243 research outputs found

    Computational Theory of Mind for Human-Agent Coordination

    Get PDF
    In everyday life, people often depend on their theory of mind, i.e., their ability to reason about unobservable mental content of others to understand, explain, and predict their behaviour. Many agent-based models have been designed to develop computational theory of mind and analyze its effectiveness in various tasks and settings. However, most existing models are not generic (e.g., only applied in a given setting), not feasible (e.g., require too much information to be processed), or not human-inspired (e.g., do not capture the behavioral heuristics of humans). This hinders their applicability in many settings. Accordingly, we propose a new computational theory of mind, which captures the human decision heuristics of reasoning by abstracting individual beliefs about others. We specifically study computational affinity and show how it can be used in tandem with theory of mind reasoning when designing agent models for human-agent negotiation. We perform two-agent simulations to analyze the role of affinity in getting to agreements when there is a bound on the time to be spent for negotiating. Our results suggest that modeling affinity can ease the negotiation process by decreasing the number of rounds needed for an agreement as well as yield a higher benefit for agents with theory of mind reasoning.</p

    Legal and ethical implications of applications based on agreement technologies: the case of auction-based road intersections

    Full text link
    Agreement Technologies refer to a novel paradigm for the construction of distributed intelligent systems, where autonomous software agents negotiate to reach agreements on behalf of their human users. Smart Cities are a key application domain for Agreement Technologies. While several proofs of concept and prototypes exist, such systems are still far from ready for being deployed in the real-world. In this paper we focus on a novel method for managing elements of smart road infrastructures of the future, namely the case of auction-based road intersections. We show that, even though the key technological elements for such methods are already available, there are multiple non-technical issues that need to be tackled before they can be applied in practice. For this purpose, we analyse legal and ethical implications of auction-based road intersections in the context of international regulations and from the standpoint of the Spanish legislation. From this exercise, we extract a set of required modifications, of both technical and legal nature, which need to be addressed so as to pave the way for the potential real-world deployment of such systems in a future that may not be too far away

    Law Informs Code: A Legal Informatics Approach to Aligning Artificial Intelligence with Humans

    Get PDF
    We are currently unable to specify human goals and societal values in a way that reliably directs AI behavior. Law-making and legal interpretation form a computational engine that converts opaque human values into legible directives. "Law Informs Code" is the research agenda embedding legal knowledge and reasoning in AI. Similar to how parties to a legal contract cannot foresee every potential contingency of their future relationship, and legislators cannot predict all the circumstances under which their proposed bills will be applied, we cannot ex ante specify rules that provably direct good AI behavior. Legal theory and practice have developed arrays of tools to address these specification problems. For instance, legal standards allow humans to develop shared understandings and adapt them to novel situations. In contrast to more prosaic uses of the law (e.g., as a deterrent of bad behavior through the threat of sanction), leveraged as an expression of how humans communicate their goals, and what society values, Law Informs Code. We describe how data generated by legal processes (methods of law-making, statutory interpretation, contract drafting, applications of legal standards, legal reasoning, etc.) can facilitate the robust specification of inherently vague human goals. This increases human-AI alignment and the local usefulness of AI. Toward society-AI alignment, we present a framework for understanding law as the applied philosophy of multi-agent alignment. Although law is partly a reflection of historically contingent political power - and thus not a perfect aggregation of citizen preferences - if properly parsed, its distillation offers the most legitimate computational comprehension of societal values available. If law eventually informs powerful AI, engaging in the deliberative political process to improve law takes on even more meaning.Comment: Forthcoming in Northwestern Journal of Technology and Intellectual Property, Volume 2

    Logic and Games of Norms: a Computational Perspective

    Get PDF

    Agoric computation: trust and cyber-physical systems

    Get PDF
    In the past two decades advances in miniaturisation and economies of scale have led to the emergence of billions of connected components that have provided both a spur and a blueprint for the development of smart products acting in specialised environments which are uniquely identifiable, localisable, and capable of autonomy. Adopting the computational perspective of multi-agent systems (MAS) as a technological abstraction married with the engineering perspective of cyber-physical systems (CPS) has provided fertile ground for designing, developing and deploying software applications in smart automated context such as manufacturing, power grids, avionics, healthcare and logistics, capable of being decentralised, intelligent, reconfigurable, modular, flexible, robust, adaptive and responsive. Current agent technologies are, however, ill suited for information-based environments, making it difficult to formalise and implement multiagent systems based on inherently dynamical functional concepts such as trust and reliability, which present special challenges when scaling from small to large systems of agents. To overcome such challenges, it is useful to adopt a unified approach which we term agoric computation, integrating logical, mathematical and programming concepts towards the development of agent-based solutions based on recursive, compositional principles, where smaller systems feed via directed information flows into larger hierarchical systems that define their global environment. Considering information as an integral part of the environment naturally defines a web of operations where components of a systems are wired in some way and each set of inputs and outputs are allowed to carry some value. These operations are stateless abstractions and procedures that act on some stateful cells that cumulate partial information, and it is possible to compose such abstractions into higher-level ones, using a publish-and-subscribe interaction model that keeps track of update messages between abstractions and values in the data. In this thesis we review the logical and mathematical basis of such abstractions and take steps towards the software implementation of agoric modelling as a framework for simulation and verification of the reliability of increasingly complex systems, and report on experimental results related to a few select applications, such as stigmergic interaction in mobile robotics, integrating raw data into agent perceptions, trust and trustworthiness in orchestrated open systems, computing the epistemic cost of trust when reasoning in networks of agents seeded with contradictory information, and trust models for distributed ledgers in the Internet of Things (IoT); and provide a roadmap for future developments of our research

    Mechanism Design Theory in Control Engineering: A Tutorial and Overview of Applications in Communication, Power Grid, Transportation, and Security Systems

    Full text link
    This article provides an introduction to the theory of mechanism design and its application to engineering problems. Our aim is to provide the fundamental principles of the theory of mechanism design for control engineers and theorists along with the state-of-the-art methods in engineering applications. We start our exposition with a brief overview of game theory highlighting the key notions that are necessary to introduce mechanism design, and then we offer a comprehensive discussion of the principles in mechanism design. Finally, we explore four key applications of mechanism design in engineering, i.e., communication networks, power grids, transportation, and security systems

    Social Welfare

    Get PDF
    "Social Welfare" offers, for the first time, a wide-ranging, internationally-focused selection of cutting-edge work from leading academics. Its interdisciplinary approach and comparative perspective promote examination of the most pressing social welfare issues of the day. The book aims to clarify some of the ambiguity around the term, discuss the pros and cons of privatization, present a range of social welfare paradoxes and innovations, and establish a clear set of economic frameworks with which to understand the conditions under which the change in social welfare can be obtained

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification

    Cyber-crime Science = Crime Science + Information Security

    Get PDF
    Cyber-crime Science is an emerging area of study aiming to prevent cyber-crime by combining security protection techniques from Information Security with empirical research methods used in Crime Science. Information security research has developed techniques for protecting the confidentiality, integrity, and availability of information assets but is less strong on the empirical study of the effectiveness of these techniques. Crime Science studies the effect of crime prevention techniques empirically in the real world, and proposes improvements to these techniques based on this. Combining both approaches, Cyber-crime Science transfers and further develops Information Security techniques to prevent cyber-crime, and empirically studies the effectiveness of these techniques in the real world. In this paper we review the main contributions of Crime Science as of today, illustrate its application to a typical Information Security problem, namely phishing, explore the interdisciplinary structure of Cyber-crime Science, and present an agenda for research in Cyber-crime Science in the form of a set of suggested research questions
    • …
    corecore