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Abstract—This correspondence derives lower bounds on the mean-
square error (MSE) for the estimation of a covariance matrix , using
samples k = 1; . . . ; K , whose covariance matrices are randomly
distributed around . This framework can be encountered e.g., in a
radar system operating in a nonhomogeneous environment, when it is
desired to estimate the covariance matrix of a range cell under test, using
training samples from adjacent cells, and the noise is nonhomogeneous
between the cells. We consider two different assumptions for . First,
we assume that is a deterministic and unknown matrix, and we derive
the Cramér–Rao bound for its estimation. In a second step, we assume
that is a random matrix, with some prior distribution, and we derive
the Bayesian bound under this hypothesis.

Index Terms—Bayesian bound, covariance matrix estimation,
Cramér–Rao bound, heterogeneous environment.

I. PROBLEM STATEMENT AND DATA MODEL

Estimating the covariance matrix of an observation vector is funda-
mental in many array processing applications, notably in adaptive radar
detection where it is desired to estimate the noise statistics of a vector
under test, so as to implement an adaptive detection scheme [1]. In an
ideal situation, this task is performed using independent and identically
distributed (i.i.d.) training samples, which share the same covariance
matrix as the vector under test. In such a case, and under the assump-
tion that all vectors are Gaussian, the sample covariance matrix (SCM)
estimator is the maximum-likelihood estimator (MLE). However, het-
erogeneous environments are very frequently encountered [2], [3], and
therefore the assumption of i.i.d. samples is often violated. More pre-
cisely, the training samples do not have the same covariance matrix
as the vector under test, and they may even not share a common co-
variance matrix. In an attempt to take into account this fact, we pro-
posed in [4] a model for heterogeneous environments; see also [5],
where we discuss the rationale and relevance of such a model along
with adaptive detection schemes related to it. More precisely, we as-
sumed that the set of training samples can be divided in K groups.
The kth group contains Lk snapshots fzzzk;`g

L
`=1 sharing the same co-

variance matrix MMMk 6= MMMp. When K = 1, all training samples have
a common covariance matrix, which is however different from MMMp.
When Lk = 1 for k = 1; . . . ; K , all training samples have a different
covariance matrix. The snapshots zzzk;` are assumed independent and
Gaussian distributed, with covariance matrix MMMk , i.e., the distribution
of ZZZk = [ zzzk;1 � � � zzzk;L ], conditionally to MMMk is

f(ZZZk jMMMk) = �
�mL jMMMkj

�L etr �MMMk
�1
ZZZkZZZk

H (1)
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where j � j and etrf � g stand for the determinant and the exponential of
the trace of a matrix, respectively, and m is the size of the observation
vector. The matrices MMMk are assumed to be independent conditionally
toMMMp, and distributed according to an inverse Wishart distribution with
mean MMMp and �k degrees of freedom, i.e., [6]

f(MMMkjMMMp) =
j(�k �m)MMMpj

� jMMMkj
�(� +m)

~�m(�k)

�etr �(�k �m)MMMk
�1
MMMp (2)

where

~�m(p) = �
m(m�1)=2

m

k=1

�(p� k + 1): (3)

The scalar �k allows one to adjust the distance between MMMk and MMMp:
the larger �k , the closer MMMk to MMMp [6]. To summarize, the model for
the training samples is given by

ZZZk jMMMk � ~Nm;L (0;MMMk; IIIL ) (4)

MMMkjMMMp � ~W�1
m ((�k �m)MMMp; �k) (5)

for k = 1; . . . ; K , where ~Nm;L (0;MMMk; IIIL ) and
~W�1
m ((�k �m)MMMp; �k) denote the complex normal distribu-

tion and the complex inverse Wishart distribution, respectively. This
correspondence considers two assumptions for MMMp, namely MMMp is
deterministic or MMMp is a random matrix whose prior distribution is
Wishart, with mean �MMMp and � degrees of freedom, i.e.,

f(MMMp) =
1

~�m(�)
j��1 �MMMpj

��jMMMpj
��metr ��MMMp

�MMM
�1
p : (6)

We denote this distribution asMMMp j �MMMp � ~Wm(��1 �MMMp; �). Note that
the distance between MMMp and �MMMp decreases as � increases [6].

In [4], we proposed strategies for estimating MMMp under this frame-
work. The aim of this correspondence is to derive lower bounds for the
MSE of MMMp. More precisely, we first assume that MMMp is deterministic
and derive its Cramér–Rao bound (CRB). Next, assuming that MMMp is
drawn from (6), we derive the Bayesian bound (BB) for its estimation.
The counterpart of estimation, namely detection, is beyond the scope of
the present correspondence and is not addressed here. Note also that, if
the bounds enable one to measure the performance of estimators, they
cannot always prejudge their performance in detection.

II. CRAMÉR–RAO BOUND (DETERMINISTIC MMMp)

We first derive the Cramér–Rao bound for estimation of MMMp, as-
suming the latter is a deterministic and unknown matrix. Let ZZZ =
[ZZZ1 . . . ZZZK ] and first note that f(ZZZ jMMMp) is given by

f(ZZZ jMMMp)

=

K

k=1

f(ZZZk jMMMp)

=

K

k=1

f(ZZZk jMMMk)f(MMMk jMMMp)dMMMk

=

K

k=1

j(�k �m)MMMpj
�

�mL ~�m(�k)
jMMMkj

�(� +L +m)

� etr �MMMk
�1 (�k �m)MMMp +ZZZkZZZk

H
dMMMk
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=

K

k=1

~�m (�k + Lk)

�mL ~�m(�k)
j(�k �m)MMMpj

�

� j(�k �m)MMMp +ZZZkZZZk
H j�(� +L )

=

K

k=1

~�L (�k + Lk)

�mL ~�L (�k + Lk �m)
j(�k �m)MMMpj

�L

� IIIL + (�k �m)�1ZZZk
HMMMp

�1ZZZk

�(� +L )

: (7)

We observe that ZZZk is distributed according to a generalized complex
multivariate t distribution, with �k + Lk �m degrees of freedom [7].
The log-likelihood function is thus

�(ZZZ jMMMp) = const:+

K

k=1

�k ln jMMMpj

�

K

k=1

(�k + Lk) ln (�k �m)MMMp +ZZZkZZZk
H : (8)

Let mmmp = vec(MMMp) be the vector obtained by stacking the columns
of MMMp on top of each other. Accordingly, let ~mmmp 2 m �1 be the
real-valued vector that consists of the elements along the diagonal of
MMMp and the real and imaginary parts of its elements under the diagonal.
In order to obtain the CRB, we need to derive the Fisher information
matrix (FIM) which is defined as [8]

~FFF (MMMp) = E
ZZZ jMMM �

@2�(ZZZ jMMMp)

@ ~mmmp@ ~mmmT
p

: (9)

Observe that ~mmmp = JJJmmmp with JJJ the (invertible) Jacobian matrix. It is
straightforward to show that

FFF (MMMp) = E
ZZZ jMMM �

@2�(ZZZ jMMMp)

@mmmp @mmmp
H

= JJJH ~FFF (MMMp)JJJ: (10)

For mathematical convenience, we will derive the matrix FFF (MMMp) in
(10) and, with a slight abuse of language, refer to it as the FIM in the
sequel. Herein, we define the derivative with respect to a complex scalar
x = xR + ixI as @=@x (1=2)[@=@xR + i@=@xI ]. Differentiating
�(ZZZ jMMMp) with respect to MMMp yields the following result:

@�(ZZZ jMMMp)

@MMMp
=

K

k=1

�k MMMp
�1

�

K

k=1

(�k + Lk)(�k �m) (�k �m)MMMp +ZZZkZZZk
H

�1

: (11)

In order to differentiate (11), we use the fact that

@MMMp
�1

@MMMp
�(k; `)

= �MMMp
�1 @MMMp

@MMMp
�(k; `)

MMMp
�1:

Accordingly, since MMMp is Hermitian, for any two matrices AAA and BBB

AAA
@MMMp

@MMMp
�(k; `)

BBB
i;j

=

m

p;q=1

AAAi;p
@MMMp

@MMMp
�(k; `) p;q

BBBq;j

= AAAi;kBBB`;j = BBBT 
A
i+(j�1)m;k+(`�1)m

where
 stands for the Kronecker product [9]. Using these results, it is
straightforward to show that

@2�(ZZZ jMMMp)

@mmmp @mmmp
H

= �

K

k=1

�k MMMp
�T 
MMMp

�1

+

K

k=1

(�k + Lk)(�k �m)2

� (�k �m)MMMp +ZZZkZZZk
H

�T


 (�k �m)MMMp +ZZZkZZZk
H

�1

: (12)

For the sake of notational convenience, let us introduce

~ZZZk = (�k �m)�1=2MMMp
�1=2ZZZk (13)

~BBBk = IIIm + ~ZZZk
~ZZZ
H
k

�1

(14)

and note that

(�k �m)MMMp +ZZZkZZZk
H

�1

= (�k �m)�1MMMp
�1=2 ~BBBkMMMp

�1=2:

(15)

Therefore, we can write

@2�(ZZZ jMMMp)

@mmmp @mmmp
H

= �

K

k=1

�k MMMp
�T 
MMMp

�1

+

K

k=1

(�k + Lk) MMMp
�T=2 
MMMp

�1=2

� ~BBB
T
k 
 ~BBBk MMMp

�T=2 
MMMp
�1=2 : (16)

In order to derive the FIM, we need to evaluate the statistical mean
of ~BBB

T
k 
 ~BBBk . Towards this end, we first note that ~ZZZk has a complex

multivariate t distribution with �k + Lk �m degrees of freedom [7],
i.e.,

f(~ZZZk jMMMp) =
~�L (�k + Lk)

�mL ~�L (�k + Lk �m)

�jIIIL + ~ZZZ
H
k
~ZZZkj

�(� +L ): (17)

It follows that ~BBBk , conditionally to MMMp, has a multivariate beta dis-
tribution, with (�k; Lk) degrees of freedom [7], [10]. i.e., ~BBBk jMMMp �
~Bm(�k; Lk). Now, we make use of the following result. Let BBB be dis-
tributed as BBB � ~Br(p; q) with p + q � r. Then, for any matrices AAA1

and AAA2 [11]–[13]

EfTrfAAA1BBBAAA2BBBgg

=
p

p+q

p(p+q)�1

(p+q)2�1
TrfAAA1AAA2g+

q

(p+q)2�1
TrfAAA1gTrfAAA2g :

(18)

Let eeei denote the vector whose elements are all zero, except the ith
element which equals 1. Accordingly, let us note EEEij = eeeieee

T
j . Then,
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using (18), one can obtain the (i+ (j � 1)m;n+ (`� 1)m) element
of ~BBB

T
k 
 ~BBBk as

Ef~BBBk(`; j) ~BBBk(i; n)g

= E eee
T
`
~BBBkeeejeee

T
i
~BBBkeeen

= E TrfEEEn`
~BBBkEEEji

~BBBkg

=
�k

�k + Lk

�k(�k + Lk)� 1

(�k + Lk)2 � 1
TrfEEEn`EEEjig

+
Lk

(�k + Lk)2 � 1
TrfEEEn`gTrfEEEjig

=
�k

�k+Lk

�k(�k+Lk)�1

(�k+Lk)2�1
�`;j�i;n+

Lk

(�k+Lk)2 � 1
�i;j�`;n :

(19)

It follows that

E ~BBB
T
k 
 ~BBBk =

�k

�k + Lk

�k(�k + Lk)� 1

(�k + Lk)2 � 1
IIIm

+
Lk

(�k + Lk)2 � 1
eeeeee

T (20)

where eee = [ eeeT1 . . . eeeTm ]T = vec(IIIm). Consequently, the FIM can
be expressed as

FFF (MMMp) = MMMp
�T=2 
MMMp

�1=2

� �III + �eeeeee
T

MMMp
�T=2 
MMMp

�1=2 (21)

with

� =

K

k=1

�k � �k
�k(�k + Lk)� 1

(�k + Lk)2 � 1

=

K

k=1

�kLk(�k + Lk)

(�k + Lk)2 � 1
(22)

� = �

K

k=1

�kLk

(�k + Lk)2 � 1
: (23)

It ensues that the Cramér–Rao bound can be written as

CRB = MMMp
T=2 
MMMp

1=2

� �III + �eeeeee
T
�1

MMMp
T=2 
MMMp

1=2

= �
�1

MMMp
T=2 
MMMp

1=2

� III �
�eeeeeeT

� +m�
MMMp

T=2 
MMMp
1=2

= �
�1

MMMp
T 
MMMp

�
�

� +m�
vec(MMMp)vec MMMp

T
T

(24)

where we have used the fact that (AAA 
 BBB)eee = (AAA 
 BBB)vec(III) =
vec(BBBAAAT ) [9]. The MSE of any estimate M̂MMp of MMMp;

E
ZZZjMMM fkM̂MMp �MMMpk

2g, is thus lower bounded by

TrfFFF (MMMp)
�1g = �

�1 TrfMMMpg
2 �

�

� +m�
TrfMMMp

2g : (25)

Equation (25) provides a lower bound for the MSE of any estimator
of MMMp, when MMMp is a deterministic matrix. Some insights into the
properties of the CRB can be gained by considering special cases.

1) Consider first the caseK = 1 and, for the sake of convenience, let
us note L = L1 and � = �1. In this case, there are L snapshots,
all sharing the same covariance matrix MMM s = MMM1, and the latter
has an inverse Wishart prior, centered aroundMMMp, with � degrees
of freedom. Under this framework, it is straightforward to show
that (25) reduces to

TrfFFF (MMMp)
�1g =

(� + L)2 � 1

�(� + L)L
TrfMMMpg

2

+ (� + L�m)�1TrfMMMp
2g

'
1

�
TrfMMMpg

2 when L!1

'
1

L
TrfMMMpg

2 when � !1:

Two important observations can be made. First, note that, for finite
� , the lower bound does not go to zero but instead converges to
��1TrfMMMpg

2. Therefore, consistent estimation ofMMMp is not pos-
sible within this framework. This phenomenon can be explained
as follows. The snapshots ZZZ provide information about MMM s, and
we can expect them to provide accurate estimates of this matrix.
However, MMM s is randomly distributed “around” MMMp and [6]

E
ZZZ jMMM kMMMs �MMMpk

2

=
(� �m)TrfMMMpg

2 + TrfMMMp
2g

(� �m+ 1)(� �m� 1)

'
1

�
TrfMMMpg

2 1 +
m(� �m) + 1

(� �m+ 1)(� �m� 1)
:

Therefore ��1TrfMMMpg
2 corresponds to the minimum distance

between MMMs and MMMp, and hence the “least” uncertainty that we
can obtain when estimating MMMp from ZZZ . The second point to be
noted is that, when � increases, the lower bound is inversely pro-
portional to L. We recover here the well-known fact that, in a ho-
mogeneous environment, the CRB is inversely proportional to the
number of snapshots.

2) Let us now consider the case of most interest to us, namely Lk =
1, i.e., there are K snapshots with K different covariance ma-
trices. For the sake of simplicity, let us assume that �k = �;

8k = 1; . . . ; K . Then, the trace of the CRB becomes

TrfFFF (MMMp)
�1g =

� + 2

(� + 1)K
TrfMMMpg

2

+ (� + 1�m)�1TrfMMMp
2g

��!0
K!1

'
1

K
TrfMMMpg

2 when � !1:

An important observation follows from this result: in contrast to
the preceding case, the CRB now goes to zero as the number of
snapshots goes to infinity; therefore consistent estimation of MMMp

is possible, even for finite � . This can be explained by the “diver-
sity” effect. Indeed, when all snapshots have the same covariance
matrixMMM s, they more or less provide the same “view” ofMMMp (we
can think ofMMMs as a given point in the space ofm�m Hermitian
matrices, around MMMp). In contrast, when Lk = 1, each snapshot
provides a different point of view ofMMMp, and this diversity can be
exploited advantageously to yield consistent estimation of MMMp.
Therefore, for a given number of snapshots, the case Lk = 1 is a
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more favorable situation than the case K = 1. For large � , how-
ever, the same CRB is obtained.

III. BAYESIAN BOUND (RANDOM MMMp)

We now assume thatMMMp is distributed according to a Wishart distri-
bution with mean �MMMp and � degrees of freedom, see (6). The Bayesian
bound is obtained as the inverse of the information matrix, which is
given by [8]

FFFB = E
ZZZ;MMM �

@2�(ZZZ;MMMp)

@mmmp @mmmp
H

= E
ZZZ;MMM �

@2�(ZZZjMMMp)

@mmmp @mmmp
H

�
@2�(MMMp)

@mmmp @mmmp
H

= EMMM E
ZZZjMMM �

@2�(ZZZ jMMMp)

@mmmp @mmmp
H

�
@2�(MMMp)

@mmmp @mmmp
H

= EMMM FFF (MMMp) + (��m)MMMp
�T 
MMMp

�1 (26)

since, from (6), we have

@�(MMMp)

@MMMp
= (��m)MMMp

�1 � � �MMM
�1

p (27a)

@2�(MMMp)

@mmmp @mmmp
H

= �(��m)MMMp
�T 
MMMp

�1
: (27b)

The information matrix is thus the average value, with respect to the
prior distribution f(MMMp), of

FFF
0(MMMp) = FFF (MMMp) + (��m)MMMp

�T 
MMMp
�1

= MMMp
�T=2 
MMMp

�1=2

� �
0
III + �eeeeee

T
MMMp

�T=2 
MMMp
�1=2

= �
0
MMMp

�T 
MMMp
�1

+ � MMMp
�T=2 
MMMp

�1=2
eeeeee

T
MMMp

�T=2 
MMMp
�1=2

= �
0
MMMp

�T 
MMMp
�1

+ �vec MMMp
�1 vec MMMp

�T
T

(28)

with �0 = � + ��m. Let us now evaluate the average value of each
term in the previous equation. The (i+(j�1)m;k+(`�1)m) element
of EMMM fMMMp

�T 
MMMp
�1g is [6]

E MMMp
�1(`; j)MMMp

�1(i; k)

= E Tr EEEjiMMMp
�1
EEEk`MMMp

�1

= Tr EEEjiE MMMp
�1
EEEk`MMMp

�1

=
�2(��m)Tr EEEji

�MMM
�1

p EEEk`
�MMM

�1

p

(��m+ 1)(��m)(��m� 1)

+
�2Tr EEEji

�MMM
�1

p Tr EEEk`
�MMM

�1

p

(��m+ 1)(��m)(��m� 1)

=
�2(��m) �MMM

�1

p (i; k) �MMM
�1

p (`; j) + �2 �MMM
�1

p (i; j) �MMM
�1

p (`; k)

(��m+ 1)(��m)(��m� 1)
:

(29)

Observing that the (i+ (j � 1)m;k+ (`� 1)m) elements of AAA
BBB

and vec(AAA)vec(BBB)T areAAA(j; `)BBB(i; k) andAAA(i; j)BBB(k; `), it follows
that

EMMM MMMp
�T 
MMMp

�1

=
�2(��m) �MMM

�T
p 
 �MMM

�1

p + �2vec �MMM
�1

p vec �MMM
�T
p

T

(��m+ 1)(��m)(��m� 1)

= �
2

�MMM
�T=2
p 
 �MMM

�1=2
p (��m)III+eeeeeeT �MMM

�T=2
p 
 �MMM

�1=2
p

(��m+ 1)(��m)(��m� 1)
:

(30)

Using similar arguments, it can be shown that

EMMM vec MMMp
�1 vec MMMp

�T
T

= �
2

�MMM
�T=2
p 
 �MMM

�1=2
p III+(��m)eeeeeeT �MMM

�T=2
p 
 �MMM

�1=2
p

(��m+ 1)(��m)(��m�1)
:

(31)

Gathering the previous results, we end up with the following expres-
sion:

FFFB = �MMM
�T=2
p 
 �MMM

�1=2
p �

00
III + �

00
eeeeee

T �MMM
�T=2
p 
 �MMM

�1=2
p

(32)

where

�
00 =

�2 [�0(��m) + �]

(��m+ 1)(��m)(��m� 1)

�
00 =

�2 [�0 + (��m)�]

(��m+ 1)(��m)(��m� 1)
: (33)

The Bayesian bound is obtained as the inverse of FFFB , which yields

BB = �
00�1 �MMM

T
p 
 �MMMp �

�00

�00+m�00
vec �MMMp vec �MMM

T
p

T

:

(34)

Finally, under the assumption thatMMMp has a Wishart prior, the MSE of
any estimator of MMMp is lower-bounded by the following BB trace

Tr FFF
�1

B

= �
00�1 Trf �MMMpg

2 �
�00

�00 +m�00
Tr �MMM

2

p

=
(��m+ 1)(��m)(��m� 1)

�2 [(��m)2 + �(��m) + �]
Trf �MMMpg

2

�
�+ (��m)(1 + �)

(��m)2 + (��m) [� +m(1 + �)] +m�+ �
Trf �MMM

2

pg :

(35)

The BB of MMMp depends on � and �MMMp, as expected. However, one can
observe the similarity between (25) and (35). Note also that the lower
bound in (35) depends on �MMMp only through Trf �MMMpg

2 and Trf �MMM
2

pg.
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Fig. 1. Cramér-Rao bound versus number of snapshots.

Fig. 2. Cramér–Rao bound and MSE of the MLE versus number of snap-
shots—L = 1.

IV. NUMERICAL ILLUSTRATIONS

In this section, we provide numerical illustrations of the CRB and
BB properties. First, we contrast the behavior of the CRB in the two
opposite cases, namely K = 1 and Lk = 1. For the sake of sim-
plicity, when Lk = 1, we assume that all �k’s are equal to a common
value denoted as � . Whatever the case, N = K

k=1
Lk denotes the

total number of snapshots. In all simulations, the size of the observa-
tion space is m = 8. When considering the CRB the true covariance
matrix is given by MMMp(k; `) = 0:9jk�`j, while �MMMp(k; `) = 0:9jk�`j

whenMMMp is assumed to be random. The matrices MMMk were generated
according to the inverse Wishart distribution of (2). In practice, theMMMk

are generated asMMMk = (GGGkGGG
H
k )

�1 whereGGGk 2 m�� is drawn from
a zero-mean multivariate Gaussian distribution with covariance matrix
(�k �m)�1MMMp

�1.
In Fig. 1, we display the CRB versus the total number of snapshots

N , for two different values of � , namely � = 10 and � = 20. This

Fig. 3. Cramér–Rao bound and MSE of the MLE versus �—L = 1.

Fig. 4. Bayesian bound and MSE of the MMSE estimator versus �—N = 20

and � = 20.

figure confirms the observations made previously. When Lk = 1, the
CRB decreases nearly linearly with the number of snapshots, while for
K = 1 we can observe a threshold effect, i.e., the CRB does no longer
decrease when the number of snapshots increases. It can also be seen
that the CRB decreases when � increases, i.e., as the environment is
more homogeneous. However, this improvement is more pronounced
when K = 1 than when Lk = 1, which seems logical.

Next, we compare the performance of the MLE derived in [4] with
the CRB, in the case Lk = 1. Figs. 2 and 3 consider the influence of
the number of snapshots and � , respectively. From inspection of these
figures, it can be seen that the MLE has a performance quite close to
the CRB. The difference between the two is smaller as either K or �
increases.

Finally, we provide illustrations of the BB properties. In Fig. 4 we
contrast the trace of the BB for the two cases K = 1 and Lk = 1,
and we study the influence of � which rules the degree of a priori
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knowledge about �MMMp. In this figure, we also display the MSE of the
MMSE estimator derived in [4]. The total number of snapshots isN =
20 and � = 20. As can be observed, for a given number of snapshots,
the BB is smaller when Lk = 1 than whenK = 1, which confirms the
previous observations made on the CRB. Also, as could be expected,
the BB decreases as � increases, i.e., as the prior is more and more
informative. Finally, we note that the MMSE estimator has a MSE close
to the BB only for large values of �.

V. CONCLUDING REMARKS

This correspondence derived lower bounds on the estimation of a co-
variance matrixMMMp using heterogeneous samples ZZZk; k = 1; . . . ; K ,
which have covariance matrices MMMk different from MMMp. When MMMp

is deterministic, we showed that consistent estimation of MMMp is not
feasible, when all samples share the same covariance matrix, i.e.,
when K = 1. Indeed, the CRB does not converge to zero as the
number of training samples increases. In contrast, if all snapshots have
different covariance matrices, randomly distributed around MMMp (i.e.,
Lk = 1, for k = 1; . . . ; K), the CRB goes to zero when the number
of training samples increases. The correspondence also derived the
Bayesian bound associated to a random covariance matrix MMMp. The
bounds derived herein enable one to quantify the degradation induced
by heterogeneity, and can serve as references for any estimator of the
covariance matrix MMMp.
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Cross Entropy Approximation of Structured Gaussian
Covariance Matrices

Cheng-Yuan Liou and Bruce R. Musicus

Abstract—We apply two variations of the principle of minimum cross
entropy (the Kullback information measure) to fit parameterized proba-
bility density models to observed data densities. For an array beamforming
problem with incident narrowband point sources, sensors, and
colored noise, both approaches yield eigenvector fitting methods similar to
that of the MUSIC algorithm and of the oblique transformation in factor
analysis. Furthermore, the corresponding cross entropies (CE) are related
to the MDL model order selection criterion .

Index Terms—Array beamforming, eigenvector methods, factor analysis,
generalized principle component analysis, Kullback information measure,
minimum cross entropy (CE), oblique transformation, stochastic estima-
tion, structured covariance.

I. INTRODUCTION

Many existing high resolution methods for spectral analysis and for
optimal beamforming utilize covariance matrices estimated from ob-
served data. Often, an underlying structure for the covariance matrix
is known in advance, and our goal is to estimate the covariance matrix
with this structure which best fits the observed data. Previous litera-
ture has suggested a variety of methods of optimally estimating struc-
tured covariance matrices from data [1]–[5]. In this correspondence,
we will apply the minimum cross entropy (CE) and minimum reverse
cross-entropy (RCE) [6] principles to estimate the covariance matrix.
These principles have proved to be quite powerful in a wide variety of
signal processing applications, such as complex independent compo-
nent analysis [7], [8], encoding mechanism [9]. They have been justi-
fied as being “optimal” under suitable assumptions. In Section II, we
apply the CE and RCE procedures to the problem of estimating struc-
tured covariance matrices, and in Section III we demonstrate the utility
of the idea for a beamforming application.

II. PROBLEM STATEMENT

Let x be an N -dimensional real or complex random vector. Assume
that a Gaussian probability density for x is either known a priori or has
been estimated by some procedure from observed data

p(x) = N(m;R) (1)

where m is the expected value of x, and R is the covariance matrix,
R = E[(x�m)(x�m)H ], and where xH is the Hermitian (complex
conjugate transpose) of x. Suppose we wish to approximate this p(x)
with a parameterized probability density function (pdf)

q�(x) = N(m�; R�) (2)

where � denotes the unknown parameters in the model q�(x) which are
to be estimated. Conceptually, we wish to choose � to make q�(x) op-
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