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles
Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana,
Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger,
Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin
Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and
John M. Martinis. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, October 2019. doi:10.1038/s41586-019-1666-5.

2 Clément Aubert and Ioana Cristescu. Contextual equivalences in configuration structures and
reversibility. Journal of Logical and Algebraic Methods in Programming, 86(1):77–106, 2017.
doi:10.1016/j.jlamp.2016.08.004.

3 Holger Bock Axelsen and Robert Glück. On reversible turing machines and their function
universality. Acta Informatica, 53(5):509–543, 2016. doi:10.1007/s00236-015-0253-y.

4 Paolo Baldan and Silvia Crafa. Hereditary history-preserving bisimilarity: Logics and automata.
In Jacques Garrigue, editor, APLAS, volume 8858 of Lecture Notes in Computer Science,
pages 469–488. Springer, 2014. doi:10.1007/978-3-319-12736-1_25.

5 Paolo Baldan and Silvia Crafa. A logic for true concurrency. Journal of the ACM, 61(4):24,
2014. doi:10.1145/2629638.

6 Marek A. Bednarczyk. Hereditary history preserving bisimulations or what is the power of
the future perfect in program logics. Technical report, Instytut Podstaw Informatyki PAN
filia w Gdańsku, 1991. URL: http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz.

7 Gérard Boudol and Ilaria Castellani. On the semantics of concurrency: Partial orders and
transition systems. In Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari,
editors, TAPSOFT’87, volume 249 of Lecture Notes in Computer Science, pages 123–137.
Springer, 1987. doi:10.1007/3-540-17660-8_52.

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1007/s00236-015-0253-y
https://doi.org/10.1007/978-3-319-12736-1_25
https://doi.org/10.1145/2629638
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
https://doi.org/10.1007/3-540-17660-8_52

C. Aubert and I. Cristescu 7:17

8 Gérard Boudol and Ilaria Castellani. Permutation of transitions: An event structure semantics
for CCS and SCCS. In J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg,
editors, Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
School/Workshop, Noordwijkerhout, The Netherlands, May 30 - June 3, 1988, Proceedings,
volume 354 of Lecture Notes in Computer Science, pages 411–427. Springer, 1988. doi:
10.1007/BFb0013028.

9 Ioana Cristescu, Jean Krivine, and Daniele Varacca. A compositional semantics for the
reversible p-calculus. In LICS, pages 388–397. IEEE Computer Society, 2013. doi:10.1109/
LICS.2013.45.

10 Ioana Cristescu, Jean Krivine, and Daniele Varacca. Rigid families for CCS and the π-calculus.
In Martin Leucker, Camilo Rueda, and Frank D. Valencia, editors, Theoretical Aspects of
Computing - ICTAC 2015 - 12th International Colloquium Cali, Colombia, October 29-31,
2015, Proceedings, volume 9399 of Lecture Notes in Computer Science, pages 223–240. Springer,
2015. doi:10.1007/978-3-319-25150-9_14.

11 Vincent Danos and Jean Krivine. Reversible communicating systems. In Philippa Gardner
and Nobuko Yoshida, editors, CONCUR, volume 3170 of Lecture Notes in Computer Science,
pages 292–307. Springer, 2004. doi:10.1007/978-3-540-28644-8_19.

12 Vincent Danos and Jean Krivine. Transactions in RCCS. In Martín Abadi and Luca de Alfaro,
editors, CONCUR, volume 3653 of Lecture Notes in Computer Science, pages 398–412. Springer,
2005. doi:10.1007/11539452_31.

13 Philippe Darondeau and Pierpaolo Degano. Causal trees: Interleaving + causality. In
Irène Guessarian, editor, Semantics of Systems of Concurrent Processes, LITP Spring School
on Theoretical Computer Science, La Roche Posay, France, April 23-27, 1990, Proceedings,
volume 469 of Lecture Notes in Computer Science, pages 239–255. Springer, 1990. doi:
10.1007/3-540-53479-2_10.

14 David de Frutos-Escrig, Maciej Koutny, and Lukasz Mikulski. Reversing steps in petri nets.
In Susanna Donatelli and Stefan Haar, editors, Application and Theory of Petri Nets and
Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June
23-28, 2019, Proceedings, volume 11522 of Lecture Notes in Computer Science, pages 171–191.
Springer, 2019. doi:10.1007/978-3-030-21571-2_11.

15 Rocco De Nicola, Ugo Montanari, and Frits W. Vaandrager. Back and forth bisimulations. In
Jos C. M. Baeten and Jan Willem Klop, editors, CONCUR ’90, volume 458 of Lecture Notes
in Computer Science, pages 152–165. Springer, 1990. doi:10.1007/BFb0039058.

16 Michael P. Frank. Foundations of generalized reversible computing. In Iain Phillips and Hafizur
Rahaman, editors, Reversible Computation - 9th International Conference, RC 2017, Kolkata,
India, July 6-7, 2017, Proceedings, volume 10301 of Lecture Notes in Computer Science, pages
19–34. Springer, 2017. doi:10.1007/978-3-319-59936-6_2.

17 Michael P. Frank. Throwing computing into reverse. IEEE Spectrum, 54(9):32–37, September
2017. doi:10.1109/MSPEC.2017.8012237.

18 Eva Graversen, Iain Phillips, and Nobuko Yoshida. Event structure semantics of (controlled)
reversible CCS. In Jarkko Kari and Irek Ulidowski, editors, Reversible Computation - 10th
International Conference, RC 2018, Leicester, UK, September 12-14, 2018, Proceedings,
volume 11106 of Lecture Notes in Computer Science, pages 102–122. Springer, 2018. doi:
10.1007/978-3-319-99498-7_7.

19 Thomas Troels Hildebrandt. Categorical Models for Concurrency: Independence, Fairness
and Dataflow. PhD thesis, BRICS, University of Aarhus, February 2000. URL: http://www.
brics.dk/DS/00/1/.

20 Markus Holzer and Martin Kutrib. Reversible nondeterministic finite automata. In Iain Phillips
and Hafizur Rahaman, editors, Reversible Computation, pages 35–51. Springer International
Publishing, 2017. doi:10.1007/978-3-319-59936-6_3.

21 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Information
and Computation, 127(2):164–185, 1996. doi:10.1006/inco.1996.0057.

CONCUR 2020

https://doi.org/10.1007/BFb0013028
https://doi.org/10.1007/BFb0013028
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-25150-9_14
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/3-540-53479-2_10
https://doi.org/10.1007/3-540-53479-2_10
https://doi.org/10.1007/978-3-030-21571-2_11
https://doi.org/10.1007/BFb0039058
https://doi.org/10.1007/978-3-319-59936-6_2
https://doi.org/10.1109/MSPEC.2017.8012237
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1007/978-3-319-99498-7_7
http://www.brics.dk/DS/00/1/
http://www.brics.dk/DS/00/1/
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1006/inco.1996.0057

7:18 How Reversibility Can Solve Traditional Questions

22 Yonggun Jun, Momčilo Gavrilov, and John Bechhoefer. High-precision test of landauer’s
principle in a feedback trap. Physical Review Letters, 113:190601, November 2014. doi:
10.1103/PhysRevLett.113.190601.

23 Vasileios Koutavas and Matthew Spaccasassi, Carloand Hennessy. Bisimulations for com-
municating transactions - (extended abstract). In Anca Muscholl, editor, FoSSaCS, vol-
ume 8412 of Lecture Notes in Computer Science, pages 320–334. Springer, 2014. doi:
10.1007/978-3-642-54830-7_21.

24 Ivan Lanese, Doriana Medić, and Claudio Antares Mezzina. Static versus dynamic reversibility
in CCS. Acta Informatica, November 2019. doi:10.1007/s00236-019-00346-6.

25 Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Reversing higher-order pi.
In Paul Gastin and François Laroussinie, editors, CONCUR, volume 6269 of Lecture Notes in
Computer Science, pages 478–493. Springer, 2010. doi:10.1007/978-3-642-15375-4_33.

26 Michael Aaron Nielsen and Isaac L. Chuang. Quantum computation and quantum information.
Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.

27 Anna Philippou and Kyriaki Psara. Reversible computation in petri nets. In Jarkko Kari
and Irek Ulidowski, editors, Reversible Computation - 10th International Conference, RC
2018, Leicester, UK, September 12-14, 2018, Proceedings, volume 11106 of Lecture Notes in
Computer Science, pages 84–101. Springer, 2018. doi:10.1007/978-3-319-99498-7_6.

28 Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi. In Luca Aceto and Anna
Ingólfsdóttir, editors, FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages
246–260. Springer, 2006. doi:10.1007/11690634_17.

29 Iain Phillips and Irek Ulidowski. Reversibility and models for concurrency. Electronic Notes
in Theoretical Computer Science, 192(1):93–108, 2007. doi:10.1016/j.entcs.2007.08.018.

30 Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi. The Journal of Logic
and Algebraic Programming, 73(1-2):70–96, 2007. doi:10.1016/j.jlap.2006.11.002.

31 Iain Phillips and Irek Ulidowski. Event identifier logic. Mathematical Structures in Computer
Science, 24(2), 2014. doi:10.1017/S0960129513000510.

32 Alexander Rabinovich and Boris Avraamovich Trakhtenbrot. Behavior structures and nets.
Fundamenta Informaticae, 11(4):357–404, 1988.

33 Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency: To-
wards a classification. Theoretical Computer Science, 170(1-2):297–348, 1996. doi:10.1016/
S0304-3975(96)80710-9.

34 Rob J. van Glabbeek and Ursula Goltz. Refinement of actions in causality based models. In
J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg, editors, Proceedings REX
Workshop on Stepwise Refinement of Distributed Systems, volume 430 of Lecture Notes in
Computer Science, pages 267–300. Springer, 1989. doi:10.1007/3-540-52559-9_68.

35 Robert J. van Glabbeek. History preserving process graphs. Technical report, Stanford
University, 1996. URL: http://kilby.stanford.edu/~rvg/pub/history.draft.dvi.

36 Robert J. van Glabbeek and Ursula Goltz. Equivalence notions for concurrent systems and
refinement of actions (extended abstract). In Antoni Kreczmar and Grazyna Mirkowska,
editors, MFCS, volume 379 of Lecture Notes in Computer Science, pages 237–248. Springer,
1989. doi:10.1007/3-540-51486-4_71.

37 Robert J. van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica, 37(4/5):229–327, 2001. doi:10.1007/s002360000041.

38 Robert J. van Glabbeek and Gordon D. Plotkin. Configuration structures, event structures
and petri nets. Theoretical Computer Science, 410(41):4111–4159, 2009. doi:10.1016/j.tcs.
2009.06.014.

39 Glynn Winskel. Event structure semantics for CCS and related languages. In Mogens Nielsen
and Erik Meineche Schmidt, editors, ICALP, volume 140 of Lecture Notes in Computer Science,
pages 561–576. Springer, 1982. doi:10.1007/BFb0012800.

40 GlynnWinskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg,
editors, Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II,
Proceedings of an Advanced Course, Bad Honnef, 8.-19. September 1986, volume 255 of Lecture
Notes in Computer Science, pages 325–392. Springer, 1986. doi:10.1007/3-540-17906-2_31.

https://doi.org/10.1103/PhysRevLett.113.190601
https://doi.org/10.1103/PhysRevLett.113.190601
https://doi.org/10.1007/978-3-642-54830-7_21
https://doi.org/10.1007/978-3-642-54830-7_21
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1007/11690634_17
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1017/S0960129513000510
https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1007/3-540-52559-9_68
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi
https://doi.org/10.1007/3-540-51486-4_71
https://doi.org/10.1007/s002360000041
https://doi.org/10.1016/j.tcs.2009.06.014
https://doi.org/10.1016/j.tcs.2009.06.014
https://doi.org/10.1007/BFb0012800
https://doi.org/10.1007/3-540-17906-2_31

C. Aubert and I. Cristescu 7:19

41 Glynn Winskel. Event structures, stable families and concurrent games. Lecture notes,
University of Cambridge, 2017. URL: https://www.cl.cam.ac.uk/~gw104/ecsym-notes.pdf.

42 Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abramsky, Dov M.
Gabbay, and Thomas Stephen Edward Maibaum, editors, Semantic Modelling, volume 4 of
Handbook of Logic in Computer Science, pages 1–148. Oxford University Press, 1995.

A Event Structures as Categories

Configuration structures often use the insights provided by the categorical framework [19,
33, 39, 42]. This appendix regroups the categorical treatment of (identified) configuration
structures (Definition 1).

I Definition 32 (Category of configuration structures). We define C the category of configu-
ration structures, where an object is a configuration structure, and a morphism f : C1 → C2
is a triple (fE , fL, fC) such that

fL : L1 → L2;
fE : E1 → E2 preserves labels: `2(fE(e)) = fL(`1(e));
fC : C1 → C2 is defined as fC(x) = {fE(e) | e ∈ x}.

We write C1 ∼= C2 if there exists an isomorphism between C1 and C2.

For simplicity, we often assume that L1 = L2, i.e., that all the configuration structures use
the same set of labels, take fL to be the identity and remove it from the notation.

IDefinition 33 (Category of I-structures). We define D the category of identified configuration
structures, where objects are I-structures, and a morphism f : I1 → I2 is a tuple q = (f, fm)
such that

f = (fE , fC) is a morphism in C between the underlying structures of I1 and I2,
fm : I1 → I2 preserves identifiers: fm(m1(e)) = m2(fE(e)).

We write I1 ∼= I2 if there exists an isomorphism between I1 and I2.

Observe that C is a subcategory of D. In both C and D, composition is written ◦ and defined
componentwise.

I Lemma 34. Identified configuration structures and their morphisms form a category.

Unsurprisingly, a forgetful functor and an enrichment functor can be defined between
those two categories. The only assumption is that we need to suppose that every configuration
structure can be endowed with a total ordering � on its events.

I Lemma 35. The forgetful functor F : D→ C, defined by
F(E,C, `, I,m) = (E,C, `)
F(fE , fC , fm) = (fE , fC)

and the enrichment functor S : C→ D, defined by
S(E,C, `) = (E,C, `, I,m), where I = {1, . . . , |E|} for |E| the cardinality of E, and

m(e) =
{

1 if ∀e′, e � e′

i+ 1 if ∃e′, e′ � e, m(e′) = i and there is no e′′ s.t. e′ � e′′ � e

For (fE , fC) : (E1, C1, `1) → (E2, C2, `2), S(fE , fC) = (fE , fC , fm), where we let
fm(m1(e)) = m2(fE(e2)).

are functors.

CONCUR 2020

https://www.cl.cam.ac.uk/~gw104/ecsym-notes.pdf

7:20 How Reversibility Can Solve Traditional Questions

I Remark 36. In D, every morphism f = (fE , fL, fC , fm) from I1 to I2 is actually fully
determined by fE whenever fL = id. Indeed, given fE : E1 → E2, then we can define for all
x ∈ C1, fC(x) = {fE(e) | e ∈ x} and fm as fm(m1(e)) = m2(fE(e)). We will often make the
abuse of notation of writing fE for f and reciprocally.

B Concurrency in a Trace and Trace Equivalence

We give here a quick reminder on concurrency and causality in CCS [8] and RCCS [11] traces.
Aside from the convenient notation mR/S that represents the memory stack(s) modified
by a forward transition from R to S, and of the notation −→a for a list of names a1, · · · , an,
nothing new is introduced in this Section. However, the results reminded below are used in
the proofs of Lemma 19 and Theorem 26.

Concurrency on events corresponds to a notion of concurrency on transitions in RCCS
traces [11, Definition 7 and Lemma 8]. For this reminder we consider only concurrency
and causality for forward transitions, so that CCS intuitions work equally well. We make a
remark at the end about extending the concurrency to backward transitions, but it should
be noted that forward and backward transitions are not mixed.

Two transitions t1 = R −−−−→i1:α1 R1 and t2 = R′ −−−−→i2:α2 R2 are composable if R1 = R′,
and in this case, doing t1 then t2 is written as the composition t1; t2. Given n composable
transitions ti : Ri−−−→

i:αi Ri+1 and their composition t1; . . . ; tn, we say that ti is a direct cause
of tk for 1 6 i < k 6 n and write ti < tk (or, for short, i < k) if there is a memory stack
m in Ri+1 and a memory stack m′ in Rk+1 such that m < m′, where the order on memory
stacks is given by prefix ordering. Note that, if they exist, m and m′ are unique, as memory
events in reachable processes all have a different pairs (identifier, label).

Let R−−−→i:α S be a transition. If α 6= τ , we write mR/S = {m} where

R =(· · · ((R3 | ((R1 | (m� P)) | R2)\
−→
b1) | R4)\

−→
b2 · · · | Rn)\

−→
bm

S =(· · · ((R3 | ((R1 | 〈i, a,Q〉.m� P) | R2)\
−→
b1) | R4)\

−→
b2 · · · | Rn)\

−→
bm

for some Ri any of which could be missing and for some
−→
bj , possibly missing as well. If

α = τ , then mR/S will contain the pair of memory stacks that has been changed by the
transition. Intuitively, the notation mR/S is useful to extract the memory stack(s) modified
by a forward transition from R to S.

Two transitions are coinitial if they have the same source process and cofinal if they
have the same target process. We say that two coinitial transitions t1 = R−−−−→i1:α1 S1 and
t2 = R −−−−→i2:α2 S2 are concurrent if mR/S1 ∩mR/S2 = ∅, that is, if the transitions modify
disjoint memories in R.

The square lemma [11, Lemma 8] says that moreover, given two such concurrent transitions,
there exists two cofinal and concurrent transitions t′1 = S1 −−−−→

i2:α2 S and t′2 = S2 −−−−→
i1:α1 S.

The name of the lemma comes from this picture:

R

S1 S2

S

t1 t2

t′1 t′2

C. Aubert and I. Cristescu 7:21

Moreover, the traces θ1 = t1; t′1 and θ2 = t2; t′2 are equivalent [11, Definition 9]. This
allows one to define equivalence classes on transitions: t1 in θ1 is equivalent to t′2 in θ2 if θ1
is equivalent to θ2 and t1 and t′2 have the same index. Then in the trace t1; t′1 we are now
allowed to say that t1 is concurrent to t′1.

In a trace t1; t2 we have that t1 is concurrent to t2 iff t1 is not a cause of t2. This follows
from a case analysis using the definitions of concurrency and causality. Thanks to trace
equivalence, we also have that in a trace t1; . . . ; tn either t1 is a cause of tn or the two
transitions are concurrent. Those intuitions are enough for us to carry on our development,
but a complete treatment of concurrency and causality in the trace of a CCS process [8] can
give better insight to the curious reader.

The definitions of concurrency for forward coinitial traces and of causality for forward
traces can easily be “flipped” into definitions of concurrency for backward cofinal traces, and
of causality for backward traces.

C Auxiliary Materials

In this section we introduce some intermediate definitions and lemmas that are necessary
for the proofs, the details of which can be found at https://hal.archives-ouvertes.fr/
hal-02568250.

C.1 Operations on Identified Configurations Structures (Sect. 2.1)
Our main goal here is to state that the operations of Definition 5 preserve I-structures
(Lemma 40), and to give some intuitions about them. The product and coproduct (used
to define the nondeterministic choice below) have particular roles, since they have a direct
representation in the categorical world (Lemma 38).

The structures we considered are full w.r.t. the sets of labels and identifiers, i.e. the
labeling and identifying functions are surjective. This only impacts the relabelling and
reidentifying operations, where we have to additionally require that `′ and m′ are surjective.

We redefine the nondeterministic choice of Definition 5 by first defining the coproduct
on I-structures and then using relabeling and reidentifying to get rid of the extra indices
in the label and the identifier of events. It is easy to check that the two definitions of
nondeterministic choice are equivalent, but working with the one from Definition 5 is easier
and simpler.

I Definition 37. We redefine nondeterministic choice using coproduct as follows:
The coproduct of I1 and I2 is I1 ± I2 = (E,C,L, `, I,m), where

E = {{1} × E1} ∪ {{2} × E2} with
π1 : E → {1, 2} and π2 : E → E1 ∪ E2,
C = {{i} × x | x ∈ Ci},
L = {{1} × L1} ∪ {{2} × L2},

`(e) = (i, `i(π2(e))) for π1(e) = i,

I = {{1} × I1} ∪ {{2} × I2},

m(e) = (i,mi(π2(e))) for π1(e) = i.
and with the expected injections ιi : Ii → I1 + I2.

The nondeterministic choice of I1 and I2 is I1 + I2 = (I1 + I2)[`′/`][m′/m] where
`′(e) = a if `(e) = (j, a), j ∈ {1, 2},
m′(e) = i if `(e) = (j, i), j ∈ {1, 2}.

I Lemma 38. The product and coproduct of I-structures is the product and coproduct in D.

CONCUR 2020

https://hal.archives-ouvertes.fr/hal-02568250
https://hal.archives-ouvertes.fr/hal-02568250

7:22 How Reversibility Can Solve Traditional Questions

In the categorical setting, the product and coproduct on labeled configuration structures
can be obtained by a straightforward enrichment of un-labeled configuration structures [42,
Propositions 11.2.2 and 11.2.3]. In a similar vein, we obtain the extension of those operations
on identified (labeled) configuration structures directly.

The restriction of the operations of Definition 5 to configuration structures are standard [39,
40], except for postfixing. We state below that the restriction of this operation to configuration
structures is correct.

I Lemma 39. The postfixing of a label a to an event structure C1 = (E1, C1, L1, `1), defined
as C1 : :(a) = (E,C,L, `) where

E = E1 ∪ {e}, for e /∈ E1,
C = C1 ∪ {x ∪ {e} | x ∈ C1 is maximal and finite},

L = L1 ∪ {a},
` = `1 ∪ {e 7→ a},

is a configuration structure.

I Lemma 40. The operations of Definition 5 (relabeling, reidentifiying, restriction, pre-
fixing, postfixing, non-deterministic choice and product), coproduct, as well as the parallel
composition (Definition 7) preserve I-structures.

C.2 Properties of Memory Encodings and Operational Correspondence
Our goal here is to give some intuition as to how to prove that that there is an operational
correspondence between R and dRe (Lemma 19) by stating intermediate lemmas (Lemmas 43–
45) about the encoding of memories and their relation to maximal events. Those lemmas, in
turn, requires some useful properties of memory encoding (Sect. C.2.1).

C.2.1 Properties of Memory Encodings
We assume given reachable processes R and S and we write OR for the origin of R, and
dRe as (ER, CR, `R, IR,mR) and similarly for S. To prove interesting properties about the
encoding of memory, we first need this small technical lemma.

I Lemma 41. For every reversible thread m � P of a reachable process R, and for all
i ∈ I(m), i occurs once in m.

Note that the property above holds for reversible threads, and not for RCCS processes in
general: we actually want memory events to sometimes share the same identifiers. Indeed,
two memory events need to have the same identifiers if they result from a synchronization (i.e.,
the application of the syn. rule of Fig. 2) or a fork (i.e., the application of the Distribution of
Memory rule of structural equivalence, Definition 9).

I Lemma 42 (Uniqueness of identifiers). For all e1, e2 ∈ ER, mR(e1) = mR(e2) implies
e1 = e2.

I Lemma 17 (Memories give posets). For all R, letting x be the maximal configuration in
dRe (Definition 2), (dRe,⊆) is a partially ordered set (poset) with maximal element x.

C.2.2 Operational Correspondence
I Lemma 43. If R ≡ S, then the exists an isomorphism f between dRe and dSe, with
fL = id and fm = id.

I Lemma 44. The event introduced in the postfixing of a memory event to an identified
structure is maximal in the resulting identified structure.

C. Aubert and I. Cristescu 7:23

Furthermore, the maximality of an event can be “preserved” by parallel composition:

I Lemma 45. For all identified structure I1 = (E1, C1, L1, `1, I1,m1) with e1 ∈ E1 a
maximal event in it, and for all identified configuration I2 = (E2, C2, L2, `2, I2,m2) such that
m1(e1) /∈ I2, (e1, ?) is maximal in I1 | I2.

And then Lemmas 43–45 give all the required tools to prove the operational correspondence
of Lemma 19.

C.3 Connecting Formalisms to Obtain Our Main Results
Our goal here is to give the tools and intuitions needed to prove Theorems 29 and 30, which
give as an immediate corollary our main result (Corollary 31) and an interesting remark
(Corollary 49). Our main task will be to identify isomorphisms of I-structures with l&o-p
functions (Lemma 46) and then to connect our previous formalism with the encoding of
memories (Lemma 48). This connection coupled to the operational correspondence detailed
in Sect. 2.5 makes it possible to prove our two main theorems.

We first establish a connection between isomorphisms (in category theory) and l&o-p
bijections (that are used to define (H)HPB). Then, we construct a bridge between bRc and
our previous formalism [2].

I Lemma 46. Letting xm1 and xm2 be the unique maximal configurations in dR1e and dR2e,
there is an isomorphism f between dR1e and dR2e with fL = id iff there exists a l&o-p
bijection between xm1 and xm2 .

For the reader familiar with event structures, a configuration x defines an event structure
(x,6x, `). The construction below mirrors the transformation from an event structure to a
configuration structure [42].

IDefinition 47 (Generation of a I-structure from a configuration). Given I = (E,C,L, `, I,m),
for x ∈ C, the I-structure generated by x is x↓ = (x, {y | y ∈ C, y ⊆ x}, {a | ∃e ∈ xR, `(e) =
a}, `�x, {i | ∃e ∈ xR,m(e) = i},m�x).

I Lemma 48. The I-structure dRe is isomorphic to xR↓, where (JORK, xR) is the encoding
previously defined [2].

I Corollary 49. The relation obtained by considering only (5–6) in the definition of B&F
(Definition 24) is equal to HPB on CCS terms (Definition 28).

CONCUR 2020

	Introduction
	Denotational and Operational Models for the Reversible CCS
	Identified Configuration Structures
	Concurrent Communicating Calculi
	Processes and Memories as (Identified) Configuration Structures
	Examples
	Operational Correspondence

	Reversible and Truly Concurrent Bisimulations Are the Same
	History-Preserving Bisimulations in Configuration Structures
	Back-And-Forth Bisimulations in Reversible CCS
	History-Preserving Bisimulations in (R)CCS

	Concluding Remarks
	Event Structures as Categories
	Concurrency in a Trace and Trace Equivalence
	Auxiliary Materials
	Operations on Identified Configurations Structures (2.1)
	Properties of Memory Encodings and Operational Correspondence
	Properties of Memory Encodings
	Operational Correspondence

	Connecting Formalisms to Obtain Our Main Results

