491 research outputs found

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments

    Get PDF
    The adaptive coherence estimator (ACE) is known to be the generalized likelihood ratio test (GLRT) in partially homogeneous environments, i.e., when the covariance matrix Ms of the secondary data is proportional to the covariance matrix Mp of the vector under test (or Ms = gamma/Mp). In this letter, we show that ACE is indeed the GLRT for a broader class of nonhomogeneous environments, more precisely when Ms is a random matrix, with inverse complex Wishart prior distribution whose mean only is proportional to Mp. Furthermore, we prove that, for this class of heterogeneous environments, the ACE detector satisfies the constant false alarm rate (CFAR) property with respect to gamma and Mp

    Knowledge-aided bayesian detection in heterogeneous environments

    Get PDF
    We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter

    Bounds for estimation of covariance matrices from heterogeneous samples

    Get PDF
    This correspondence derives lower bounds on the mean-square error (MSE) for the estimation of a covariance matrix mbi Mp, using samples mbi Zk,k=1,...,K, whose covariance matrices mbi Mk are randomly distributed around mbi Mp. This framework can be encountered e.g., in a radar system operating in a nonhomogeneous environment, when it is desired to estimate the covariance matrix of a range cell under test, using training samples from adjacent cells, and the noise is nonhomogeneous between the cells. We consider two different assumptions for mbi Mp. First, we assume that mbi Mp is a deterministic and unknown matrix, and we derive the Cramer-Rao bound for its estimation. In a second step, we assume that mbi Mp is a random matrix, with some prior distribution, and we derive the Bayesian bound under this hypothesis

    Knowledge-aided STAP in heterogeneous clutter using a hierarchical bayesian algorithm

    Get PDF
    This paper addresses the problem of estimating the covariance matrix of a primary vector from heterogeneous samples and some prior knowledge, under the framework of knowledge-aided space-time adaptive processing (KA-STAP). More precisely, a Gaussian scenario is considered where the covariance matrix of the secondary data may differ from the one of interest. Additionally, some knowledge on the primary data is supposed to be available and summarized into a prior matrix. Two KA-estimation schemes are presented in a Bayesian framework whereby the minimum mean square error (MMSE) estimates are derived. The first scheme is an extension of a previous work and takes into account the non-homogeneity via an original relation. {In search of simplicity and to reduce the computational load, a second estimation scheme, less complex, is proposed and omits the fact that the environment may be heterogeneous.} Along the estimation process, not only the covariance matrix is estimated but also some parameters representing the degree of \emph{a priori} and/or the degree of heterogeneity. Performance of the two approaches are then compared using STAP synthetic data. STAP filter shapes are analyzed and also compared with a colored loading technique

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    Covariance matrix estimation with heterogeneous samples

    Get PDF
    We consider the problem of estimating the covariance matrix Mp of an observation vector, using heterogeneous training samples, i.e., samples whose covariance matrices are not exactly Mp. More precisely, we assume that the training samples can be clustered into K groups, each one containing Lk, snapshots sharing the same covariance matrix Mk. Furthermore, a Bayesian approach is proposed in which the matrices Mk. are assumed to be random with some prior distribution. We consider two different assumptions for Mp. In a fully Bayesian framework, Mp is assumed to be random with a given prior distribution. Under this assumption, we derive the minimum mean-square error (MMSE) estimator of Mp which is implemented using a Gibbs-sampling strategy. Moreover, a simpler scheme based on a weighted sample covariance matrix (SCM) is also considered. The weights minimizing the mean square error (MSE) of the estimated covariance matrix are derived. Furthermore, we consider estimators based on colored or diagonal loading of the weighted SCM, and we determine theoretically the optimal level of loading. Finally, in order to relax the a priori assumptions about the covariance matrix Mp, the second part of the paper assumes that this matrix is deterministic and derives its maximum-likelihood estimator. Numerical simulations are presented to illustrate the performance of the different estimation schemes
    • 

    corecore