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Abstract

This thesis studies how to generate, represent and reason about norms and how to use norms to

construct artificial ethical agents.

We investigate two types of norm generation: norm creation and norm emergence. In the

study of norm creation, we consider norms as normative rules which are created using correlated

equilibrium in games. In the study of norm emergence, we propose a model that supports the

emergence of norms via multiagent learning in social networks.

We then investigate the formal representation of norms. The derivation systems of in-

put/output logic are axiomatic representations of norms. We analyze various derivation rules of

input/output logic in isolation and define the corresponding semantics. Theory of joining-systems

is an algebraic approach to normative systems. We develop two variants of theory of joining-

systems: Boolean joining-systems and Heyting joining-systems. Those two variants algebraically

characterize unconstrained input/output logic in the sense that a norm is axiomatically derivable

from a set of norms if and only if it is in the space of norms algebraically generated this set of

norms.

We study how to reason about norms from a computational perspective. We show that

input/output logic is coNP-hard and in the 2nd level of the polynomial hierarchy. We further

show prioritized input/output logic outp
1 , as well as prioritized imperative logic, is complete for

the 2ed level of the polynomial hierarchy while deontic default logic is located in the 3ed level of

the polynomial hierarchy.

We use norms-based deontic logic and games to build ethical agents. Norms-based deontic

logic are used to reason about norms and Boolean games are used to represent the interaction

of agents. We use norms to assess the normative status of strategies. Then agents’ preferences

are changed by the normative status of strategies. We study some complexity issues related to

normative reasoning/status and agents’ preference change.
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Chapter 1

Introduction: Logic and Games of

Norms
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In this introductory chapter we describe the background, objective and methodology of this thesis.

1.1 Norms in multiagent systems

Norms are found everywhere in our daily life. For example, the following norms can be easily

encountered:

• You should drive on the right side.

• Murder is forbidden.

• A PhD student in China is permitted to take no holidays.

• A PhD student in Luxembourg is obliged to take all his holidays before the end of his contract.

Syntactically, norms are expressed using deontic modalities such as obliged, must, permitted, may

and forbidden. The literature is populated with various definitions of the term norm. The Webster

online dictionary∗ provides three definitions for the term norm:

1. an authoritative standard;

2. a principle of right action binding upon the members of a group and serving to guide, control,

or regulate proper and acceptable behavior;

3. average:

(a) as a set standard of development or achievement usually derived from the average or

median achievement of a large group;

(b) as a pattern or trait taken to be typical in the behavior of a social group;

(c) as a widespread or usual practice, procedure, or custom.

These definitions are representatives of the term and it is used in many areas of research, including

deontic logic, legal theory, sociology and game theory.

1. In deontic logic, norms are usually represented as (conditional) obligations, permissions,

prohibitions that an agent has to a larger social system (Gabbay et al., 2013, 2016).

2. In legal theory, norms are rules of behavior imposed by an authorized body and enforced via

applying sanctions (Posner, 2002).

∗http://www.merriam-webster.com/dictionary/norm
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3. In sociology, norms are rules or restrictions of behavior that are socially enforced and

considered valid by the majority of a social group (Bendor and Swistak, 2001).

4. In game theory, a norm is a pattern of behavior that has been adopted by the majority of a

social group and is considered successful (Gintis, 2010).

1.1.1 Normative multiagent system

In human societies, norms play a crucial role in regulating the behavior of the individuals. In

multiagent systems (Shoham and Leyton-Brown, 2009; Wooldridge, 2009; Weiss, 2013), artificial

agents are constructed as possessing characteristics that are similar to human beings. Multiagent

system researchers have been interested in norms because norms are helpful in maintaining social

order (Conte and Dellarocas, 2001) and facilitating cooperation and coordination (Shoham and

Tennenholtz, 1992, 1997; Axelrod, 1997). Norms can also reduce the computational costs required

by agents since they do not have to search their state space of possible actions if they decide to

follow norms. The behavior of agents should also be more predictable than when norms are absent

(Epstein, 2001).

Normative multiagent systems (NorMAS) are multiagent systems in which agents’ behavior

are regulated by norms (Shoham and Tennenholtz, 1992, 1997; Boman, 1999; Conte et al., 1999;

Dignum, 1999; Boella et al., 2008b; Andrighetto et al., 2013). The first definition of a normative

multiagent system emerged after two days of discussion at the first workshop on normative

multiagent systems held in 2005 as a symposium of the Artificial Intelligence and Simulation of

Behavior Convention in Hatfield, United Kingdom:

The norm change definition. “A normative multiagent system is a multiagent system together

with normative systems in which agents on the one hand can decide whether to follow the

explicitly represented norms, and on the other the normative systems specify how and in

which extent the agents can modify the norms.” (Boella et al., 2006).

The second definition of a normative multiagent system emerged at the second workshop on

normative multiagent systems held as Dagstuhl Seminar 07122 in 2007. After four days of

discussions, the participants agreed to the following consensus definition:

The mechanism design definition. “A normative multiagent system is a multiagent system orga-

nized by means of mechanisms to represent, communicate, distribute, detect, create, modify,

and enforce norms, and mechanisms to deliberate about norms and detect norm violation

and fulfillment.” (Boella et al., 2008b)
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According to Savarimuthu and Cranefield (2011), research on NorMAS can be categorized into

two branches. The first branch focuses on normative system architectures, norm representations,

norm adherence and the associated punitive or incentive measures. The second branch is

concerned with the generation of norms.

Several architectures have been proposed for the study of norms (López y López and Marquez,

2004; Boella and van der Torre, 2006; Fonseca dos Santos Neto et al., 2012). Some researchers have

used deontic logic to define and represent norms (Makinson and van der Torre, 2000; Boella and

van der Torre, 2006; Governatori and Rotolo, 2010). Other works have investigated mechanisms for

norm compliance and enforcement (Axelrod, 1986; López y López et al., 2002; Aldewereld et al.,

2006).

While the first branch studies how norms are formalized and represented, it does not address

the question of where norms come from. Two general approaches to the generation of norms have

been investigated in the literature: online approaches (Shoham and Tennenholtz, 1997; Sen and

Airiau, 2007; Morales et al., 2011; Airiau et al., 2014; Morales et al., 2015) and offline approaches

(Shoham and Tennenholtz, 1996; van der Hoek et al., 2007; Ågotnes and Wooldridge, 2010; Ågotnes

et al., 2012). Online approaches aim to establish agents with the ability to dynamically coordinate

their activities. In contrast, offline approaches aim at developing a coordination device at design-

time, and build this regulation into a system for use at run-time.

1.1.2 Deontic logic and games in NorMAS

Deontic logic and games are two important intellectual sources for NorMAS. Deontic logic is used

for the representation and reasoning about norms. It is also applicable in the construction of ethical

agents. Game theory is popular in the study of norm generation as well as the interaction of agents

governed by norms.

What is deontic logic?

Deontic logic can be defined as the formal study of normative reasoning (Gabbay et al., 2013, 2016).

Generally speaking, one might define logic as the study of the principles of correct reasoning. It

tells us whether certain conclusions follow from a number of given assumptions. Propositional

logic looks at the logical relationships amongst statements which assert whether something can be

judged as true or false. Such a sentence is usually called a declarative sentence. By contrast, deontic

logic is the study of logical relationships among propositions which assert that certain actions or

states of affairs are obligatory, forbidden or permitted.

4



In 1951, the philosopher and logician Georg von Wright wrote a paper called “Deontic Logic”

(von Wright, 1951), which subsequently became the name of the research area. The term deontic

is derived from the ancient Greek déon, meaning that which is binding or proper. The basis of

his formal system was an observed relation between obligation and permission. For example, he

defined the obligation to tell the truth by interpreting that it is good to tell the truth, and therefore

it is bad to lie. If it is bad to lie then it is forbidden to lie, and therefore it is not permitted to lie.

Summarizing, something is obligatory when its absence is not permitted. This logical relation

is based on the binary distinction between good and bad, as illustrated by its possible world

semantics distinguishing between good and bad worlds. In fact, von Wright’s deontic logic is

exactly the same as the monadic modal logic KD defined as the valid formulas on the class of serial

frames. Such logic is later called standard deontic logic (SDL).

Given a set P of propositional atoms, the language of standard deontic logic is represented by

the following BNF. For p ranges over P,

x := p | ¬x | x ∧ x | ©x

The intended reading of ©x is “x is obligatory”. The semantics of SDL is constructed using

relational models.

Definition 1.1 (Relational model (Blackburn et al., 2001)). A relational model M = (W, R, V) is a tuple

where:

• W is a (non-empty) set of possible worlds: w, w′, . . .

• R ⊆W ×W is a binary relation over W.

• V : P 7→ 2W is a valuation function for propositional atoms such that V(p) ⊆W.

Definition 1.2 (Satisfaction (Blackburn et al., 2001)). Given a relational model M = (W, R, V) and a

world w ∈ W, the satisfaction relation M, w � x (read as “world w satisfies x in model M”) is defined by

induction on the structure of x using the following clauses

• M, w � p iff w ∈ V(p).

• M, w � ¬x iff M, w 6� x.

• M, w � x ∧ y iff M, w � x and M, w � y.

• M, w �©x iff for all w′ ∈W, if (w, w′) ∈ R then M, w′ � x.

An SDL formula x is valid, denoted as � x, if for all relational models M = (W, R, V) and all worlds

w ∈ W, M, w � x holds. Sahlqvist theorem gives an Hilbert style axiomatization of SDL made up

with:

5



• all tautologies of classical propositional logic.

• ©(x → y)→ (©x →©y).

• ©x → ¬©¬x.

• Modus ponens rule.

• Necessitation rule: from ` x infer ` ©x.

Modern deontic logic started with a paper by Bengt Hansson in 1969, called “An Analysis

of Some Deontic Logics” (Hansson, 1969). In that paper he introduced a semantics based on

a preference relation for conditional obligations. Hansson’s preference-based deontic logic is

further developed by several researchers (Åqvist, 1986; Boutilier, 1994; van der Torre, 1997; Parent,

2008; van Benthem et al., 2014). With the work of Meyer (1988), deontic logic became a part

of computer science. Meyer (1988) led to the creation of the DEON conference series (http:

//deonticlogic.org/).

Different approaches of deontic logic have been studied in the past 6 decades including

imperative logic (van Fraassen, 1973; Alchourrón and Bulygin, 1981; Hansen, 2008), deontic action

logic (Segerberg, 1982; Castro and Maibaum, 2009; Trypuz and Kulicki, 2015), dynamic deontic

logic (Meyer, 1988; van der Meyden, 1996; Broersen, 2003), deontic STIT logic (Horty, 2001; Kooi

and Tamminga, 2008; Sun, 2011; Sun and Baniasadi, 2014), input/output logic (Makinson and

van der Torre, 2000, 2001, 2003; Stolpe, 2008b; Parent, 2011; Parent and van der Torre, 2014a; Straßer

et al., 2016), deontic default logic (Horty, 2003, 2007, 2012, 2014), deontic defeasible logic (Antoniou

et al., 2007, 2009; Governatori et al., 2013), adaptive deontic logic (Putte and Straßer, 2013; Beirlaen

et al., 2013) and categorical deontic logic (Peterson, 2014, 2015). Those results are summarized in

the two-volume handbook of deontic logic and normative systems (Gabbay et al., 2013, 2016).

In input/output logic, imperative logic, deontic default logic and deontic defeasible logic,

norms are explicitly represented. The truth value of deontic propositions in those logics are

explained not by some set of possible worlds among which some are ideal, but with reference

to a set of given norms. Such a non-possible world semantics is calldc norm-based semantics in

Hansen (2014). We then use norm-based deontic logic as a general term to refer input/output

logic, imperative logic, deontic default logic and deontic defeasible logic and use deontic modal

logic to refer those approaches which adopt possible world semantics. Norm-based deontic logic

will be extensively studied in this thesis.
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Why is normative reasoning relevant for NorMAS?

In multiagent systems, artificial and human agents interact with each other. Since the use of norms

is a key element of human social intelligence, norms may be essential too for artificial agents that

collaborate with humans. By integrating norms and individual intelligence, normative multiagent

systems provide a promising model for human and artificial agent cooperation and coordination

(Keogh and Sonenberg, 2013), multi-agent organizations (Haynes et al., 2013; Testerink et al., 2013),

electronic institutions (Aldewereld, 2009; Frantz et al., 2013), etc.

Advantages of formal methods

Deontic logic and other formalisms for normative reasoning are examples of formal methods.

Formal methods may be helpful when employed as a modeling language, such as during the design

of multiagent systems, explaining their structure to other designers and for reasoning behind the

system. Formal methods provide a mathematically rigorous framework for modeling normative

multiagent systems. The modeling language is given a formal semantics, which constrains the

intuitive characterization of the normative notions being used. The language is equipped with a

complete axiomatic characterization. On the one hand, the meaning of the deontic concepts is given

by the axioms governing their use. On the other hand, a corollary to completeness is consistency.

In this manner, there is a guarantee that the framework is consistent. Without such a guarantee,

the move to the implementation level would be pointless: an inconsistent framework could be as

easily implemented as a consistent one, but it would be useless (Broersen et al., 2013).

Game theory in NorMAS

In the past 50 years, game theory has become rather popular in the study of norms (Lewis,

1969; Taylor, 1976; Axelrod, 1986; Sugden, 1989; Shoham and Tennenholtz, 1997; Binmore, 2005;

Bicchieri, 2006; Alexander, 2007; Boella and van der Torre, 2007a; Sen and Airiau, 2007; Sen and Sen,

2009; Savarimuthu and Cranefield, 2011; Skyrms, 2014). In general, the game theoretical analysis

of norms considers norms as Nash equilibria of games played by rational agents. The insight

underlying all these contributions is that if agents play a game with several Nash equilibria, norms

can serve to choose a unique equilibrium among these equilibria. Most work on the emergence of

norms are from a game theoretical perspective (Shoham and Tennenholtz, 1997; Alexander, 2007;

Sen and Airiau, 2007; Sen and Sen, 2009; Savarimuthu and Cranefield, 2011). Evolutionary game

theory and learning in games are also useful tools in the study of norm emergence. Some special

games are introduced in the study of norms, for example “norms game” is introduced in Axelrod
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(1986) and “violation game” is introduced in van der Torre (2010b). Norm negotiation in online

multi-player games is introduced in Boella and van der Torre (2007b) and Boella et al. (2009a).

In this thesis, we study norms from the perspective of deontic logic and game theory. We

consider norms as normative rules. A norm is a rule in the sense that it contains both a premise

and a consequence where the premise describes in what situation the norm is triggered and the

consequence describes the prescription or the demand of the rule. Norms are normative in the sense

that they prescribe deontic consequences, classifying what is obligatory, permitted or forbidden.

Imperatives are a simple type of norms which are obligatory statements expressing commands.

Social norms and conventions are special types of norms which are publicly accepted by a group of

agents such that every agent in this group conforms to those norms and expects others to conform

as well. We start our investigation of norms by explaining the objective and methodology of this

thesis. Following this, we review the current states of deontic logic and game theoretical analysis

of norms.

1.2 Background and Objectives

In this thesis, we study how to generate, represent and reason about norms, and how to use norms

to construct artificial ethical agents. The background and objectives of this thesis are explained as

follows.

1.2.1 On norm creation

Although the insight that norms are Nash equilibria applies to several important social situations, it

does not apply to most. Gintis (2010) suggests a more general principle, according to which norms

are considered as correlated equilibria, of which the function is like a “choreographer” who sends

signals to agents to improve their coordination.

In game theory, correlated equilibrium is a solution concept that is more general than Nash

equilibrium. Correlated equilibrium is first discussed in Aumann (1974). A correlated equilibrium

is a probability distribution over agents’ action profiles, which can be understood as a public

randomized signal, such that each agent can choose its action according to the recommendation

of the signal. If no agent would want to deviate from the recommended action (assuming the

others don’t deviate), the probability distribution is called a correlated equilibrium. Gintis (2010)

argues that treating norms as correlated equilibria has two attractive properties that are lacking in

the treating of norms as Nash equilibria.
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“First, the conditions under which rational agents play Nash equilibria are generally complex

and implausible, whereas rational agents in a very natural sense play correlated equilibria.

Second, the social norms as Nash equilibria approach cannot explain why compliance with social

norms is often based on other-regarding and moral preferences in which agents are willing to sac-

rifice on behalf of compliance with social norms. We can explain this association between norms

and morality in terms of the incomplete information possessed by the choreographer.”(Gintis,

2010)

The first attractive property of correlated equilibrium is that the epistemic condition for

correlated equilibrium is much more realistic than that of Nash Equilibrium. Aumann and

Brandenburger (1995) show that in a Nash equilibrium, each agent’s strategy is optimal given his

belief about the other players strategies, and this belief is correct. Such epistemic conditions are

extremely confining and cannot be expected to hold in general. By contrast, Aumann (1987) shows

that in a correlated equilibrium an agent is required to make the best choice according to his belief

about the other agents’ strategies, but such belief is not assumed to be correct.

Gintis (2010) argues that the second attractive property of correlated equilibrium is that it

explains why agents are sometimes willing to sacrifice themselves in order to comply to norms.

Indeed, all Nash equilibria are correlated equilibria but not vice verse. In a non-Nash correlated

equilibrium, it might happen that agents sacrifice themselves by following the suggestions

produced by the choreographer.

Although Gintis’ proposal is appealing, two things are missing in his account. The first is

that Gintis does not study specific correlated equilibrium which are optimal in some senses. For

example those correlated equilibrium which maximizes the sum of the expected utility of all

agents can be considered as optimal. In addition to the study of creating norms from correlated

equilibrium in general, we should also study how to create norms from optimal correlated

equilibrium. The second missing thing is that Gintis does not provide algorithms to transform

correlated equilibria to norms. The first objective of this thesis is to fill these gaps in Gintis’

framework.

• Objective 1: Design methods to create norms for an arbitrary given normal-form game

by first computing an optimal correlated equilibrium of the game, then transforming the

correlated equilibrium to norms.

1.2.2 On norm emergence

In the literature of multiagent systems, the online approach of norm emergence (Shoham and

Tennenholtz, 1997; Sen and Airiau, 2007; Morales et al., 2011, 2015) aims to establish agents with
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the ability to dynamically coordinate their activities, for example by reasoning explicitly about

coordination at run-time or by learning from the interaction with other agents. Norm emergence is

also studied by philosophers. An evolutionary game theoretical approach of norm emergence can

be found in Alexander (2007) and Skyrms (2014).

Games studied in Alexander (2007) includes the prisoner’s dilemma, stag hunt, cake cutting

and the ultimatum game. Alexander uses these games to analyze the emergence of norms

of cooperation, trust, fair division and retaliation respectively. In this thesis, we study norm

emergence in a game called Ali Baba and the Thief, which is not explored in Alexander (2007). We

show that some norms prohibiting harmful behaviors, such as “you should not rob”, can emerge

after repeated play of Ali Baba and the Thief.

• Objective 2: Introduce the game Ali Baba and the Thief and use it to study the emergence of

certain norms via repeated play of the game in some social networks.

1.2.3 On norm representation

The derivation systems in unconstrained input/output logic (Makinson and van der Torre, 2000;

Stolpe, 2008b; Parent and van der Torre, 2014a) provide axiomatic representations of norms. One

feature of the existing work of input/output logic is that the derivation rules always work in

bundles. When several derivation rules work together, the corresponding semantics will be rather

complex, and insights of the machinery is therefore concealed. To achieve a deeper understanding

of input/output logic, it is helpful to isolate every single rule and study them separately.

Theory of joining-systems introduced by Lindahl and Odelstad (2000, 2008, 2013); Odelstad

and Lindahl (2000) is an algebraic framework for analyzing normative systems. In this thesis we

develop two variants of theory of joining-systems: Boolean joining-systems and Heyting joining-

systems. Within those algebraic frameworks, we define isomorphism and embedding between

normative systems. Then we use them to study the similarity of normative systems as well as some

other global properties of normative systems.

• Objective 3: Investigate the axiomatic representation of norms provided by input/output

logic and the algebraic representation of norms provided by theory of joining-systems.

1.2.4 On reasoning about norms

The complexity of default logic has been extensively studied in Stillman (1992); Gottlob (1992);

Rintanen (1998a). Rintanen investigates the complexity of three proposals of prioritized default

logic: Brewka (1994), Baader and Hollunder (1995) and Rintanen (1998b). The complexity of deontic
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defeasible logic is studied in Governatori et al. (2013). It is well-known in theoretical computer

science that complexity is an indispensable component of every logic. So far, previous literature in

norm-based deontic logics (except deontic defeasible logic) focuses on proof theory and semantics,

and neglects complexity. In this thesis, we fill this gap by the extensive study of the complexity of

norm-based deontic logic.

• Objective 4: Investigate the complexity of norm-based deontic logic.

1.2.5 On ethical agents

Ethical agents have been extensively studied in moral philosophy and in economics, and their

studies have been identified as one of the thorniest challenges in artificial intelligence † (Deng,

2015). The intersection of these areas is the new field of machine ethics (Anderson and Anderson,

2011). “Machine ethics is concerned with giving machines ethical principles or a procedure for

discovering a way to resolve the ethical dilemmas they might encounter, enabling them to function

in an ethically responsible manner through their own ethical decision making.” (Anderson and

Anderson, 2011). The best known ethical principles designed for intelligent machines are the Three

Laws of Robotics formulated by the science fiction author Isaac Asimov:

1. A robot may not injure a human being or, through inaction, allow a human being to come to

harm.

2. A robot must obey orders given it by human beings except where such orders would conflict

with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the

First or Second Law.

Much research has emphasized using machine-learning techniques such as neural networks

(Guarini, 2006), case-based reasoning (McLaren, 2006), and inductive logic programming (An-

derson et al., 2006) to build ethical agents. Pereira and Saptawijaya (2009) illustrate how moral

decisions can be drawn computationally by using prospective logic programs. Prospective logic

programs are used to model moral dilemmas, as they are able to prospectively look ahead at the

consequences of hypothetical moral judgments. With this knowledge of consequences, moral rules

are then used to decide the appropriate moral judgments. The whole moral reasoning is achieved

through a priori constraints and a posteriori preferences on abductive stable models, two features

that are found in prospective logic programming.

†http://www.nature.com/news/machine-ethics-the-robot-s-dilemma-1.17881
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Bringsjord et al. (2006) propose the application of deontic logic in machine ethics. The objective

of their research is to arrive at a methodology that allows an agent to behave ethically as much as

possible in an environment which requires such behavior. Lorini (2015) develops a dynamic logic of

mental attitudes and joint actions and uses it to provide a logical analysis of moral agency. Instead

of norms, Lorini uses an ideality function which maps every possible world to a real number,

representing the degree of the ideality to characterized the moral aspect of an agent. Lorini left it

as future work to investigate the relationships between an agent’s moral values and norms.

Nagenborg (2007) identifies an artificial moral agent as an artificial agent guided by norms,

which we as human beings consider to have moral content. BOID (belief, obligation, intention,

desire) agent architecture (Broersen et al., 2005; Governatori and Rotolo, 2007) is an extension of

the BDI model with obligations as a moral component.

Objective 5: Apply norm-based deontic logic to the construction of artificial ethical agents.

1.3 Research Methodology

Methodology for Objective 1

Our methodology of norm creation is to use convex optimization to efficiently compute an optimal

correlated equilibrium, then transform correlated equilibrium to norms. We study different types

of optimal correlated equilibrium:

1. Utilitarian correlated equilibria are those correlated equilibria which maximize the sum of the

expected utility of all agents.

2. Egalitarian correlated equilibria are those correlated equilibria which maximize the expected

utility of the poorest agent.

3. Elitist correlated equilibria are those correlated equilibria which maximize the expected utility

of the happiest agent.

4. Nash-product correlated equilibria are those correlated equilibria which maximize the

product of the expected utility of all agents.

5. Opportunity-balanced correlated equilibria are those correlated equilibria which are com-

puted by taking the average of those correlated equilibria which maximize the expect utility

of every single agent.

All these optimal correlated equilibria can be efficiently computed using techniques from

convex optimization. We then propose two algorithms to transform correlated equilibria to norms.
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The idea behind both algorithms is to translate the probability distribution characterized by the

correlated equilibrium to randomized signals. In correspondence with those five types of optimal

correlated equilibria, five types of norms are studied: utilitarian norms, egalitarian norms, Nash-

product norms, elitist norms and opportunity-balanced norms.

Methodology for Objective 2

The general methodology for studying the emergence of norms in Alexander (2007) is the

following:

1. Identify norms with a particular strategy in a two-player game.

2. Use replicator dynamics and multiagent learning to test whether norms emerge as result of

the repeated play of the two-player game.

3. Test norm emerge with different social networks.

In this thesis, we follow Alexander’s general methodology but we study norm emergence in a new

game called Ali Baba and the Thief. We identify norms prescribing no harmful behavior with the

strategy Ali Baba in this game. In our model this game is repeatedly played by a given amount of

agents. Each agent adapts its strategy by using a learning rule among different playing rounds. We

consider a norm as emerged in the population if:

(1) All agents are choosing and will continue to choose the action prescribed by the norm.

(2) Every agent believes that all agents, who are relevant in its social network, will choose the

action prescribed by the norm in the next round.

(3) Every agent believes that all other agents, who are relevant in its social network, believe that

it is good if the agent chooses the action prescribed by the norm.

In our model, individual agents repeatedly play Ali Baba and the Thief with their neighbors. An

agent learns its strategy to play the game using replicator dynamics or the learning rule imitate-

the-best. We use the Netlogo platform to simulate agents’ behavior in the repeated play of this

game.

Methodology for Objective 3

Our methodology of the study of the axiomatic representation of norms is to first analyze various

derivation rules of input/output logic in isolation and study the corresponding semantics, then

combine those results together to obtain alternative semantics for several input/output logics. Our
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methodology of the study of the algebraic representation of norms is to introduce variants of the

theory of joining-systems and to use those variants as the algebraic semantics of unconstrained

input/output logic.

Methodology for Objective 4

We use standard methodology in complexity theory to study the complexity of norm-based

deontic logic: we prove the hardness of a logic via reduction and the membership via providing

an algorithm on a computational model such as a Turing machine. We show unconstrained

input/output logic is in the 1st level of the polynomial hierarchy. Constrained input/output logic

are complete for the 2ed level of the polynomial hierarchy. The hardness for the 2ed level of the

polynomial hierarchy is proved by a polynomial reduction from the satisfiability/validity problem

of quantified Boolean formulas (QBF)

• 2-QBF-SAT: given an arbitrary 2-QBF∃ ∃p1 . . . pm∀q1 . . . qnΦ, decide if it is satisfiable.

Negative and static permission checking in input/output logic are in the 1st level of the

polynomial hierarchy while dynamic permission checking is complete for the 2ed level of the

polynomial hierarchy. We show prioritized input/output logic outp
1 is complete for the 2ed level of

the polynomial hierarchy while outp
3 is in the 3ed level of the polynomial hierarchy. We show that

Hansen’s imperative logic is complete for the 2ed level of the polynomial hierarchy and deontic

default logic is in the 3ed level of the polynomial hierarchy. We prove that deontic default logic is

∆p
3 -hard by a polynomial time reduction from the following problem:

• Maximum 2-QBF: given an arbitrary 2-QBF∃ ∃p1 . . . pm∀q1 . . . qnΦ, decide if V1(pm) = 1

where V1 is the lexicographically maximal valuations of {p1, . . . , pm} such that for all

valuation V2 of {q1, . . . , qn}, V1 ∪V2 � Φ,

Here for two valuation of {p1, . . . , pm}, V1 is lexicographically larger than V2 iff there exists i such

that V1(pi) = 1, V2(pi) = 0 and for all j ∈ {1, . . . , i− 1}, V1(pj) = V2(pj).

Methodology for Objective 5

Our methodology for objective 5 is to adopt a deontic logic+Boolean game approach to the

construction of ethical agents. Boolean game is a class of games based on propositional logic.

It was first introduced by Harrenstein et al. (2001) and further developed by several researchers

(Harrenstein, 2004; Dunne et al., 2008; Bonzon et al., 2009). We use norm-based deontic logic to

reason about norms and use Boolean game to represent the interaction of agents. We use norms
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to assess the normative status of strategies. Then agents’ preference is changed by the normative

status of strategies. Agents of different types use different procedures to change their preferences.

We characterize 6 types of ethical agents: moral, amoral, social, selfish, negatively impartial and

positively impartial.

1. An amoral agent prefers strategy profiles with higher utility.

2. A moral agent prefers strategy profiles with higher normative status.

3. • A selfish agent first prefers strategy profiles with higher utility.

• For two strategy profiles of the same utility, the agent prefers the one which contains his

strategy of higher normative status.

4. • A social agent first prefers strategy profiles which contains his strategy of higher

normative status.

• For two strategy profiles of the same normative status, it prefers strategy profiles with

higher utility.

5. • A negatively impartial agent first classifies strategies into negatively permitted category

and prohibited category.

• Then it ranks its strategies using utility within these two categories.

6. • A positively impartial agent first classifies strategies into positively permitted category

and not positively permitted category.

• Then it ranks its strategies using utility within these two categories.

We study some complexity issues related to normative reasoning/status and agents’ preference

change. When no restriction is imposed, those decision problems of interest to us are decidable but

the complexity is high. Under certain restrictions we obtained intermediate and low complexity.

1.4 A brief introduction to norm-based deontic logic

Compared to standard deontic logic, norm-based deontic logic has the following advantages.

Advantage 1: Norm-based deontic logic solves Jorgensen’s dilemma.

Although deontic logic studies normative concepts in general, it is rather difficult how there can be

a logic of such concepts at all. Norms like imperatives, promises, legal codes and moral standards

are usually not viewed as being true or false. Philosophically, it is widely acknowledged that
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there is a distinction between norms on the one hand, and declarative statements on the other.

Declarative statements are capable of being true or false; but norms are not. Norms may be

complied or violated. But it makes no sense to describe norms as true or as false. For example,

a norm “Mary, you may enter now!” does not describe, but demand a behavior of Mary. Being

non-descriptive, norms cannot meaningfully be termed true or false. Lacking truth values, these

expressions cannot be premise or conclusion in an inference, be termed consistent or contradictory,

or be compounded by truth-functional operators. Hence, while there certainly exists a logical study

of normative expressions and concepts, it seems there cannot be a logic of norms: this is Jorgensen’s

dilemma (Jörgensen, 1938). In norm-based deontic logic, norms do not have truth-value. Therefore

norm-based deontic logic solves Jorgensen’s dilemma at its starting line.

Advantage 2: Norm-based deontic logic solves the contrary-to-duty paradox.

The contrary-to-duty paradox is the most notorious paradox in deontic logic. The original phrasing

of the paradox requires a formalization of the following scenario in which the sentences are

mutually consistent and logically independent (Chisholm, 1963).

1. It ought to be that John goes to help his neighbours.

2. It ought to be that if John goes to help his neighbours, then he tells them he is coming.

3. If John doesn’t go to help his neighbours, then he ought not to tell them he is coming.

4. John does not go to help.

But formalization using standard deontic logic is either inconsistent or not logically independent.

Norm-based deontic logic gives consistent and logically independent formalization of the above

scenario therefore solves the contrary-to-duty paradox. In general, norm-based deontic logic

provides correct prescriptions in situations where some norms are already violated. Note that

norm-based deontic logic is not the only approach to solve the contrary-to-duty paradox. In fact,

solving this paradox is an advantage of norm-based logic shared with many other deontic modal

logics such as preference-based deontic logic and deontic STIT logic.

Advantage 3: Norm-based deontic logic offers a formal mechanism to deal with moral conflicts.

Consider the following scenario taken from Hansen (2008), which is sometimes called the ‘order

puzzle’: before you go to a party, you become the recipient of various imperative sentences:

1. Your mother says: if you drink anything, then don’t drive.

2. Your best friend says: if you go to the party, then you drive.

16



3. Some acquaintance says: if you go to the party, then have a drink with me.

Assume mother is more important than best friend, who is more important than acquaintance.

What will you do? Intuitively, you should obey your mother and your best friend, and hence do

the driving and not accept your acquaintance’s invitation. However, it is not so clear what formal

mechanism could explain this reasoning. Norm-based deontic logic appears as suitable tools to

formalize such reasoning.

Advantage 4: Norm-based deontic logic characterizes various notions of permission.

Philosophically, it is common to distinguish between two kinds of permissions: negative permis-

sion and positive permission. Negative permission is straightforward to describe: something is

negatively permitted according to certain norms iff it is not prohibited by those norms. That is, iff

there is no obligation to the contrary. Positive permission is more elusive. Intuitively, something is

positively permitted according to certain norms iff it can be derived from those norms. But what

exactly does “derive” mean? In mathematics we can derive theorems in a “straight” way or by

contradiction. These two methods of derivation give two different notions of positive permission.

Makinson and van der Torre (2003) introduces these two types of positive permission as static and

dynamic permission. Here is an example from Makinson and van der Torre (2003) to distinguish

these two kinds of positive permission.

Example 1.1. Assume there are two norms:

1. A man is obliged to pay tax on condition of having salary.

2. A man is permitted to vote on condition of being older than 18.

Now the question is, according to the given normative system:

Is a man permitted to vote on the condition of having salary?

In one sense the answer is no. If we stick to the straight derivation, a man has salary does not imply

that he is older than 18. Therefore we cannot derive he is permitted to vote. This is one notion of positive

permission, the static permission.

In another sense the answer is yes. The reason is: suppose we add “a man is not permitted to vote on

the condition of having salary” to the normative system. We will make the normative system incoherent in

the sense that when the normative system is applied to a man who has salary and is older than 18, then he is

permitted to vote meanwhile not permitted to vote. This is another notion of positive permission, the dynamic

permission.
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normfact obligation

Figure 1.1: Input/output logic

Other notions of permission, such as permission as exception, have been studied in Stolpe

(2010c); Governatori et al. (2013). All these notions of permission can be captured by norm-based

deontic logics. Having stated the advantages of norm-based deontic logic, in what follows we

review input/output logic, imperative logic and deontic default logic. The complexity of those

logics will be developed in later chapters. Here we do not review defeasible deontic logic because

the complexity of this logic is already known in the literature (Governatori et al., 2013) and in this

thesis we make no contribution to defeasible deontic logic.

1.4.1 Input/output logic

In the first volume of the deontic logic handbook (Gabbay et al., 2013), input/output logic, initiated

by Makinson and van der Torre (2000, 2001, 2003) and further developed by Stolpe (2008a,b,

2010b,c); Parent (2011); Parent and van der Torre (2014a); Sun (2014, 2015c,d); Sun and van der

Torre (2014), appears as one of the new achievements in deontic logic in recent years. Input/output

logic takes its origin in the study of conditional norms. Unlike most deontic modal logic, which

mainly adopts possible world semantics, input/output logic uses operational semantics. The basic

idea is: norms are conceived as a deductive machine, like a black box which produces normative

statements as output, when we feed it factual statements as input. Figure 1.1 is a brief visualization

of input/output logic.

Input/output logic avoids assuming that conditional norms bear truth-values. Norms are

not embedded in compound formulas using truth-functional connectives. To keep clear of all

confusion, norms are not even treated as formulas, but simply as ordered pairs (a, x) of logical

formulas. If (a, x) is a mandatory norm, then it is read as “given a, x is obligatory”. If it is a permissive

norm, then it is read as “given a, x is permitted”.

Just like every logic, two indispensable components of input/output logic is a proof system

and a semantics. The semantic construction of input/output logic is based on the intuition that

norms are deductive machines which produces obligations as output, when we feed it facts as

input. Formally, let P = {p0, p1, . . .} be a countable set of propositional variables and LP be the

propositional language built upon P. Let O ⊆ LP× LP be a set mandatory norms. O can be viewed

as a function from 2LP to 2LP such that for a set of formulas A, O(A) = {x ∈ LP : (a, x) ∈ O for

18



some a ∈ A}. Depending on the pairs included in O, a different output is produced against an

input A. Makinson and van der Torre (2000) introduce four basic relevant outputs for an input A,

called out1, out2, out3, and out4, which are functions taking O and A as arguments. The semantics

of input/output logic from out1 to out4 are defined as follows:

• out1(O, A) = Cn(O(Cn(A))).

• out2(O, A) =
⋂{Cn(O(V)) : A ⊆ V, V is complete}.

• out3(O, A) =
⋂{Cn(O(B)) : A ⊆ B = Cn(B) ⊇ O(B)}.

• out4(O, A) =
⋂{Cn(O(V) : A ⊆ V ⊇ O(V)), V is complete}.

Here Cn is the classical consequence operator of propositional logic. That is Cn(A) = {a ∈

LP : A � a}. A set of formulas is complete if it is either maximal consistent or equal to LP. These

four operators are called ‘simple-minded output’, ‘basic output’, ‘simple-minded reusable output’

and ‘basic reusable output’ respectively. The typical understanding of x ∈ outi(O, A) is: give a set

of mandatory norms O and fact A, x is obligatory. For each of these four operators, a throughput

version that allows inputs to reappear as outputs is defined as out+i (O, A) = outi(Oid, A), where

Oid = O ∪ {(a, a) : a ∈ LP}. When A is a singleton, we write outi(O, a) for outi(O, {a}).

The proof system of input/output logic is build on derivations of mandatory norms. We say

that a mandatory norm (a, x) is derivable from a set O iff (a, x) is in the least set that extends

O ∪ {(>,>)} and is closed under a number of derivation rules. The following are the derivation

rules which are used by Makinson and van der Torre (2000) to construct the proof systems of

input/output logic:

• SI (strengthening the input): from (a, x) to (b, x) whenever b ` a.

• OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).

• WO (weakening the output): from (a, x) to (a, y) whenever x ` y.

• AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).

• CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y).

• ID (identity): from nothing to (a, a).

The proof system based on the rules SI, WO and AND is called deriv1. Adding OR to deriv1 gives

deriv2. Adding CT to deriv1 gives deriv3. The five rules together give deriv4. Adding ID to derivi

gives deriv+i for i ∈ {1, 2, 3, 4}. derivi(O) is the smallest set that extends O ∪ {(>,>)} and is
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closed under the rules of proof system derivi. In Makinson and van der Torre (2000), the following

soundness and completeness theorems are given:

Theorem 1.1 (Makinson and van der Torre (2000)). Given a set of mandatory norms O and formula a,

• x ∈ outi(O, a) iff (a, x) ∈ derivi(O), for i ∈ {1, 2, 3, 4}.

• x ∈ out+i (O, a) iff (a, x) ∈ deriv+i (O), for i ∈ {1, 2, 3, 4}.

Input/output logic containing the rule of WO is not free from Ross’ paradox (Ross, 1944). In a

nutshell, Ross’ paradox says that on the one hand, it is unacceptable to claim “you ought to mail

a letter” implies “you ought to mail the letter or burn it.” On the other hand in standard deontic

logic it is valid that ©x → ©(x ∨ y). Therefore there is a confliction between natural language

and standard deontic logic. Stolpe (2008a) develops the mediated reusable input/output logic such that

Ross’ paradox is avoided without damaging the power of WO. Stolpe achieves this by replacing

WO and CT in deriv3 by OEQ and MCT respectively.

• OEQ (output equivalence): from (a, x) and x a` y to (a, y). Here x a` y means x ` y and

y ` x.

• MCT (mediated cumulative transitivity): from (a, x′), x′ ` x and (a ∧ x, y) to (a, y).

Before building mediated reusable input/output logic, Stolpe develops an input/output logic

which is weaker than simple-minded input/output logic using rules SI, OEQ and AND. We call

such logic naive input/output logic: deriv0(O) is the smallest set of norms such that O ∪ {(>,>)} ⊆

deriv0(O) and deriv0(O) is closed under the rules SI, OEQ and AND. Stolpe introduces the

semantics of naive input/output logic as follows:

x ∈ out0(O, A) iff x ∈ Cae(O(Cn(A))).

Here Cae(A) = {b ∈ LP : b a` > or there exist a1, . . . , an ∈ A, such that a1 ∧ . . . ∧ an a` b}.

Theorem 1.2 (Stolpe (2008a)). (a, x) ∈ deriv0(O) iff x ∈ out0(O, a).

Stople’s mediated reusable input/output logic is an extension of naive input/output logic

by incorporating the derivation rule MCT: deriv5(O) is the smallest set of norms such that

O ∪ {(>,>)} ⊆ deriv5(O) and deriv5(O) is closed under the rules SI, OEQ, AND and MCT.

The semantics of mediated reusable input/output logic is given by an inductive definition: x ∈

out5(O, A) iff x is equivalent to a subset of
⋃∞

i=0 Ai where

• A0 = O(Cn(A)), and
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• An+1 = An ∪O(Cn(An ∪ A))

Theorem 1.3 (Stolpe (2008a)). (a, x) ∈ deriv5(O) iff x ∈ out5(O, a).

Aggregative input/output logic introduced by Parent and van der Torre (2014b) can be viewed as

a variant of mediated reusable input/output logic. Parent and van der Torre (2014b) introduce

aggregative input/output logic based on the following ideas: on one hand, deontic detachment

or cumulative transitivity (CT) is fully in line with the tradition of deontic logic. On the other

hand, they also observe that potential counterexamples to deontic detachment may be found in the

literature. Parent and van der Torre illustrate this with the following example:

• You ought to exercise hard everyday.

• If you exercise hard everyday, you ought to eat heartily.

• You ought to eat heartily.

Intuitively, the obligation to eat heartily no longer holds, if you take no exercise. Like the

others, Parent and van der Torre claim that this counterexample suggests an alternative form of

detachment, which keeps track of what has been previously detached. They therefore reject the CT

rule, and they accept a weaker rule ACT. As a consequence WO is no longer accepted.

• ACT (aggregative cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, x ∧ y).

The proof system of aggregative input/output logic deriv6(O) is the smallest set that extends O and

closed under the rules SI, OEQ and ACT ‡, while its semantics is defined as follows: x ∈ out6(O, A)

iff there is finite O′ ⊆ O such that

• O′(Cn(A)) 6= ∅

• for all B = Cn(B), if A ∪O′(B) ⊆ B then x a` ∧
O′(B).

Theorem 1.4 (Parent and van der Torre (2014b)). (a, x) ∈ deriv6(O) iff x ∈ out6(O, a).

Constrained and prioritized input/output logic

In the literature, out0 to out6 are called unconstrained input/output logic. To deal with the possible

inconsistency between the input and the output and solve the most notorious paradox obstructing

the development of deontic logic, the contrary-to-duty paradox, constrained input/output logic

is introduced in Makinson and van der Torre (2003). Constrained input/output logic allows to

determine which norms are triggered in a situation that already violates some of them.
‡Note that it is not required that (>,>) ∈ deriv6(O).

21



Definition 1.3 (Makinson and van der Torre (2001)). Given a set of mandatory norms O, a set of facts

A ⊆ LP and a set of constrain C ⊆ LP, for i ∈ {1, . . . , 4},

• max f amilyi(O, A, C) = {O′ ⊆ O : outi(O′, A)∪C is consistent, outi(O′′, A)∪C is not consistent,

for every O′ ( O′′ ⊆ O}.

• out f amilyi(O, A, C) = {outi(O′, A) : O′ ∈ max f amilyi(O, A, C)}.

• out∪i (O, A, C) =
⋃

out f amilyi(O, A, C).

• out∩i (O, A, C) =
⋂

out f amilyi(O, A, C).

To understand these concepts, consider the following instance of the contrary-to-duty paradox

from Prakken and Sergot (1996). Suppose we have the following two norms: “The cottage should

not have a fence or a dog” and “if it has a dog it must have both a fence and a warning sign.” We

may formalize these as O = {(>,¬( f ∨ d)), (d, f ∧w)}. Suppose further that we are in the situation

that the cottage has a dog, that is A = {d}. In the context of A = C, the first norm is violated. We

have

• max f amily1(O, A, C) = {(d, f ∧ w)}

• out f amily1(O, A, C) = Cn( f ∧ w)

• out∪1 (O, A, C) = out∩1 (O, A, C) = Cn( f ∧ w)

Prioritized input/output logic is an extension of constrained input/output logic by incorporat-

ing priorities of norms. Parent (2011), drawing from Boella and van der Torre (2003b), develops

prioritized input/output which is capable of handling moral conflicts. Parent (2011) starts the

construction by imposing a priority relation ≥, which is reflexive and transitive, over mandatory

norms O. That is, ≥ is a binary relation over O such that for all (a, x), (b, y), (c, z) ∈ O,

• (a, x) ≥ (a, x),

• if (a, x) ≥ (b, y) and (b, y) ≥ (c, z) then (a, x) ≥ (c, z),

Here (a, x) ≥ (b, y) means (a, x) has higher priority than (b, y). The priority relation over norms

is then lifted to priority over sets of norms. Parent uses the lifting originally introduced by Brass

(1993): O1 � O2 iff for all (a2, x2) ∈ O2−O1 there is (a1, x1) ∈ O1−O2 such that (a1, x1) ≥ (a2, x2).

Let O1 � O2 denote that O1 � O2 but it is not true that O2 � O1. Let O≥ = (O,≥) be a set

mandatory norms with priority relation ≥ and A, C be two sets of formulas where A is the input
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and C is the constrains. Parent and van der Torre (2014a) define prioritized input/output logic as

follows: § for i ∈ {1, 2, 3, 4},

x ∈ outp
i (O

≥, A, C) iff x ∈ ⋂{outi(O′, A) : O′ ∈ preffamilyi(O
≥, A, C)}.

Here preffamilyi(O
≥, A, C) is the set of �-maximal elements of maxfamilyi(O, A, C). That is, O′ ∈

preffamilyi(O
≥, A, C)} if O′ ∈ maxfamilyi(O, A, C) and there is no O′′ ∈ maxfamilyi(O, A, C) such

that O′′ � O′.

Permissive input/output logic

Formal definitions of three types of permission are introduced in Makinson and van der Torre

(2003).

Definition 1.4 (negative permission (Makinson and van der Torre, 2003)). Given a normative system

N = (O, P), where O is a set of mandatory norms and P is a set of permissive norms, and a set of formulas

A, NegPermi(N, A) = {x ∈ LP : ¬x 6∈ outi(O, A)}, for i ∈ {1, 2, 3, 4}.

Intuitively, x is negatively permitted iff x is not forbidden. Since a formula is forbidden iff its

negation is obligatory, x is not forbidden is equivalent to ¬x is not obligatory. Permissive norms

play no role in negative permission.

Definition 1.5 (static permission (Makinson and van der Torre, 2003)). Given a set of formulas A and

a normative system N = (O, P), for i ∈ {1, 2, 3, 4},

• If P = ∅, then StaPermi(N, A) = outi(O, A).

• If P 6= ∅, then StaPermi(N, A) = {x ∈ LP : x ∈ outi(O ∪ {(a′, x′)}, A), for some (a′, x′) ∈ P}.

Intuitively, permissive norms are treated like weak mandatory norms, the only difference is that

while the latter may be used jointly, the former may only be applied one by one. As an illustration

of such difference, image a situation in which a man is permitted to date either one of two women,

but this does not imply that he is permitted to date both of them.

Definition 1.6 (dynamic permission (Makinson and van der Torre, 2003)). Given a finite set of

formulas A, a normative system N = (O, P), for i ∈ {1, 2, 3, 4},

• x ∈ DyPermi(N, A) iff there is a consistent finite set of formulas C such that StaPermi(N, C) ∪

outi(O ∪ {(
∧

A,¬x)}, C) is inconsistent.

§The prioritized input/output logic introduced in Parent and van der Torre (2014a) is a simplification of the original
prioritized input/output logic in Parent (2011).
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In Makinson and van der Torre (2003), dynamic permission is defined using notions of

derivation systems: (a, x) ∈ DyPermi(O, P) iff (c,¬z) ∈ derivi(O ∪ {(a,¬x)}) for some (c, z) ∈

staPermi(O, P) with c being consistent. Here (c, z) ∈ staPermi(O, P) iff z ∈ StaPermi(N, c) where

N = (O, P). The readers can verify that our reformulation of dynamic permission is equivalent to

the original definition.¶

Intuitively, x is dynamically permitted given facts A iff the prohibition of x under condition A,

i.e. taking (
∧

A,¬x) as an mandatory norm, will create inconsistency of the normative system with

respect to some consistent input C.

1.4.2 Imperative logic

In the imperative tradition of deontic logic (Stenius, 1971; Kanger, 1971; van Fraassen, 1973;

Alchourrón and Bulygin, 1981; Niiniluoto, 1986; Hansen, 2004, 2005, 2006, 2008), a number of

authors have deviated from deontic modal logic to the logical study starts with an explicitly given

set of norms or imperatives. The general idea behind imperative logic is that to each imperative

there is a descriptive sentence that describes what must be hold iff this imperative is satisfied.

If a set of imperatives is under consideration, the set of corresponding descriptive sentences is

then used to define deontic operators. The proper representation of this set of imperatives is

controversial: directly representing imperatives by a set of descriptive sentences, as Kanger (1971)

and Alchourrón and Bulygin (1981) have done, makes it appear as if norms can somehow be

reduced to factual statements. Others like van Fraassen (1973), Niiniluoto (1986) and Hansen (2004,

2005, 2006, 2008), have more cautiously represented imperatives by a set of objects that refer to

states of affairs or propositions, thereby following the doctrine that norms bear no truth value. In

the latter a conditional imperative (i.e. mandatory norm) is represented as a⇒!x. An unconditional

imperative > ⇒!x is abbreviately denoted by !x.

Hansen’s imperative logic

If some given conditional imperatives come into conflict, the best an agent can be expected to do is

to follow a maximal subset of the imperatives. Intuitively, a priority ordering of the imperatives can

¶Here we sketch the proof: for the sake of simplicity, consider A and C are singletons {a} and {c} respectively. Suppose
(a, x) ∈ DyPermi(O, P), then (c,¬z) ∈ derivi(O ∪ {(a,¬x)}) for some (c, z) ∈ staPermi(O, P) with c being consistent.
Therefore ¬z ∈ outi(O ∪ {(a,¬x)}, c) and z ∈ StaPermi(N, c), which means StaPermi(N, c) ∪ outi(O ∪ {(a,¬x)}, c) is
inconsistent. Then we have x ∈ DyPermi(N, a). Suppose x ∈ DyPermi(N, a), then there is a consistent c such that
StaPermi(N, c) ∪ outi(O ∪ {(a,¬x)}, c) is inconsistent. If StaPermi(N, c) or outi(O ∪ {(a,¬x)}, c) is inconsistent, say
StaPermi(N, c) is inconsistent, then ⊥ ∈ StaPermi(N, c) and ¬⊥ ∈ outi(O ∪ {(a,¬x)}, c). Then (c,⊥) ∈ staPermi(O, P)
and (c,¬⊥) ∈ derivi(O ∪ {(a,¬x)}), which means (a, x) ∈ DyPermi(O, P). The case for outi(O ∪ {(a,¬x)}, c) being
inconsistent is similar. So we assume both StaPermi(N, c) and outi(O ∪ {(a,¬x)}, c) are consistent but StaPermi(N, c) ∪
outi(O ∪ {(a,¬x)}, c) is inconsistent. Then we know there is z ∈ StaPermi(N, c) and ¬z ∈ outi(O ∪ {(a,¬x)}, c). Therefore
(c, z) ∈ staPermi(O, P) and (c,¬z) ∈ derivi(O ∪ {(a,¬x)}), which means (a, x) ∈ DyPermi(O, P).
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be helpful in determining the relevant sets and resolve conflicts, but a formal resolution mechanism

has been difficult to provide. In particular, reasoning about prioritized conditional imperatives

is overshadowed by problems such as the order puzzle that are not satisfactorily resolved by

many existing approaches. Based on unconstrained input/output logic, Hansen (2008) develops

prioritized imperative logic to overcome those difficulties.

Hansen introduce preferred maximally obeyable family to characterize those norms which are still

functioning in a given situation where not all norms can be obeyed. Given a set of prioritized

norms or imperatives O>, where > is irreflexive and transitive. A full prioritization of > is a

strict linear order � such that if i � j then i > j for all i, j ∈ O. The materialization of O is

m(O) = {a→ x : (a, x) ∈ O}, which transforms a conditional norm to a material implication.

Definition 1.7 (preferred maximally obeyable family). (Hansen, 2008, p.29)‖ Given a finite set of

prioritized norms O> and a set of formulas A. O′ ∈ pom f amily(O>, A) if there is � which is a

full prioritization of > such that O′ =
⋃n

i=0 Oi where we list � by (a1, x1), . . . , (an, xn) such that

(ai, xi) � (ai+1, xi+1) and

1. O0 = ∅,

2. Oi+1 = Oi ∪ {(ai, xi)} if A ∪m(Oi ∪ {(ai, xi)}) is consistent. Otherwise Oi+1 = Oi.

Here note that every prioritization creates an element of pom f amily. The results after resolving

moral conflicts is characterized by the following output operator: for i ∈ {1, 2, 3, 4},

x ∈ outh
i (O

>, A) iff x ∈ ⋂{outi(O′, A) : O′ ∈ pomfamilyi(O
>, A)}.

1.4.3 Deontic default logic

Reiter’s default logic (Reiter, 1980) is one of the most widely used non-monotonic logic in the

artificial intelligence community. Extensions of Reiter’s default logic by adding priorities over

default rules can be found in Brewka (1994); Baader and Hollunder (1995); Rintanen (1998b).

Horty’s deontic default logic (Horty, 2003, 2007, 2012, 2014) can be viewed as an attempt to

reconstruct Reiter’s default logic to normative reasoning. Taken from Parent (2011), now we

concisely introduce deontic default logic.

‖The notations we use are slightly different form Hansen’s. In Hansen (2008), a set of norms O is obeyable with respect to
facts A if A ∪m(O) is consistent. O′ is in pom f amily(O>, A) if it can be obtained from a full prioritization of > by defining

O(a,x) =

{⋃
(b,y)�(a,x) O(b,y) ∪ (a, x), if

⋃
(b,y)�(a,x) ∪(a, x) is obeyable with respect to A.⋃

(b,y)�(a,x) O(b,y), otherwise.
(1.1)

for all (a, x) ∈ O and letting O′ =
⋃
(a,x)∈O O(a,x) The interested readers can easily verify that despite the difference in

notation, we define exactly the same notion as Hansen.
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Using notation of input/output logic, a prioritized default theory is a triple (O,>, A) where

O is a set of defaults, which is the same as mandatory norms, and > a priority relation over

O which is irreflexive and transitive. Like in Reiter’s default logic, the goal is to determine the

extensions associated with a default theory (O,>, A). Intuitively, an extension gathers all the

agent’s obligations that follow from what it knows about the world. However, the notion of

extension in deontic default logic is not as central as it is in Reiter’s theory. The key concept is

that of proper scenario based on a default theory. A proper scenario is a subset of O satisfying certain

conditions. The function of a proper scenario is similar to that of a preferred family in prioritized

input/output logic and preferred maximally obeyable family in imperative logic. Intuitively, the

defaults in a proper scenario tell us what counts as a binding (good, satisfactory, etc.) reason for

what. Thus, if (a, x) is in the proper scenario O′ based on a given default theory, then O′ is said to

provide a as a binding reason for x. The idea is to assume that the agent derives its obligations (part

of the extension) from justifications or reasons for those obligations: in particular, that the agent is

bounded by an obligation if it possesses a binding reason for that obligation.

Given a scenario O′ ⊆ O, let Conclusion(O′) = {x : (a, x) ∈ O′}. Formally, the notion of proper

scenario is defined using three other notions. Each corresponds to a condition that a default must

meet in order to be binding. The first notion is that of a default being triggered in scenario O′, noted

as Triggered(O,>,A)(O′). The definition runs as follows:

Triggered(O,>,A)(O′) = {(a, x) ∈ O : A ∪ Conclusion(O′) � a}.

The second notion is that of defaults being conflicted in O′. Let Con f licted(O,≥,A)(O′) denote the

set of all such defaults. The definition reads:

Con f licted(O,>,A)(O′) = {(a, x) ∈ O : A ∪ Conclusion(O′) � ¬x}.

The third notion is that of a default being defeated in O′. For O1, O2 ⊆ O, let O1 � O2 if for

all (a1, x1) ∈ O1, (a2, x2) ∈ O2, (a1, x1) > (a2, x2). Let OO1/O2 = (O − O1) ∪ O2, (a, x) ∈

De f eated(O,>,A)(O1) if (a, x) ∈ O and there exists O2 ⊆ Triggered(O,>,A)(O1) such that

1. O2 � {(a, x)}.

2. There is O3 ⊆ O1 with O2 � O3 such that

(a) A ∪ Conclusion(OO3/O2) is consistent,

(b) A ∪ Conclusion(OO3/O2) � ¬x.

Here O2 can be called a defeating set while O3 can be called an accommodation set. The idea is that

a default (a, x) is defeated by a set of defaults O1 if we can find a set of defeating default O2 which
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is triggered by O1 and we can find an accommodation set O3 in O1 such that if we replace O3 by

O2, then the resulting set of defaults is consistent and implies ¬x. These three concepts are used to

define the notion of a proper scenario.

Definition 1.8 (Proper scenario). (Horty, 2007, p.380) Let O′ be a scenario based on the prioritized default

theory (O,>, A). Then O′ is a proper scenario based on (O,>, A), noted as O′ ∈ propScenario(O,>, A),

just in case O′ =
⋃

i≥0 O′i where

• O′0 = ∅,

• O′i+1 = {(a, x) ∈ O : (a, x) ∈ Triggered(O,>,A)(O′i),

(a, x) 6∈ Con f licted(O,>,A)(O′), (a, x) 6∈ De f eated(O,>,A)(O′)}.

The above definition exemplifies an approach to handling inconsistency that is familiar from

the literature on non-monotonic reasoning. The key to the construction is to restrict the step-by-

step application of defaults in order to guard against possible contradictions. The agent begins its

reasoning process, at the initial stage O′0, without believing in any defaults. Then, at each successive

stage O′i , it supplements its stock of defaults with those that have been triggered at the previous

stage O′i−1 as long as they are neither conflicted nor defeated. Note that, at each stage O′i , the

constraining scenario against which the agent checks defaults for conflict or defeat is O′ itself. With

these concepts in place, it is a straightforward matter to define the notion of extension.

Definition 1.9 (Extension). (Horty, 2007, p.380) Let (O,>, A) be a prioritized default theory and E a set

of formulas. E is a an extension of (O,>, A) if E = Cn(A∪Conclusion(O′)) where O′ is a proper scenario

based on this default theory.

1.5 A brief introduction to game theory

In deontic logic, norms are simply taken for granted. However, for a full account of norms, we

must answer the question related to the generation of norms. For simple norms like imperatives,

they can be created quite easily: an announcement of certain authority is sufficient to create a norm.

The generation of these norms is not interesting. But there are other norms such as conventions and

social norms of which their emergence is worthy of studying. Game theory plays an important role

in the study of the generation of conventions and social norms.

Game theory was first formally introduced in the book The Theory of Games and Economic Behavior

(von Neumann and Morgenstern, 1944). In this section we briefly review some basic notions of

game theory. All of them are taken from the open source textbook (Vidal, 2006).
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Bob

γ δ

Alice
α 1,2 4,3

β 3,2 2,4

Figure 1.2: Sample game matrix in normal-form.

In the simplest game we have two agents each of which must take one of two possible actions.

Agents take their actions at the same time. They will then each receive a utility value, or payoff,

based on their joint actions. A game can be represented using a payoff matrix which shows the

utility that the agents will receive given their actions. Figure 1.2 shows a sample payoff matrix. In

this game Alice has two available actions α and β while Bob has action γ and δ. If Alice takes action

α and Bob takes action γ then Alice will receive a utility of 1 and Bob a utility of 2. We can extend

the payoff matrix to any number of players and actions. In these games we always assume that the

players take their actions simultaneously.

A strategy for an agent is a probability distribution over all his actions. A strategy is pure if

it assigns probability 1 to a specific action. It is common to express a pure strategy by the unique

action which receives positive probability. A strategy profile s is a collection of strategies from

agents, one for each agent. In our sample game, a strategy profile s = (α, γ) would give Alice a

utility of 1 and Bob a utility of 2, in other words, uAlice(s) = 1 and uBob(s) = 2. We also refer

to Alice’s strategy in s as sAlice, which is α in this case. This strategy is also an example of a pure

strategy: one where the agents take a specific action. Note that both α and γ are pure strategies.

In contrast, a mixed strategy is one where the agents take different actions, each with some fixed

probabilities. For example, a mixed strategy for Alice is to take action α with probability of 0.3 and

action β with a probability of 0.7. Note that in a mixed strategy the probabilities for all actions of

each agent have to add up to 1.

Formally, a normal-form game is a tuple (Agent, Γ1, . . . , Γn, u1, . . . , un) where Agent = {1, . . . , n}

is the set of agent, Γi is the set of all actions of agent i, ui : Γ1 × . . .× Γn 7→ R is the utility function

of agent i which maps every joint action a real number. Given a strategy profile s = (s1, . . . , sn), the

probability assigned to a joint action a = (α1, . . . , αn) is ps(a) = ∏n
i si(αi). The utility of s for i is

the expected utility he can receive: ui(s) = ∑a∈Γ1×...×Γn ui(a)× ps(a).

Given a game we can’t help but ask: what strategy should they use? Which is the best strategy

in any given game? The problem, of course, is that there is no simple way to define what’s best

since what is best for one agent might not be good for another. As such, different solution concepts

have been proposed, among which Nash equilibrium is the most famous.
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Bob

Stays Silent Betrays

Alice
Stays Silent Both serve six

months.
B serves 10 years;
A goes free.

Betrays
A serves 10 years;
B goes free.

Both serve two
years.

Figure 1.3: Payoff matrix for original prisoner’s dilemma problem.

We say that a strategy profile s is a Nash equilibrium if for all agents i, si is i’s best strategy

given that all the other players will play the strategies in s. That is, if everyone else is playing

the Nash equilibrium then the best response for everyone to do is to play the Nash equilibrium.

Formally, given a strategy profile s = (s1, . . . , sn), we use s−i to denote (s1, . . . , si−1, si+1, . . . , sn).

Let Si be the set of all strategies of i, a strategy s∗i ∈ Si is a best response for s−i if for all s′i ∈ Si,

ui(s∗i , s−i) ≥ ui(s′i, s−i). A strategy profile s = (s1, . . . , sn) is a Nash equilibrium if for all i, si is a

best response of s−i.

Now we use some famous games to illustrate notions of game theory. The most famous game

of all is the Prisoner’s Dilemma. Its story typically goes something like the following.

Two suspects Alice, Bob are arrested by the police. The police have insufficient

evidence for a conviction, and having separated both prisoners, visit each of them and

offer the same deal: if one testifies for the prosecution against the other and the other

remains silent, the silent accomplice receives the full 10-year sentence and the betrayer

goes free. If both stay silent, the police can only give both prisoners 6 months for a

minor charge. If both betray each other, they receive a 2-year sentence each.

From this story we can generate a payoff matrix as shown in Figure 1.3. We can replace the

prison sentences with utility values and arrive at the standard prisoner’s dilemma payoff matrix

shown in Figure 1.4, note that longer prison terms translate into lower utility. Thus, a 10 year

sentence gets a utility of 0, a 2 year sentence has utility of 1, 6 months is 3, and no time served has

utility of 5. The actions are labeled cooperate and defect because the suspects can either cooperate

with each other and maintain their silence or defect from their coalition and tell on the other one.

Analysis of this matrix reveals that (Defeat, Defeat), or (D, D) for short, is the unique Nash

equilibrium in this game. The Prisoner’s dilemma is interesting because the best choice is not the

rational choice. That is, even thought (C,C) is better than (D,D), a rational player will only play
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Bob

Cooperate Defect

Alice
Cooperate 3,3 0,5

Defect 5,0 1,1

Figure 1.4: Prisoner’s dilemma with standard payoff values.

Bob

Ice Hockey Football

Alice
Ice Hockey 4,7 3,3

Football 3,3 7,4

Figure 1.5: Battle of the sexes game.

D as that strategy is dominant. The game is widely studied because it applies to many real-world

situations like nuclear disarmament and getting kids to clean up their room.

The battle of the sexes is another popular game. It is shown in Figure 1.5. In this game Alice and

Bob like each other and would like to spend time together but must decide, without communicating

with each other, where to go. Alice likes football while Bob likes ice hockey. As such, they have

a coordination problem where each prefers to go to a different place but they would like to be

together. This type of problem arises frequently in multiagent systems where we often have agents

that want to cooperate with each other to achieve some larger goal but have conflicting priorities

about how to achieve that goal.

After some analysis of this game we can determine that the Nash equilibrium solutions are (I,I)

and (F,F). The problem here is that there are two strategies both of which are equally attractive. This

is the type of problem that we could fix easily if we just have some norms to guide our behavior.

The chicken game, also known as the hawk-dove game, shown in Figure 1.6, is also common.

In this story, two maladjusted teenagers drive their cars towards each other at high speed. The

one who swerves first is a chicken and thus loses the game. But, if neither of them swerves then

Bob

Continue Swerve

Alice
Continue 0,0 5,1

Swerve 1,5 4,4

Figure 1.6: The chicken game.
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Bob

Stag Hare

Alice
Stag 10,10 0,8

Hare 8,0 4,4

Figure 1.7: Stag Hunt

they both injured in a horrible crash. After some analysis we can see that this game is very similar

to the battle of the sexes. (C,S) and (S,C) are Nash equilibria in this game. Once again there is a

coordination problem, bad outcomes can be avoided by imposing norms to this game.

The last popular game we would like to present is the stag hunt. It is shown in Figure 1.7. In

this game, two hunters can either jointly hunt a stag or individually hunt a hare. Hunting stags

is quite challenging and requires mutual cooperation. If either hunts a stag alone, the chance of

success is minimal. In this game the Nash equilibrium solutions are (S,S) and (H,H). Unlike the

battle of sexes, in stag hunt one Nash equilibrium can be conceived as strictly better than the other.

If there is a system designer in stag hunt, then to maximize the social welfare he will create a norm

which prescribes each agent to choose Stag.

1.6 Interdisciplinary aspects and related topics

The study of norms is related to a bunch of scientific communities where normative concepts are

interested.

Deontic Logic in Computer Science (DEON) (http://www.deon2014.ugent.be/) is a series

of conferences which are designed to promote interdisciplinary cooperation among scholars

interested in linking the formal-logical study of normative concepts and normative systems with

computer science, artificial intelligence, philosophy, organization theory and law. Most deontic

logics are invented by scholars from this community.

Workshops on Coordination, Organization, Institutions and Norms in Multiagent Systems (COIN)

(http://coin2015.tbm.tudelft.nl/) is a series of workshops interested in analyzing the

social, legal, economic and technological dimensions of agent organizations, and the co-evolution

of agent interactions. Among many practical topics, norm generation is studied in this community

(Mahmoud et al., 2011, 2012).

The Formal Ethics (http://www.formalethics.net/languages/en/index.html) con-

ferences aims at providing an international platform for the discussion and promotion of formal

approaches to ethics and to push the frontiers of the research being conduced in this field. The
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workshop brings together researchers who are employing formal tools to address questions in

ethics and/or political philosophy. The game theoretical perspective of norms is a hot topic within

this community (Thoma, 2015).

The annual International Web Rule Symposium (RuleML) (http://2015.ruleml.org/) is the

leading international event in the field of rules and their applications. Legal RuleML is a sub-

track of RuleML which brings together practitioners interested in the theory and applications

of legal rules or norms in academic research, industry, engineering, business and other diverse

application areas. It provides a forum for stimulating co-operation and cross-fertilization between

the many different communities focused on the research and development of legal rule-based

systems. Deontic defeasible logic is extensively studied is this community (Governatori and Rotolo,

2010).

The Workshops on Juris-informatics (JURISIN) (http://research.nii.ac.jp/˜ksatoh/

jurisin2015/) focus on a research area which studies legal issues from the perspective of infor-

matics. International Conference on Legal Knowledge-based Systems (JURIX) (http://jurix2015.

di.uminho.pt/) provides an international forum for academics and practitioners for the ad-

vancement of cutting edge research in the interface between law and computer technology.

The International Conference on AI and Law (ICAIL) (http://sites.sandiego.edu/icail/)

provides a forum for the presentation and discussion of the latest research results and practical

applications in AI and law and stimulates interdisciplinary and international collaboration. The

purpose of those workshops is to discuss both the fundamental and practical issues among people

from the various backgrounds such as law, social science, information and intelligent technology,

logic and philosophy, including the conventional “AI and law” area.

Agreement technologies refer to computer systems in which autonomous software agents

negotiate with one another in order to come to mutually acceptable agreements. An agent

may choose whether to fulfill an agreement or not, and it should fulfill it when there is an

obligation to do so derived from the standing agreements. The International Conference Series

on Agreement Technologies (http://ai-group.ds.unipi.gr/eumas-at2015/at2015) is an

interdisciplinary forum that brings together researchers and practitioners working on the various

topics comprising this emergent and vibrant field. In the handbook of agreement technologies

(Ossowski, 2013), 7 chapters are devoted to the study of norms.

The workshop on Social Norms and Institutions offers a platform for the exchange of ideas for

experts developing and applying theories of social norms and institutions across a diverse range

of different social sciences (http://www.socio.ethz.ch/en/news-and-events/events/

sni2015.html). Modern research in the field of norms and institutions relies on new theories and
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methods such as the concepts and theories of asymmetric information, signaling, social networks,

classical and behavioral decision theory and game theory, psychological theories of motivation etc.

1.7 Outline of this thesis

The outline of this thesis is the following. In Chapter 2 and 3 we study the generation of norms in

games. In Chapter 4 we study the axiomatic representation of norms. This chapter is an extension

of Sun (2014). In Chapter 5 we study the algebraic representation of norms. This chapter is an

extension of Sun (2013, 2015d). In Chapter 6 and Chapter 7 the complexity of norm-based deontic

logic is studied. Some results of Chapter 6 are presented in Sun and Ambrossio (2015a,b). Only

my contributions in Sun and Ambrossio (2015a,b) are included in this thesis. In Chapter 8 we use

norm-based deontic logic and games to build ethical agents. This chapter is based on Sun (2015b,a);

Sun and Robaldo (2015). Again, only my contributions in Sun and Robaldo (2015) are included in

this thesis. Chapter 9 summarizes this thesis with proposed future work.
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Chapter 2

Norm Creation in Games

Abstract

In this chapter we study how to create norms in games. We consider norms as normative rules

which are used to guide agents’ behavior. Such normative rules are created by using correlated

equilibrium in games. Our proposal belongs to the offline norm creation approach. Agents’

compliance and computational complexity have been identified as interesting problems to cope

with in the offline norm creation approach. In this chapter, five types of norms are studied:

utilitarian norms, egalitarian norms, Nash-product norms, elitist norms and opportunity-balanced

norms. We show that in our framework all these five types of norms can be created in polynomial

time and all rational agents will comply with those norms.
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2.1 Introduction

Norms have been extensively studied as a mechanism for coordinating interactions within

multiagent systems. Two general approaches to the design of norms have been investigated in

the literature: online approaches (Shoham and Tennenholtz, 1997; Sen and Airiau, 2007; Morales

et al., 2011, 2015) and offline approaches (Shoham and Tennenholtz, 1996; van der Hoek et al., 2007;

Ågotnes and Wooldridge, 2010; Ågotnes et al., 2012). Online approaches aim to establish agents

with the ability to dynamically coordinate their activities, for example by reasoning explicitly about

coordination at run-time or learning from the interaction with other agents. Online approaches

can also be termed as the norm emergence approaches because norms in these approaches are not

designed by any legislator but come to exist by itself in the process of agents’ repeated interactions.

In contrast, offline approaches aim at developing a coordination device at design-time, and build

this regulation into a system for use at run-time. Offline approaches can be termed as the norm

creation approaches because norms in these approaches are created by system designers. There

are arguments in favor of both approaches: online approaches are potentially more flexible, and

may be more robust against unanticipated events, while offline approaches benefits from offline

reasoning about coordination, thereby reducing the run-time decision-making burden on agents.

This chapter belongs to the offline approach and the next chapter belongs to the online approach.

One of the most popular offline approaches is the social law paradigm, originally introduced

by Shoham and Tennenholtz (1996). Social laws are understood as a set of rules imposed upon

a multiagent system with the goal of ensuring some desirable states. Social laws work by

constraining the behavior of the agents in the system, that is, by forbidding agents from performing

certain actions in certain states.

There are two disadvantages of the social law paradigm. Firstly, the computational complexity

of the creation of social laws that will effectively coordinate a multiagent system is intractable.

In Shoham and Tennenholtz (1996), the design of social laws is to find suitable restrictions for the

system, which is NP-hard. In van der Hoek et al. (2007), the design of social laws is framed as model

checking problem of alternating-time temporal logic. It is again NP-hard. Ågotnes and Wooldridge

(2010) extend the model by taking into account both the implementation costs of social laws and

multiple (possibly conflicting) design objectives with different priorities. In this setting, the design

of social laws becomes an optimization problem and is FPNP-hard. Secondly, there is no guarantee

whether agents will comply with the created social laws. There might be conflicts between the

interest of agents and the designer. The complexity of the generation of social laws such that every

agent will choose to comply is even higher.
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In this chapter, following ideas from the game theoretical analysis of norms, we develop a

different offline paradigm such that the complexity of the norm creation problem is tractable and

every agent will comply with the created norms. We follow Gintis’ proposal (Gintis, 2010) and

present an alternative offline norm creation framework. Compared to the social law paradigm, the

main features of our framework are the following:

1. Instead of constraints, norms in our framework works with randomized signals such as traffic

lights, to guide agents’ behavior. We generate randomized signals by computing correlated

equilibrium of games. Such signals are involved in the description of the triggering condition

of norms.

2. Five types of norms are created: utilitarian, egalitarian, elitist, Nash-product and opportunity-

balanced norms.

(a) Utilitarian norms are created from those correlated equilibria which maximize the sum

of the expect utility of all agents.

(b) Egalitarian norms are created from those correlated equilibria which maximize the

expected utility of the poorest agent.

(c) Elitist norms are created from those correlated equilibria which maximize the expected

utility of the happiest agent.

(d) Nash-product norms are created from those correlated equilibria which maximize the

product of the expected utility of all agents.

(e) Opportunity-balanced norms are created from those correlated equilibria which are

computed by taking the average of those correlated equilibria which maximize the

expect utility of every single agent.

The procedure of norm creation in this chapter is as follows: at first a normal-form game is

given. Then we compute a correlated equilibrium of the given game. The resulting correlated

equilibrium is a probability distribution over agents’ action profiles. We then transform the

probability distribution to randomized signals and norms to guide agents’ behavior.

The contribution of this chapter is both conceptual and technical. Discussions on utilitarian and

egalitarian norms are abound in philosophy and ethics (Sinnott-Armstrong, 2015; Arneson, 2013).

While the idea of using correlated equilibrium to interpret norms goes back to Gintis (2010), he did

not study specific types of norms. Utilitarian, egalitarian and elitist correlated equilibrium have

been introduced in the multiagent learning literature (Greenwald and Hall, 2003). We have not find

published articles investigating Nash-product and opportunity-balanced correlated equilibrium so

far.
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The structure of the rest of this chapter is as follows. In Section 2.2 we explain in detail our

framework and show how norms can be created in polynomial time. In Section 2.3 we discuss

related work. We summarize this chapter in Section 2.4.

2.2 Norms and correlated equilibrium

In game theory, correlated equilibrium is a solution concept that is more general than Nash

equilibrium. But it is insufficiently studied within the normative multiagent system community, if

not completely ignored. Correlated equilibrium was first discussed in Aumann (1974). A correlated

equilibrium is a probability distribution over agents’ action profiles, which can be understood

as a public randomized signal, such that each agent can choose his action according to the

recommendation of the signal. If no agent would want to deviate from the recommended strategy

(assuming the others don’t deviate), the probability distribution is called a correlated equilibrium.

Formally, given a normal-form game (Agent, Γ1, . . . , Γn, u1, . . . , un), a correlated equilibrium is a

probability distribution τ over Γ = Γ1 × . . .× Γn such that for every i ∈ Agent, for every pair of

actions αi, α′i ∈ Γi, we have:

∑
α−i∈Γ−i

τ(αi, α−i)× ui(αi, α−i) ≥ ∑
α−i∈Γ−i

τ(αi, α−i)× ui(α
′
i, α−i)

where Γ−i = Γ1 × . . .× Γi−1 × Γi+1 × . . .× Γn.

Intuitively, in a correlated equilibrium the expected utility of an agent following the randomized

signal produced by the correlated equilibrium (∑α−i∈Γ−i
τ(αi, α−i) × ui(αi, α−i)) is larger than his

expected utility of deviating from the signal (∑α−i∈Γ−i
τ(αi, α−i) × ui(α

′
i, α−i)). An immediate

positive consequence of this properties is that all those norms created from correlated equilibrium

will be obeyed by rational agents because they cannot be better-off by violating those norms. An

equivalent characterization of correlated equilibrium is

∑
α−i∈Γ−i

τ(αi, α−i)× (ui(αi, α−i)− ui(α
′
i, α−i)) ≥ 0.

The difference between ui(αi, α−i) and ui(α
′
i, α−i) can be understood as a measure of the regret of

agent i choosing α′i instead of αi, when other agents choose α−i. When (ui(αi, α−i) − ui(α
′
i, α−i))

is positive, agent i has no regret for choosing αi compared to α′i, when other agents choose α−i.

Therefore this characterization of correlated equilibrium shows that there is no expected regret for

each agent in a correlated equilibrium, which is why all agents are willing to follow the signal

produced by a correlated equilibrium.
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Example 2.1 (chicken game, see Chapter 1). This game has two pure Nash equilibria: pure strategy

profile (C, S) with expected utility vector (5, 1) and (S, C) with expected utility vector (1, 5). It has one

mixed Nash equilibrium: the mixed strategy profile (1/2, 1/2), which each agent assign probability 1/2

to S, with expected utility vector (2.5, 2.5). τ is a correlated equilibrium in this game if the following is

satisfied:

• τ(C, C)× 0 + τ(C, S)× 5 ≥ τ(C, C)× 1 + τ(C, S)× 4

• τ(S, C)× 1 + τ(S, S)× 4 ≥ τ(S, C)× 0 + τ(S, S)× 5

• τ(C, C)× 0 + τ(S, C)× 5 ≥ τ(C, C)× 1 + τ(S, C)× 4

• τ(C, S)× 1 + τ(S, S)× 4 ≥ τ(C, S)× 0 + τ(S, S)× 5

Therefore τ1(C, C) = 0.1, τ1(C, S) = 0.4, τ1(S, C) = 0.3, τ1(S, S) = 0.2 is a correlated equilibrium with

expected utility (3.1, 2.7). τ2(C, S) = τ2(S, C) = τ2(S, S) = 1/3 is another correlated equilibrium with

expected utility (10/3, 10/3). Note that both τ1 and τ2 assign positive probability to (S, S), in which each

agent can be better off by deviate to C.

Compared to Nash equilibrium, the most important advantage of correlated equilibrium in

norm creation is that they are computationally less expensive than Nash equilibrium. This can be

captured by the fact that computing a correlated equilibrium only requires solving a linear program

whereas computing a Nash equilibrium requires solving a mixed integer programming problem.

It is known from the algorithmic game theory literature that correlated equilibrium of normal-

form games can be computed in polynomial time (Papadimitriou and Roughgarden, 2008), while

computing Nash equilibrium is PPDA-complete (Daskalakis et al., 2009).

Although we accepted that norms are created from correlated equilibrium, this does not mean

each correlated equilibrium should be implemented to norms. Instead, we are only interested in

those correlated equilibria which satisfy certain desired properties, for example maximize social

welfare, protect the weakest member of the society, or ensure fairness. In the theory of multiagent

resource allocation (Chevaleyre et al., 2006), four types of social welfare are widely used:

• Utilitarian social welfare is the sum of the utilities of all agents.

• Egalitarian social welfare is the utility of the weakest agents.

• Nash-product social welfare is the product of the utilities of all agents.

• Elitist social welfare is the utility of the strongest agents.
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In correspondence with those notions of social welfare, we are interested in studying utilitarian

/egalitarian/Nash-product/elitist correlated equilibrium. In this chapter we moreover introduce

opportunity-balanced correlated equilibrium, which in certain sense ensure fairness.

2.2.1 Utilitarian correlated equilibrium

For each agent i, his expected utility in a correlated equilibrium τ is calculated as follows:

EUi(τ) = ∑
a∈Γ

τ(a)× ui(a)

Given a normal-form game (Agent, Γ1, . . . , Γn, u1, . . . , un) and a correlated equilibrium τ. The

utilitarian social welfare induced by τ is

SWu(τ) = ∑
i∈Agent

EUi(τ)

Utilitarian social welfare sums up the agents’ expected utilities in a given correlated equilibrium,

thus provides a useful measure of the overall benefit of the society.

Definition 2.1 (utilitarian correlated equilibrium (Greenwald and Hall, 2003)). Given a normal-form

game, and Θ the set of all correlated equilibrium of this game. τ ∈ Θ is a utilitarian correlated equilibrium

if τ maximizes SWu(τ), i.e. for all τ′ ∈ Θ, SWu(τ) ≥ SWu(τ′) .

A utilitarian correlated equilibrium can be computed using linear programming with maximiz-

ing SWu(τ) as the objective function and requirements of correlated equilibrium as constrains.

Utilitarian norms are normative rules which describe those randomized signals implemented

from utilitarian correlated equilibrium. For example, in the chicken game utilitarian correlated

equilibrium are solutions of the following linear program:

max τ(C, C)× (0 + 0) + τ(C, S)× (5 + 1) + τ(S, C)× (1 + 5) + τ(S, S)× (4 + 4)

subject to

• τ(C, C)× 0 + τ(C, S)× 5 ≥ τ(C, C)× 1 + τ(C, S)× 4

• τ(S, C)× 1 + τ(S, S)× 4 ≥ τ(S, C)× 0 + τ(S, C)× 5

• τ(C, C)× 0 + τ(S, C)× 5 ≥ τ(C, C)× 1 + τ(S, C)× 4

• τ(C, S)× 1 + τ(S, S)× 4 ≥ τ(C, S)× 0 + τ(S, S)× 5

• τ(C, C) + τ(C, S) + τ(S, C) + τ(S, S) = 1
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• τ(C, C), τ(C, S), τ(S, C), τ(S, S) ≥ 0

Let τ(S, S) be x1, τ(C, S) be x2, τ(S, C) be x3 and τ(C, C) be x4. This linear program is transformed

to:

max 8x1 + 6x2 + 6x3

subject to

• x1 − x3 ≤ 0

• −x2 + x4 ≤ 0

• x1 − x2 ≤ 0

• −x3 + x4 ≤ 0

• x1 + x2 + x3 + x4 = 1

• x1, x2, x3, x4 ≥ 0

Using techniques of linear programming, we find a solution for the linear program with x1 =

x2 = x3 = 1
3 . Such a utilitarian correlated equilibrium can be transformed to randomized signals.

For example we can use a random number generator to generate a real number between 0 and 1.

If the number is less than 1
3 , then we show a red signal to agent 1 and a green signal to agent 2. If

the number is larger than 2
3 , then we show a green signal to agent 1 and a red signal to agent 2.

Otherwise we show a red signal to both agents. Then we create the following two norms for both

agent 1 and agent 2:

• if the signal you see is red, then you should Swerve.

• if the signal you see is green, then you should Continue.

Note that to ensure each agent to comply with those norms, we should make the probability

distribution of signals public meanwhile keep signals private for each agent. When one agent sees

both agents’ signals, it is possible that he want to violate the norms. For example, when agent 1

see a red signal for himself as well as a red signal for agent 2, then he has an incentive to choose C,

which is a violation of his norm. But if agent 1 only sees his own red signal, then he knows that the

probability of the signal for agent 2 being red is 1
2 . Therefore if he chooses C, his expected utility

will be 5
2 , which is no larger than his expected utility of choosing S. The incentive of violation

disappears. Now consider a different example where one ambulance meets a bus in a crossroad.
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Stop Continue
Stop (−10, 0) (−10, 5)

Continue (10, 0) (−20,−10)

Table 2.1: Ambulance game

Example 2.2. (ambulance game) The game is depicted by the payoff matrix in Table 2.1, with ambulance

being the row player. τ is a correlated equilibrium in this game if the following is satisfied:

• τ(S, S)× (−10) + τ(S, C)× (−10) ≥ τ(S, S)× 10 + τ(S, C)× (−20)

• τ(C, S)× 10 + τ(C, C)× (−20) ≥ τ(C, S)× (−10) + τ(C, C)× (−10)

• τ(S, S)× 0 + τ(C, S)× 0 ≥ τ(S, S)× 5 + τ(C, S)× (−10)

• τ(S, C)× 5 + τ(C, C)× (−10) ≥ τ(S, C)× 0 + τ(C, C)× 0

Let τ(S, S) be x1, τ(C, S) be x2, τ(S, C) be x3 and τ(C, C) be x4. The linear program we need to calculate

utilitarian correlated equilibria is:

max z = −10x1 + 10x2 − 5x3 − 30x4

subject to

• 20x1 − 10x3 ≤ 0

• −20x2 + 10x4 ≤ 0

• 5x1 − 10x2 ≤ 0

• −5x3 + 10x4 ≤ 0

• x1 + x2 + x3 + x4 = 1

• x1, x2, x3, x4 ≥ 0

Using techniques of linear programming, we find a solution for the linear program with x2 = 1, x1 = x3 =

x4 = 0. Such a utilitarian correlated equilibrium can be implemented to a norm:

• The bus should stop and the Ambulance should continue.

The norm created in the ambulance game explains real traffic rule quite well.

Theorem 2.1. Utilitarian correlated equilibria can be computed in polynomial time.
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Proof. A utilitarian correlated equilibrium can be computed using linear programming with the

objective function maximizing the sum of the expected utility of all agents. A linear program can

be solved in polynomial time using standard techniques like ellipsoid algorithms (Alevras and

Padberg, 2001).

Not only correlated equilibria can be computed efficiently. Norms can also be created from

correlated equilibria. The following algorithm shows how to create norms from an arbitrary

correlated equilibria and use them to coordinate agents’ behavior. Given a normal-form game

(Agent, Γ1, . . . , Γn, u1, . . . , un) and a correlated equilibrium τ,

1. For every agent i, for each of his action αi, prepare a unique signal bi.

2. For each action profile (α1, . . . , αn) such that τ(α1, . . . , αn) 6= 0. Create a norm of the form “if

you see bi, then you should do αi”.

3. Suppose Γ1 × . . . × Γn = {a1, . . . , ak} and τ(aj) = xj. We divide the interval [0, 1) to sub-

intervals [0, x1), [x1, x1 + x2), . . . , [x1 + . . . + xn−1, 1).

4. Use a random number generator to generate a real number y between [0, 1).

5. According to which sub-interval y belongs to, we choose a sub-interval. If y is in [x1 + . . . +

xk−1, x1 + . . . + xk), then we choose ak = (αk1, . . . , αkn).

6. Send single bk1 to agent 1; send single bk2 to agent 2,…, send single bkn to agent n.

Although the above algorithm faithfully transforms correlated equilibria to norms, it has a

drawback in the sense that many signals are involved in such transformation. It is possible

to approximately transform correlated equilibria to norms without using artificial signals, as

the following algorithm shows. Given a game (Agent, Γ1, . . . , Γn, u1, . . . , un) and a correlated

equilibrium τ,

1. Suppose Γ1 × . . . × Γn = {a1, . . . , ak} and τ(aj) = xj. We divide the interval [0, 1) to sub-

intervals (0, x1], (x1, x1 + x2], . . . , (x1 + . . . + xn−1, 1].

2. Time every sub-interval with 365, so we have (0, 365x1], (365x1, 365(x1 + x2)], . . . , (365(x1 +

. . . + xn−1), 365].

3. For an integer k ∈ {1, . . . , 365}, if k ∈ (365(x1 + . . . + xk−1), 365(x1 + . . . + xk)], then we

choose αk.

4. Suppose ak = (αk1, . . . , αkn). We create the following norms: “in the kth day of a year, agent 1

should do αk1, agent 2 should do αk2,. . ., agent n should do αkn ”
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This algorithm uses dates as a kind of natural signals in the creation of norms, therefore no artificial

signal is needed.

Utilitarian norms are created from a utilitarian equilibrium in the form of normative rules via

the above algorithms. Syntactically those norms are of the form “if x is true, y should be done”

or “given the condition x, y is obligatory”. Such representation of norms coincides with the norm

representation in norm-based deontic logics. These two algorithms are also used to transform other

correlated equilibria to norms.

2.2.2 Egalitarian correlated equilibrium

The concept of egalitarian social welfare is inspired by the work of Rawls (1971). Intuitively,

egalitarian social welfare is measured by the situation of the poorest member of the society. It

therefore provides a useful measure of fairness in cases where the minimum need of all agents are

to be satisfied. For example, distributing humanitarian aid items among the needy population in

a disaster area. Guaranteeing every survivor’s continuing survival is the primary goal in such

a situation, and it is best captured by the notion of egalitarian social welfare. Given a game

(Agent, Γ1, . . . Γn, u1, . . . , un) and a correlated equilibrium τ. The egalitarian social welfare induced

by τ is

SWe(τ) = min{EUi(τ) : i ∈ Agent}

Definition 2.2 (egalitarian correlated equilibrium (Greenwald and Hall, 2003)). Given a game and Θ

the set of all correlated equilibrium of this game. τ ∈ Θ is a egalitarian correlated equilibrium if τ maximizes

SWe(τ), i.e. for all τ′ ∈ Θ, SWe(τ) ≥ SWe(τ′) .

Egalitarian norms are normative rules created from egalitarian correlated equilibria. Com-

puting egalitarian correlated equilibrium seems to be more difficult than computing utilitarian

correlated equilibrium at the first sight because maximizing egalitarian social welfare is not a linear

function. However, the good news is, we can still use linear programming to compute egalitarian

correlated equilibrium efficiently, as the following theorem shows.

Theorem 2.2. Egalitarian correlated equilibrium can be computed in polynomial time.

Proof. We use linear programming to compute egalitarian correlated equilibrium. The variables of

the linear programming are random variables τ(a), τ(a′), . . . , representing the probability assigned

to each joint action of the game. The objective function of the linear programming is to maximize

the egalitarian social welfare, which is represented by a variable z. There are four groups of

constrains in this linear program.

1. τ(a) ≥ 0, for all a ∈ Γ1 × . . .× Γn.
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2.

∑
a∈Γ1×...×Γn

τ(a) = 1

These two groups of constrains together ensures that the function τ is a probability distribu-

tion over strategy profiles.

3. For all i, for all αi and α′i ∈ Γi,

∑
α−i∈Γ−i

τ(αi, α−i)× ui(αi, α−i) ≥

∑
α−i∈Γ−i

τ(αi, α−i)× ui(α
′
i, α−i)

The third group of constrains say that the solution of this linear programming must be a

correlated equilibrium.

4. For all i,

∑
a∈Γ1×...×Γn

ui(a)τ(a) ≥ z

The fourth group of constrains ensures that z is no larger than the expected utility of any

agent in this correlated equilibrium.

These four groups of constrains together ensure that the solution of this linear program indeed

maximizes the egalitarian social welfare. It can be verified that the size of this linear program is

polynomial to the size of the given game. Since a linear program can be solved in polynomial time,

we know that egalitarian correlated equilibrium can be computed in polynomial time.

2.2.3 Nash-product correlated equilibrium

Given a game (Agent, Γ1, . . . , Γn, u1, . . . , un) in which utility function is non-negative. The Nash-

product social welfare induced by a correlated equilibrium τ is

SWn(τ) = ∏
i∈Agent

EUi(τ)

An outcome maximizes Nash-product social welfare if it maximizes the product of the

individual agent utilities. This idea goes back to John Nash’s famous solution to the bargaining

problem (Nash, 1950). Nash-product social welfare can be regarded as a compromise between the
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utilitarian and the egalitarian social welfare. On the one hand, just as utilitarian social welfare,

the Nash-product increases with single increasing of individual utilities. On the other hand, just

as egalitarian social welfare, the Nash-product reaches its maximum when the utilities distributed

equally over all agents.

Definition 2.3 (Nash-product correlated equilibrium). Given a game and Θ the set of all correlated

equilibrium of this game, τ ∈ Θ is a Nash-product correlated equilibrium if τ maximizes SWn(τ), i.e. for

all τ′ ∈ Θ, SWn(τ) ≥ SWn(τ′) .

Nash-product norms are normative rules created from Nash-product correlated equilibria. The

following theorem shows that the computation of Nash-product correlated equilibrium is tractable.

Theorem 2.3. Nash-product correlated equilibrium can be computed in polynomial time.

Proof. We use convex optimization to compute Nash-product correlated equilibrium.∗ Suppose

a1, . . . , ak are all action profiles in the given game. We use τ(a1), . . . , τ(ak) to represent the

probability assigned to each strategy profile of the game. To compute Nash-product correlated

equilibrium we need to maximize the Nash-product social welfare:

∏i∈Agent ∑a∈Γ τ(a)× ui(a) =

∏i∈Agent(τ(a1)× ui(a1) + . . . + τ(ak)× ui(ak)) =

(τ(a1)× u1(a1) + . . . + τ(ak)× u1(ak))× . . .× (τ(a1)× un(a1) + . . . + τ(ak)× un(ak)) =

(τ(a1))n ×∏i∈Agent ui(a1) + . . . + (τ(ak))n ×∏i∈Agent ui(ak)

Note that the above function is a convex function because every goal of every agent is non-

negative, which ensures that ui(α
j) is non-negative. The above function is maximized iff the

following function is minimized

−log((τ(a1))n ×∏i∈Agent ui(a1) + . . . + (τ(ak))n ×∏i∈Agent ui(ak)) (>)

Note that (>) is also a convex function because the function f (x) = −log x is a convex function

and the composition of two convex functions is again a convex function. Now we take minimizing

(>) as our objective function and built a convex optimization problem by imposing four groups

of constrains the same as in the proof of Theorem 2. Such a convex optimization problem can

be solved using standard techniques from convex optimization, say interior-point methods, in

polynomial time.

∗A comprehensive introduction of convex optimization can be found in Boyd and Vandenberghe (2004).
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2.2.4 Elitist correlated equilibrium

Given a game (Agent, Γ1, . . . , Γn, u1, . . . , un) and a correlated equilibrium τ, the elitist social welfare

induced by τ is

SWeli(τ) = max{EUi(τ) : i ∈ Agent}

Intuitively, elitist social welfare is measured by the situation of the happiest member of the society.

Maximizing elitist social welfare reflects the famous Matthew effect in sociology which describes

the phenomenon where “the rich get richer and the poor get poorer”.† The elitist social welfare is

clearly not a fair measure for social welfare, but it can be useful in cooperation based applications

where we require only one agent to achieve its goals.

Definition 2.4 (elitist correlated equilibrium (Greenwald and Hall, 2003)). Given a game and Θ the set

of all correlated equilibrium of this game, τ ∈ Θ is a elitist correlated equilibrium if τ maximizes SWeli(τ),

i.e. for all τ′ ∈ Θ, SWeli(τ) ≥ SWeli(τ′) .

Note that elitist correlated equilibrium is called republican correlated equilibrium in Greenwald

and Hall (2003). We believe “elitist” is a better name therefore we will stick to this new name. Elitist

norms are normative rules created from elitist correlated equilibria. Elitist correlated equilibrium

can be computed in polynomial time using techniques from convex optimization.

Theorem 2.4. Elitist correlated equilibrium can be computed in polynomial time.

Proof. We use convex optimization to compute elitist correlated equilibrium. The variables of the

linear programming are random variables τ(a), τ(a′), . . . , representing the probability assigned to

each strategy profile of the game. The objective function is

min{−EU1(τ), . . . ,−EUn(τ)}.(∗)

Note that (∗) is minimized iff max{EU1(τ), . . . , EUn(τ)} is maximized, which means the elitist

social welfare is maximized. Moreover, since −EUi(τ) = ∑a∈Γ τ(a)× (−ui(a)) is convex we know

(∗) is also convex. There are three groups of constrains in this convex optimization problem, which

are exactly the same as the first three groups of constrains in computing egalitarian correlated

equilibrium. Such a convex optimization problem can be solved using standard techniques from

convex optimization in polynomial time.

†https://en.wikipedia.org/wiki/Matthew effect
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2.2.5 Opportunity-balanced correlated equilibrium

A fifth kind of correlated equilibrium of interest to us is what we call opportunity-balanced

correlated equilibrium. Intuitively, an opportunity-balanced correlated equilibrium is the average

of those correlated equilibrium which maximizes each single agent’s expected utility.

Definition 2.5 (opportunity-balanced correlated equilibrium). Given a game (Agent, Γ1, . . . , Γn, u1, . . . ,

un), an opportunity-balanced correlated equilibrium is a correlated equilibrium τ such that τ(a) =

(τi(a) + . . . + τn(a))/n, where τi is a correlated equilibrium which maximizes the expected utility of agent

i.

The set of all correlated equilibria of a game is a convex set because correlated equilibrium

is defined using linear constrains. Therefore the average of finite correlated equilibria is again a

correlated equilibrium.

Example 2.3. (opportunity-balanced correlated equilibrium for the chicken game) We first solve two linear

programs with objective function max 4x1 + 5x2 + x3 and 4x1 + x2 + 5x3 respectively. Solving the first

linear program gives us τ1 with τ1(x2) = 1, τ1(x1) = τ1(x3) = τ1(x4) = 0. Solving the second linear

program gives us τ2 with τ2(x3) = 1, τ2(x1) = τ2(x2) = τ2(x4) = 0. Then we calculate the opportunity-

balanced correlated equilibrium τ by taking the average of τ1 and τ2: τ(x2) = τ(x3) =
1
2 , τ(x1) = τ(x4) =

0.

Example 2.4. (opportunity-balanced correlated equilibrium for the ambulance game) We first solve two

linear programs with objective function max −10x1 + 10x2 − 10x3 − 20x4 and 5x3 − 10x4 respectively.

Solving the first linear program gives us τ1 with τ1(x2) = 1, τ1(x1) = τ1(x3) = τ1(x4) = 0. Solving

the second linear program give us τ2 with τ2(x3) = 1, τ2(x1) = τ2(x2) = τ2(x4) = 0. Then we calculate

the opportunity-balanced correlated equilibrium τ by taking the average of τ1 and τ2: τ(x2) = τ(x3) =

1
2 , τ(x1) = τ(x4) = 0.

Opportunity-balanced norms are normative rules created from opportunity-balanced correlated

equilibria. The following theorem shows that the computation of opportunity-balanced correlated

equilibrium is tractable.

Theorem 2.5. Opportunity-balanced correlated equilibria can be computed in polynomial time.

Proof. Given an arbitrary with n agents. An opportunity-balanced correlated equilibrium can be

computed as follows:

1. For each agent, use linear programming to compute a correlated equilibrium which maxi-

mizes the agent’s expected utility.
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2. Take the average of the n correlated equilibria from the previous step.

Since each linear program can be solved in polynomial time, an opportunity-balanced corre-

lated equilibrium can be computed in polynomial time.

2.3 Related work

Except the literature mentioned in the introductory section, the generation of norms is also

studied in sociology and philosophy. Bicchieri’s analysis of norms (Bicchieri, 2006) originates

from conditional behavioral rules. In her approach, a norm is a behavioral rule that agent i

prefers to perform concerning her belief about other individuals’ actions and what they expect i

to conform. In her account, a norm is a function defines the agent’s strategy in response to other

agents’ preferences. In Binmore (2005) norms are tools to solve the equilibrium selection problem

in a coordination game with multiple Nash equilibria. His approach is based on evolutionary

game theory as he believes that the interaction of agent’s strategies are infinitely repeated games.

While all equilibria in a game are not pareto optimal, norms arise to solve the equilibrium

selection problem. An evolutionary game theoretical approach of norm emergence can be found in

Alexander (2007) and Skyrms (2014). More discussions about Alexander (2007) and Skyrms (2014)

can be found in the next chapter.

We understand creation and emergence as two different methods of norm generation cor-

responds to offline norm design and online norm design in computer science respectively. It

seems concepts from evolutionary game theory, like evolutionary stable strategy and replicator

dynamics, are more suitable for norm emergence, while concepts from traditional game theory,

like Nash/correlated equilibrium, are more suitable for norm creation.

Boella and van der Torre (2003c) argue that to reason about the creation of norms, we need a

model of norm-evading agents. A norm-evading agent is an agent who looks for ways to violate

the norm while at the same time evading the sanction. Boella and van der Torre (2003a) present a

model of norm-evading agents based on the attribution of mental attitudes to normative systems.

Boella and van der Torre (2003c) address the following two questions: 1. How can the attribution

of mental attitudes to normative systems be used to reason about norm creation? 2. How can we

formalize norm creation using the attribution of mental attitudes to normative systems?

In the multiagent system community, non-game theoretical approaches to norm generation are

introduced. Morales et al. (2014, 2015) introduce minimality and simplicity as two crucial factors

in the evaluation of the process of norm generation. Simplicity and minimality are respectively

referred to the computational complexity of the algorithm and the number of norms that are
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generated in the process. These two metrics together imply the concept of norm compactness which

provides more liberty for autonomous agents. The two most recent systems designed by Morales

et al regarding minimality and simplicity are SIMON and LION (Morales et al., 2014, 2015).

2.4 Summary

In this chapter we have studied how to create norms in games. We have considered norms as

normative rules which are used to guide agents’ behavior. Such normative rules were created by

using correlated equilibrium in games. Five types of norms have been studied: utilitarian norms,

egalitarian norms, Nash-product norms, elitist norms and opportunity-balanced norms. All these

norms can be created in polynomial time in our framework. Moreover, since all these norms are

created from correlated equilibrium, it is to each agent’s interest to comply with these norms.
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Chapter 3

Norm Emergence in Games

Abstract

In this chapter we propose a model that supports the emergence of norms via multiagent

learning in social networks. In our model, individual agents repeatedly interact with their

neighbors in a game called Ali Baba and the Thief. An agent learns its strategy to play the game

using the learning rule, imitate-the-best. Our results show that some norms prohibiting harmful

behaviors, such as “you should not rob”, can emerge after repeated interactions among agents

inhabited in some social networks. Our experimental results suggest that there is a critical point of

norm emergence which is decided by the quotient of the initial utility and the amount of robbery

in Ali Baba and the Thief. When the quotient of the initial utility and the amount of robbery is

smaller than the critical point, the probability of norm emergence is high. The probability drops

dramatically as long as the quotient is larger than the critical point.
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3.1 Introduction

In the literature of multiagent systems, the online approaches of norm generation (Shoham and

Tennenholtz, 1997; Sen and Airiau, 2007; Morales et al., 2011, 2015) aim to establish agents with

the ability to dynamically coordinate their activities, for example by reasoning explicitly about

coordination at run-time or learning from the interaction with other agents. Online approaches

can also be termed as the norm emergence approaches because norms in these approaches are not

designed by any legislator but come to exist by themselves in the process of repeated interactions

between agents.

Norm emergence is also studied by philosophers. An evolutionary game theoretical approach

of norm emergence can be found in Alexander (2007) and Skyrms (2014). In this approach, two

different features are emphasized: relatively simple learning processes and networked interactions.

Both Alexander and Skyrms explored a variety of games such as the prisoner’s dilemma and the

stag hunt to illustrate the emergence of norms in different situations. Though Skyrms used the

replicator dynamics occasionally, both of them tended to adopt simple learning rules like “imitate-

the-best” because such rules are less cognitively demanding. Alexander justified the use of these

simple rules on the grounds that they are extremely simple to follow for agents of bounded

rationality. These simple learning rules provide the same function as the replicator dynamics:

between different rounds of play, agents rely on their learning rules to decide which strategies

to adopt.

The general methodology for studying the emergence of norms in Alexander (2007) is the

following:

1. Identify norms with a particular strategy in a two-player game.

2. Use replicator dynamics and multiagent learning to test whether norms emerge as a result of

the repeated play of the two-player game.

3. Test norm emerge with different social networks.

Two-player games studied in Alexander (2007) includes prisoner’s dilemma, stag hunt, cake

cutting and ultimatum game. Alexander used these games to analyze the emergence of norms of

cooperation, trust, fair division and retaliation respectively. In this chapter, we follow Alexander’s

general methodology but we study norm emergence in a game called Ali Baba and the Thief, which

is not explored in Alexander (2007). We propose Ali Baba and the Thief as a variant of the chicken

game. In this 2-player game, each agent has two strategies: Ali Baba and Thief. Each agent has

initial utility x. If both agents choose Ali Baba, then their utilities do not change. If they both
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Ali Baba Thief
Ali Baba x,x x− d,x + d

Thief x + d,x− d 0,0

Table 3.1: Ali Baba and the Thief

choose Thief, then there is a fight between them and they are both injured. The resulting utility is

0. If one chooses Ali Baba and the other chooses Thief, then Thief robs Ali Baba and the utility of

the one who chooses Thief increases by d and the other one decreases by d, where 0 ≤ d ≤ x. We

call d the amount of robbery. The payoff matrix of this game is shown in Table 3.1.

We identify norms prescribing no harmful behavior with the strategy Ali Baba in this game.

In our model this game is repeatedly played by a given amount of agents. Each agent adapts its

strategy using a learning rule between different rounds of play. We say a norm has emerged in the

population if:

(1) All agents are choosing and will continue to choose the action prescribed by the norm.

(2) Every agent believes that all agents, who are relevant in its social network, will choose the

action prescribed by the norm in the next round.

(3) Every agent believes that all other agents, who are relevant in its social network, believe that

it is good if the agent chooses the action prescribed by the norm.

The above three criteria of norm emergence is a reformulation of Lewis’ famous analysis of

conventions: “Everyone conforms, everyone expects others to conform, and everyone has good

reasons to conform because conforming is in each person’s best interest when everyone else plans

to conform” (Lewis, 1969). In our game, we are interested in the situation where all agents choose

Ali Baba. This can be understood as no agent is willing to be Thief, which shows norms like “you

should not rob” or “don’t harm others” have emerged.

The structure of this chapter is the following: in Section 3.2 we review some background

knowledge on evolutionary game theory and learning in games. Then in Section 3.3 we study

how norms emerge in Ali Baba and the Thief. Section 3.4 discusses some related work and Section

3.5 summarizes this chapter.

3.2 Background: evolutionary game theory and learning in games

Evolutionary game theory originates as an application of game theory to biology (Lewontin,

1961; Smith and Price, 1973). Recently it has become of increased interest to social scientists and
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philosophers. There are two approaches to evolutionary game theory. The first approach employs

the concept of an evolutionarily stable strategy as the principal tool of analysis. The second

approach constructs an explicit model of the process of evolution by representing the frequency

of strategies change in the population (Alexander, 2009). The second approach is closely related to

learning in games (Fudenberg and Levine, 1998).

Typically, in the problem of learning in games we have two agents that face each other

repeatedly in the same game, and each one tries to maximize the sum of its utility over time. The

theory of learning in games studies the equilibrium concepts described by various simple learning

mechanisms. Many learning mechanisms have been studied. In this chapter, we focus on imitate-

the-best.

3.2.1 Replicator Dynamics

Replicator dynamics originates from evolutionary game theory and is a widely studied learning

model in repeated games. Here our introduction of replicator dynamics is taken from the open

source textbook (Vidal, 2006). This model assumes that the fraction of agents playing a particular

strategy will grow in proportion to how well that strategy performs in the population. A

homogeneous population of agents is assumed. The agents are randomly paired in order to play

a symmetric game, that is, a game where both agents have the same set of possible strategies and

receive the same payoffs for the same actions. The replicator dynamics model is meant to capture

situations where agents reproduce in proportion to how well they are doing.

Formally, we let φt(s) be the number of agents using a pure strategy s at round t and S be the

set of all strategies. We can then define

θt(s) =
φt(s)

∑s′∈S φt(s′)
(3.1)

to be the proportion of agents playing s at round t. The expected utility for an agent playing

strategy s at round t is defined as

ut(s) = ∑
s′∈S

θt(s′)u(s, s′), (3.2)

where u(s, s′) is the utility that an agent playing s receives against an agent playing s′. Notice that

this expected utility assumes that the agents face each other in pairs and choose their opponents

randomly. The average utility at round t is defined as

ut = ∑
s∈S

θt(s)ut(s), (3.3)
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In the replicator dynamics the rate of strategy-change for each agent is proportional to how well

it did on the previous round. Thus, the proportion of agents playing s at the next round is given by

θt+1(s) = θt(s)
ut(s)

ut . (3.4)

Notice that the number of agents playing a particular strategy will continue to increase as long

as the expected utility for that strategy is greater than the average utility. Only strategies whose

expected utility is less than average utility will decrease in population. As such, the size of a

population will constantly fluctuate. However, when studying replicator dynamics we ignore the

absolute size of the population and focus on the proportion of the population playing a particular

strategy.

3.2.2 Imitate-the-best

Imitate-the-best is a very natural and common learning rule in the modeling literature (Nowak

and May, 1992; Epstein, 1998). According to this rule, at each round of play, every agent surveys

the utility of its neighbors and adopts the strategy of the one who did the best in the last round,

where “best” means “received the highest utility”. Here the neighborhood is defined in the setting

of a social network. A social network is a graph G = (Agent, Neighbor) where every node in this

graph is an agent and every edge connecting two agents means that the two agents are neighbors.

Formally,

st+1
i = st

k with k ∈ argmaxj∈Ni
ut

j

where Ni is the set of all neighbors of agent i and ut
j is the utility agent j received in round t and st

k

is the pure strategy agent k adopts in round t.

It is also assumed that an agent will not switch strategies unless it has some incentives to do

so. If the best neighbors of an agent still managed to get lower utility than it, the agent will not

switch its strategy. Ties between best neighbors are broken randomly. So, for example, if the highest

utility in an agent’s neighborhood was obtained by 2 agents following strategy s1, 1 agent following

strategy s2, and 2 agents following strategy s3, that agent will adopt strategy s1 with probability 2
5 ,

strategy s2 with probability 1
5 , and strategy s3 with probability 2

5 .

3.3 Ali Baba and Thief

In this section we study norm emergence in Ali Baba and the Thief. We use replicator dynamics

and imitate-the-best as rules of learning. No social network is assumed when agents learn by using

54



pAli Baba Thief

Figure 3.1: Ali Baba and Thief modeled using replicator dynamics

replicator dynamics while lattice model and small world model are used when agents use imitate-

the-best.

3.3.1 Replicator dynamics

Let T denote the strategy Thief and A denote the strategy Ali Baba. Let p stands for the proportion

of the population which chooses T, then the expected utility of an agent choosing T at round t is

ut(T) = p · u(T, T) + (1− p) · u(T, A) = (1− p) · (x + d).

Similarly, the average utility of an agent choosing A is

ut(A) = p · u(A, T) + (1− p) · u(A, A) = p · (x− d) + (1− p) · x = x− pd.

The average utility of the population is

ut = p · ut(T) + (1− p) · ut(A) = p · (1− p) · (x + d) + (1− p) · (x− pd).

The number of agents choosing T increases exactly when ut(T) > ut. This relation can be expressed

in terms of the utilities as follows:

(1− p) · (x + d) > p · (1− p) · (x + d) + (1− p) · (x− pd),

(x + d) > p · (x + d) + (x− pd),

x + d > xp + x,

p < d
x .

Figure 3.1 illustrates what happens when we model Ali Baba and the Thief using replicator

dynamics. The points on the right and left of the diagram correspond to the states where all agents

choose Thief or Ali Baba, respectively. Points in the middle of the diagram represent mixed states

of the population. A stable state exists at the point where the proportion of agents choosing Thief

is p = d
x . The arrow from left to right in Figure 3.1 indicates that if at stage t the proportion of Thief

is less than d
x , then more agents will choose Thief in stage t + 1. Similarly, the arrow from right to

left indicates that less agents will choose Thief if p is larger than d
x .

In the stable state, a pattern of behavior emerges. In this pattern, a proportion p of agents choose

Thief and a proportion 1− p of agents choose Ali Baba. When d is very close to 0, norms saying

“don’t rob”, “be peaceful” or “don’t harm others” can be viewed as emerged because:
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1. Almost all agents are choosing and will continue to choose Ali Baba.

2. All agents believe that most agents will choose Ali Baba in the next round. Here we conceive

such belief is formed in the process of evolution: if an agent sees another agent keeping

choosing a specific strategy for a long time, by default it believes that agent will keep choosing

that strategy.

3. Every agent believes that most agents believe that it is good if it chooses Ali Baba. Indeed,

every agent always believes (even knows) that it is good for itself that other agents choose

Ali Baba.

On the other hand, when d is very close to x, although it is true that,

1. Almost all agents are choosing and will continue to choose Thief.

2. All agents believe most agents will choose Thief in the next round.

It is not plausible that every agent believes that most agents believe that it is good if it chooses

Thief. Therefore norms prescribing “you should rob” do not emerge, even though most agents

choose Thief in that state.

3.3.2 Imitate-the-best

We run simulations using the Netlogo platform.∗ We set the population of agents to be 100. Initially,

50% of agents choose Thief. Over time, however, through agent-agent interactions, a bias toward

Ali Baba spreads through the entire network until 100% of the population choose Ali Baba. At

this point, we say that a norm prescribing that there should be no harmful behavior has emerged.

However, this process may sometime demonstrate complexity. For example, Figure 3.2 shows the

percentage of Thieves fluctuate several times in the process of system evolution. Note that when

all agents choose the same action at some stage, they will choose that action forever because the

learning rule they use is imitate-the-best. Therefore such stages are stable (or absorbing) stages. It

is plausible that several rounds after the stable stage, all agents starts to believe that their neighbors

will keep the same behavior as in the stable stage based on their own experience of interaction.

Lattice model

Lattice models are a special kind of social network in which the connections between agents are

defined spatially. Each agent is considered to be located at some cell on an N-dimensional grid,

and every cell in the grid is occupied by exactly one agent. In the 1-dimensional regular lattice,
∗http://ccl.northwestern.edu/netlogo/index.shtml

56

http://ccl.northwestern.edu/netlogo/index.shtml


Figure 3.2: The process of norm emergence in Ali Baba and Thief

Figure 3.3: A 2-dimensional lattice

this means that agents live on a line. Every agent who does not live in the end point has exactly

2 neighbors. In the 2-dimensional regular lattice, the agents live on a grid. Every agent who does

not live in the boundary has exactly 8 neighbors. As it is show in Figure 3.3, the agent in blue has 8

grey neighbors surrounding him. Circular lattice is a variant of regular lattice. In a 1-dimensional

circular lattice, the agents lives in the left and right corner are neighbors. Therefore every agent has

exactly 2 neighbors in a 1-dimensional circular lattice. Similarly, in a 2-dimensional circular lattice,

we consider the leftmost and rightmost columns are neighboring columns and the top and bottom

rows are neighboring rows. Therefore every agent in a 2-dimensional circular lattice has exactly 8

neighbors.

In our experiments on lattice models, we set the initial utility x = 1000 and study how the

amount of robbery d changes the probability of norm emergence. The data of our experiment is

recorded in Table 3.2. We let the amount of robbery d vary from 200 to 800. The initial percentage
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Amount of robbery (d) Tr Tc
200 100 100
400 100 100
600 0 0
800 0 0

Table 3.2: Ali Baba and Thief, x = 1000, d = 200, . . . , 800

Amount of robbery (d) Tr Tc
400 100 100
420 100 100
440 60 17
460 79 17
480 73 15
500 0 16
520 0 20
540 0 24
560 0 18
580 0 12
600 0 16

Table 3.3: Ali Baba and Thief, x = 1000, d = 400, . . . , 600

of agents choosing Thief is set to be 50%. In each round, every agent play Ali Baba and Thief with

his 8 neighbors one by one. Their utility in this round is the average utility of the 8 plays. At the

end of a round, each agent compares its utility to all its neighbors. If the agent’s utility is higher

than all its neighbors, then the agent does not change its strategy in the next round. Otherwise the

agent adopts the strategy chosen by its neighbor of highest utility. The simulation stops when no

agent changes its strategy between two rounds, or the rounds reaches 100. We run the simulation

for 100 times for each d ∈ {200, 400, 600, 800}. We say a norm emerges if the simulation stops

with all agents choosing Ali Baba. We use Tr and Tc to denote the times of norm emergence in our

simulations.

In general, our experiment shows that when the amount of robbery is high, the probability of

norm emergence is low. When the amount of robbery decrease, the probability of norm emergence

quickly increase. When d is less than 400, the norm “you should not rob” emerges for certain. This

is in contrast with the analysis of replicator dynamics. If d = 400, then according to replicator

dynamics a proportion of 40% of agents will choose Thief, therefore a norm saying there ought to

be no robbery does not emerge. Note that there is a leap of the probability of norm emergence from

d = 600 to d = 400. We are curious about such a leap. To have a better understanding we perform

a second experiment in which the amount of robbery vary from 400 to 600.
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Figure 3.4: stable state without norm emergence (red agents are Thiefs)

The leap still exists, as Table 3.3 shows. Now the leap takes place when d decrease from 500 to

480 in the case of regular lattice. In circular lattice the leap appears when d decrease from 440 to

420. The existence of such a leap in the regular lattice can be explained as follows.

Assume x = 1000, d = 500. Suppose at round t an agent i chooses Thief and 3 of its neighbors

also choose Thief while other 5 neighbors choose Ali Baba. The the utility of agent i in round t is

ut
i =

0+0+0+1500+1500+1500+1500+1500
8 = 937.5. For i’s neighbor j who chooses Ali Baba, in the best

case the uitility of j in round t is ut
j = 500+1000+1000+1000+1000+1000+1000+1000

8 = 937.5. Therefore

according to imitate-the-best, i will keep choosing Thief in round t + 1. This explains why the state

shown in Figure 3.4 is a stable state. The existence of such states explains why the probability of

norm emergence drops dramatically in the regular lattice model when d ≥ 500.

The sudden decrease of the probability of norm emergence in the circular lattice model is

much more difficult to explain. By the above argument we believe that stable states without

norm emergence also exist in circular lattices and it should be reached when d = 500. However,

experimental results do not support our belief. Further experiments show that such a leap is a

robust existence in circular lattices: a tiny change of d from 428.57142 to 428.57143 dramatically

changes the probability of norm emergence (see Table 3.4). Those phenomena suggests there is

a critical point of norm emergence in lattice models: as long as d is less than a certain value,
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Amount of robbery (d) Probability of norm emergence
428.57142 1
428.57143 0.16

Table 3.4: circular lattice, critical point, x = 1000

Initial utility (x) value of d at critical points d
x

100 42 0.42
200 85 0.425
300 128 0.426
400 171 0.4275
500 214 0.428
600 257 0.428
700 300 0.429
800 342 0.4275
900 385 0.428

1000 428 0.428

Table 3.5: circular lattice, critical point in general

evolution of the system will lead most agents choose Ali Baba with high probability. Otherwise

the probability of norm emergence is low.

To further investigate the existence of critical points in circular lattices, we perform more

experiments. The result of our experiments is present in Table 3.5. Those data confirms the

existence of critical points. For a circular lattice, the critical point is reached when d
x ≈ 0.428.

Small world

The principal merit of lattice models is that they work well for modeling social networks in which

the social relations are associated with the spatial positions of the agents. For social systems in

which the relevant relations are not associated with spatial position, other network models need to

be developed.

A lot of social networks are well characterized by the small-world property, which says that any

two agents in the network are connected by a short sequence of friends, family and acquaintances.

A small-world network is a type of graph in which most nodes are not neighbors of one another,

but most nodes can be reached from every other node by a small number of edges. The problem

of norm emergence on small-world networks has been studied in Delgado (2002) and Alexander

(2007). We choose the small-world network provided by the NetLogo models library.†

†http://ccl.northwestern.edu/netlogo/models/SmallWorlds
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Amount of robbery (d) Probability of norm emergence
100 1
200 0.68
300 0.06
400 0.02
500 0

Table 3.6: small world, x = 1000, d = 100, . . . , 500

Amount of robbery (d) Probability of norm emergence
220 0.73
240 0.75
260 0.72
280 0.05

Table 3.7: small world, x = 1000, d = 220, . . . , 280

Just like in the lattice models, in our experiments in small world models, we set the population

to be 100, the initial utility x = 1000 and study how the amount of robbery d changes the probability

of norm emergence. The data of our simulations are recorded in Table 3.6. Just like in the lattice

model, our experiment shows that the probability of norm emergence increases when the amount

of robbery decreases. Note that there is also a leap of the probability of norm emergence from

d = 300 to d = 200. To have a better understanding we perform more experiments to find the

critical points. The results of those experiment are present in Table 3.7 and 3.8. Those data confirms

the existence of critical points. For small world models, the critical point is reached when d
x ≈ 0.265.

3.4 Related work

Axelrod (1986) presents a “norms game” in which agents choose to conform or deviate from norms

probabilistically, and then other agents probabilistically choose to punish any deviations at some

cost. Agents can choose over time to be more or less “bold”, which determines the rate at which

Initial utility (x) value of d at critical points d
x

100 27 0.27
300 81 0.27
500 131 0.261
700 189 0.27
900 239 0.265

Table 3.8: Ali Baba and Thief, critical point in general
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they deviate from norms, and they can likewise choose to be more or less “vengeful”, which

determines how often they punish. Axelrod noted that in such a game the stable state is constant

defection and no punishment. However, if we introduce a meta-norm to this game, which requires

one to punish people who fail to punish defectors, then we arrive at a stable norm in which there is

no boldness, but very high levels of vengefulness. It is under these conditions that we find a norm

emerge and remain stable. Axelrod’s model aims to illustrate that norms require meta-norms. That

is, failure to punish defection must be seen as equivalent to a defection itself.

Shoham and Tennenholtz (1997) proposes a reinforcement learning approach based on the rule

highest cumulative reward to study the emergence of social norms. According to this rule, an agent

chooses the strategy that has yielded the highest reward in the past iterations. The history of the

strategies chosen and the rewards for each strategy are stored in a memory of a certain size. Their

experiments show that the rate of updating strategy and interval between memory flushes had a

significant impact on the efficiency of norm emergence.

Bicchieri et al. (2004) present a simulation of the dynamics of impersonal trust. Their model

does not rely on a meta-norm of punishment - instead, it is purely driven by repeated interactions

of conditional strategies. They show how a “trust and reciprocate” norm can emerge and stabilize

in populations of conditional cooperators. The norm is not to be identified with a single strategy.

It is instead supported by several conditional strategies that vary in the frequency and intensity of

sanctions. In their model, agents play anywhere from 1 to 30 rounds of a trust game for 1,000

iterations, relying on the 4 unconditional strategies, and the 16 conditional strategies that are

standard for the trust game. After each round, agents update their strategies based on replicator

dynamics. As the number of rounds grows, a norm of impersonal trust/reciprocity emerges in the

population.

Boella and van der Torre (2005a) study enforceable social laws in artificial social systems by

using a control system. Boella and van der Torre (2005b) use enforceable social laws to address the

question how artificial social systems can be extended to reason about the evolution of artificial

social systems.

Sen and Airiau (2007) propose a framework for the emergence of norms through social learning

in which agents learn norms based on private interactions. They experimented with different

reinforcement learning algorithms and studied the influence of the population size, the set of

possible actions and the heterogeneity of the population on norm emergence.

Sen and Sen (2009) evaluate how varying topologies of social networks affected the emergence

of norms through social learning in these networks. Three different kinds of network topologies

(i.e., scale-free, fully-connected and ring networks) were studied to show how quickly norms
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converged in social networks depending on parameters such as the topology of the network, the

population size and the number of actions available.

Savarimuthu and Cranefield (2011) make three contributions to the study of norms. Firstly,

based on the simulation research on norms, they propose a life-cycle model for norms. Secondly,

they discuss different mechanisms used by researchers to study norm creation, identification,

spreading, enforcement and emergence. They also discuss the strengths and weaknesses of each of

these mechanisms. Thirdly, in the context of identifying the desired characteristics of the simulation

models of norms they discuss the research issues that need to be addressed.

Yu et al. (2013) propose a collective learning framework, which imitates the opinion aggregation

process in human decision making, to study the impact of agent local collective behaviors on

norm emergence in different situations. In their framework, each agent interacts repeatedly with

all its neighbors. At each step, an agent first takes a best-response action towards each of its

neighbors and then combines all these actions into a final action using ensemble learning methods.

They conduct extensive experiments to evaluate the framework with respect to different network

topologies, learning strategies, numbers of actions, and so on.

3.5 Summary

In this chapter we have proposed a model that supports the emergence of norms via multiagent

learning in social networks. In our model, individual agents repeatedly interact with its neighbors

over a given game called Ali Baba and the Thief. An agent learns its strategy to play the game

by using the learning rule imitate-the-best. Our results have shown that some norms prohibiting

harmful behaviors such as “you should not rob” can emerge after repeated interactions among

agents inhabited in certain social networks. Our experimental results have suggested that there is a

critical point of norm emergence which is decided by quotient of the initial utility and the amount

of robbery in Ali Baba and the Thief. When the quotient of the initial utility and the amount of

robbery is smaller than the critical point, the probability of norm emerge is high. The probability

drops dramatically as long as the quotient of the initial utility and the amount of robbery is larger

than the critical point.
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Chapter 4

Axiomatics of Norms

Abstract

The derivation systems of unconstrained input/output logic are axiomatic representations of

norms. In this chapter we analyze various derivation rules of input/output logic in isolation

and define the corresponding semantics. Then we combine them together to achieve alternative

semantics of several input/output logics. Our alternative semantics for out3 and out+3 is useful

in the study of the complexity of input/output logic. Our alternative semantics for constitutive

input/output logic is adequate for the derivation system of constitutive input/output logic.
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Input/output logic adopts mainly operational semantics: a normative system is conceived in

input/output logic as a deductive machine, like a black box which produces normative statement

as output, when we feed it descriptive statements as input. The procedure of the operational

semantics is divided to three stages. In the first stage, we have in hand a set of propositions

(call it the input) as a description of the current state. We then apply logical operators to this

set, say, close the set by logical consequence. Then we give this set to the deductive machine and

we reach the second stage. In the second stage, the machine accepts the input and produces a set of

propositions as output. In the third stage, we accept the output and apply logical operators to it. On

the axiomatic side, input/output logic is characterized by derivation rules about norms. A norm

is represented by an ordered pair of formulas. Given a set of mandatory norms O, a derivation

system is the smallest set which extends O and is closed under certain derivation rules.

In this chapter we study the axiomatics and operational semantics of input/output logic. Our

methodology is to first analyze various derivation rules of input/output logic in isolation and study

the corresponding semantics, then combine those results together to achieve adequate semantics

for various input/output logics. One feature of the existing work of input/output logic is: the

derivation rules always work in bundles. For example in simple-minded input/output logic, the

derivation system is decided by three rules: strengthening the input (SI), weakening the output

(WO) and conjunction in the output (AND). When several derivation rules work together, the

corresponding operational semantics will be rather complex, and insights of the machinery is

therefore concealed. To achieve a deeper understanding of input/output logic, it is helpful to

isolate every single rule and study them separately.

4.1 Axiomatics of input/output logic

The proof system of input/output logic is build on derivations of norms. We say that a mandatory

norm (a, x) is derivable from a set O iff (a, x) is in the least set that extends O and is closed under

a number of derivation rules. The following are the derivation rules that have been used to build

input/output logic:

• SI (strengthening the input): from (a, x) to (b, x) whenever b ` a.

• IEQ (input equivalence): from (a, x) and a a` b to (b, x). Here a a` b means a ` b and b ` a.

• OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).

• WO (weakening the output): from (a, x) to (a, y) whenever x ` y.

• OEQ (output equivalence): from (a, x) and x a` y to (a, y).
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• AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).

• Z (zero premise): from nothing to (>,>).

• ID (identity): from nothing to (a, a), for every a ∈ LP.

• T (plain transitivity): from (a, x) and (x, y) to (a, y).

• CT (cumulative transitivity): from (a, x),(a ∧ x, y) to (a, y) .

• MCT (mediated cumulative transitivity): from (a, x′), x′ ` x and (a ∧ x, y) to (a, y).

• ACT (aggregative cumulative transitivity): from (a, x),(a ∧ x, y) to (a, x ∧ y) .

The derivation system based on the rules SI, WO, AND and Z is called deriv1.∗ Adding OR to deriv1

gives deriv2. Adding CT to deriv1 gives deriv3. These five rules together give deriv4. Adding ID to

derivi gives deriv+i for i ∈ {1, 2, 3, 4}. (a, x) ∈ deriv(O) is used to denote that (a, x) is derivable from

O using rules of derivation system deriv. The rules IEQ, OEQ, and T is used in the input/output

logic of constitutive norms (Boella and van der Torre, 2006). MCT is introduced by Stolpe (2008a)

in his mediated reusable input/output logic, while ACT is recently introduced by Parent and van

der Torre in their aggregative input/output logic (Parent and van der Torre, 2014b).

4.2 Operational semantics for input/output logic

As mentioned in the introductory section, our methodology is to first analyze various derivation

rules of input/output logic in isolation and study the corresponding semantics, then combine those

results together to achieve adequate semantics for several input/output logics. Since the procedure

of operational semantics is divided into three stages, we also classify derivation rules according

to different stages: rules of input correspond to operations in the first stage; rules of output

correspond to operations in the third stage; rules of normative system correspond to operations

in the second stage.

4.2.1 Rules of input

In this subsection we investigate the following rules regulating the input:

• IEQ (input equivalence): from (a, x) and a a` b to (b, x).

• SI (strengthening the input): from (a, x) to (b, x) whenever b ` a.
∗In Makinson and van der Torre (2000), deriv1(O) is characterized as the least set that extends O∪ {(>,>)} and is closed

under SI, WO and AND. It can be easily verified that our description of deriv1(O) is equivalent to Makinson and van der
Torre’s original characterization.
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• OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).

IEQ is a basic rule in the logic of constitutive norms (Jones and Sergot, 1996). SI is involved in all

input/output logic of Makinson and van der Torre. OR is valid in deriv2 and deriv4. The derivation

systems decided by rules of input are defined as follows:

Definition 4.1. derivie(O), derivsi(O), derivor(O) are the derivation systems given by the rule IEQ, SI,

OR respectively. That is, derivie(O) is the smallest set of norms such that O ⊆ derivie(O) and derivie(O)

is closed under the IEQ rule, and similarly for derivsi(O) and derivor(O).

Now our task is to construct the semantics corresponding to those derivation systems. For the

convenience of notation, we let Ce(A) = {b ∈ LP : there is a ∈ A, a a` b}, for a set A ⊆ LP.

Moreover, we call a set A disjunctive if it satisfies the following: for all x ∨ y ∈ A, either x ∈ A or

y ∈ A. The following is the semantics corresponding to the rules of input.

Definition 4.2. For a set of norms O and a formula a, we define outie(O, a) = O(Ce({a})), outsi(O, a) =

O(Cn(a)), outor(O, a) =
⋂{O(B) : a ∈ B, B is disjunctive}.

Theorem 4.1.

1. (a, x) ∈ derivie(O) iff x ∈ outie(O, a).

2. (a, x) ∈ derivsi(O) iff x ∈ outsi(O, a).

3. (a, x) ∈ derivor(O) iff x ∈ outor(O, a).

Proof. 1. (left-to-right) Assume (a, x) ∈ derivie(O). We prove by induction on the length of the

derivation. The base case is when (a, x) ∈ O. If (a, x) ∈ O, then x ∈ O({a}) ⊆ O(Ce({a}))

because {a} ⊆ Ce({a}). Therefore x ∈ outie(O, a).

For the inductive case, we assume (a, x) is derived by the IEQ rule. Then there is b such that

b a` a and (b, x) ∈ derivie(O). By induction hypothesis we know x ∈ outie(O, b). Therefore

x ∈ O(Ce({b})) = O(Ce({a})) = outie(O, a).

(right-to-left) Assume x ∈ outie(O, a). Then x ∈ O(Ce({a})). Therefore there is b ∈ Ce({a})

such that (b, x) ∈ O. That is, there is b a` a such that (b, x) ∈ O. Therefore using the IEQ rule

we have (a, x) ∈ derivie(O).

2. (left-to-right) Assume (a, x) ∈ derivsi(O). Again we prove by induction on the length of the

derivation. The base case is when (a, x) ∈ O. If (a, x) ∈ O, then x ∈ O(a) ⊆ O(Cn(a)) =

outsi(O, a).

For the inductive case, we assume (a, x) is derived by the SI rule. If (a, x) is derived by the SI

rule, then there is b such that (b, x) ∈ derivsi(O) and a ` b. By induction hypothesis we know
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x ∈ outsi(O, b). Therefore x ∈ O(Cn(b)). Now by a ` b we know Cn(b) ⊆ Cn(a). Therefore

by the monotony of O, which is easy to be checked, we know O(Cn(b)) ⊆ O(Cn(a)). Hence

x ∈ O(Cn(a)) and x ∈ outsi(O, a).

(right-to-left) Assume x ∈ outsi(O, a). Then x ∈ O(Cn(a)). Therefore there exist b ∈ Cn(a),

(b, x) ∈ O. Therefore a ` b. Now using SI we have (a, x) ∈ derivsi(O).

3. (left-to-right) Assume (a, x) ∈ derivor(O). Again we prove by induction on the length of the

derivation. The base case is when (a, x) ∈ O. If (a, x) ∈ O, then for all disjunctive B which

contains a, x ∈ O(B). Therefore x ∈ ⋂{O(B) : a ∈ B, B is disjunctive} = outor(O, a).

For the inductive case, we assume (a, x) is derived by the OR rule, then there are formulas

b, c such that (b, x) ∈ derivor(O), (c, x) ∈ derivor(O) and a is b ∨ c. By induction hypothesis

we know x ∈ outor(O, b) and x ∈ outor(O, c). Now for every B∗ such that a ∈ B∗ and B∗

is disjunctive, we have b ∨ c ∈ B∗ since a is b ∨ c. Note that B∗ is disjunctive, so we further

have either b ∈ B∗ or c ∈ B∗. If b ∈ B∗, then B∗ is a disjunctive set contains b. So we have

x ∈ outor(O, b) =
⋂{O(B) : b ∈ B, B is a disjunctive set } ⊆ O(B∗). Hence x ∈ O(B∗).

If c ∈ B∗, we can similarly deduce x ∈ O(B∗). Therefore no matter b ∈ B∗ or c ∈ B∗,

we have x ∈ O(B∗). Note that B∗ is an arbitrary disjunctive set contains a, so we know

x ∈ ⋂{O(B) : a ∈ B, B is disjunctive} = outor(O, a).

(right-to-left)† Suppose (a, x) /∈ derivor(O). We construct a disjunctive set B = {a0, . . . , an}

containing a by means of the following algorithm (where a0 = a).

• i = 0

• while ai is of the form a1
i ∨ a2

i do

– if (a1
i , x) /∈ derivor(O), let ai+1 := a1

i , else let ai+1 := a2
i

– i := i + 1

The procedure terminates in view of the fact that a is a finite string. It terminates at ai iff ai is

not disjunctive. Note that for each i ∈ {0, . . . , n}, (ai, x) /∈ derivor(O). For a0 this is so by our

supposition. Suppose it holds for i. In case ai+1 = a1
i , trivially ai+1 /∈ derivor(O). Suppose

thus that ai+1 = a2
i and thus that (a1

i , x) ∈ derivor(O). If (ai+1, x) ∈ derivor(O) then by OR,

(ai, x) ∈ derivor(O) which contradicts the induction hypothesis. Thus (ai+1, x) /∈ derivor(O).

Therefore it holds that for each i ∈ {0, . . . , n}, (ai, x) /∈ derivor(O). Then we know for each

i ∈ {0, . . . , n}, (ai, x) /∈ O. Hence x /∈ O(B). Note also that by the construction B is a

disjunctive set that contains a. Thus x /∈ outor(O, a).

†This proof is due to an anonymous reviewer of CLIMA2014. The original proof is much more complex than the current
proof.
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Remark 4.1. The above result reveals that rules of input corresponding to operations in the first stage: SI

means to close the input by logical consequence; IEQ means to close the input by logical equivalence; OR

ensures the input has to be extended to satisfy disjunctive property.

4.2.2 Rules of output

In this subsection we investigate the following rules regulating the output:

• OEQ (output equivalence): from (a, x) and x a` y to (a, y).

• WO (weakening the output): from (a, x) to (a, y) whenever x ` y.

• AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).

OEQ is a basic rule in the logic of constitutive norms (Jones and Sergot, 1996). WO and AND are

involved in all input/output logic of Makinson and van der Torre. The derivation systems decided

by rules of output are defined as follows.

Definition 4.3. derivoe(O), derivwo(O), derivand(O) are the derivation systems given by the rule OEQ,

WO, AND respectively.

For a set of formulas A ⊆ LP, let Cs(A) = {b ∈ LP : there is a ∈ A, a ` b}, Ca(A) = {x ∈ LP :

there exist x1, . . . , xn ∈ A, x is x1 ∧ . . . ∧ xn}. Here we understand x1 ∧ . . . ∧ xn as an abbreviation

of (. . . ((x1 ∧ x2) ∧ x2) ∧ . . . ∧ xn). Intuitively, Cs(A) is an operation that closes A by single

consequence and Ca(A) is an operation that closes A by aggregation or conjunction. The following

is the semantics corresponding to the rules of output. For simplicity of notation, O(a) is short for

O({a}).

Definition 4.4. For every set of norms O and formula a, we define outoe(O, a) = Ce(O(a)), outwo(O, a) =

Cs(O(a)), outand(O, a) = Ca(O(a)).

Theorem 4.2.

1. (a, x) ∈ derivoe(O) iff x ∈ outoe(O, a).

2. (a, x) ∈ derivwo(O) iff x ∈ outwo(O, a).

3. (a, x) ∈ derivand(O) iff x ∈ outand(O, a).
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Proof. 1. (left-to-right) Assume (a, x) ∈ derivoe(O). We prove by induction on the length of

derivation. The base case is easy to prove. Here we focus on the inductive case.

If (a, x) is derived by the OEQ rule, then there is y such that y a` x and (a, y) ∈ derivoe(O).

By induction hypothesis we know y ∈ outoe(O, a). Therefore y ∈ Ce(O(a)). By y a` x we

have x ∈ Ce(O(a)). Therefore x ∈ outoe(O, a).

(right-to-left) Assume x ∈ outoe(O, a). Then x ∈ Ce(O(a)). Hence there is y such that x a` y

and y ∈ O(a). Therefore (a, y) ∈ O. Now by applying the OEQ rule we know (a, x) ∈

derivoe(O).

2. (left-to-right) Assume (a, x) ∈ derivwo(O). We prove by induction on the length of derivation.

The base case is easy to prove. Here we focus on the inductive case.

If (a, x) is derived by the WO rule, then there is y such that y ` x, (a, y) ∈ derivwo(O). By

induction hypothesis we know y ∈ outwo(O, a), y ∈ Cs(O(a)). Therefore there is z ∈ O(a)

such that z ` y. Hence z ` x and x ∈ Cs(O(a)). Therefore x ∈ outwo(O, a).

(right-to-left) Assume x ∈ outwo(O, a). Then x ∈ Cs(O(a)). Therefore there is y such that

y ∈ O(a) and y ` x. Therefore (a, y) ∈ O. Now by applying the WO rule we know (a, x) ∈

derivwo(O).

3. (left-to-right) Assume (a, x) ∈ derivand(O). Again we prove by induction on the length of

derivation and just focus on the inductive case.

If (a, x) is derived by the AND rule, then there are y, z such that (a, y) ∈ derivand(O),

(a, z) ∈ derivand(O) and x is y ∧ z. By induction hypothesis we know y ∈ outand(O, a) and

z ∈ outand(O, a). Hence y ∈ Ca(O(a)) and z ∈ Ca(O(a)). Now by by the definition of Ca we

have y ∧ z ∈ Ca(O(a)). That is, x ∈ Ca(O(a)). Hence x ∈ outand(O, a).

(right-to-left) Assume x ∈ outand(O, a). Then x ∈ Ca(O(a)). Therefore there are x1, . . . , xn ∈

O(a) such that x is x1 ∧ . . .∧ xn. From x1, . . . , xn ∈ O(a) we can deduce (a, x1), . . . , (a, xn) ∈ O.

Now by applying the AND rule finite many times we know (a, x1 ∧ . . . ∧ xn) ∈ derivand(O).

That is (a, x) ∈ derivand(O).

Remark 4.2. The above result reveals that rules of output corresponding to operations in the third stage:

WO means close the output by logical consequence; OEQ means close the output by logical equivalence;

AND ensures the output is closed under conjunction.
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4.2.3 Rules of normative system

While rules of input and output affect the first stage and the third stage respectively, rules of

normative system affect the second stage. We investigate three rules of the normative system:

• Z (zero premise): from nothing to (>,>).

• ID (identity): from nothing to (a, a), for every a ∈ LP.

• CD (conditioning) from nothing to (a, b), for every a, b ∈ LP such that a ` b.

Z is a rule used in Stople’s mediated reusable input/output logic (Stolpe, 2008a), and it is derivable

in all Makinson and van der Torre’s input/output logics. ID is used in Makinson and van der

Torre’s throughput input/output logic. CD is a rule used in many conditional logics.

Definition 4.5. derivz(O), derivid(O), derivcd(O) are the derivation systems given by the rule Z, ID and

CD respectively.

Definition 4.6. For every set of norms O, let Oz = O ∪ {(>,>)}, Oid = O ∪ {(a, a) : a ∈ LP}, Ocd =

O ∪ {(a, b) : a, b ∈ LP, a ` b}. We define outz(O, a) = Oz(a), outid(O, a) = Oid(a), outcd(O, a) =

Ocd(a).

Theorem 4.3.

1. (a, x) ∈ derivz(O) iff x ∈ outz(O, a).

2. (a, x) ∈ derivid(O) iff x ∈ outid(O, a).

3. (a, x) ∈ derivcd(O) iff x ∈ outcd(O, a).

Proof. 1. (left-to-right) Assume (a, x) ∈ derivz(O). We prove by induction on the length of

derivation. If (a, x) ∈ O then x ∈ O(a) ⊆ Oz(a) = outz(O, a). If (a, x) is (>,>) then

x ∈ {(>,>)}(a) ⊆ Oz(a) = outz(O, a). In both cases we have x ∈ outz(O, a).

(right-to-left) Assume x ∈ outz(O, a). Then x ∈ Oz(a) = O(a) ∪ {(>,>)}(a). If x ∈ O(a)

then (a, x) ∈ O ⊆ derivz(O). If x ∈ {(>,>)}(a) then (a, x) = (>,>) ∈ derivz(O).

2. (left-to-right) Assume (a, x) ∈ derivid(O). We prove by induction on the length of derivation.

If (a, x) ∈ O then x ∈ O(a) ⊆ Oid(a) = outid(O, a). If (a, x) is (a, a) then x ∈ {(a, a)}(a) ⊆

Oid(a) = outid(O, a). In both cases we have x ∈ outid(O, a).

(right-to-left) Assume x ∈ outid(O, a). Then x ∈ Oid(a) = O(a) ∪ {(a, a) : a ∈ LP}(a). If

x ∈ O(a) then (a, x) ∈ O ⊆ derivid(O). If x ∈ {(a, a) : a ∈ LP}(a) then (a, x) is of the form

(a, a) which is contained in derivid(O).
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3. (left-to-right) Assume (a, x) ∈ derivcd(O). We prove by induction on the length of derivation.

If (a, x) ∈ O then x ∈ O(a) ⊆ Ocd(a) = outid(O, a). If a ` x then x ∈ {(a, b) : a, b ∈ LP, a `

b}(a) ⊆ Ocd(a) = outcd(O, a). In both cases we have x ∈ outcd(O, a).

(right-to-left) Assume x ∈ outcd(O, a). Then x ∈ Ocd(a) = O(a)∪{(a, b) : a, b ∈ LP, a ` b}(a).

If x ∈ O(a) then (a, x) ∈ O ⊆ derivcd(O). If x ∈ {(a, b) : a, b ∈ LP, a ` b}(a) then a ` x.

Therefore (a, x) is contained in derivcd(O).

4.2.4 Cross-stage Rules

In this subsection we investigate cross-stage rules, which affect more than one stages. Such rules

typically have the form of transitivity:

• T (plain transitivity): from (a, x) and (x, y) to (a, y).

• CT (cumulative transitivity): from (a, x), (a ∧ x, y) to (a, y) .

T is used in the input/output logic for constitutive norms (Boella and van der Torre, 2006). CT is

involved in deriv3 and deriv4.

Definition 4.7. derivt(O) is the smallest set of norms such that O ⊆ derivt(O) and derivt(O) is closed

under the T rule.

The corresponding semantics for derivt(O) is defined in an inductive manner.

Definition 4.8. For every set of norms O and formula a, we define outt(O, a) =
⋃∞

i=1 Oi
t({a}). Here for a

set A, Oi
t(A) is defined as follows:

• O1
t (A) = O(A)

• Oi+1
t (A) = O(Oi

t(A))

Theorem 4.4. (a, x) ∈ derivt(O) iff x ∈ outt(O, a).

The following lemmas are needed to prove the above theorem.

Lemma 4.1. For all i ≥ 1, if A ⊆ B the Oi
t(A) ⊆ Oi

t(B).

Proof. We prove by induction. If i = 1, then O1
t (A) = O(A) ⊆ O(B) ⊆ O1

t (B). Assume the

statement is true for k, consider k + 1. Ok+1
t (A) = O(Ok

t (A)), Ok+1
t (B) = O(Ok

t (B)). By induction

hypothesis we have Ok
t (A) ⊆ Ok

t (B). Therefore O(Ok
t (A)) ⊆ O(Ok

t (B)), Ok+1
t (A) ⊆ Ok+1

t (B).

Lemma 4.2. For all i, j ≥ 1, if x ∈ Oi
t(a) and y ∈ Oj

t(x), then y ∈ Oi+j
t (a)
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Proof. Suppose x ∈ Oi
t(a) and y ∈ Oj

t(x). Then by the above lemma we have y ∈ Oj
t(x) ⊆

Oj
t(O

i
t(a)). Now we show that Oj

t(O
i
t(a)) = Oi+j

t (a). We prove by induction on j. If j = 1, then

Oj
t(O

i
t(a)) = O1

t (O
i
t(a)) = Ot(Oi

t(a)) = Oi+1
t (a) = Oi+j

t (a). Suppose Ok
t (O

i
t(a)) = Oi+k

t (a). Then

Ok+1
t (Oi

t(a)) = O1(Ok
t (O

i
t(a))) = O1(Oi+k

t (a)) = O(Oi+k
t (a)) = Oi+k+1

t (a).

Lemma 4.3. For all i ≥ 1, if x ∈ Oi
t(a) then (a, x) ∈ derivt(O).

Proof. We prove by induction. If i = 1, then from x ∈ O1
t (a) = O(a) we can deduce (a, x) ∈ O ⊆

derivt(O). Now for i = k + 1, if x ∈ Ok+1
t (a), then x ∈ O(Ok

t (a)). Therefore there is y ∈ Oi
t(a),

(y, x) ∈ O. By induction hypothesis we have (a, y) ∈ derivt(O) and then use the rule of T we have

(a, x) ∈ derivt(O).

Proof. (Theorem 4.4) (left to right) Assume (a, x) ∈ derivt(O), then either (a, x) ∈ O or (a, x) is

derived by the T rule. The first case is easy to prove. Here we just focus on the second case.

Assume (a, y) ∈ derivt(O) and it is deduced by the T rule. Then there exist (a, x) ∈ derivt(O)

and (x, y) ∈ derivt(O). By induction hypothesis we have x ∈ outt(O, a) and y ∈ outt(O, x). That

is, x ∈ ⋃∞
i=1 Oi

t(a) and y ∈ ⋃∞
i=1 Oi

t(x). Therefore there exist some i, j such that x ∈ Oi
t(a) and

y ∈ Oj
t(x). Therefore we have y ∈ Oi+j

t (a) by Lemma 4.2. Hence y ∈ ⋃∞
i=1 Oi

t(a), y ∈ outt(O, a).

(right to left) Assume x ∈ outt(O, a), then x ∈ ⋃∞
i=1 Oi

t(a). Then there exist some i, x ∈ Oi
t(a).

Now by Lemma 4.3 above we have (a, x) ∈ derivt(O).

Concerning the other cross-stage rule CT, on the one hand, it is difficult to define their

corresponding semantics. On the other hand, in the next section we use an inductive semantics

to define systems containing cross-stage rules together with other rules.

4.3 Alternative semantics for input/output logic

4.3.1 Alternative semantics for out3 and out+3

Now we use results from previous sections to build adequate semantics for derivation systems

decided by multiple rules. We start with an alternative semantics for out3 and out+3 . Such

alternative semantics is useful in the study of the complexity of input/output logic in Chapter

6.

Theorem 4.5. Let BO
A =

⋃∞
i=0 BO

A,i, where BO
A,0 = Cn(A), BO

A,i+1 = Cn(A ∪O(BO
A,i)). Let BO

a be short

for BO
{a}. Then

1. (a, x) ∈ deriv3(O) iff x ∈ Cn(O(BO
a )).
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2. (a, x) ∈ deriv+3 (O) iff x ∈ Cn(Oid(BOid
{a})).

Here BO
A is the least fixed point of function f O

A : 2LP → 2LP such that f O
A (X) = Cn(A ∪O(X)). It

can be proved that f O
A is monotonic with respect to the set theoretical inclusion ⊆, and (2LP ,⊆)

is a complete lattice. Then by Tarski’s fixed point theorem (Tarski, 1955) there exists a least fixed

point of f O
A . This inductive semantics is inspired by Stolpe (2008b). Stolpe defines an alternative

semantics for out3 which he calls it as bulk-increment semantics: outb
3(O, A) =

⋃∞
i=0 Ai where

A0 = Cn(O(Cn(A))), Ai+1 = Cn(Ai ∪ Cn(O(Cn(An ∪ A)))). To prove Theorem 4.5, we need the

following lemmas.

Lemma 4.4. For every A ⊆ LP, O ⊆ LP × LP, A ⊆ BO
A

Proof. From the reflexivity of `, we know A ⊆ Cn(A) ⊆ BO
A.

Lemma 4.5. For every a ∈ LP, O ⊆ LP × LP, BO
a = Cn(BO

a ). Here BO
a is short for BO

{a}.

Proof. The left-to-right direction is trivial. Concerning the other direction, assume x ∈ Cn(BO
a ).

Then by the compactness of ` we know there are {x1, . . . , xn} ⊆ BO
a such that {x1, . . . , xn} ` x.

Without loss of generality, let {x1, . . . , xn} ⊆ BO
a,k, then x ∈ Cn(BO

a,k) = BO
a,k ⊆ BO

a .

Lemma 4.6. For every a, b ∈ LP, O ⊆ LP × LP, if a ` b then BO
b ⊆ BO

a .

Proof. We prove that for every natural number i, BO
b,i ⊆ BO

a,i. We prove by induction on i. If

i = 0, then BO
b,0 = Cn(b) ⊆ Cn(a) ⊆ BO

a,0. Assume i = k + 1 and BO
b,k ⊆ BO

a,k. Then

BO
b,k+1 = Cn({b} ∪ O(BO

b,k)). From BO
b,k ⊆ BO

a,k we deduce O(BO
b,k) ⊆ O(BO

a,k). Now by the

monotony of ` we know Cn({b} ∪ O(BO
b,k)) ⊆ Cn({b} ∪ O(BO

a,k)) and by transitivity we know

Cn({b} ∪O(BO
a,k)) ⊆ Cn({a} ∪O(BO

a,k)). Hence BO
b,k+1 ⊆ BO

a,k+1. So we have proved for every i,

BO
b,i ⊆ BO

a,i. With this result in hand, we can easily deduce that BO
b ⊆ BO

a .

Lemma 4.7. If x ∈ Cn(O(BO
a )), then x ∈ BO

a .

Proof. By the definition of BO
a , it is easy to verify that O(BO

a ) ⊆ BO
a and Cn(BO

a ) ⊆ BO
a . The result

then follows.

Lemma 4.8. If x ∈ Cn(O(BO
a )), then BO

a = BO
a∧x.

Proof. It’s easy to prove that BO
a ⊆ BO

a∧x since a ∧ x ` x. For the other direction, we need to prove

that for every natural number i, BO
a∧x,i ⊆ BO

a . We prove this by induction on i.

• Base step: Let i = 0, we then have BO
a∧x,i = Cn(a ∧ x). By Lemma 4.4 we have a ∈ BO

a . By

Lemma 4.7 we have x ∈ BO
a . Then by Lemma 4.5 we have a∧ x ∈ Cn({a, x}) ⊆ Cn(BO

a ) = BO
a .
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• Inductive step: Assume for i = k, BO
a∧x,k ⊆ BO

a . Then BO
a∧x,k+1 = Cn({a ∧ x} ∪O(BO

a∧x,k)).

From BO
a∧x,k ⊆ BO

a we know that O(BO
a∧x,k)) ⊆ O(BO

a ). By the definition of BO
a , it is easy to

verify that O(BO
a ) ⊆ BO

a . Therefore O(BO
a∧x,k)) ⊆ BO

a . By the base step we have a ∧ x ∈ BO
a .

Then by Lemma 4.5 we know Cn({a ∧ x} ∪O(BO
a∧x,k)) ⊆ BO

a . That is, BO
a∧x,k+1 ⊆ BO

a . This

concludes the proof.

Lemma 4.9. For all natural number i, if b ∈ BO
a,i and (b, x) ∈ O, then (a, x) ∈ deriv3(O)

Proof. We prove by induction on i.

• Base step: Let i = 0. Then b ∈ BO
a,0 = Cn(a). Hence a ` b. Therefore we can apply SI to a ` b

and (b, x) to derive (a, x).

• Inductive step: Assume for i = k, if b ∈ BO
a,k and (b, x) ∈ O, then (a, x) ∈ deriv3(O). Now

let b ∈ BO
a,k+1. Then b ∈ Cn({a} ∪ O(BO

a,k)), and there exist b1 . . . bn ∈ O(BO
a,k) such that

{a, b1, . . . , bn} ` b. Therefore {a ∧ b1 ∧ . . . ∧ bn} ` b

Then apply SI to (b, x) ∈ O and a∧ b1 ∧ . . .∧ bn ` b we have (a∧ b1 ∧ . . .∧ bn, x) ∈ deriv3(O).

Note that for each i ∈ {1, . . . , n}, from bi ∈ O(BO
a,k) we know there is ai ∈ BO

a,k such that

(ai, bi) ∈ O. Now by inductive hypothesis we have (a, bi) ∈ deriv3(O). Then applying the

AND rule we have (a, b1 ∧ . . . ∧ bn) ∈ deriv3(O). From (a, b1 ∧ . . . ∧ bn) ∈ deriv3(O) and

(a ∧ b1 ∧ . . . ∧ bn, x) ∈ deriv3(O) we can adopt the CT rule to derive (a, x) ∈ deriv3(O).

Proof. (Theorem 4.5) We first prove the case for out3.

(left to right) Assume (a, x) ∈ deriv3(O), we prove by induction on the length of derivation.

• (Base step) Assume (a, x) ∈ O, then by Lemma 4.4 we have a ∈ BO
a . Hence x ∈ O(BO

a ) ⊆

Cn(O(BO
a )).

• Assume (a, x) is (>,>). We need to prove that > ∈ Cn(O(BO
>)), which is trivial because

> ∈ Cn(∅).

• Assume (b, x) ∈ deriv3(O) and it is derived at the last step by using SI from (a, x) ∈ deriv3

and b ` a. Then by inductive hypothesis we have x ∈ Cn(O(BO
a )). By Lemma 4.6 we know

BO
a ⊆ BO

b . Therefore we further have O(BO
a ) ⊆ O(BO

b ), Cn(O(BO
a )) ⊆ Cn(O(BO

b )). Hence

x ∈ Cn(O(BO
b )).

75



• Assume (a, x ∧ y) ∈ deriv3(O) and it is derived at the last step by using AND from (a, x) and

(a, y). Then by inductive hypothesis we have x ∈ Cn(O(BO
a )) and y ∈ Cn(O(BO

a )). Therefore

x ∧ y ∈ Cn({x, y}) ⊆ Cn(O(BO
a )).

• Assume (a, y) ∈ deriv3(O) and it is derived by using WO form (a, x) ∈ deriv3(O) and x ` y.

Then by inductive hypothesis we have x ∈ Cn(O(BO
a )). Since x ` y, we can prove that

y ∈ Cn(O(BO
a )).

• Assume (a, y) ∈ deriv3(O) and it is derived by using CT form (a, x) ∈ deriv3(O) and

(a ∧ x, y) ∈ deriv3(O). Then by inductive hypothesis we have x ∈ Cn(O(BO
a )) and y ∈

Cn(O(BO
a∧x)). Then by Lemma 4.8 we have BO

a = BO
a∧x. Therefore y ∈ Cn(O(BO

a )).

(right to left) Assume x ∈ Cn(O(BO
a )), then there exist x1, . . . , xn ∈ O(BO

a ) such that {x1, . . . , xn} `

x. For each i ∈ {1, . . . , n}, from xi ∈ O(BO
a ) we know there is ai ∈ BO

a such that (ai, xi) ∈ O. From

ai ∈ BO
a we know there exist k such that ai ∈ BO

a,k. Now by Lemma 4.9 we know (a, xi) ∈ deriv3(O).

Then applying the AND rule we have (a, x1 ∧ . . . ∧ xn) ∈ deriv3(O). Then by the WO rule we have

(a, x) ∈ deriv3(O).

Now we prove the case for out+3 .

(left to right) Assume (a, x) ∈ deriv+3 (O), we prove by induction on the length of derivation and

we focus on the case when (a, x) is derived by the rule ID.

• Assume (a, x) is (a, a). We need to prove that a ∈ Cn(Oid(BOid
a )). Indeed, a ∈ Cn(a) = BOid

a,0 ⊆

BOid
a . Therefore a ∈ Oid(BOid

a ) ⊆ Cn(Oid(BOid
a )).

(right to left) Assume x ∈ Cn(Oid(BOid
a )), then there exist x1, . . . , xn ∈ Oid(BOid

a ) such that

{x1, . . . , xn} ` x. For each i ∈ {1, . . . , n}, from xi ∈ Oid(BOid
a ) we know there is ai ∈ BOid

a such

that (ai, xi) ∈ Oid. From ai ∈ BOid
a we know there exist k such that ai ∈ BOid

a,k . Now by Lemma 4.9 we

know (a, xi) ∈ deriv3(Oid). Then applying the AND rule we have (a, x1 ∧ . . . ∧ xn) ∈ deriv3(Oid).

Then by the WO rule we have (a, x) ∈ deriv3(Oid). Therefore (a, x) ∈ deriv+3 (O).

4.3.2 Alternative semantics for constitutive input/output logic

Constitutive norms are a type of norms discussed in the handbook of deontic logic and normative

systems (Gabbay et al., 2013). They are usually contrasted with regulative norms which regulate the

behavior of human beings by indicating which behaviors are obligatory, permitted and forbidden.

Constitutive norms do not regulate actions or states-of-affairs, but rather they define new possible

actions or states of affairs. Formally, a constitutive norm can be represent by a conditional a ⇒c x

which is read as “a counts as x”. An overview of the logical study of constitutive norms can be

found in Grossi and Jones (2013).
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Boella and van der Torre (2006) use a weak input/output logic, decided by rules of IEQ, OEQ,

AND and T, to reason about constitutive norms. However, we discover the semantics defined by

Boella and van der Torre (2006) is not adequate for the derivation system. In what follows, we first

show the inadequacy of Boella and van der Torre’s semantics, then we use the previous results in

this chapter to build a adequate semantics for constitutive input/output logic.

Let N ⊆ LP× LP be a set of constitutive norms where each (a, x) ∈ N is read as “a counts as x”.

Let deriv7(N) be the smallest set such that N ⊆ deriv7(N) and closed under the rules of IEQ, OEQ,

AND and T. In Boella and van der Torre (2006), the semantics for deriv7(N) is defined as follows:

given be a set A of formulas, Out(N, A) = {∧Y : Y ⊆ ⋃∞
i=0 Outi(N, A)} is calculated as follows,

assuming the replacements by logical equivalence:

• Out0(N, A) = ∅

• Outi+1(N, A) = Outi(N, A) ∪ {y : (∧X′, y) ∈ N, X′ ⊆ Outi(N, A)}.

deriv7(N) is not adequate with respect to this semantics. For an illustration, let N = {(p, q)},

where p and q are distinct propositional letters. Then (p, q) ∈ deriv7(N). Following the definition

of Out(N, A), we have Out0(N, {p}) = ∅. Out1(N, {p}) = ∅ ∪ {y : (∧X′, y) ∈ N, X′ ⊆ ∅} = {y :

(∧∅, y) ∈ N} = {y : (>, y) ∈ N} = ∅. And similarly, Out2(N, {p}) = Out3(N, {p}) = . . . = ∅.

Therefore Out(N, {p}) = ∅ and q /∈ Out(N, {p}). This shows that the semantics Out(N, A) is not

adequate for deriv7(N). Using the results of this chapter, an adequate semantics for deriv7(N) is

defined as follows.

Definition 4.9. For every set of constitutive norms N and formula a, let out7(N, a) =
⋃∞

i=1 N
i
7({a}).

Here for a set of formulas A,

• N1
7(A) = Cae(N(Ce(A)))

• Ni+1
7 (A) = Cae(Ni

7(A) ∪N(Ni
7(A))).

with Cae(A) = {b ∈ LP : ∃a1, . . . , an ∈ A, a1 ∧ . . . ∧ an a` b}.

Cae, read as“closed under aggregation and equivalence”, is a combination of Ce defined in

Section 4.2.1 and Ca defined in Section 4.2.2. For convenience we will use Ni
7(a) to represent

Ni
7({a}).

Theorem 4.6. (a, x) ∈ deriv7(N) iff x ∈ out7(N, a).

To prove this theorem we need the following lemmas.

Lemma 4.10. For all A, if i ≤ j then Ni
7(A) ⊆ N

j
7(A)
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Proof. Here we just prove Ni
7(A) ⊆ Ni+1

7 (A). Since Ni+1
7 (A) = Cae(Ni

7(A) ∪N(Ni
7(A))), and it

is easy to prove that Ni
7(A) ⊆ Cae(Ni

7(A)). Moreover by the monotonicity of Cae we can prove

Cae(Ni
7(A)) ⊆ Cae(Ni

7(A) ∪N(Ni
7(A))). Therefore Ni

7(A) ⊆ Ni+1
7 (A).

Lemma 4.11. For all i ≥ 1, if A ⊆ B the Ni
7(A) ⊆ Ni

7(B).

Proof. We prove by induction on i. And we focus on the inductive step. Assume Ni
7(A) ⊆ Ni

7(B),

consider Ni+1
7 (A) and Ni+1

7 (B). Note that Ni+1
7 (A) = Cae(Ni

7(A) ∪N(Ni
7(A))). By induction hy-

pothesis we have Ni
7(A) ⊆ Ni

7(B). By the monotonicity of N(•) we have N(Ni
7(A)) ⊆ N(Ni

7(B)).

Therefore Ni
7(A) ∪ N(Ni

7(A)) ⊆ Ni
7(B) ∪ N(Ni

7(B)). Therefore Cae(Ni
7(A) ∪ N(Ni

7(A))) ⊆

Cae(Ni
7(B) ∪N(Ni

7(B))) by the monotonicity of Cae. That is, Ni+1
7 (A) ⊆ Ni+1

7 (B).

Lemma 4.12. For all i, j ≥ 1, for all set A, Ni
7(N

j
7(A)) ⊆ N

i+j
7 (A).

Proof. We prove by induction on i.

If i = 1, then N1
7(N

j
7(A)) = Cae(N(Ce(N

j
7(A)))) = Cae(N(N

j
7(A))). N

1+j
7 (A) = Cae(N

j
7(A) ∪

N(N
j
7(A))). By monotonicity of Cae we have that Cae(N(N

j
7(A))) ⊆ Cae(N

j
7(A) ∪ N(N

j
7(A))).

Therefore N1
7(N

j
7(A)) ⊆ N

1+j
7 (A).

Now for the inductive step. Consider Ni+1
7 (N

j
7(A)) and N

i+1+j
7 (A). Note that we have

Ni+1
7 (N

j
7(A)) = Cae(Ni

7(N
j
7(A)) ∪ N(Ni

7(N
j(A)))). Moreover N

i+1+j
7 (A) = Cae (N

i+j
7 (A) ∪

N(N
i+j
7 (A))). By induction hypothesis we have Ni

7(N
j
7(A)) ⊆ N

i+j
7 (A), and by the monotonicity of

N(•) we know that N(Ni
7(N

j
7(A))) ⊆ N(Ni+j

7 (A)). Therefore Cae(Ni
7(N

j
7(A)) ∪N(Ni

7(N
j
7(A)))) ⊆

Cae(N
i+j
7 (A) ∪N(N

i+j
7 (A))). therefore we have Ni+1

7 (N
j
7(A)) ⊆ N

i+1+j
7 (A).

Lemma 4.13. For all i, j ≥ 1, if x ∈ Ni
7(a) and y ∈ N

j
7(x), then there exist some k such that y ∈ Nk

7(a)

Proof. Assume x ∈ Ni
7(a) and y ∈ N

j
7(x), then {x} ⊆ Ni

7(a). Therefore by Lemma 4.11 we have

y ∈ N
j
7(N

i
7(a)). Now by the lemma above we have y ∈ N

i+j
7 (a).

Lemma 4.14. For all i ≥ 1, if x ∈ Ni
7(a) and y ∈ Ni

7(a), then x ∧ y ∈ Ni
7(a)

Proof. Trivial. Simply because Ni
7(a) is closed under Cae.

To prove the right to left direction of Theorem 4.6, we need the following lemma.

Lemma 4.15. For all i ≥ 1, if x ∈ Ni
7(a) then (a, x) ∈ deriv7(N).

Proof. We prove by induction on i.

If i = 1, from x ∈ N1
7(a) we know x ∈ Cae(N(Ce(a))). Therefore there exist x1 . . . xm ∈ N(Ce(a))

such that x a` x1 ∧ . . . ∧ xm. From x1 . . . xm ∈ N(Ce(a)) we can deduce that there exist

(a1, x1), . . . , (an, xm) ∈ N such that a1, . . . , am ∈ Ce(a). Therefore a a` a1, . . . , a a` am. Now
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we use IEQ we have (a, x1), . . . , (a, xm) ∈ deriv7(N). And use the AND rule finite times we have

(a, x1 ∧ . . . ∧ xm) ∈ deriv7(N). Then by OEQ we know (a, x) ∈ deriv7(N).

Now for the inductive step. Assume x ∈ Ni+1
7 (a),then x ∈ Cae(Ni

7(a) ∪N(Ni
7(a))). Therefore

there exist x1, . . . , xm ∈ Ni
7(a) and y1, . . . , yn ∈ N(Ni

7(a)) such that x a` x1 ∧ . . .∧ xm ∧ y1 ∧ . . .∧ yn.

By induction hypothesis we can deduce (a, x1), . . . , (a, xm) ∈ deriv7(N) from x1, . . . , xm ∈ Ni
7(a).

From y1, . . . , yn ∈ N(Ni
7(a)) we know there exist a1, . . . , an ∈ Ni

7(a) such that (a1, y1), . . . , (an, yn) ∈

N. By induction hypothesis we can deduce (a, a1), . . . , (a, an) ∈ deriv7(N) from a1, . . . , an ∈ Ni
7(a).

Now by using the T rule n times we have (a, y1), . . . , (a, yn) ∈ deriv7(N). Then by using the

AND rule we have (a, x1 ∧ . . . ∧ xm ∧ y1 ∧ . . . yn) ∈ deriv7(N). Then use OEQ we have (a, x) ∈

deriv7(N).

Proof. (Theorem 4.6) (left to right) Assume (a, x) ∈ deriv7(N), then either (a, x) ∈ N, or (a, x) is

derived by using at the last step one of the rules IEQ, OEQ, T and AND. Here we only deal with

the last two cases. Other cases are easy.

Assume (a, x) ∈ deriv7(N) and it is deduced by the T rule at the last step. Then there exist

(a, y) ∈ deriv7(N) and (y, x) ∈ deriv7(N). By induction hypothesis we have y ∈ out7(N, a) and

x ∈ out7(N, y). That is, y ∈ ⋃∞
i=1 N

i
7(a) and x ∈ ⋃∞

i=1 N
i
7(y). Therefore there exist some i, j such

that y ∈ Ni
7(a) and x ∈ N

j
7(y). Therefore we have x ∈ Nk

7(a) for some k by Lemma 4.13. Hence

x ∈ ⋃∞
i=1 N

i
7(a), x ∈ out7(N, a).

Assume (a, x) ∈ deriv7(N) and it is deduced by the AND rule at the last step. Then there

exist x1, x2 such that x is x1 ∧ x2 and (a, x1), (a, x2) ∈ deriv7(N). By induction hypothesis we have

x1 ∈
⋃∞

i=1 N
i
7(a) and x2 ∈

⋃∞
i=1 N

i
7(a). Therefore for some m, n we have x1 ∈ Nm

7 (a) and x2 ∈ Nn
7 (a).

Let k = max{m, n}, then by Lemma 4.10 we have x1, x2 ∈ Nk
7(a). Then by Lemma 4.14 we have

x1 ∧ x2 ∈ Nk
7(a). That is, x ∈ Nk

7(a), x ∈ ⋃∞
i=1 N

i
7(a) and x ∈ out7(N, a).

(right to left) Assume x ∈ out7(N, a), then x ∈ ⋃∞
i=1 N

i
7(a). Then there exist some k such that

x ∈ Nk
7(a). Now by Lemma 4.15 we have (a, x) ∈ deriv7(N).

4.4 Summary

The derivation systems in unconstrained input/output logic are axiomatic representations of

norms. In this chapter we have analyzed various derivation rules of input/output logic in isolation

and defined the corresponding semantics. Then we combined them together to achieve alternative

semantics of several input/output logics. Our alternative semantics for out3 and out+3 will be used

in the study of the complexity of input/output logic. Our alternative semantics for constitutive

input/output logic is adequate for the derivation system of constitutive input/output logic.
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Chapter 5

Algebra of Norms

Abstract

Lindahl and Odelstad’s theory of joining-systems is an algebraic approach to normative

systems. In this chapter we develop two variants of the theory of joining-systems: Boolean joining-

systems and Heyting joining-systems. Those two variants algebraically characterize unconstrained

input/output logic in the sense that a norm (a, x) is derivable from a set of norms O if and only

if it is in the space of norms algebraically generated by O. Within those algebraic frameworks, we

define isomorphism and embedding between normative systems. Then we use them to study the

similarity of normative systems as well as some other global properties of normative systems.
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5.1 Introduction

One feature of input/output logic is that it adopts operational rather than possible world semantics.

There is no exterior structure in such operational semantics. Therefore tools to compare the

similarity of structures, like bisimulation and isomorphism, play no role in input/output logic.

This feature makes it difficult to analyze the similarity of normative systems using input/output

logic, although the equivalence of normative systems can be represented within the input/output

framework (Boella et al., 2008a).

An algebraic framework for analyzing normative systems is introduced by Lindahl and

Odelstad (2000, 2008, 2013); Odelstad and Lindahl (2000). The most general form of the theory

is called theory of joining-systems. A complete introduction of this theory is Lindahl and Odelstad

(2013), which also contains references to earlier publications. A joining-system is a triple (B1, B2, S)

where B1, B2 are two ordered algebraic structures and S a relation between B1 and B2 satisfying

some conditions. Introducing variants of the theory of joining-systems, in this chapter we develop

algebraic semantics for unconstrained input/output logic and use it to study the similarity of

normative systems as well as other global properties of normative systems.

Some readers may wonder why do we need another algebraic semantics for input/output logic,

given that input/output logic can be translated into modal logic and the algebraic semantics of

modal logic is already well established.∗ The reason is, modal algebra in fact does not provide an

algebraic semantics for input/output logic. The modal translation of input/output logic is only a

fragment of modal logic, of which the modal depth is only 1. Note that modal logic of modal depth

1 is not closed under the modal operator, while modal algebra, as well as all algebras, requires the

algebra to be closed under all its operators. Therefore the modal translation of input/output logic

is in fact not a fragment of modal algebra (or any algebra).

The layout of this chapter is as follows. In Section 5.2 we give a brief introduction to the theory

of joining-systems. Then, in Section 5.3 and 5.4 we develop algebraic semantics for input/output

logic and intuitionistic input/output logic respectively. Section 5.5 presents some applications of

the algebraic semantics. We discuss related work in Section 5.6. Finally in Section 5.7 we summarize

this chapter.

5.2 Background: theory of joining-systems

The algebraic structure Lindahl and Odelstad (2000) use for their theory of joining-systems is

Boolean quasi-ordering, which is an extension of Boolean algebra.

∗More introduction about the modal translation of input/output logic will be reviewed in Chapter 6.
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Definition 5.1 (Boolean algebra (Givant and Halmos, 2009)). A structure A = (A,+, ·,−, 0, 1) where

A is a set, + and · are binary operators on A,− is a unitary operator on A and 0, 1 ∈ A, is a Boolean algebra

if it satisfies the following identities: for all x, y, z ∈ A,

1. x + y = y + x, x · y = y · x

2. x + (y + z) = (x + y) + z, x · (y · z) = (x · y) · z

3. x + 0 = x, x · 1 = x

4. x + (−x) = 1, x · (−x) = 0

5. x + (y · z) = (x + y) · (x + z), x · (y + z) = (x · y) + (x · z)

The elements of a Boolean algebra are ordered as x ≤ y iff x · y = x. It can be proved that ≤ is

reflexive, transitive, and anti-symmetric, therefore ≤ is a partial order.

Example 5.1. Given arbitrary set X, (2X ,∪,∩,−, ∅, X) is a Boolean algebra where ∪,∩,−, ∅ and X is

respectively understood as +, ·,−, 0 and 1. And ⊆ is understood as ≤.

Definition 5.2 (Boolean quasi-ordering (Lindahl and Odelstad, 2013)). A Boolean quasi-ordering is

a structure B = (B,+, ·,−, 0, 1, R) such that (B,+, ·,−, 0, 1) is a Boolean algebra, and R ⊆ B× B is a

reflexive and transitive relation on B which satisfies the following conditions for all a, b and c in B:

• aRb and aRc implies aR(b · c)

• aRb implies (−b)R(−a)

• (a · b)Ra

• not 1R0

A reflexive and transitive relation is called a quasi-ordering in Lindahl and Odelstad (2000).

Definition 5.3 (joining-systems (Lindahl and Odelstad, 2013)). A joining-systems is a structure S =

(A,B, S) such that A and B are Boolean quasi-orderings and S ⊆ A× B satisfies the following conditions:

1. If (a, x) ∈ S, bRa and xRy, then (b, y) ∈ S.

2. For all X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all y ∈ glb(X).

Here glb is an abbreviation of greatest lower bound. Formally, glb(X) = {b ∈ B : ∀x ∈ X, bRx and

∀a ∈ B, if ∀x ∈ X, aRx, then aRb}.
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3. For all X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all y ∈ lub(X).

Here lub is an abbreviation of least upper bound. Formally, lub(X) = {a ∈ A : ∀x ∈ X, xRa and

∀b ∈ A, if ∀x ∈ X, xRb, then aRb}.

Lindahl and Odelstad (2013) show a variant of joining-systems that is more close to input/output

logic.

Definition 5.4 (prejoining-systems (Lindahl and Odelstad, 2013)). A prejoining-systems is a structure

S = (A,B, S) such that A and B are Boolean quasi-orderings and S ⊆ A × B satisfies the following

conditions:

1. If (a, x) ∈ S, bRa and xRy, then (b, y) ∈ S.

2. For all finite X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all y ∈ glb(X).

3. For all finite X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all y ∈ lub(X).

5.3 Input/output logic and Boolean joining-systems

Given two Boolean algebras A = (A,+A, ·A,−A, 0A, 1A) and B = (B,+B, ·B, −B, 0B, 1B) with

ordering ≤A and ≤B respectively. For two ordered pairs (a, x), (b, y) ∈ A× B, following Lindahl

and Odelstad, we define (a, x) � (b, y) iff b ≤A a and x ≤B y. (a, x) is said to be narrower than (b, y)

if (a, x) � (b, y).† Lindahl and Odelstad use their narrowness relation to define joining-systems to

algebraically represent normative systems. Lindahl and Odelstad’s joining-systems are based on

Boolean quasi-ordering. To build an algebraic semantics for input/output logic, here we introduce

joining-systems which are variants of Lindahl and Odelstad’s.

We define those variants based on Boolean algebra. Resembling the names of input/output

logic, we call those variants of joining-systems simple-minded, basic, simple-minded reusable and

basic reusable respectively. The basic Boolean joining-systems is almost the same as Lindahl and

Odelstad’s prejoining-systems, with the only difference being the underlying algebraic structure.

The other three variants will be introduced later.

Definition 5.5 (basic Boolean joining-systems). A basic Boolean joining-systems is a prejoining-systems

based on Boolean algebra. That is, basic Boolean joining-systems is a structure S = (A,B, S) such that A

and B are Boolean algebras and S ⊆ A× B satisfies the following conditions:

1. If (a, x) ∈ S and (a, x) � (b, y), then (b, y) ∈ S.

†Such a narrowness relation is called subinterval relation in Odelstad and Boman (2004).
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2. For all finite X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all y ∈ glb(X).

3. For all finite X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all y ∈ lub(X).

If S = (A,B, S) is a basic Boolean joining-systems, then we call S a basic Boolean joining space. We

equivalently replace condition 2 and 3 by the following conditions and use them in later proofs:

2′ If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S

3′ If (a, x) ∈ S and (b, x) ∈ S, then (a +A b, x) ∈ S

Lemma 5.1. Given a basic Boolean joining-systems S = (A,B, S), the following are equivalent:

(1) For all finite X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all y ∈ glb(X).

(2) If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S

Proof. (1)⇒ (2): If (a, x) ∈ S and (a, y) ∈ S, then {x, y} ⊆ B and glb({x, y}) = {x ·B y}. Therefore

by (1) we know (a, x ·B y) ∈ S.

(2) ⇒ (1): Let X = {x1, . . . , xn} be a finite subset of B. Then glb(X) = {x1 ·B . . . ·B xn}. Assume

(a, xi) ∈ S for all i ∈ {1, . . . , n}. Then by (2) we know (a, x1 ·B x2) ∈ S. Moreover we can deduce

that (a, x1 ·B x2 ·B x3) ∈ S, . . . , (a, x1 ·B . . . ·B xn) ∈ S.

Lemma 5.2. Given a basic Boolean joining-systems S = (A,B, S), the following are equivalent:

(1) For all finite X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all y ∈ lub(X).

(2) If (a, x) ∈ S and (b, x) ∈ S, then (a +A b, x) ∈ S

Proof. (1)⇒ (2): If (a, x) ∈ S and (b, x) ∈ S, then {a, b} ⊆ A and lub({a, b}) = {a+A b}. Therefore

by (1) we know (a +A b, x) ∈ S.

(2)⇒ (1): Let X = {x1, . . . , xn} be a finite subset of A. Then lub(X) = {x1 +A . . . +A xn}. Assume

(xi, b) ∈ S for all i ∈ {1, . . . , n}. Then by (2) we know (x1 +A x2, b) ∈ S. Moreover we can deduce

that (x1 +A x2 +A x3, b) ∈ S, . . . , (x1 +A . . . +A xn, b) ∈ S.

Moreover, we can equivalently define basic Boolean joining space using ideal and filter, which are

standard algebraic notions.

Definition 5.6 (ideal (Givant and Halmos, 2009)). Let A be a Boolean algebra and I ⊆ A. For I to be an

ideal of A, it is necessary and sufficient that the following three conditions be satisfied:

1. 0A ∈ I

2. for all x, y ∈ I, x +A y ∈ I
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3. for all x ∈ I and y ∈ A, if y ≤A x then y ∈ I

Definition 5.7 (filter (Givant and Halmos, 2009)). Let A be a Boolean algebra and F ⊆ A. For F to be a

filter of A, it is necessary and sufficient that the following three conditions are satisfied:

1. 1A ∈ F

2. for all x, y ∈ F, x ·A y ∈ F

3. for all x ∈ F and y ∈ A, if x ≤A y then y ∈ F

Example 5.2. Given arbitrary infinite set X, then (2X ,∪,∩,−, ∅, X) is a Boolean algebra. Let I = {A′ ⊆

X : A′ is finite} and F = {A′ ⊆ X : A′ is cofinite}, where A′ is cofinite means A− A′ is finite. Then I is

an ideal and F is a filter.

Let F↑(X) be the filter generated by X, which means F↑(X) is the smallest filter contains X, and

I↓(X) be the ideal generated by X, which means I↑(X) is the smallest ideal contains X. Then we

have the following proposition defining joining space by ideal and filter:

Proposition 5.1. Given a structure S = (A,B, S), where A,B are Boolean algebras and S ⊆ A× B, S is

a basic Boolean joining space in S if and only if it satisfies the following conditions:

1. For every finite set X ⊆ B and a ∈ A, if for every x ∈ X, (a, x) ∈ S, then (a, y) ∈ S, for every

y ∈ F↑(X).

2. For every finite set X ⊆ A and b ∈ B, if for every x ∈ X, (x, b) ∈ S, then (y, b) ∈ S, for every

y ∈ I↓(X).

Proof. Assume S is a basic Boolean joining space. For the first condition, let X be an arbitrary finite

subset of B. Without loss of generality, we let X = {x1, . . . , xn}. Suppose ∀x ∈ X, (a, x) ∈ S. Then

by applying clause 2′ of Definition 5.5 finitely many times we have (a, x1 ·B . . . ·B xn) ∈ S. Since for

all y ∈ F↑(X), x1 ·B . . . ·B xn ≤B y, we then know (a, x1 ·B . . . ·B xn) � (a, y). Therefore (a, y) ∈ S by

Definition 5.5. Similarly we can prove that the second condition is satisfied.

Now assume S satisfies the two conditions in this proposition. Assume (a, x) ∈ S and (a, x) �

(b, y), then x ≤B y and y ∈ F↑(x), hence (a, y) ∈ S. Moreover we have b ≤A a and b ∈ I↓(a), so we

have (b, y) ∈ S. Assume (a, x) ∈ S and (a, y) ∈ S. Since x ·B y ∈ F↑({x, y}), we know (a, x ·B y) ∈ S.

Similarly we can prove if (a, x) ∈ S and (b, x) ∈ S, then (a +A b, x) ∈ S. Therefore S is a basic

joining space.

Up to now, we have defined basic Boolean joining-systems and joining space. But does a basic

Boolean joining space always exist? The answer is positive. As the following proposition shows,

the largest and the smallest basic Boolean joining space always exists.
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Proposition 5.2. Given two Boolean algebras A,B,

1. (A,B, A× B) is a basic Boolean joining-systems.

2. Let I be a set of indexes, if for all i ∈ I, (A,B, Si) is a basic Boolean joining-systems, then

(A,B,∩i∈ISi) is a basic Boolean joining-systems.

Proof. The first item is trivial:

(1) If (a, x) ∈ A× B and (a, x) � (b, y), then (b, y) ∈ A× B.

(2) If (a, x) ∈ A× B and (a, y) ∈ A× B, then (a, x ·B y) ∈ A× B.

(3) If (a, x) ∈ A× B and (b, x) ∈ A× B, then (a +A b, x) ∈ A× B.

Now we prove the second item. For every finite set X ⊆ A, if for every x ∈ X, (x, b) ∈ ∩i∈ISi,

then (x, b) ∈ Si for every i ∈ I. Therefore by Proposition 5.1 we have ∀y ∈ I↓(X), (y, b) ∈ Si. So we

must have (y, b) ∈ ∩i∈ISi. Similarly we can make use of the first item of Proposition 1. Therefore

∩i∈ISi is a joining space of A×B.

5.3.1 Basic input/output logic and basic Boolean joining-systems

In this subsection, we use basic Boolean joining-systems to develop an algebraic semantics for basic

input/output logic. We prove that for a set of mandatory norms O, (a, x) is derivable from O in

basic input/output logic, if and only if it is in the basic Boolean joining space generated by O. To

show this, we use a special Boolean algebra named Lindenbaum-Tarski algebra.

Let ≡ be the provable equivalence relation on LP, i.e. for every formula x, y ∈ LP, x ≡ y iff

` x ↔ y. Let L≡P be the set of equivalence classes that ≡ induces on LP. For any formula x ∈ LP,

let [x] denote the equivalence class containing x.

Definition 5.8 (Lindenbaum-Tarski algebra (Blackburn et al., 2001)). The Lindenbaum-Tarski algebra

for propositional logic LP is a structure L = (L≡P ,+, ·,−, 0, 1) where [x] + [y] = [x∨ y], [x] · [y] = [x∧ y],

−[x] = [¬x], 0 = [⊥] and 1 = [>].

For more details of Lindenbaum-Tarski algebra, readers are suggested to consult Chapter 5 of

Blackburn et al. (2001). Every Lindenbaum-Tarski algebra is a Boolean algebra.

Let O≡ = {([a], [x]) : (a, x) ∈ O}. Let S = (L,L, S) be a basic Boolean joining-systems such that

O≡ ⊆ S. By Proposition 5.2 we know such basic Boolean joining-systems always exist. Moreover,

there is a smallest basic Boolean joining space O2 such that O≡ ⊆ O2 and for every basic Boolean

joining space S that extends O≡, O2 ⊆ S. Here we use the notation O2 for the resemblance of basic

input/output logic. Such O2 is the basic Boolean joining space generated by O≡. The following

proposition shows how we construct O2.
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Proposition 5.3. Let O′2 =
⋃∞

i=0 Oi
2 be constructed as follows: ‡

• O0
2 = O≡

• Oi+1
2 contains all ([a], [x]) for which:

(1) there is ([b], [y]) ∈ Oi
2, ([b], [y]) � ([a], [x]);

(2) there are ([a], [y]), ([a], [z]) ∈ Oi
2 such that [x] = [y] · [z];

(3) there are ([b], [x]), ([c], [x]) ∈ Oi
2 such that [a] = [b] + [c].

Then O′2 = O2.

Proof. We have to show three things: (a) O≡ ⊆ O′2. (b) O′2 is a basic Boolean joining space. (c) every

basic Boolean joining space S that extends O≡, O′2 ⊆ S

(a) This is obvious in view of the construction.

(b) We show that 1, 2′ and 3′ from Definition 5.5 hold for O′.

– Let ([a], [x]) ∈ O′2 and ([a], [x]) � ([b], [y]). Hence there is i ≥ 0 such that ([a], [x]) ∈ Oi
2.

By (1), ([b], [y]) ∈ Oi+1
2 ⊆ O′2.

– Let ([a], [x]), ([a], [y]) ∈ O′2. Hence there is i, j ≥ 0 such that ([a], [x]) ∈ Oi
2 and ([a], [y]) ∈

Oj
2. Let k = max({i, j}). Note that Oi

2 ⊆ Oi+1
2 by the construction of Oi

2. Therefore we

know ([a], [x]), ([a], [y]) ∈ Ok
2. Then by (2) we have ([a], [x] · [y]) ∈ Ok+1

2 ⊆ O′2.

– 3′ is shown analogously.

(c) Let S be an arbitrary basic Boolean joining space S that extends O≡. We now prove that

Oi
2 ⊆ S, for all i. This can be proved by introduction on i. Indeed, O0

2 = O≡ ⊆ S. Assume

Ok
2 ⊆ S, then for all ([a], [x]) ∈ Ok+1

2 ,

1. if there is ([b], [y]) ∈ Oi
2 and ([b], [y]) � ([a], [x]). Then ([b], [y]) ∈ S. Since S is basic

Boolean joining space, we know that ([a], [x]) ∈ S.

2. If there are ([a], [y]), ([a], [z]) ∈ Oi
2 such that [x] = [y] · [z]. Then ([a], [y]), ([a], [z]) ∈ S.

Since S is basic Boolean joining space, we know that ([a], [x]) ∈ S.

3. If there are ([b], [x]), ([c], [x]) ∈ Oi
2 such that [a] = [b] + [c]. Then ([b], [x]), ([c], [x]) ∈ S.

Since S is basic Boolean joining space, we know that ([a], [x]) ∈ S.

‡I thank a reviewer of Journal of Logic and Computation for his/her contribution to this proposition.
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With proposition 5.3 at hand, we now prove a correspondence result. Intuitively, this result

states that every (a, x) is logically derivable from O if and only if it is in the space of norms

algebraically generated by O.

Theorem 5.1. The following three propositions are equivalent:

1. (a, x) ∈ deriv2(O).

2. ([a], [x]) ∈ O2.

3. x ∈ out2(O, a).

Proof. 1⇒ 2 : This can be proved simply by induction one the length of derivation.

2⇒ 3 : Assume ([a], [x]) ∈ O2. Hence there is an i ≥ 0 such that ([a], [x]) ∈ Oi
2 (see Proposition 5.3).

We show that for each ([a], [x]) ∈ O2, x ∈ out2(O, a) by induction over i. For the induction base

let ([a], [x]) ∈ O0
2 = O≡. Trivially x ∈ out2(O, a). For the inductive cases, assume the conclusion is

true for Oi
2, consider ([a], [x]) ∈ Oi+1

2 . By proposition 5.3 we need to deal with three cases.

• If for some ([b], [y]) ∈ Oi
2, ([b], [y]) � ([a], [x]), then by induction hypotheses we know y ∈

out2(O, b) =
⋂{Cn(O(V)) : b ∈ V, V is complete}. Since [a] ≤ [b] and [y] ≤ [x] we know

a ` b, y ` x and x ∈ Cn(y). Hence x ∈ ⋂{Cn(O(V)) : b ∈ V, V is complete}. Moreover, every

complete set V contains a must contain b, hence
⋂{Cn(O(V)) : b ∈ V, V is complete} ⊆⋂{Cn(O(V)) : a ∈ V, V is complete}. Therefore x ∈ ⋂{Cn(O(V)) : a ∈ V, V is complete},

x ∈ out2(O, a).

• If there exist ([a], [y]), ([a], [z]) ∈ Oi
2 such that [x] = [y] · [z]. Then by induction hypotheses

we know y, z ∈ out2(O, a) =
⋂{Cn(O(V)) : a ∈ V, V is complete}. Therefore y ∧ z ∈⋂{Cn(O(V)) : a ∈ V, V is complete} and x ∈ ⋂{Cn(O(V)) : a ∈ V, V is complete}. That is,

x ∈ out2(O, a).

• If there exist ([b], [x]), ([c], [x]) ∈ Oi
2 such that [a] = [b] + [c]. Then by induction hypotheses

we know x ∈ out2(O, b) and x ∈ out2(O, c). Therefore x ∈ ⋂{Cn(O(V)) : b ∈ V, V is

complete} and x ∈ ⋂{Cn(O(V)) : c ∈ V, V is complete}. For every complete set V such that

b ∨ c ∈ V, it must be that either b ∈ V or c ∈ V. Therefore, for every complete set V that

contains b ∨ c, x ∈ Cn(V), which means x ∈ ⋂{Cn(O(V)) : b ∨ c ∈ V, V is complete}, i.e.

x ∈ out2(O, b ∨ c), x ∈ out2(O, a).

3⇒ 1 : This is a special case of the completeness of input/output logic.
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5.3.2 Input/output logics and joining-systems

The previous subsection proves a correspondence result between basic input/output logic and

basic Boolean joining-systems. We now prove correspondence results between other input/output

logics and other Boolean joining-systems.

Definition 5.9 (Boolean joining-systems). Given a structure S = (A,B, S) where A,B are Boolean

algebras. Given the following conditions:

1. If (a, x) ∈ S and (a, x) � (b, y), then (b, y) ∈ S.

2. If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S.

3. If (a, x) ∈ S and (b, x) ∈ S, then (a +A b, x) ∈ S.

4. if (a, x) ∈ S and (a ·A x, y) ∈ S, then (a, y) ∈ S.

• If S satisfies (1) and (2), then S is a simple-minded Boolean joining-systems. S is a simple-minded

Boolean joining space of S.

• If S satisfies (1), (2) and (4), then S is a simple-minded reusable Boolean joining-systems. S is a

simple-minded reusable Boolean joining space of S.

• If S satisfies (1), (2), (3) and (4), then S is a basic reusable Boolean joining-systems. S is a basic reusable

Boolean joining space of S.

Similar to Proposition 5.2, we prove the existence of the largest and the smallest simple-

minded/basic/simple-minded reusable/basic reusable joining space.

Proposition 5.4. Given two Boolean algebras A,B,

1. (A,B, A× B) is a simple-minded/simple-minded reusable/basic reusable Boolean joining-systems.

2. If for all i ∈ I, (A,B, Si) is a simple-minded Boolean joining-systems, then (A,B,∩i∈ISi) is a simple-

minded Boolean joining-systems. And similarly for simple-minded reusable/basic reusable joining

space.

Proof. Similar to the proof of Proposition 5.2. Here we only prove that for reusable joining-systems,

if (a, x) ∈ ∩i∈ISi and (a ·A x, y) ∈ ∩i∈ISi, then (a, y) ∈ ∩i∈ISi.

Assume (a, x) ∈ ∩i∈ISi and (a ·A x, y) ∈ ∩i∈ISi. Therefore for an arbitrary i ∈ I,(a, x) ∈ Si and

(a ·A x, y) ∈ Si. Then we know (a, y) ∈ Si. Therefore (a, y) ∈ ∩i∈ISi.
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Let O1 to O4 be respectively the smallest simple-minded/simple-minded reusable/basic reusable

joining space based on Lindenbaum-Tarski algebra L that extends O≡. We have the the following

correspondence result:

Theorem 5.2. For i ∈ {1, 3, 4}, the following three statements are equivalent:

1. (a, x) ∈ derivi(O).

2. ([a], [x]) ∈ Oi.

3. x ∈ outi(O, a).

Proof. Similar to the proof of Theorem 5.1. The key step is to establish an inductive construction of

Oi. Here we only sketch the case for i = 3.

We first give an inductive construction of O3 as follows: Let O3 =
⋃∞

i=0 Oi
3, where

• O0
3 = O≡

• Oi+1
3 contains all ([a], [x]) for which:

(1) there is ([b], [y]) ∈ Oi
3, ([b], [y]) � ([a], [x]);

(2) there is ([a], [y]), ([a], [z]) ∈ Oi
3 such that [x] = [y] · [z];

(3) there is ([a], [y]), ([a] · [y], [x]) ∈ Oi
3.

Then we prove no matter how ([a], [x]) is generated in O3, we have x ∈ out3(O, a). For example

if ([a], [x]) ∈ O3 and it is because of the existence of ([a], [y]), ([a] · [y], [x]) ∈ O3. Then use inductive

hypothesis we know y ∈ out3(O, a) and x ∈ out3(O, a ∧ y). Then by applying the definition of out3

we prove x ∈ out3(O, a).

5.4 Intuitionistic input/output logic and Heyting joining systems

A frequent belief about input/output logic is that it presupposes classical propositional logic.

Parent et al. (2014) show that this is a misunderstanding by building input/output logic on top of

intuitionistic logic. In this section, we show that there is an algebraic companion for intuitionistic

input/output logic, the Heyting joining-systems. To do this we first introduce intuitionistic

input/output logic and Heyting joining-systems, then we construct the correspondence.

5.4.1 Intuitionistic input/output logic

Intuitionistic logic (Van Dalen, 1986) is different from classical logic by omitting the principle of

excluded middle and the reductio ad absurdum rule. Intuitionistic input/output logic is based on
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intuitionistic propositional logic (IPL), the propositional fragment of intuitionistic logic. Given

a set of propositional letters P, the language of intuitionistic propositional logic LI is defined as

follows:

a, b ::= ⊥ | p | (a ∧ b) | (a ∨ b) | (a→ b)

Here p ∈ P and we use ¬a as an abbreviation of a → ⊥. A proof system of intuitionistic

propositional logic used in Parent et al. (2014) is defined via the following sequent calculus:

• Group 1: Let A, B be finite set of formulas

– (Ref) If a ∈ A, then A `I a

– (Mon) A`I a
A∪B`I a

– (Cut) A`I a A∪{a}`I b
A`I b

The labels (Ref) and (Mon) are mnemonic for “reflexivity” and “monotony” respectively.

• Group 2:

– A`I a A`I b
A`I a∧b (∧:I)

– A`I a∧b
A`I a (∧:E)

– A`I a
A`I a∨b (∨:I)

– A∪{a}`I c A∪{b}`I c A`I a∨b
A`I c (∨:E)

– A∪{a}`I b
A`I a→b (→:I)

– A`I a A`I a→b
A`I b (→:E)

– A`I⊥
A`I a (⊥:E)

If ∅ `I a then we say a is provable in IPL. If A is infinite, then we let A `I a iff A′ `I a for some

finite A′ ⊆ A.

Let O be a set of ordered pairs of formulas of LI . For a set of formulas A ⊆ LI , let CnI(A) =

{a ∈ LI : A `I a}. To define intuitionistic input/output logic the concept of saturated set is needed.

Definition 5.10 (saturated set (Thomason, 1968)). A set A ⊆ LI is said to be saturated if the following

three conditions hold:

1. A 0I ⊥

2. if a ∨ b ∈ A then a ∈ A or b ∈ A

3. if A `I a then a ∈ A
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Parent et al. (2014) develop intuitionistic input/output logic as follows:

• outI
1(O, A) = CnI(O(CnI(A))).

• outI
2(O, A) =

⋂{CnI(O(B)) : A ⊆ B, B is saturated or B = LI}.

• outI
3(O, A) =

⋂{CnI(O(B)) : A ∪O(B) ⊆ B = CnI(B)}.

• outI
4(O, A) =

⋂{CnI(O(B)) : A ∪O(B) ⊆ B, B is saturated or B = LI}.

The proof system of intuitionistic input/output logics are similar to its propositional counterpart.

Parent et al. (2014) use AND, OR, CT and the intuitionistic version of SI and WO:

• SII (intuitionistic strengthening the input): from (a, x) to (b, x) whenever b `I a

• WOI (intuitionistic weakening the output): from (a, x) to (a, y) whenever x `I y

The derivation system based on the rules SII , WOI and AND is called derivI
1. Adding OR and CT

to derivI
1 gives derivI

2 and derivI
3 respectively. The five rules together define derivI

4. In Parent et al.

(2014), the following theorems are given:

Theorem 5.3. (Parent et al., 2014)

• For i ∈ {1, 2, 3}, x ∈ outI
i (O, a) iff (a, x) ∈ derivI

i (O).

• If (a, x) ∈ derivI
4(O), then x ∈ outI

4(O, a).§

5.4.2 Heyting joining-systems

Heyting algebra was introduced by Arend Heyting in 1930s to formalize intuitionistic logic.

Heyting algebra generalize Boolean algebra in the sense that a Heyting algebra satisfying x +

(−x) = 1 is a Boolean algebra.

Definition 5.11 (Heyting algebra (Heyting, 1930) ). A Heyting algebra is a partially ordered set

(H, 0, 1 ≤, ·,+,→) with a smallest elements 0, a largest element 1 and three operators ·, + and→ satisfying

the following conditions, for all x, y, z ∈ H

1. x ≤ 1.

2. x · y ≤ x.

3. x · y ≤ y.

§It is an open problem whether the other direction of the implication holds.
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x · y x + y x → y

x�y 0 1
2 1 0 1

2 1 0 1
2 1

0 0 0 0 0 1
2 1 1 1 1

1
2 0 1

2
1
2

1
2

1
2 1 0 1 1

1 0 1
2 1 1 1 1 0 1

2 1

Figure 5.1: Operations on {0, 1
2 , 1}

4. z ≤ x and z ≤ y implies z ≤ x · y.

5. 0 ≤ x.

6. x ≤ x + y.

7. y ≤ x + y.

8. x ≤ z and y ≤ z implies x + y ≤ z.

9. z ≤ (x → y) iff z · x ≤ y.

Example 5.3. Let H = (H, 0, 1 ≤, ·,+,→) where H = {0, 1
2 , 1}, 0 ≤ 1

2 ≤ 1, ·,+ and→ are represented

by Figure 5.1. Then H is a Heyting algebra, but not a Boolean algebra.

A valuation from IPL to a Heyting algebra is a function V : P → H. V is extended to arbitrary

formulas by putting:

V(⊥) = 0.

V(>) = 1.

V(a ∧ b) = V(a) ·V(b).

V(a ∨ b) = V(a) + V(b).

V(a→ b) = V(a)→ V(b).

A formula a is said to be H-valid if V(a) = 1 for all valuations V on a Heyting algebra H.

Theorem 5.4. (Troelstra and van Dalen, 1988) A formula a is provable in IPL iff a is H-valid for all Heyting

algebra H.

Heyting joining-systems are defined in a similar way to Boolean joining-systems.

Definition 5.12 (Heyting joining-systems). A Heyting joining-systems is a structure S = (A,B, S)

such that A = (A, 0A, 1A ≤A, ·A,+A,→A), B = (B, 0B, 1B, ≤B, ·B,+B,→B) are Heyting algebras and

S ⊆ A× B satisfies certain conditions:
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1. If (a, x) ∈ S and (a, x) � (b, y), then (b, y) ∈ S.

2. If (a, x) ∈ S and (a, y) ∈ S, then (a, x ·B y) ∈ S.

3. If (a, x) ∈ S and (b, x) ∈ S, then (a +A b, x) ∈ S.

4. if (a, x) ∈ S and (a ·A x, y) ∈ S, then (a, y) ∈ S.

The Heyting joining-systems satisfies 1 and 2 is called simple-minded. Adding 3 and 4 produces basic and

simple-minded reusable Heyting joining-systems respectively. The four condition together give rise to basic

reusable Heyting joining-systems.

Let ≡I be the provable equivalence relation on LI , i.e. for every formula x, y ∈ LI , x ≡I y iff

`I x ↔ y. Let L≡I
I be the equivalence classes that ≡I induces on LI . For any formula x ∈ LI , let

[x]I denote the equivalence class containing x. The intuitionistic Lindenbaum-Tarski algebra for

LI is a structure (L≡I
I , 0, 1,≤,+, ·,→) where 0 = [⊥]I , 1 = [>]I , [x]I ≤ [y]I iff [x]I · [y]I = [x]I ,

[x]I + [y]I = [x ∨ y]I , [x]I · [y]I = [x ∧ y]I , [x]I → [y]I = [x → y]I .

It can be verified that an intuitionistic Lindenbaum-Tarski algebra is a Heyting algebra. Let O

be a set of ordered pairs of formulas of LI . Let O≡I = {([a]I , [x]I) : (a, x) ∈ O}, and OI
1 to OI

4 be the

simple-minded/basic/simple-minded reusable/basic reusable Heyting joining-systems generated

by O≡I respectively. Then we have the following correspondence results between intuitionistic

input/output logics and Heyting joining-systems:

Theorem 5.5. For i ∈ {1, 2, 3}, the following three statements are equivalent:

1. (a, x) ∈ derivI
i (O).

2. ([a], [x]) ∈ OI
i .

3. x ∈ outI
i (O, a).

Proof. Similar to the proof of Theorem 5.1. The key step is to establish an inductive construction of

Oi. Here we only sketch the case for i = 3. Other cases are similar.

We first give an inductive construction of OI
3 as follows: Let OI

3 =
⋃∞

i=0 OI,i
3 , where

• OI,0
3 = O≡I .

• OI,i+1
3 contains all ([a], [x]) for which:

(1) there is ([b], [y]) ∈ OI,i
3 , ([b], [y]) � ([a], [x]);

(2) there is ([a], [y]), ([a], [z]) ∈ OI,i
3 such that [x] = [y] · [z];

(3) there is ([a], [y]), ([a] · [y], [x]) ∈ OI,i
3 .
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Then we prove no matter how ([a], [x]) is generated in OI
3, we have x ∈ outI

3(O, a). For example

if ([a], [x]) ∈ OI
3 and it is because of the existence of ([a], [y]), ([a] · [y], [x]) ∈ OI

3. Then use inductive

hypothesis we know y ∈ outI
3(O, a) and x ∈ outI

3(O, a ∧ y). Then by applying the definition of outI
3

we prove x ∈ outI
3(O, a).

5.5 Application of the algebraic representation

Lindahl and Odelstad’s joining-systems, as well as our Boolean and Heyting joining-systems, pro-

vide algebraic representation of norms and normative system. One advantage of such an algebraic

representation is that we can use them to study the similarity of normative systems. Algebraic

notions such as homomorphism and isomorphism are natural tools to explore the similarity of

structures. We approach the similarity of normative systems by introducing isomorphism and

embedding between normative systems.

5.5.1 Similarity of normative systems

For two algebraic structures A and B, if they are isomorphic then they are essentially the same. We

can extend the isomorphism of Boolean algebra to Boolean joining-systems.

Definition 5.13 (isomorphism of Boolean algebra (Givant and Halmos, 2009)). For two Boolean

algebras A = (A,+A, ·A,−A, 0A, 1A) and A′ = (A′,+A′ , ·A′ ,−A′ , 0A′ , 1A′) and h a map from A to

A′. We say that h is an isomorphism from A to A′ iff for any x, y ∈ A, h satisfies the following conditions:

1. h is bijective.

2. h(x +A y) = h(x) +A′ h(y).

3. h(x ·A y) = h(x) ·A′ h(y).

4. h(1A) = 1A′ .

Given an isoporphism h from A to A′, it is easy to check that for all x, y ∈ A and x′, y′ ∈ A′,

if h(x) = x′ and h(y) = y′, then x ≤A y iff x′ ≤A′ y′. Now we extend isomorphism to Boolean

joining-systems.

Definition 5.14 (isomorphism of joining-systems). For two Boolean joining-systems S = (A,B, S) and

S′ = (A′,B′, S′) and h a map from A ∪ B to A′ ∪ B′. We say that h is an isomorphism from S to S′ iff h

satisfies the following conditions:

1. h is bijective.
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2. the restriction of h on A is an isomorphism from A to A′.

3. the restriction of h on B is an isomorphism from B to B′.

4. (a, x) ∈ S iff (h(a), h(x)) ∈ S′.

If there is an isomorphism form S to S′, then we say S and S′ are isomorphic. Two isomorphic

joining-systems can naturally be understood as structurally similar.

In political philosophy, research on totalitarianism (Arendt, 1958; Armstrong, 1961) views the

ideology of Nazi Germany and Soviet Union to be similar. Stalinism and Nazism are described as

“totalitarian twins”. Using the algebraic representation of normative systems we can describe such

similarity in a mathematical flavor.

Example 5.4. Let H be “you worship Hitler”, S be “you respect Stalin”, N be “you are a member of the

Nazi Party”, C be “you are a member of the communist party”, R be “you are against to the rich people”,

J be “you hate Jews”. Let B1 be the Boolean algebra generated by {H, N, J}, B2 be the Boolean algebra

generated by {S, C, R}. Let S1 = {(>, H), (N, J)} be the normative system saying “you are obligated to

worship Hitler” and “you are obligated to hate Jews, given the condition that you are a member of the Nazi

Party”. Let S2 = {(>, S), (C, R)} be the normative system saying “you are obligated to respect Stalin”

and “you are obligated to be against to the rich people, given the condition that you are a member of the

communist party”. For joining-systems (B1,B1, S1) and (B2,B2, S2), we can build an isomorphism h

such that h(H) = S, h(N) = C, h(J) = R. We therefore conclude that S1 and S2 are similar.

Not only isomorphism can be used as an algebraic tool to analyze the similarity of normative

systems, embedding is also a useful tool.

Definition 5.15 (Embedding of joining-systems). For two joining-systems S = (A, B, S) and S′ =

(A′, B′, S′) and h a map from A∪ B to A′ ∪ B′. We say that h is an embedding from S to S′ iff h satisfies the

following conditions:

1. h is injective.

2. the restriction of h on A is an isomorphism from A to h(A).

3. the restriction of h on B is an isomorphism from B to h(B).

4. if (a, x) ∈ S then (h(a), h(x)) ∈ S′.

In political philosophy, totalitarianism is generally viewed as an extreme version of authoritar-

ianism (Sondrol, 2009). This suggests that a normative system of totalitarianism can be considered

as an extension of a normative system of authoritarianism. Therefore mathematically there should
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be an embedding from the normative system of authoritarianism to the normative system of

totalitarianism. The following is an illustration.

Example 5.5. Let B1, S1 be same as in the previous example. Let G be “you like Gaddafi”, F be “you are a

follower of Gaddafi”, A be “you dislike America”. Let B3 be the Boolean algebra generated by {G, F, A}. Let

S3 = {(>, G)} be the normative system saying “you are obligatory to like Gaddafi”. For joining-systems

(B1,B1, S1) and (B3,B3, S3), we can build an embedding h such that h(G) = H, h(F) = N, h(A) = J.

We therefore say that S1 is an extension of S3.

It must be confessed that our examples greatly simplify the complexity of political philosophy

to a degree that lots of valuable information is lost. However, we still believe that the algebraic

approach offers an interesting mathematical tool for political philosophy in the sense that more

complex normative systems can also be characterized by joining-systems based on more expressive

algebras. For example the expressive power of polyadic algebra is the same as first-order logic

(Sági, 2013). We may develop polyadic joining-systems to represent normative systems. Using

polyadic joining-systems we can discuss the similarity of different ideology without losing too

much valuable information.

5.5.2 The core of a normative system

In Section 5.3 the narrowness relation � is defined as (a, x) � (b, y) iff b ≤A a and x ≤B y. We

further define the strict narrowness relation ≺ as (a, x) ≺ (b, y) iff (a, x) � (b, y) and not (b, y) �

(a, x). Intuitively, if (a, x) ≺ (b, y) then (a, x) is stronger than (b, y) in the sense that if (a, x) is in a

joining-systems, then (b, y) must also be in the joining-systems, but not vice verse.

We now use the strict narrowness relation to define the core of a normative system. A norm

(a, x) is minimal in a joining-systems S = (A,B, S) iff there is no (b, y) ∈ S such that (b, y) ≺ (a, x).

In Odelstad and Lindahl (2002), such a minimal norm is called a connection from A to B. As noticed

by Odelstad and Lindahl (2002), the set of all minimal elements of a joining-systems can be viewed

as the core of the system in the sense that the whole system is uniquely determined by its minimal

norms. Therefore we can logically deduce the whole system, if we know the core of the system.

For a joining-systems S, let core(S) = {(a, x) ∈ S : (a, x) is minimal in S} denote the set of all its

minimal norms. The following are some formal statements about the properties of the core of finite

joining-systems.

Observation 5.1. For every joining-systems S = (A,B, S), if S is finite then core(S) 6= ∅.

Proof. The proof is trivial. Due to the fact that S is finite, there is no infinite descending chain on

≺.
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Observation 5.2. For all joining-systems S = (A,B, S), if S is finite, then for any (a, x) ∈ S, there exists

(b, y) ∈ core(S) such that (b, y) � (a, x).

Proof. Let (a, x) be an arbitrary norm in S. If (a, x) ∈ core(S), then (a, x) � (a, x) and we are

done. If (a, x) /∈ core(S), then (a, x) is not a minimal norm. Hence there exist some (b, y) such that

(b, y) ≺ (a, x). If (b, y) ∈ core(S) then we are done. If not, then there exist some (c, z) such that

(c, z) ≺ (b, y). Since S is finite, this procedure will stop at some point. Then by transitivity of �,

there must exist some (a′, x′) ∈ core(S) such that (a′, x′) � (a, x).

Observation 5.3. For two joining-systems S = (A,B, S) and S′ = (A,B, S′),if both S and S′ are finite,

then core(S) = core(S′) iff S = S′.

Proof. The right to left direction is trivial. For the left to right direction. Assume core(S) = core(S′).

For any (a, x) ∈ S, by Observation 2 there exist (b, y) ∈ core(S) such that (b, y) � (a, x). By

assumption we know (b, y) ∈ core(S′). Then by the definition of joining space we know (a, x) ∈ S′.

Therefore S ⊆ S′. Similarly we can prove S ⊇ S′.

All the three observations are valid only for finite joining-systems. Observation 5.1 states that

the core always exist. Observation 5.3 states that the whole system is determined by the core.

Regarding observation 5.2, it states that for any norms which is not in the core, there is a norm

in the core which is stronger and therefore able to generate it. Observation 5.2 partly answers the

problem of norms redundancy, which is raised by Boella et al. (2008b) and addressed by van der

Torre (2010a). According to observation 5.2, all norms which are not in the core are redundant.

5.6 Related work

In Makinson and van der Torre (2000) , norms are simply ordered pairs of formula. Operators on

norms are not defined. Such limitation is overcame in Stolpe (2010a) by introducing conjunction

(∧) and disjunction (∨) of norms. For two norms (a, x) and (b, y), Stolpe defines:

• (a, x)∧(b, y) := (a ∨ b, x ∧ y)

• (a, x)∨(b, y) := (a ∧ b, x ∨ y)

Using such definition, Stolpe shows that the structure (LP × LP,∧,∨, (>,⊥), (⊥,>)) is indeed a

bounded lattice with (>,⊥) the bottom element and (⊥,>) the top element. The negation of a

norm (a, x) is then naturally defined as −(a, x) := (¬a,¬x) because (a, x)∧(¬a,¬x) = (a ∨ ¬a, x ∧

¬x) = (>,⊥).
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It is well known in lattice theory (Garg, 2015) that every lattice can alternatively be defined as an

ordered structure. Take the Lindenbaum-Tarski algebra L = (L≡P ,+, ·,−, 0, 1) and the narrowness

relation � over L× L. Then it can be verified that (L× L,�, ([1], [0]), ([0], [1])) is also a bounded

lattice. These two approaches to define the lattice of norms reveals further connections between

input/output logic and theory of joining-systems.

Stolpe (2015) provides a semantics for input/input output logic based on formal concept

analysis. Stolpe offers powerful analytical techniques for classifying, visualising and analysing

input/output relations, revealing implicit hierarchical structure and/or natural clusterings and

dependencies.

5.7 Summary

The main contribution of this chapter is the presentation of some algebraic frameworks to

normative systems. We have introduced Boolean joining-systems as the algebraic semantics

for input/output logic and Heyting joining-systems as the algebraic semantics for intuitionistic

input/output logic. Those algebraic semantics provides algebraic representation of norms and

normative systems. We have introduced isomorphism and embedding of joining-systems and used

them to study the similarity of normative systems.
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Chapter 6

On the Complexity of Norm-based

Deontic Logic I

Abstract

It is well-known in theoretical computer science that complexity is an indispensable component

of every logic. So far, previous literature in input/output logic focuses on proof theory and

semantics, and neglects complexity. This chapter adds the missing important component by giving

the complexity results of several decision problems of input/output logic. Our results show that

input/output logic is coNP-hard and in the 2nd level of the polynomial hierarchy.
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6.1 Introduction

Recently, deontic logic has found its application in legal informatics (Governatori et al., 2013). Legal

informatics is experiencing growth in activity in recent years, also at the industrial level. Several

research projects aimed at designing web services for helping legal professionals to retrieve the

information they are interested in have been approved recently by the EU commission and other

institutions, e.g. Legivoc∗. These projects discover inter-links between legal documents or classify

and connect them to legal ontologies, by exploiting natural language processing (NLP) tools such

as parsers and statistical algorithms (Boella et al., 2014, 2013). Although these techniques provide

valid solutions to help navigate legislation, the overall usefulness of the systems are limited due

to their focus on terminological issues and information retrieval while disregarding the specific

semantic aspects, which allow legal reasoning. It becomes necessary to study the logical architecture

of legal text, in order to enable deeper understanding of legislative text by human users and

intelligent systems.

Nevertheless, such applications to legal informatics can only be developed if the complexity

of norm-based deontic logics is well studied. Moreover, it is well-known in theoretical computer

science that complexity is an indispensable component of every logic. So far, previous literature on

norm-based deontic logics (except deontic defeasible logic) focuses on proof theory and semantics,

and neglects complexity. This and the next chapter add the missing important component of norm-

based deontic logics. Our results in this chapter show that most decision problems of input/output

logic are NP-hard and in the 2nd level of the polynomial hierarchy, which means that although the

complexity of input/output logic is not low, it is not astonishingly high. For example modal logic

is at least as complex as input/output logic because modal logic is PSPACE-complete. We study

the complexity of other norm-based deontic logic in the next chapter.

The rest of this chapter is organized as follows. We recap some background knowledge

of complexity theory in Section 6.2. Then from Section 6.3 to 6.5 we study the complexity of

unconstrained/constrained/permissive input/output logic respectively. In Section 6.6 we show

how to reduce the complexity of input/output logic by imposing syntactical constrains. We

summarize this chapter in Section 6.7.

6.2 Background: computational complexity theory

Computational complexity theory is the theory to investigate the time, memory, or other resources

required for solving computational problems. In this section we briefly review some concepts and

∗http://www.legivoc.eu
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Figure 6.1: Turing machine visualized

results from computational complexity theory which will be used in this chapter. A comprehensive

introduction of complexity theory can be found in Arora and Barak (2009) and Sipser (2012).

Definition 6.1 (Turing machine (Sipser, 2012)). A Turing machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject),

where Q, Σ, Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol xy,

3. Γ is the tape alphabet, where xy ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ 7→ Q× Γ× {L, R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state, where qaccept 6= qreject

Figure 6.1 is a visualization of a Turing machine. Given a string w = w1w2 . . . wn ∈ Σ∗ and a

Turing machine M = (Q, Σ, Γ, δ, qaccept, qreject), M computes w as follows.

• Initially w is put in the tape and the machine is in the start state q0 and reading the first symbol

of w using its tape head.
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• At each step, M is in some state q and reading a symbol from the tape, say s. M then looks

up the transition function δ and moves accordingly. For example, if δ(q, s) = (q′, s′, L) then

M move to state q′, overwrites the symbol s with s′ on the tape and moves the tape head to

the left.

• M stops if it is in the state qaccept or qreject. These two states are called halting states. M accepts

w if it stops with state qaccept. M rejects w if it stops with state qreject.

When we start a Turing machine on an input, three outcomes are possible: accept, reject, or loop.

By loop we mean the machine never enters a halting state. A Turing machine is called a decider if

it halts on every input. Given a decider M, the language decided by M is the set of strings accepted

by M, denoted L(M). A function f : Σ∗ 7→ Σ∗ is computable if there is a decider M, on every input

w, halts with just f (w) on its tape.

A decision problem consists of a set of inputs and a question with a “yes” or “no” answer for

each input. Every language L ⊆ Σ∗ gives rise to the following decision problem: given x ∈ Σ∗, is

x ∈ L? Conversely, every decision problem can be thought of as arising from a language, namely,

the language consisting of all inputs with a “yes” answer.

A non-deterministic Turing machine is defined similarly to a deterministic Turing machine. The

only difference is that the transition function of a non-deterministic Turing machine has the form

δ : Q× Γ 7→ 2Q×Γ×{L,R}.

The computation of a non-deterministic Turing machine is a tree whose branches correspond to

different possibilities of computation. If some branches of the computation leads to the accept state,

the machine accepts the input. A non-deterministic decider is a non-deterministic Turing machine

such that for all input, the computation tree has no infinite branch. Every decider, deterministic or

non-deterministic, has its time complexity.

Definition 6.2 (Time complexity (Sipser, 2012)). Given a deterministic decider M, the time complexity

of M is the function f : N 7→ N, where f (n) is the maximum number of steps that M uses on any input

of length n. Given a non-deterministic decider M, the time complexity of M is the function f : N 7→ N,

where f (n) is the maximum number of steps that M uses on any branch of its computation on any input of

length n.

Let f and g be functions f , g : N 7→N. Say f ∈ O(g) if positive integers c and n0 exist such that

for every integer n ≥ n0

f (n) ≤ cg(n).
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A decider M is polynomial in time if its time complexity is in O(nc) for some natural number c.

Here nc : N 7→N is understood as a function such that for all k ∈N, nc(k) = kc.

Definition 6.3 (the P class (Sipser, 2012)). P is the class of languages that have a polynomial time

deterministic decider.

Definition 6.4 (the NP class (Sipser, 2012)). NP is the class of languages that have a polynomial time

non-deterministic decider.

The complement of a language L ⊆ Σ∗ is the language L = {w ∈ Σ∗ : w 6∈ L}.

Definition 6.5 (the coNP class (Sipser, 2012)). coNP is the class of languages of which the complement

is in NP .

Definition 6.6 (Reduction (Sipser, 2012)). Given two language L ⊆ Σ∗ and L′ ⊆ Σ′∗, a reduction from

L to L′ is a function f : Σ 7→ Σ′ such that for all w ∈ Σ∗, w ∈ L iff f (w) ∈ L′. A reduction f is polynomial

if f is computable by a polynomial time Turing machine.

Definition 6.7 (NP-complete and coNP-complete (Sipser, 2012)). A language L is NP (resp. coNP )-

complete if it is in NP (resp. coNP ) and for every L′ in NP (resp. coNP ) there is a polynomial reduction

from L′ to L.

Definition 6.8 (NP-hard and coNP-hard (Sipser, 2012)). A language L is NP (resp. coNP )-hard if for

every L′ in NP (resp. coNP ) there is a polynomial reduction from L′ to L.

A well known NP-complete problem (proven by Cook (1971) and Levin (1975)) is the satisfia-

bility problem of propositional logic (SAT): given a propositional formula x, is x satisfiable? As

a consequence, the validity problem of propositional logic (given a propositional formula x, is x

valid?) is coNP-complete.

The boolean hierarchy is the hierarchy of boolean combinations (intersection, union and

complementation) of NP classes. BH1 is the same as NP. BH2 is the class of languages which are the

intersection of a language in NP and a language in coNP. Wagner (1986) shows that the following

2-parity SAT problem is complete for BH2:

Given two propositional formulas x1 and x2 such that if x2 is satisfiable then x1 is satisfiable, is it

true that x1 is satisfiable while x2 is not?

Oracle Turing machine and two complexity classes related to oracle Turing machine will be used in

this thesis.

104



Definition 6.9. 3.1 (oracle Turing machine Arora and Barak (2009)) An oracle for a language L is a

device that is capable of reporting whether any string w is a member of L. An oracle Turing machine ML is

a modified Turing machine that has the additional capability of querying an oracle. Whenever ML writes a

string on a special oracle tape it is informed whether that string is a member of L, in a single computation

step.

PNP is the class of problems solvable by a deterministic polynomial time Turing machine with an

NP oracle. NPNP is the class of problems solvable by a non-deterministic polynomial time Turing

machine with an NP oracle. PNP, NPNP and coNPNP are also termed as ∆p
2 , Σp

2 and Πp
2 respectively, to

mark the fact that PNP, NPNP and coNPNP belong to the 2nd level of the polynomial hierarchy. ∆p
i+1 is

the class of problems solvable by a deterministic polynomial time Turing machine with a ∆p
i oracle.

Σp
i+1 is the class of problems solvable by a non-deterministic polynomial time Turing machine with

a Σp
i oracle. Πp

i+1 is the complement of Σp
i+1.

6.2.1 Modal logic

Some complexity results about modal logic will be used in this chapter. For the sake of self-

containment, we here give a very short review of modal logic.

Definition 6.10 (modal language (Blackburn et al., 2001)). Given a set P of propositional letters, the

language of modal logic LM is the smallest set such that:

1. P ⊆ LM.

2. if x ∈ LM, then ¬x ∈ LM.

3. if x ∈ LM and y ∈ LM, then x ∧ y ∈ LM.

4. if x ∈ LM, then �x ∈ LM.

♦x is used as an abbreviation of ¬�¬x. The modal depth of a modal formula is define as

• md(p) = 0, for all p ∈ P,

• md(¬x) = md(x),

• md(x ∧ y) = max{md(x), md(y)}

• md(�x) = md(x) + 1

The semantics of modal logic is constructed using relational models.

Definition 6.11 (Relational model (Blackburn et al., 2001)). A relational model M = (W, R, V) is a

tuple where:
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• W is a (non-empty) set of possible worlds: w, w′, . . .

• R ⊆W ×W is a binary relation over W.

• V : P 7→ 2W is a valuation function for propositional letters such that V(p) ⊆W.

Definition 6.12 (Satisfaction (Blackburn et al., 2001)). Given a relational model M = (W, R, V) and a

world w ∈ W, the satisfaction relation M, w � x (read as “world w satisfies x in model M”) is defined by

induction on the structure of x using the following clauses

• M, w � p iff w ∈ V(p).

• M, w � ¬x iff M, w 6� x.

• M, w � x ∧ y iff M, w � x and M, w � y.

• M, w � �x iff for all w′ ∈W, if (w, w′) ∈ R then M, w′ � x.

A modal logic formula x is K-valid, denoted as �K x, if for all relational modal M = (W, R, V)

and all world w ∈ W, M, w � x holds. A modal logic formula x is T-valid, denoted as �T x, if for

all relational modal M = (W, R, V) where R is reflexive and all world w ∈ W, M, w � x holds.

The K-validity problem of modal logic is: give a modal formula x, does �K x hold? Similarly for

the T-validity problem. The satisfiability problem is the complement of the validity problem. The

following complexity results of modal logic will be used in this chapter:

Theorem 6.1. (Halpern, 1995)

1. The K-satisfiability problem for formulas of model depth 1 is NP-complete.

2. The T-satisfiability problem for formulas of model depth 1 is NP-complete.

3. The K-validity problem for formulas of model depth 1 is coNP-complete.

4. The T-validity problem for formulas ofmodel depth 1 is coNP-complete.

Given a set of modal formulas A, A �K x holds if for all relational model M = (W, R, V) and all

worlds w ∈ W, if M, w � a, for all a ∈ A, then M, w � x. A �T x holds if for all relational model

M = (W, R, V) where R is reflexive and all worlds w ∈W, if M, w � a, for all a ∈ A, then M, w � x.

When A is finite, it is proven that A �K x iff �K
∧

A → x and A �T x iff �T
∧

A → x (Blackburn

et al., 2001).
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6.3 Complexity of unconstrained input/output logic

The complexity of input/output logic was sparsely studied in the past. Although the reversibility

of derivations rules as a proof re-writing mechanism was studied for input/output logic (Makinson

and van der Torre, 2000), the length or complexity of such proofs was not developed. We approach

the complexity of unconstrained input/output logic from a semantic point of view. We focus on

the following fulfillment problem:

• Given a finite set of mandatory norms O, a finite set of formulas A and a formula x, is x ∈

out(O, A)?

6.3.1 Complexity of out1 and out+1

We start with the complexity of out1. The following theorem shows that out1 has the same

complexity as propositional logic in the sense that both the fulfillment problem of out1 and the

validity problem of propositional logic are coNP-complete.

Theorem 6.2. The fulfillment problem of simple-minded input/output logic out1 is coNP-complete.

Proof. Concerning the coNP hardness, we prove by reducing the validity problem of propositional

logic to the fulfillment problem of simple-minded input/output logic: given an arbitrary x ∈ LP,

` x iff x ∈ Cn(>) iff x ∈ Cn(O(Cn(A))) where O = ∅ iff x ∈ out1(O, A) where O = ∅.

Now we prove the coNP membership. We provide the following non-deterministic Turing

machine to solve the complement of our problem. Let O = {(a1, x1), . . . , (an, xn)}, A be a finite

set of formulas and x be a formula.

1. Guess a sequence of valuations V1, . . . , Vn and V′ on the propositional letters appearing in

A∪ {a1, . . . , an} ∪ {x1, . . . , xn} ∪ {x}. Every guess creates a branch in the computation tree of

the non-deterministic Turing machine.

2. Let O′ ⊆ O be the set of norms which contain all (ai, xi) such that Vi(A) = 1 and Vi(ai) = 0.

3. Let X = {x : (a, x) ∈ O−O′}.

4. If V′(X) = 1 and V′(x) = 0. Then return “accept” on this branch. Otherwise return “reject”

on this branch.

It can be verified that x 6∈ Cn(O(Cn(A))) iff the algorithm returns “accept” on some branches

and the time complexity of the Turing machine is polynomial. The main intuition of the Turing

machine is: O′ collects all norms which cannot be triggered† by A. On some branches we must have
†We say a norm (a, x) is triggered by A if a ∈ Cn(A)).
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that O′ contains exactly all those norms which are not triggered by A. In those lucky branches X is

the same as O(Cn(A)). If there is a valuation V′ such that V′(X) = 1 and V′(x) = 0, then we know

x 6∈ Cn(X) = Cn(O(Cn(A))).

To solve the complexity of out+1 we make use of the following lemma, which gives suggestions

to a procedure to solve the fulfillment problem of out+1 .

Lemma 6.1. out+1 (O, A) = Cn(A ∪O(Cn(A))).

Proof. Assume x ∈ out+1 (O, A) = out1(Oid, A). Then x ∈ Cn(Oid(Cn(A))) = Cn((O ∪ {(a, a) :

a ∈ LP})(Cn(A))) = Cn(O(Cn(A)) ∪ ({(a, a) : a ∈ LP})(Cn(A))) = Cn(O(Cn(A)) ∪ Cn(A)).

Therefore there are some x1, . . . , xn ∈ O(Cn(A)) ∪ Cn(A) such that x1 ∧ . . . ∧ xn ` x. Without loss

of generality, assume x1, . . . , xn−1 ∈ O(Cn(A)) and xn ∈ Cn(A). Then there are some y1, . . . , ym

such that y1 ∧ . . . ∧ ym ` xn. Then we know x1, . . . , xn−1, y1, . . . , ym ∈ O(Cn(A)) ∪ A and x1 ∧

. . . , xn−1 ∧ y1 ∧ . . . ∧ ym ` x. Therefore x ∈ Cn(A ∪O(Cn(A))).

Assume x ∈ Cn(A∪O(Cn(A))), then x ∈ Cn(Cn(A)∪O(Cn(A))) = Cn(O(Cn(A))∪ ({(a, a) :

a ∈ LP})(Cn(A))) = Cn(Oid(Cn(A))) = out+1 (O, A).

Theorem 6.3. The fulfillment problem of simple-minded output throughput input/output logic out+1 is

coNP-complete.

Proof. Concerning the lower bound, we prove by a reduction from the validity problem of

propositional logic: given arbitrary x ∈ LP, ` x iff x ∈ Cn(>) iff x ∈ Cn(A ∪O(Cn(A))) where

O = ∅ = A iff x ∈ out+1 (O, A) where O = ∅ = A.

Concerning the upper bound, we prove by giving a non-deterministic Turing machine similar

to the one in the proof of Theorem 6.2. The only change is now in step 4 we test if V′(A ∪ X) = 1

and V′(x) = 0. It can be verified that x 6∈ Cn(A ∪O(Cn(A))) iff the non-deterministic Turing

machine returns “accept” on some branch. By Lemma 6.1 we know this Turing machine solves our

problem.

6.3.2 Complexity of out2 and out+2

Makinson and van der Torre (2000) introduce s(O) = {x : (a, x) ∈ O} as the projection of O to the

second component of its consisting norms and O� = {a→ �x : (a, x) ∈ O}. Here� is the necessity

modality of modal logic. The following theorem reveals the relation between basic input/output

logic and modal logic, and is useful in the study of complexity.

Theorem 6.4. (Makinson and van der Torre, 2000)
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x ∈ out2(O, A) iff x ∈ Cn(s(O)) and O� ∪ A �K �x.

Theorem 6.5. The fulfillment problem of basic input/output logic out2 is coNP-complete.

Proof. Concerning the lower bound, we prove by a reduction from the validity problem of

propositional logic: given arbitrary x ∈ LP, ` x iff x ∈ Cn(∅) iff x ∈ out2(O, A) where O = ∅.

Concerning the upper bound, we prove by polynomially reducing the fulfillment problem of

basic input/output logic to the validity problem of modal logic K with modal depth 1. Theorem

6.4 gives us the key idea of the reduction. By Theorem 6.4, x ∈ out2(O, A) iff �K (
∧

s(O) →

x) ∧ ((
∧

O� ∧ A)→ �x). Then by Corollary 6.1 we know the upper bound is coNP.

Now we study the complexity of out+2 and out+4 . We make use of the materialisation of

norms introduced by Makinson and van der Torre (2000). Let m(O) = {a → x : (a, x) ∈ O}

be materialisation of O. That is, the operator m(•) transforms a norms (a, x) into an classical

implication a → x. The following theorem shows that out+2 and out+4 can be reduced to

propositional logic via the materialisation of norms.

Theorem 6.6. (Makinson and van der Torre, 2000) out+2 (O, A) = out+4 (O, A) = Cn(A ∪m(O)).

Theorem 6.7.

1. The fulfillment problem of basic throughput input/output logic out+2 is coNP-complete.

2. The fulfillment problem of basic reusable throughput input/output logic out+4 is coNP-complete.

Proof. Given Theorem 6.6, the proof is routine: x ∈ out+2 (O, A) iff x ∈ Cn(A∪m(O)) iff A∪m(O) `

x iff ` ∧
(A ∪m(O))→ x.

6.3.3 Complexity of out3 and out+3

Theorem 6.8. The fulfillment problem of simple-minded reusable input/output logic out3 is between coNP

and PNP.

Proof. The lower bound can be proved using the same reduction as in the the proof of the lower

bound of out1. Concerning the upper bound, we provide the following algorithm on a oracle Turing

machine with an NP oracle.

Let O = {(a1, x1), . . . , (an, xn)}, A be a finite set of formulas and x be a formula.

1. Let X := A, Y := Z := O, U := ∅.

2. for each (ai, xi) ∈ Y, ask the oracle if X ` ai holds.
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(a) If “yes”, then let X := X ∪ {xi}, Z := Z− {(ai, xi)}.

(b) Otherwise do nothing.

3. If Y = Z, then goto 4. Otherwise let Y := Z, goto step 2.

4. for each (ai, xi) ∈ O, ask the oracle if X ` ai holds.

(a) If “yes”, then let U := U ∪ {xi}.

(b) Otherwise do nothing

5. Ask the oracle if U ` x holds.

(a) If “yes”, then return “accept”.

(b) Otherwise return “reject”.

The intuition of this Turing machine is: we start with input X equals to A, and then we add to X

gradually all the consequences of the norms that are triggered. Y and Z collects the norms that

at step i have not been processed yet and we use whether Y = Z to test if we have triggered all

those norms which can possibly be triggered. At step 4, we have expanded the input X such that it

contains both facts A and all consequences of those norms which can be triggered. Then we use U

to collect all the consequences of those norms which is triggered by X. Finally we test if U implies

x.

The inductive characterization presented in Section 4.3.1 is useful to prove the correctness of

the above algorithm. Here we just state some crucial points: from step 1 to step 3, the algorithm

generates X as BO
A. At step 4, X contains both A and all consequences of those norms which can be

triggered by BO
A. Then we generate U, which is understood as O(X).

Concerning the time complexity, the times of the for-loop in step 2 is at most n. Each loop can

be finished in polynomial time. Therefore all the loops in step 2 can be done in polynomial time.

Step 3 calls for step 2 for at most n times. Therefore it can still be done in polynomial time. The

times of loop in step 4 is exactly n. Each loop can be finished in polynomial time. Therefore all the

loops in step 4 can be done in polynomial time. Step 5 can be done in polynomial time. Therefore

the algorithm is polynomial.

We use the following examples to illustrate how the above algorithm works.

Example 6.1. Let p, q, r, s and t be propositional letters. Let O = {(p, q), (q, r), (p∧ r, s), (t, t)}, A = {p},

t→ s ∈ out3(O, A) is computed as follows:

1. Let X = A = {p}, Y = Z = O = {(p, q), (q, r), (p ∧ r, s), (t, t)}, U = ∅.
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2. Compute whether {p} ` p, {p} ` q, {p} ` p ∧ r, {p} ` t.

3. Let X = {p, q}, Z = {(q, r), (p ∧ r, s), (t, t)}.

4. Compare if Y = Z. The result is negative. So let Y = {(q, r), (p ∧ r, s), (t, t)}

5. Compute whether {p, q} ` q, {p, q} ` p ∧ r, {p} ` t.

6. Let X = {p, q, r}. Z = {(p ∧ r, s), (t, t)}.

7. Compare if Y = Z. The result is negative. So let Y = {(p ∧ r, s), (t, t)}.

8. Compute whether {p, q, r} ` p ∧ r, {p} ` t.

9. Let X = {p, q, r, s}. Z = {(t, t)}.

10. Compare if Y = Z. The result is negative. So let Y = {(t, t)}.

11. Compute whether {p, q, r, x} ` t.

12. Let X = {p, q, r, s}. Z = {(t, t)}.

13. Compare if Y = Z. The result is positive.

14. Compute whether {p, q, r, s} ` p, {p, q, r, s} ` q, {p, q, r, s} ` p ∧ r, {p, q, r, s} ` t.

15. Let U = {q, r, s}.

16. Compute whether {q, r, s} ` t→ s. The answer is positive, so we conclude t→ s ∈ out3(O, A).

Theorem 6.9. The fulfillment problem of simple-minded reusable throughput input/output logic out+3 is

between coNP and PNP.

Proof. The lower bound can be proved using the same reduction as in the the proof of the lower

bound of out1. Concerning the upper bound, we prove by giving an algorithm similar to the one in

the proof of Theorem 6.8. We make the following change:

• In step 2 and 4 we ask the oracle if A ∪ X ` ai holds.

• In step 5 we ask the oracle if A ∪U ` x is holds.

Example 6.2. Let p, q, r and s be propositional letters. Let O = {(p, q∧ r), (p∧ r, s)}, A = {p}, ¬p∧ s ∈

out+3 (O, A) is computed as follows:

1. Let X = A = {p}, Y = Z = O = {(p, q ∧ r), (p ∧ r, s)}, U = ∅.
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2. Compute whether {p} ` p, {p} ` p ∧ r.

3. Let X = {p, q ∧ r}, Z = {(p ∧ r, s)}.

4. Compare if Y = Z. The result is negative. So let Y = {(p ∧ r, s)}.

5. Compute whether {p, q ∧ r} ` p ∧ r.

6. Let X = {p, q ∧ r, s}. Z = ∅.

7. Compare if Y = Z. The result is negative. So let Y = ∅.

8. Compute whether {p, q ∧ r, s} ` p, {p, q ∧ r, s} ` p ∧ r

9. Let U = {r, s}.

10. Compute whether A ∪U = {p, r, s} ` ¬p ∧ s. The answer is negative, so we conclude ¬p ∧ s 6∈

out+3 (O, A).

6.3.4 Complexity of out4

Similar to out2, out4 can also be translated to modal logic.

Theorem 6.10. (Makinson and van der Torre, 2000) x ∈ out4(O, A) iff x ∈ Cn(s(O)) and O� ∪ A �T

�x.

Theorem 6.11. The fulfillment problem of basic reusable input/output logic out4 is coNP-complete.

Proof. The lower bound can be proved using the same reduction as in the the proof of the lower

bound of out1. Concerning the upper bound, we prove by polynomially reducing the fulfillment

problem of basic reusable input/output logic to the validity problem of modal logic T with modal

depth 1. Theorem 6.10 gives us the key idea of the reduction. By Theorem 6.10, x ∈ out4(O, A)

iff �T (
∧

s(O) → x) ∧ ((
∧

O� ∧ A) → �x). Then by Theorem 6.1 we know the upper bound is

coNP.

6.4 Complexity of constrained input/output logic

In the constrained setting, a finite set of mandatory norms O and a subset O′ ⊆ O, a finite set

of input A and a finite set of constrains C are given. We study the complexity of the following

problems:

• consistency checking: is outi(O, A) consistent with C?

112



• maxfamily membership: is O′ ∈ max f amilyi(O, A, C)?

• full-join fulfillment: is x ∈ out∪i (O, A, C)?

• full-meet fulfillment: is x ∈ out∩i (O, A, C)?

Theorem 6.12.

• For i ∈ {1, 2, 4, 1+, 2+, 4+}, the consistency checking problem is NP-complete.

• For i ∈ {3, 3+}, the consistency checking problem is NP-hard and in PNP.

Proof. The NP-hard problem SAT can be reduced to the consistency checking problem, which

gives us the result of the lower bound. The consistency checking problem can be solved by a

reduction to the complement of the fulfillment problem, which gives us the result of the upper

bound: outi(O, A) is consistent with C iff C ∪ outi(O, A) is satisfiable iff outi(O, A) 6` ¬∧
C iff

¬∧
C 6∈ outi(O, A).

We show now that the maxfamily membership problem is BH2-complete, where BH2 is the class of

languages which are the intersection of a language in NP and a language in coNP (cf. section 6.2

above).

Theorem 6.13. For i ∈ {1, 2, 4, 1+, 2+, 4+}, the maxfamily membership problem is BH2-complete.

Proof. The BH2 hardness can be proved by a reduction from the 2-Parity SAT problem. Given two

propositional formulas x1 and x2 such that if x2 is satisfiable then x1 is satisfiable. Our aim is to

decide if x1 is satisfiable meanwhile x2 is not satisfiable.

Let O = {(>, x1 ∨ x2), (>, x2)}, A = C = ∅, O′ = {(>, x1 ∨ x2)}.

• If O′ ∈ max f amilyi(O, A, C) then outi(O′, A) = Cn(x1 ∨ x2) is consistent and outi(O, A) =

Cn((x1 ∨ x2) ∧ x2) is inconsistent. Therefore x1 ∨ x2 is satisfiable and (x1 ∨ x2) ∧ x2 is not

satisfiable. Then we know x2 is not satisfiable. It then follows that x1 is satisfiable because

otherwise x1 ∨ x2 is not satisfiable.

• If x1 is satisfiable and x2 is not satisfiable, then x1 ∨ x2 is satisfiable. Therefore outi(O′, A) is

consistent and outi(O, A) is inconsistent. It then follows that O′ ∈ max f amilyi(O, A, C).

So we have proved x1 is satisfiable and x2 is not satisfiable iff O′ ∈ max f amilyi(O, A, C), which

proves the BH2 hardness.

Concerning the BH2 membership, let O = O′ ∪{(a1, x1), . . . , (an, xn)}. Then O′ ∈ max f amilyi(O,

A, C) iff C is consistent with outi(O′, A) but not consistent with outi(O′ ∪ {(aj, xj)}, A) for every
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j ∈ {1, . . . , n}. Since deciding if C is consistent with outi(O′, A) is in NP and deciding if

C is not consistent with outi(O′ ∪ {(aj, xj)}, A) is in coNP, we know that deciding if O′ ∈

max f amilyi(O, A, C) is in BH2.

Theorem 6.14. For i ∈ {3, 3+}, the maxfamily membership problem is BH2-hard and in PNP.

Proof. The BH2 hardness can be proved just like other input/output logics.

Concerning the upper bound, let O = O′ ∪{(a1, x1), . . . , (an, xn)}. Then O′ ∈ max f amily(O, A, C)

iff C is consistent with outi(O′, A) but not consistent with outi(O′ ∪ {(aj, xj)}, A) for every

j ∈ {1, . . . , n}. Since deciding if C is consistent with outi(O′, A) is in PNP and deciding if C

is not consistent with outi(O′ ∪ {(aj, xj)}, A) is also in PNP, we know that deciding if O′ ∈

max f amilyi(O, A, C) is in PNP.

Theorem 6.15. For i ∈ {1, 2, 3, 4, 1+, 2+, 3+, 4+}, the full-join fulfillment problem is NPNP-complete.

Proof. Concerning the NPNP membership, we prove by giving the following algorithm on a non-

deterministic Turing machine with an NP oracle to solve our problem.

1. Guess a subset O′ ⊆ O.

2. Use the NP oracle to test if O′ ∈ max f amilyi(O, A, C). If no, return “reject” on this branch.

Otherwise continue.

3. Use the NP oracle to test if x ∈ outi(O′, A). If x ∈ outi(O′, A), then return “accept” on this

branch. Otherwise return “reject” on this branch.

It can be verified that x ∈ out∪i (O, A, C) iff the non-deterministic Turing machine return

“accept” on some branches. Step 2 can be done in polynomial time steps because the maxfamily

membership problem is in PNP. Step 3 can also be done in polynomial time steps because the

fulfillment problem is also in PNP. Therefore the time complexity of this non- deterministic Turing

machine is polynomial.

Concerning the NPNP hardness, we show that the validity problem of 2-QBF∃ can be reduced to

the full-join fulfillment problem.

Let ∃p1 . . . pm∀q1 . . . qnΦ be a 2-QBF∃ where Φ is a propositional formula with variables in

{p1, . . . , pm, q1, . . . , qn}. Let A = C = ∅, O = {(>, p1), . . . , (>, pm), (>,¬p1), . . . , (>,¬pm), (>,

¬Φ)}. Our aim is to show that this 2-QBF∃ is valid iff Φ ∈ out∪i (O, A, C).

• If ∃p1 . . . pm∀q1 . . . qnΦ is valid, then there is a valuation V for {p1, . . . , pm} such that for

all valuations V′ for {q1, . . . , qn}, V ∪ V′ gives truth value 1 to Φ and 0 to ¬Φ. Let O′ =

{(>, p′1), . . . , (>, p′m)}, where each p′i is pi if pi ∈ V and it is ¬pi if pi 6∈ V. Then O′ ∈
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max f amilyi(O, A, C) because outi(O′, A) = Cn({p′1, . . . , p′m}) is consistent with C and adding

anything from {(>,¬p1), . . . , (>,¬pm), (>,¬Φ)} to O′ will destroy the consistency. Note that

Φ ∈ Cn({p′1, . . . , p′m}) by the construction of {p′1, . . . , p′m}. Therefore Φ ∈ outi(O′, A), which

further implies that Φ ∈ out∪i (O, A, C).

• If ∃p1 . . . pm∀q1 . . . qnΦ is not valid, then for all valuation V for {p1, . . . , pm} there is a

valuations V′ for {q1, . . . , qn} such that V ∪ V′ gives truth value 0 to Φ and 1 to ¬Φ. Let

O′ = {(>, p′1), . . . , (>, p′m), (>,¬Φ)} be an arbitrary set such that each p′i is either pi or ¬pi.

Then outi(O′, A) = Cn({p′1 . . . , p′m,¬Φ}), which is consistent. Moreover it can be verified

that O′ ∈ max f amilyi(O, A, C). Therefore ¬Φ ∈ outi(O′, A) and Φ 6∈ outi(O′, A). By the

construction we can further verified that O′ ranges over all elements of max f amilyi(O, A, C).

Then we conclude Φ 6∈ out∪i (O, A, C).

So we have reduced the validity problem of 2-QBF∃ to the full-join fulfillment problem, which

shows the latter is NPNP-hard.

In the setting of normative/legal reasoning, the full-meet and full-join fulfillment problems are

the two most important decision problems of input/output logic.

Theorem 6.16. For i ∈ {1, 2, 3, 4, 1+, 2+, 3+, 4+}, the full-meet fulfillment problem is coNPNP-complete.

Proof. Concerning the coNPNP membership, we prove by giving the following algorithm on a non-

deterministic Turing machine with an NP oracle to solve the complement of our problem.

1. Guess a subset O′ ⊆ O.

2. Use the NP oracle to test if O′ ∈ max f amilyi(O, A, C). If no, return “reject” on this branch.

Otherwise continue.

3. Use the NP oracle to test if x 6∈ outi(O′, A). If x 6∈ outi(O′, A), then return “accept” on this

branch. Otherwise return “reject” on this branch.

It can be verified that x 6∈ out∩(O, A, C) iff the non-deterministic Turing machine returns

“accept” on some branches. Step 2 can be done in polynomial time steps because the maxfamily

membership problem is in PNP. Step 3 can also be done in polynomial time steps because the

fulfillment problem is also in PNP. Therefore the time complexity of this non-deterministic Turing

machine is polynomial.

Concerning the coNPNP hardness, we show that the validity problem of 2-QBF∀ can be reduced

to the full-meet fulfillment problem.

115



Let ∀p1 . . . pm∃q1 . . . qnΦ be a 2-QBF∀ where Φ is a propositional formula with variables in

{p1, . . . , pm, q1, . . . , qn}. Let A = C = ∅, O = {(>, p1), . . . , (>, pm), (>,¬p1), . . . , (>,¬pm),

(>, Φ)}. Our aim is to show that this 2-QBF∀ is valid iff Φ ∈ out∩i (O, A, C).

• If ∀p1 . . . pm∃q1 . . . qnΦ is valid, then for all valuation V for {p1, . . . , pm} there is a valuation

V′ for {q1, . . . , qn} such that V ∪V′ gives truth value 1 to Φ and 0 to ¬Φ.

Let O′ = {(>, p′1), . . . , (>, p′m), (>, Φ)} be an arbitrary set such that each p′i is either pi or

¬pi. Then outi(O′, A) = Cn({p′1 . . . , p′m, Φ}), which is consistent. Moreover it can be verified

that O′ ∈ max f amilyi(O, A, C). Therefore Φ ∈ outi(O′, A). By the construction we can further

verify that O′ range over all elements of max f amilyi(O, A, C). Then we conclude Φ ∈ out∩i (O,

A, C).

• If ∀p1 . . . pm∃q1 . . . qnΦ is not valid, then there is a valuation V for {p1, . . . , pm} such that for

all valuations V′ for {q1, . . . , qn}, V ∪V′ gives truth value 0 to Φ and 1 to ¬Φ.

Let O′ = {(>, p′1), . . . , (>, p′m)}, where each p′i is pi if pi ∈ V and it is ¬pi if pi 6∈ V. Then O′ ∈

max f amilyi(O, A, C) because outi(O′, A) = Cn({p′1, . . . , p′m}) is consistent with C and adding

anything from {(>,¬p1), . . . , (>,¬pm), (>, Φ)} to O′ will destroy the consistency. Note that

¬Φ ∈ Cn({p′1, . . . , p′m}) by the construction of {p′1, . . . , p′m}. Therefore Φ 6∈ outi(O′, A),

which further implies that Φ 6∈ out∩i (O, A, C).

So, we have reduced the validity problem of 2-QBF∀ to the full-meet fulfillment problem, which

shows the latter is coNPNP-hard.

6.5 Complexity of permissive input/output logic

In this section we study the complexity of the following decision problems about permissive

input/output logic: given a finite normative system N = (O, P), a finite set of input A and a

formula x:

• negative permission checking: is x ∈ NegPermi(N, A)?

• positive-static permission checking: is x ∈ StaPermi(N, A)?

• positive-dynamic permission checking: is x ∈ DyPermi(N, A)?

Negative permission checking is relatively easy because it is simply the complement of the

fulfillment problem.

Theorem 6.17.
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1. For i ∈ {1, 2, 4}, the negative permission checking is NP-complete.

2. For i = 3, negative permission checking is NP-hard and in PNP.

Proof. The negative permission checking is complement to the fulfillment problem. That is, x ∈

NegPermi(N, A) iff ¬x 6∈ outi(O, A). Therefore the complexity of the negative permission checking

problem belongs to the complement complexity class of the fulfillment problem.

Positive-static permission checking is no harder than the fulfillment problem because both the

class coNP and PNP are closed under finite union.

Theorem 6.18.

1. For i ∈ {1, 2, 4}, the positive-static permission checking is coNP-complete.

2. For i = 3, the positive-static permission checking is coNP-hard and in PNP.

Proof. 1. Let P = {(a1, x1), . . . , (an, xn)}. Then x ∈ StaPermi(N, A) iff x ∈ outi(O ∪

{(a1, x1)}, A) ∪ . . . ∪ outi(O ∪ {(an, xn)}, A) iff x ∈ outi(O ∪ {(a1, x1)}, A) or x ∈ outi(O ∪

{(a2, x2)}, A) or . . . or x ∈ outi(O ∪ {(an, xn)}, A). Since the coNP class is closed under finite

union, we know that the positive-static permission checking problem is in coNP. The coNP

hardness can be proved by setting P = ∅ and reduce the fulfillment problem to the static

permission checking problem.

2. Similar to the above item. The PNP membership follows from the fact that the PNP class is

closed under finite union.

Positive-dynamic permission checking is harder than other permission checking as the follow-

ing theorem shows. The main source of complexity is that in positive-dynamic permission checking

we have to first guess a consistent input and then check if it produced some inconsistency.

Theorem 6.19. For i ∈ {1, 2, 3, 4}, the positive-dynamic permission checking is NPNP-complete.

Proof. The NPNP membership follows by guessing a consistent set of formulas C ⊆ f (O)∪ f (P)∪ A,

where f (O) = {a : (a, x) ∈ O} and f (P) = {b : (b, y) ∈ P}, then using an NP oracle to check if

⊥ ∈ StaPermi(N, C) ∪ outi(O ∪ {(
∧

A,¬x)}, C).

Concerning the NPNP hardness, we show that the validity problem of 2-QBF∃ can be reduced to

the positive-dynamic permission checking problem.

Let ∃p1 . . . pm∀q1 . . . qnΦ be a 2-QBF∃ where Φ is a propositional formula contains variables

only in {p1, . . . pm, q1, . . . , qn}.
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Let N = (O, P) where O = {(p1, p1), . . . , (pm, pm), (¬p1,¬p1), . . . , (¬pm,¬pm), (Φ,⊥), (¬Φ,>)},

P = ∅, A = ∅, x = ⊥. Our aim is to prove that ∃p1 . . . pm∀q1 . . . qnΦ is valid iff x ∈ DyPermi(N, A).

Note that x ∈ DyPermi(N, A) iff there is a consistent set C such that StaPermi(N, C) ∪ outi(O ∪

{(∧ A,¬x)}, C) is inconsistent, which means there is a consistent set C such that outi(O, C) ∪

outi(O ∪ {(>,¬⊥)}, C) is inconsistent. This is equivalent to say that there is a consistent set C

such that outi(O, C) is inconsistent. Moreover, the following are equivalent:

• There is a consistent set C such that outi(O, C) is inconsistent.

• There is a consistent C which is a subset of f (O) such that outi(O, C) is inconsistent.

• There is a set C which is a maximal consistent subset of f (O) such that outi(O, C) is

inconsistent.

Therefore x ∈ DyPermi(N, A) iff there is a set C which is a maximal consistent subset of f (O) such

that outi(O, C) is inconsistent. We now show that ∃p1 . . . pm∀q1 . . . qnΦ is valid iff there is a set C

which is a maximal consistent subset of f (O) such that outi(O, C) is inconsistent.

• If ∃p1 . . . pm∀q1 . . . qnΦ is valid, then there is a valuation V for {p1, . . . , pm} such that for all

valuations V′ for {q1, . . . , qn}, V ∪V′ gives truth value 1 to Φ.

Let C = {p′1, . . . , p′m, Φ}, where each p′i is pi if pi ∈ V and it is ¬pi if pi 6∈ V. Then C is a

maximal consistent subset of f (O). Moreover⊥ ∈ outi(O, C) because Φ ∈ C and (Φ,⊥) ∈ O.

• If ∃p1 . . . pm∀q1 . . . qnΦ is not valid, then for all valuation V for {p1, . . . , pm} there is a

valuations V′ for {q1, . . . , qn} such that V ∪ V′ gives truth value 0 to Φ and 1 to ¬φ. Let

C = {p′1, . . . , p′m,¬Φ}, where each p′i is pi if pi ∈ V and it is ¬pi if pi 6∈ V. Then C is

a maximal consistent subset of f (O). Therefore outi(O, C) = Cn({p′1, . . . , p′m,>}) which is

consistent.

So we have reduced the validity problem of 2-QBF∃ to the dynamic permission checking

problem, which shows the latter is NPNP-hard.

6.6 Tractable fragments of input/output logic

Results from Section 6.3 show that all unconstrained input/output logic are intractable. In this

section our task is to impose syntactic restrictions such that the decision problem of unconstrained

input/output logic is tractable (in P). For out1 and out3, we achieve tractability via Post Lattice. For

out2 and out4, Post Lattice seems not helpful in identifying tractable fragments. Alternatively, we
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conjecture that the tractable fragments of out2 and out4 can be achieved via modal Horn formula,

but we left it for future work. Tractable fragments of constrained/prioritized input/output logic

will be studied in Chapter 8.

SAT is the most fundamental and historically the first NP-complete problem. A natural

question, posed by Lewis (1979) is what is the sources of hardness of SAT. More precisely, Lewis

systematically restricted the language of propositional formula and shows that the complexity of

the SAT depending on the set of allowed boolean connectives. Lewis (1979) proved that SAT is

NP-complete iff the negation of implication, x ∧ ¬y can be simulated by the allowed connectives.

To simulate a logical connective f by a set of logical connectives B means that f can be obtained

from functions from B by composition. We can express this fact by saying that f is in the clone

generated by B, in symbols f ∈ [B]. For a clone B, every set B′ ⊆ B with [B′] = B is called a basis

(or base) of B.

Formally, an n-ary Boolean function is a function from {0, 1}n to {0, 1}. id is a special Boolean

function denotes the unary identity, id(x) = x. Let B be a set of Boolean functions. [B] is the

smallest set which extends B ∪ {id} and is closed under the following rule: If f (x1, . . . , xn) ∈ [B]

and X1, . . . , Xn are either Boolean variables or elements from [B], then f (X1, . . . , Xn) ∈ [B]. We say

that a class of Boolean functions [B] is closed if B = [B]. Closed classes are also referred to as clones.

This brings us into the realm of Post’s lattice, the lattice of all Boolean clones (Post, 1941).

Post identified all clones of Boolean functions and found a finite basis for each of them. He also

discovered the inclusion structure of the classes. We refer to some basic Boolean functions with

notations listed below:

• 0-ary Boolean functions: c0 =de f 0 and c1 =de f 1.

• 1-ary Boolean functions: not(x) = 1 iff x = 0. (In formulas we use ¬x or x for not(x).)

• some 2-ary Boolean functions: and(x, y) = 1 iff x = y = 1, or(x, y) = 0 iff x = y = 0,

xor(x, y) = 1 iff x 6= y, eq(x, y) = 1 iff x = y, imp(x, y) = 0 iff x = 1 and y = 0. (In formulas

we use ⊕ for xor.)

We briefly introduce some Boolean clones, a more detailed introduction to Boolean clones can be

found in Böhler et al. (2003):

• BF is the class of all Boolean functions.

• For a ∈ {0, 1}, a Boolean function f is called a-reproducing if f (a, . . . , a) = a. The clones Ra

contain all a-reproducing Boolean functions.
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• For (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n, we say (a1, . . . , an) ≤ (b1, . . . , bn) if ai ≤ bi for 1 ≤ i ≤

n. An n-ary Boolean function f is called monotonic if for all (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n

it holds that : if (a1, . . . , an) ≤ (b1, . . . , bn) then f (a1, . . . , an) ≤ f (b1, . . . , bn). The class of all

monotonic Boolean functions is denoted by M.

• A Boolean function f is called self-dual if for all a1, . . . , an ∈ {0, 1} we have f (a1, . . . , an) =

¬ f (a1, . . . , an). The class of all self-dual Boolean functions is called D.

• An n-ary Boolean function f is linear if there exist constants e0, . . . , en ∈ {0, 1} such that

f (x1, . . . , xn) = e0 ⊕ e1x1 ⊕ . . .⊕ enxn. The class of all linear Boolean functions is called L.

• Let T ⊆ {0, 1}n and a ∈ {0, 1}. We call T a-separating if there exists an i ∈ {1, . . . , n} such

that for all (b1, . . . , bn) ∈ T it holds that bi = a. A Boolean function f is called a-separating

if f−1(a) is a-separating. The function f is called a-separating of level k if every T ⊆ f−1(a)

with | T |= k is a-separating. The classes of all a-separating functions are called Sa and the

classes of a-separating functions of level k are called Sk
a.

• The class E is the class of all Boolean functions that can be described by formulas build over ∧,

0 and 1: E = { f ∈ BF : F(x1, . . . , xn) = c0∧ (c1∨ x1)∧ . . .∧ (cn ∨ xn) for some constants ci, 0 ≤

i ≤ n}. Analogously, V is the class of Boolean functions that can be described by formulas

build over ∨, 0 and 1.

• The class I2 contains all projections (i.e., all Boolean functions In
k with In

k (a1, . . . , an) = ak for

all a1, . . . , an ∈ {0, 1} and I contains all projections and additionally all constants (i.e., all

Boolean functions cn
a , a ∈ {0, 1}, with cn

a (a1, . . . , an) = a for all a1, . . . , an ∈ {0, 1}. N2 contains

all projections and all negations of projections. The class N contains N−2 and all constants.

For a finite set B of Boolean functions, Beyersdorff et al. (2009) define the Implication Problem

for B-formula IMP(B) as the following computational task: Given a finite set A of B-formulas and a

B-formula x, decide whether A ` x holds. The complexity of the implication problem is classified

in Beyersdorff et al. (2009). The results relevant to this chapter are summarized in the following

theorem.

Theorem 6.20 (Beyersdorff et al. (2009) ). Let B be a finite set of Boolean functions. Then IMP(B) is

• coNP-complete if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B] and

• in P for all other cases.

Since the source of complexity for out1, out3, out+1 , out+3 is the consequence relation ` of

propositional logic, we immediately have the following tractability result:
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Corollary 6.1. Let B be a finite set of Boolean functions such that S00 6⊆ [B], S10 6⊆ B and D2 6⊆ B.

Let A be a set of B-formulas, all formulas appear in O are B-formulas and x a B-formula. Deciding if

x ∈ outi(O, A) is in P, for i ∈ {1, 3, 1+, 3+}.

Proof. We only proof for i = 1, 3.

1. For the case of out1. Given finite O, A and x, let B = O(Cn(A)). The set B can be constructed

in polynomial time because now IMP(B) is in P. We then test if x ∈ Cn(B). Since IMP(B) is in

P, this step can be finished in polynomial time.

2. For the case of out3. Now since IMP(B) is in P, O(BO
a ) can be constructed in polynomial time.

Whether x ∈ Cn(O(BO
a )) can also be solved in polynomial time.

6.7 Summary

The present chapter is the first relevant work that gives a full characterization of basic computa-

tional tasks in input/output logic, namely: (1) fulfillment problem of unconstrained input/output

logic (2) consistency checking, (3) max f amily membership, (4) full join/meet fulfillment, and (5)

negative, positive-static, and positive-dynamic permission checking. Our main finding is that the

computational tasks from (1) to (5) are coNP-hard and in the 2nd level of the polynomial hierarchy.

More complexity results on norm-based deontic logics will be presented in the next chapter.
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Chapter 7

On the Complexity of Norm-based

Deontic Logic II

Abstract

This chapter is a continuation of the Chapter 6. In this chapter we study the complexity of

normative reasoning by investigating the complexity of prioritized input/output logic, prioritized

imperative logic and deontic default logic. We show prioritized input/output logic outp
1 , as well as

prioritized imperative logic, is complete for the 2ed level of the polynomial hierarchy while deontic

default logic is located in the 3ed level of the polynomial hierarchy.
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This chapter is a continuation of the Chapter 6. In Chapter 6, we do not consider priority

between norms. In this chapter we bring priority back to our logic. We study the complexity of

normative reasoning by investigating the complexity of prioritized input/output logic, prioritized

imperative logic and deontic default logic. We say a logic is located in the n-th level of the

polynomial hierarchy if it is ∆p
n-hard and in either Σp

n or Πp
n. Our results in this chapter show

that prioritized input/output logic outp
1 , as well as prioritized imperative logic, is complete for the

2ed level of the polynomial hierarchy while deontic default logic is located in the 3ed level of the

polynomial hierarchy.

Similar to Chapter 6, we mainly study the complexity of the fulfillment problem of norm-based

deontic logic. For prioritized input/output logic, the fulfillment problem is:

• Given a set of prioritized norms O≥, a set of input A, a set of constrains C and a formula x,

decide if x ∈ outp
i (O

≥, A, C).

For prioritized imperative logic, the fulfillment problem is:

• Given a set of prioritized norms O>, a set of input A and a formula x, decide if x ∈

outh
i (O

≥, A).

For deontic default logic, we introduce outd(O>, A) through a combination of Horty’s framework

and input/output logic. The idea is to view proper scenario as something similar to preferred

family.

Definition 7.1 (proper output). x ∈ outd(O>, A) iff x ∈ ⋂{out1(O′, A) : O′ ∈ propScenario(O,>

, A)}.

For deontic default logic, the fulfillment problem is:

• Given a set of prioritized norms O>, a set of input A and a formula x, decide if x ∈

outd(O>, A).

The complexity of prioritized default logic has been studied in Rintanen (1998a). Rintanen

investigates the complexity of three proposals of prioritized default logic: Brewka (1994), Baader

and Hollunder (1995) and Rintanen (1998b). Rintanen shows that Brewka’s logic has the same

complexity as the logic of Baader and Hollunder. Both of them are Πp
2 -complete. The logic of

Rintanen (1998b), however, is ∆p
3 -hard and in Πp

3 . Our results in this chapter show that outp
1 and

prioritized imperative logic have the same complexity as the prioritized default logic of Brewka,

Baader and Hollunder, while deontic default logic has similar complexity to Rintanen’s prioritized

default logic.
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7.1 Prioritized input/output logic

Recall that prioritized input/output logic is defined in Parent and van der Torre (2014a) as follows:

x ∈ outp
i (O

≥, A, C) iff x ∈ ⋂{outi(O′, A) : O′ ∈ preffamilyi(O
≥, A, C)}.

Here preffamilyi(O
≥, A, C) is the set of �-maximal elements of maxfamilyi(O, A, C). And � is

defined via O1 � O2 iff for all (a2, x2) ∈ O2 − O1, there is (a1, x1) ∈ O1 − O2 such that

(a1, x1) ≥ (a2, x2).

Lemma 7.1. Given O≥ = (O,≥), O′ ⊆ O and A, C two sets of formulas. Assume O′ ∈

maxfamily1(O, A, C). Then O′ ∈ preffamily1(O
≥, A, C) iff for all (a, x) ∈ O, if {(a, x)} ∪ ({(b, y) ∈

O′ : (b, y) ≥ (a, x)}) � O′ then out1({(a, x)} ∪ {(b, y) ∈ O′ : (b, y) ≥ (a, x)}, A) ∪ C is inconsistent.

Proof. (⇒) Assume O′ ∈ preffamily1(O
≥, A, C). Suppose there is (a, x) ∈ O such that {(a, x)} ∪

({(b, y) ∈ O′ : (b, y) ≥ (a, x)} � O′ and out1({(a, x)} ∪ {(b, y) ∈ O′ : (b, y) ≥ (a, x)}, A) ∪ C is

consistent. Then {(a, x)} ∪ ({(b, y) ∈ O′ : (b, y) ≥ (a, x)} can be extended to a maximal subset

of O, say O1, such that out1(O1, A) ∪ C is consistent. Then O1 ∈ maxfamily1(O, A, C). Note that

O1 � O′. This is because O1 ⊇ {(a, x)} ∪ {(b, y) ∈ O′ : (b, y) ≥ (a, x)}, {(a, x)} ∪ {(b, y) ∈ O′ :

(b, y) ≥ (a, x)} � O′ and the ordering relation� has the following property (which can be routinely

verified): if X ⊇ Y and Y � Z, then X � Z. Note that O1 � O′ contradicts our assumption that

O′ ∈ preffamily1(O
≥, A, C).

(⇐) Assume O′ 6∈ preffamily1(O
≥, A, C). Our aim is to find an (a, x) ∈ O such that {(a, x)} ∪

{(b, y) ∈ O′ : (b, y) ≥ (a, x)} � O′ and out1({(a, x)} ∪ {(b, y) ∈ O′ : (b, y) ≥ (a, x)}, A) ∪ C is

consistent.

From O′ 6∈ preffamily1(O
≥, A, C) we know there is O1 ∈ maxfamily1(O, A, C) such that O1 � O′,

because it is assumed that O′ ∈ maxfamily1(O, A, C). That is, O1 � O′ but O′ 6� O1. Since ≥ is

a weak linear order, we know there is some (a, x) ∈ O1 −O′ such that for all (b, y) ∈ O′ −O1,

(a, x) > (b, y).(∗)

Let O2 = {(a, x)} ∪ {(c, z) ∈ O′ : (c, z) ≥ (a, x)}.

We claim that O2 � O′. That is, O2 � O′ but O′ 6� O2. We first show that O2 � O′. Indeed,

for all (a′, x′) ∈ O′ −O2, by the construction of O2 we know that (a′, x′) 6≥ (a, x). Since ≥ is linear,

we infer that (a, x) > (a′, x′). Note that (a, x) 6∈ O′. Therefore we conclude that O2 � O′. From

(a, x) > (a′, x′) for all (a′, x′) ∈ O′ −O2, we also deduce that O′ 6� O2.

We claim O2 ⊆ O1. Suppose there is some (c′, z′) ∈ O2 but not in O1. Then (c′, z′) ∈ O′ and

(c′, z′) ≥ (a, x). Then (c′, z′) ∈ O′ −O1, which contradict to (∗).

Then we know out1(O2, A) ⊆ out1(O1, A). From O1 ∈ maxfamily1(O, A, C), we know that

out1(O1, A) ∪ C is consistent. Hence out1(O2, A) ∪ C is consistent.
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Lemma 7.2. Given O≥ = (O,≥), O′ ⊆ O and A, C two sets of formulas. Deciding if O′ ∈

preffamily1(O
≥, A, C) is in PNP.

Proof. To decide if O′ ∈ preffamily1(O
≥, A, C), we first decide if O′ ∈ maxfamily1(O, A, C). Using

results from Chapter 6 we know that this can be done in polynomial time in a deterministic

Turing machine with an NP oracle. If O′ 6∈ maxfamily1(O, A, C), then we conclude O′ 6∈

preffamily1(O
≥, A, C). Otherwise we continue.

Now using Lemma 7.1, to decide whether O′ ∈ preffamily1(O
≥, A, C), we simply enumerate all

(a, x) ∈ O, construct {(a, x)} ∪ ({(b, y) ∈ O′ : (b, y) ≥ (a, x)}), decide if {(a, x)} ∪ ({(b, y) ∈ O′ :

(b, y) ≥ (a, x)}) � O′, and finally decide if out1({(a, x)} ∪ ({(b, y) ∈ O′ : (b, y) ≥ (a, x)}), A) ∪ C

is inconsistent. All those steps can be done in polynomial time in a deterministic Turing machine

with an NP oracle.

Theorem 7.1. Given O≥ = (O,≥) where ≥ is a weak linear order. Let A and C be two sets of formulas

and x be a formula. Deciding if x ∈ outp
1 (O

≥, A, C) is Πp
2 -complete.

Proof. Concerning the Πp
2 membership, we prove by giving the following algorithm on a non-

deterministic Turing machine with an NP oracle to solve the complement of our problem.

1. Guess a subset O′ ⊆ O.

2. Use the NP oracle to test if O′ ∈ preffamily1(O
≥, A, C). If no, return “reject” on this branch.

Otherwise continue.

3. Use the NP oracle to test if x 6∈ out1(O′, A). If x 6∈ out1(O′, A), then return “accept” on this

branch. Otherwise return“reject” on this branch.

It can be verified that x 6∈ outp
1 (O

≥, A, C) iff the non-deterministic Turing machine returns

“accept” on some branches. Lemma 7.2 shows that step 2 can be finished in polynomial time.

Step 3 can also be done in polynomial time steps because the fulfillment problem is also in PNP.

Therefore the time complexity of this non-deterministic Turing machine is polynomial.

For the Πp
2 hardness, notice that if ≥= O×O, then preffamily1(O

≥, A, C) = maxfamily1(O, A, C)

because for all O′ ∈ maxfamily1(O, A, C) there is no O′′ ∈ maxfamily1(O, A, C) such that O′′ � O′.

Our problem is equivalent to the constrained full-meet compliance problem, which is in Πp
2 .

The above result shows that adding priority (weak linear order) does not increase the complex-

ity for out1.
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7.2 Hansen’s prioritized imperative logic

Just like prioritized input/output logic, Hansen introduces preferred maximally obeyable family

to characterize those norms which are still functioning in a given situation with possible conflicts.

Given a set of prioritized norms O> where > is irreflexive and transitive. A prioritization of >

is a strict linear order � such that if i � j then i > j for all i, j ∈ O. The materialization of O is

m(O) = {a → x : (a, x) ∈ O}, which transforms a conditional norm or conditional imperative to a

material implication.

Definition 7.2 (preferred obeyable maximal family (Hansen, 2008)). Given a finite set of prioritized

commands O> and a set of formulas A. O′ ∈ pom f amily(O>, A) if there is � which is a prioritization of

> such that O′ =
⋃n

i=0 Oi where we list � by (a1, xn), . . . , (an, xn) such that (ai, xi) � (ai+1, xi+1) and

1. O0 = ∅,

2. Oi+1 = Oi ∪ {(ai, xi)} if A ∪m(Oi ∪ {(ai, xi)}) is consistent. Otherwise Oi+1 = Oi,

Note that every prioritization induces an element of the pom f amily. The results after resolving

moral conflicts is characterized by the following output operator.

x ∈ outh
i (O

>, A) iff x ∈ ⋂{outi(O′, A) : O′ ∈ pomfamily(O≥, A)}.

Theorem 7.2. Given O> = (O,>) where > is irreflexive and transitive. Let A be a set of formulas and x

be a formula. Deciding if x ∈ outh
i (O

≥, A) is Πp
2 -complete, for i ∈ {1, 2, 3, 4}.

Proof. Concerning the Πp
2 hardness, we show that the validity problem of 2-QBF∀ can be reduced

to our problem.

Let ∀p1 . . . pm∃q1 . . . qnΦ be a 2-QBF∀ where Φ is a propositional formula with variables in

{p1, . . . , pm, q1, . . . , qn}. Let A = ∅, O = {(>, p1), . . . , (>, pm), (>,¬p1), . . . , (>,¬pm), (>, Φ)},

>= ∅. Our aim is to show that this 2-QBF∀ is valid iff Φ ∈ outh
i (O

>, A).

• If ∀p1 . . . pm∃q1 . . . qnΦ is valid, then for all valuation V for {p1, . . . , pm} there is a valuation

V′ for {q1, . . . , qn} such that V ∪V′ gives truth value 1 to Φ and 0 to ¬Φ.

Let O′ = {(>, p′1), . . . , (>, p′m), (>, Φ)} be an arbitrary set such that each p′i is either pi or

¬pi. Then it can be verified that O′ ∈ pom f amily(O>, A). Indeed, let > be a strict linear

order over O such that (>, p′1) > . . . > (>, p′m) > (>, Φ) > (>,∼ p′1) > . . . > (>,∼ p′m).

Then O′ is a preferred obeyable maximal family generated by >. By the construction we can

further verify that O′ ranges over all elements of pom f amily(O>, A). Note that outi(O′, A) =

Cn({p′1 . . . , p′m, Φ}). Therefore Φ ∈ outi(O′, A). Then we conclude Φ ∈ outh
i (O

>, A).

126



• If ∀p1 . . . pm∃q1 . . . qnΦ is not valid, then there is a valuation V for {p1, . . . , pm} such that for

all valuations V′ for {q1, . . . , qn}, V ∪V′ gives truth value 0 to Φ and 1 to ¬Φ.

Let O′ = {(>, p′1), . . . , (>, p′m)}, where each p′i is pi if pi ∈ V and it is ¬pi if pi 6∈ V.

Then O′ ∈ pom f amily(O>, A) because A ∪ m(O′) = {p′1, . . . , p′m} is consistent and adding

anything from m({(>,¬p1), . . . , (>,¬pm), (>, Φ)}) will destroy the consistency. Note that

¬Φ ∈ Cn({p′1, . . . , p′m}) by the construction of {p′1, . . . , p′m}. Therefore Φ 6∈ outi(O′, A),

which further implies that Φ 6∈ outh
i (O

>, A).

So, we have reduced the validity problem of 2-QBF∀ to our fulfillment problem, which shows

the latter is Πp
2 -hard.

Concerning the Πp
2 -membership, we prove by giving the following algorithm on a non-

deterministic Turing machine with an NP oracle to solve the complement of our problem.

1. Guess a subset O′ ⊆ O.

2. Guess a prioritization of >.

3. Use the NP oracle to test if O′ ∈ pomfamily(O>, A). If no, return “reject” on this branch.

Otherwise continue.

4. Use the NP oracle to test if x 6∈ outi(O′, A). If x 6∈ outi(O′, A), then return “accept” on this

branch. Otherwise return “reject” on this branch.

It can be verified that x 6∈ outh
i (O

>, A) iff the non-deterministic Turing machine returns

“accept” on some branches. Step 3 can be done in polynomial time steps because the pomfamily

membership can be decided in PNP. Step 4 can also be done in polynomial time steps because

the fulfillment problem of input/output logic is also in PNP. Therefore the time complexity of this

non-deterministic Turing machine is polynomial.

7.3 Horty’s deontic default logic

To refresh the readers, we remind the readers that the key notion of Horty’s framework in the

proper scenario is defined as follows:

Definition 7.3 (Proper scenario (Horty, 2007)). Let O′ be a scenario based on the prioritized default

theory (O,>, A). Then O′ is a proper scenario based on (O,>, A), noted as O′ ∈ propScenario(O,>, A),

just in case O′ =
⋃

i≥0 O′i where

• O′0 = ∅
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• O′i+1 = {(a, x) ∈ O : (a, x) ∈ Triggered(O,>,A)(O′i),

(a, x) 6∈ Con f licted(O,>,A)(O′), (a, x) 6∈ De f eated(O,>,A)(O′)}

We will prove thatdeontic default logic is ∆p
3 -hard and in Πp

3 . For the ∆p
3 -hardness, we make

use of the following result from Krentel (1992). Krentel (1992) shows that the following problem is

∆p
3 -complete:

• Maximum 2-QBF: given an arbitrary 2-QBF∃ ∃p1 . . . pm∀q1 . . . qnΦ, decide if V1(pm) = 1

where V1 is the lexicographically maximal valuation of {p1, . . . , pm} such that for all

valuation V2 of {q1, . . . , qn}, V1 ∪V2 � Φ,

Here for two valuation of {p1, . . . , pm}, V1 is lexicographically larger than V2 iff there exists i such

that V1(pi) = 1, V2(pi) = 0 and for all j ∈ {1, . . . , i− 1}, V1(pj) = V2(pj).

Theorem 7.3. Given O> = (O,>) where > is irreflexive and transitive. Let A be a set of formulas and x

be a formula. Deciding if x ∈ outd
i (O

>, A) is ∆p
3 -hard.

Proof. We prove the ∆p
3 hardness by reducing Maximum 2-QBF to our problem. Given an arbitrary

2-QBF∃ ∃p1 . . . pm∀q1 . . . qnΦ, we construct O = {(>, p1), (>,¬p1), . . . , (>, pm), (>,¬pm), (Φ, x)},

where x is a formula contains no propositional variable from {p1, . . . , pm, q1, . . . , qn}. We further

let the priority relation be the universal relation, i.e. >= ∅. Our aim is to show that to decide if

V1(pm) = 1 where V1 is the lexicographically maximal valuations of {p1, . . . , pm} such that for all

valuation V2 of {q1, . . . , qn} it holds that V1 ∪V2 � Φ, we only need to decide if pm ∈ outd(O>, ∅).

We first show that the following are equivalent: for arbitrary O′ ⊆ O − {(Φ, x)} and P′ ⊆

{p1, . . . , pm} satisfying that (>, pi) ∈ O′ iff pi ∈ P′ and (>,¬pi) ∈ O′ iff pi 6∈ P′,

1. O′ ∪ {(Φ, x)} ∈ propScenario(O,>, ∅) and x ∈ Cn(Conclusion(O′ ∪ {(Φ, x)})).

2. P′ is a lexicographically maximal valuation for {p1, . . . , pm} such that for all Q′ ⊆ {q1, . . . , qn},

P′ ∪Q′ |= Φ.

Assume P′ is the lexicographically maximal valuation for {p1, . . . , pm} such that for all Q′ ⊆

{q1, . . . , qn}, P′ ∪ Q′ |= Φ. We show that O′ ∪ {(Φ, x)} ∈ propScenario(O,>, ∅). Indeed, we can

construct [O′ ∪ {(Φ, x)}]0 = ∅, [O′ ∪ {(Φ, x)}]1 = {(a, x) ∈ O : (a, x) ∈ Triggered(O,>,A)([{O′ ∪

(Φ, x)}]0), (a, x) 6∈ Con f licted(O,>,A)(O′ ∪ {(Φ, x)}), (a, x) 6∈ De f eated(O,>,A)(O′ ∪ {(Φ, x)})}.

Here we have O′ ⊆ [O′ ∪ {(Φ, x)}]1 because for all (>, li) ∈ O′,

1. (>, li) ∈ Triggered(O,>,A)(∅)

2. (>, li) 6∈ Con f licted(O,>,A)(O′ ∪ {(Φ, x)}).

128



3. (>, li) 6∈ De f eated(O,>,A)(O′ ∪ {(Φ, x)}) because (>,∼ li) 6> (>, li) since >= ∅.

We further have [O′ ∪{(Φ, x)}]2 = {(a, x) ∈ O : (a, x) ∈ Triggered(O,>,A)([O′ ∪{(Φ, x)}]1), (a, x) 6∈

Con f licted(O,>,A)(O′ ∪ {(Φ, x)}), (a, x) 6∈ De f eated(O,>,A)(O′ ∪ {(Φ, x)})}. Now we prove [O′ ∪

{(Φ, x)}]2 = O′ ∪ {((Φ, x))}. This is because

1. for all (>, li) 6∈ O′, (>, li) ∈ Con f licted(O,>,A)(O′ ∪ {(Φ, x)}).

2. O′ ⊆ [O′ ∪ {(Φ, x)}]1 ⊆ [O′ ∪ {(Φ, x)}]2

3. (Φ, x) ∈ [O′ ∪ {(Φ, x)}]2. The reason is: from Cn(P′) |= Φ we derive Consequence(O′) |=

Φ. Then we know (Φ, x) ∈ Triggered(O,>,A)([O′ ∪ {(Φ, x)}]1). Meanwhile, (Φ, x) 6∈

Con f licted(O,>,A)(O′ ∪ {(Φ, x)}) and (Φ, x) 6∈ De f eated(O,>,A)(O′ ∪ {(Φ, x)})}.

We further have [O′ ∪ {(Φ, x)}]i = [O′ ∪ {(Φ, x)}]2, for all i ≥ 3. Therefore O′ ∪ {(Φ, x)} =⋃
i≥0[O′ ∪ {(Φ, x)}]i, which proves O′ ∪ {(Φ, x)} ∈ propScenario(O,>, ∅). Then trivially we have

x ∈ Cn(Conclusion(O′ ∪ {(Φ, x)})).

Assume O′ ∪ {(Φ, x)} ∈ propScenario(O,>, ∅) and x ∈ Cn(Conclusion(O′ ∪ {(Φ, x)})). Then

we know (Φ, x) ∈ [O′ ∪ {(Φ, x)}]i for some i. It cannot be that (Φ, x) ∈ [O′ ∪ {(Φ, x)}]0 because

[O′ ∪ {(Φ, x)}]0 = ∅.

• If (Φ, x) ∈ [O′ ∪ {(Φ, x)}]1, then (Φ, x) ∈ Triggered(O,>,A)(∅), which means ∅ � Φ. Then

we know P′ ∪ Q′ |= Φ, where P′ is the lexicographically maximal valuation for {p1, . . . , pm}

such that for all Q′ ⊆ {q1, . . . , qn}.

• If (Φ, x) 6∈ [O′ ∪ {(Φ, x)}]1 but (Φ, x) ∈ [O′ ∪ {(Φ, x)}]2, then [O′ ∪ {(Φ, x)}]1 = O′ and

(Φ, x) ∈ Triggered(O,>,A)(O′). Therefore Conclusion(O′) � Φ. Then by the relationship

between O′ and P′, we know that for all Q′ ⊆ {q1, . . . , qn}, P′ ∪Q′ |= Φ.

• If (Φ, x) 6∈ [O′ ∪ {(Φ, x)}]2, then [O′ ∪ {(Φ, x)}]2 = [O′ ∪ {(Φ, x)}]1 = O′. Moreover⋃
i≥0[O′ ∪ {(Φ, x)}]i = [O′ ∪ {(Φ, x)}]1 = O′, which contradicts to

⋃
i≥0[O′ ∪ {(Φ, x)}]i =

O′ ∪ {(Φ, x)}.

Then we can conclude that P′ ∪ Q′ |= Φ, where P′ is the lexicographically maximal valuation for

{p1, . . . , pm} such that for all Q′ ⊆ {q1, . . . , qn}.

Now we finish our reduction: given an arbitrary 2-QBF∃ ∃p1 . . . pm∀q1 . . . qnΦ, if V1 is the

lexicographically maximal valuations of {p1, . . . , pm} such that for all valuation V2 of {q1, . . . , qn},

V1 ∪V2 � Φ, to decide if V1(pm) = 1, we only need to decide if pm ∈ outd(O>, ∅). Such reduction

is polynomial in the size of ∃p1 . . . pm∀q1 . . . qnΦ, which proves the ∆p
3 hardness.
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Lemma 7.3. Given a prioritized default theory (O,>, A), a scenario O′ and a default (a, x)

1. deciding if (a, x) ∈ Triggered(O,>,A)(O′) is coNP-complete.

2. deciding if (a, x) ∈ Con f licted(O,>,A)(O′) is coNP-complete.

3. deciding if (a, x) ∈ De f eated(O,>,A)(O′) is in Σp
2 .

Proof. Item 1 and 2 are trivial. Item 3 can be proved by a simple guess and check procedure on a

non-deterministic Turing machine with an NP oracle. Here we omit the details.

Theorem 7.4. Given O> = (O,>) where > is a irreflexive and transitive. Let A be a set of formulas and

x be a formula. Deciding if x ∈ outd(O>, A) is in Πp
3 .

Proof. With Lemma 7.3 at hand. This theorem can be proved by a simple guess and check procedure

on a non-deterministic Turing machine with an Σp
2 oracle. Here we omit the details.

7.4 Summary

In this chapter we have studied the complexity of normative reasoning by investigating the

complexity of prioritized input/output logic, prioritized imperative logic and deontic default logic.

We have shown that prioritized input/output logic outp
1 , as well as prioritized imperative logic, is

complete for the 2ed level of the polynomial hierarchy while deontic default logic is located in the

3ed level of the polynomial hierarchy. Our results have shown that outp
1 and prioritized imperative

logic have the same complexity as the prioritized default logic of Brewka, Baader and Hollunder,

while deontic default logic has similar complexity to Rintanen’s prioritized default logic.
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Chapter 8

Application: Logic and Games for

Ethical Agents

Abstract

The aim of this chapter is to provide a formal analysis of ethical agents. We adopt a deontic

logic+Boolean game approach to the construction of ethical agents. We use deontic logic to reason

about norms and use Boolean games to represent the interaction of agents. We use norms to

assess the normative status of strategies. Then agents’ preferences are changed by the normative

status of strategies. Agents of different types use different procedures to change their preference.

We characterize 6 types of ethical agents: moral, amoral, social, selfish, negatively impartial and

positively impartial. We study some complexity issues related to normative reasoning/status and

agents’ preference change. When no restriction is imposed, those decision problems of interest to

us are decidable but the complexity are high. Under certain restrictions we obtain intermediate and

low complexity.
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8.1 Introduction

The aim of this chapter is to provide a formal model of ethical agents. In social science, it is

acknowledged that decisions of human agents are often affected by both agent’s desire and by

motivations based on moral issues (Fehr and Schmidt, 2003; Gintis et al., 2005). Intuitively, it

seems acceptable that different agents have different reactions when there are conflicts between

their obligations (moral value) and desires (personal utility). At least the following types of agents

exist or could be constructed.

1. An amoral agent prefers actions with higher utility, and ignores the moral aspect of his actions.

2. A moral agent prefers actions with higher moral value and ignores the utility of his actions.

3. A selfish agent first prefers actions of higher utility. For two action of the same utility, the

agent prefers the one with higher moral value.

4. A social agent first prefers actions of higher moral value. For two actions of the same moral

value, it prefers the action with higher utility.

5. A negatively impartial agent first classifies actions into prohibited category and non-prohibited

category. Then it ranks its actions using utility within these two categories.

6. A positively impartial agent first classifies strategies into permitted category and non-permitted

category. Then it ranks its actions using utility within these two categories.

Based on such intuition, our main research concern in this chapter is to answer the following

question:

How to formally characterize different types of ethical agents?

Our success criteria is to build formal models of ethical agents such that norms play an important

role in these agents’ decision-making procedure and such procedures are decidable in general and

computationally tractable under certain restrictions. This research question is understood in the

setting of normative multiagent systems. Normative multiagent system (Boella et al., 2008b) is a

new interdisciplinary academic area developed in recent years bringing together researchers from

multiagent system (Wooldridge, 2009), deontic logic and normative system (Ågotnes et al., 2007;

Herzig et al., 2011; Alechina et al., 2013). Our methodology to solve the research problem is to

adopt a Boolean game+deontic logic approach to the construction of ethical agents and normative

multiagent system.

Boolean games (Harrenstein et al., 2001; Bonzon et al., 2009) are a class of games based

on propositional logic. In the Boolean game theoretical setting, each agent controls a set of
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propositional variables. A strategy of an agent is a truth assignment to the variables he controls.

Norms are used to classify strategies as moral, permitted or prohibited. Such classification is used

to transform the game by changing the preference relation in the Boolean game. To represent

norms in Boolean games, we make use of deontic logic. Using deontic logic, the normative

status of strategies is introduced. The preference relations in Boolean games are changed by the

normative status of strategies. Agents of different types use different deontic logics for normative

reasoning and have different procedures of preference change. The deontic logic and the procedure

of preference change characterize different types of ethical agents.

Shoham and Tennenholtz’s early work on behavior change under norms has considered only

a relatively simple view of norms (Shoham and Tennenholtz, 1992, 1996), where some actions or

states are designated as violations. Alechina et al. (2013) studies how conditional norms regulate

agents’ behaviors, but permissive norms plays no role in their framework. In this chapter, agents’

behavior are regulated by conditional norms including permissive norms.

The structure of this chapter is the following: we present some background knowledge on

Boolean game and deontic logic in Section 8.2. Ethical agents are introduced in Section 8.3. We

study the complexity issues related to the construction of ethical agents in Section 8.4. We discuss

some related work in Section 8.5. Then we summarize and conclude this chapter in Section 8.6.

8.2 Boolean games and deontic logic

8.2.1 Boolean games

Boolean games is a class of games based on propositional logic. It was firstly introduced by

Harrenstein et al. (2001) and further developed by several researchers (Harrenstein, 2004; Dunne

et al., 2008; Bonzon et al., 2009). In a Boolean game, each agent i is assumed to have a goal,

represented by a propositional formula xi over some set of propositional variables P. Each agent

i is associated with some subset Pi ⊆ P of the variables, which are under the unique control of

agent i. The actions, or strategies, available to i correspond to all the possible assignments of truth

or falsity to the variables in Pi. An agent will try to choose an assignment so as to satisfy his goal

xi. Strategic concerns arise because whether i’s goal is in fact satisfied will depend on the actions

made by other agents.

Formally, let P = {p0, p1, . . .} be a finite set of propositional variables and LP be the

propositional language built from P and constants> (true) and⊥ (false) with the usual connectives

¬,∨,∧,→ and↔. 2P is the set of the valuations for P, with the usual convention that for V ∈ 2P

and p ∈ V, V gives the value true to p if p ∈ V and false otherwise. � denotes the classical logical
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consequence relation. Let X ⊆ P, 2X is the set of X-valuations. A partial valuation (for P) is an

X-valuation for some X ⊆ P. Partial valuations are denoted by listing all variables of X, with a

“ + ” symbol when the variable is set to be true and a “− ” symbol when the variable is set to be

false: for instance, let X = {p, q, r}, then the X-valuation V = {p, r} is denoted {+p,−q,+r}. If

{P1, . . . , Pn} is a partition of P and V1, . . . , Vn are partial valuations, where Vi ∈ 2Pi , (V1, . . . , Vn)

denotes the valuation V1 ∪ . . . ∪Vn.

Definition 8.1 (Boolean game (Bonzon et al., 2006)). A Boolean game is a 4-tuple (Agent, P, π, Goal),

where

1. Agent = {1, . . . , n} is a set of agents.

2. P is a finite set of propositional variables.

3. π : Agent 7→ 2P is a control assignment function such that {π(1), . . . , π(n)} forms a partition of

P. For each agent i, 2π(i) is the strategy space of i.

4. Goal = 〈x1, . . . , xn〉 is a sequence of formulas of LP. xi is the goal which agent i want to achieve.

A strategy for agent i is a partial valuation for all the variables i controls. Note that since

{π(1), . . . , π(n)} forms a partition of P, a strategy profile S is a valuation for P. In the rest

of the chapter we make use of the following notation, which is standard in game theory. Let

G = (Agent, P, π, Goal) be a Boolean game with Agent = {1, . . . , n}, S = (s1, . . . , sn) be a strategy

profile, we use S−i to denote the projection of S on Agent−{i}: S−i = (s1, . . . , si−1, si+1, . . . , sn) and

Si to denote the projection of S on i’s strategy. Agents’ utilities in Boolean games are induced by

their goals. For every agent i and every strategy profiles S, ui(S) = 1 if S � xi, otherwise ui(S) = 0.

Agent’s preference over strategy profile is induced by his utility function naturally: S ≤i S′ iff

ui(S) ≤ ui(S′).

8.2.2 Deontic logic

Norm-based deontic logic are convenient tools for the purpose of this chapter. For the ease

of exposition, in this chapter we choose prioritized simple-minded input/output logic outp
1 to

illustrate how we build ethical agents. Ethical agents can be built similarly using other norm-based

deontic logics.

We make use of both mandatory norms O and permissive norms P. We assume norms are

equipped with a priority relation ≥. For the sake of simplicity, we assume that ≥ is reflexive,

transitive and total. That is, ≥ is a binary relation over O ∪ P such that for all (a, x), (b, y), (c, z) ∈

O ∪ P,
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• (a, x) ≥ (a, x),

• if (a, x) ≥ (b, y) and (b, y) ≥ (c, z) then (a, x) ≥ (c, z),

• either (a, x) ≥ (b, y) or (b, y) ≥ (a, x).

Here (a, x) ≥ (a′, x′) is understood as (a, x) has higher priority than (a′, x′). We call N = (O, P,≥)

a prioritized normative system. Recall that x ∈ outp
1 (O

≥, A, C) iff x ∈ ⋂{out1(O′, A) : O′ ∈

preffamily1(O
≥, A, C)}.

Several notions of permission are introduced in input/output logic (Makinson and van der

Torre, 2003; Stolpe, 2010c). For the ease of explanation, we choose negative and static positive

permission from Makinson and van der Torre (2003) and reformulate them in the setting of

prioritized normative system as follows:

Definition 8.2. Given a normative system N = (O, P,≥) and an input set A,

1. NegPerm1(N, A) = {x ∈ LP : ¬x 6∈ outp
1 (O

≥, A, ∅)}.

2. • If P 6= ∅, then StaPerm1(N, A) = {x ∈ LP : x ∈ outp
1 ((O ∪ {(a′, x′)})≥, A, ∅),

for some (a′, x′) ∈ P}.

• If P = ∅, then StaPerm1(N, A) = outp(O≥, A, ∅).

If a permissive norm (a, x) has higher priority than a mandatory norm (>,¬x), static permission

can be understood as exception which says although x is forbidden in general, there is an exception

which allows x, when a is the case. Detailed discussions of exception as a notion of permission can

be found in Stolpe (2010c) and Governatori et al. (2013).

8.3 Ethical agents

A normative multiagent system contains a multiagent system, a normative system and a collection

of facts which we call it environment. We use a Boolean game to represent a multiagent system and

norm-based deontic logic to reason about and represent norms.

Definition 8.3 (normative multiagent system). A normative multiagent system is a tuple (G, N, E)

where

• G = (Agent, P, π, Goal) is a Boolean game.

• N = (O, P,≥) is a finite prioritized normative system.

• E ⊆ LP is the environment, which is a finite set of formulas representing facts.
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In a normative multiagent system, strategies are classified as moral, positively permitted,

negatively permitted or prohibited. These concepts are defined using input/output logic.

Definition 8.4 (mandatory, permitted and prohibited strategies). Given a normative multiagent

system (G, N, E), for each agent i, a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn) is mandatory if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ outp
1 (O

≥, E, ∅).

The strategy is positively permitted if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ StaPerm1(N, E).

The strategy is negatively permitted if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ NegPerm1(N, E).

The strategy is prohibited if

¬(p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn) ∈ outp
1 (O

≥, E, ∅).

Mandatory, positively permitted, negatively permitted and prohibited are four normative

positions of strategies. We stipulate that the normative position degrades from mandatory to

positively permitted, then to negatively permitted, and finally to prohibited. The normative status

of a strategy is the highest normative position it has. There can be more than one normative

positions for a strategy. But every strategy has a unique normative status. We define normative

status using the highest normative position because typically a strategy of higher normative

position also has a lower normative position, for example if the normative position of a strategy is

mandatory, then it must be negatively permitted. Normative status offers a measure of the moral

value of strategies. Normative status is a norm-based classification of an agent’s strategies, which

are truth assignments to the variables he controls. Such a definition is consistent with the ethical

principle ought implies can proposed by Immanuel Kant, one of the most important philosopher in

human history.

Example 8.1. Let (G, N, E) be a normative multiagent system as follows:

• G = (Agent, P, π, Goal) is a Boolean game with

– Agent = {1, 2},

– P = {p, q},

– π(1) = {p}, π(2) = {q},

– Goal = 〈p ∧ q, p ∨ q〉.
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• N = (O, P,≥) where O = {(>, p)}, P = {(>, q)}, ≥= (O ∪ P)× (O ∪ P).

• E = ∅.

Then out1(O, E) = Cn({p}) = outp
1 (O

≥, E, ∅), StaPerm1(N, E) = Cn({p, q}). Therefore the

normative status of +p,+q,−q,−p is respectively mandatory, positively permitted, negatively permitted

and prohibited.

In a normative multiagent system, an agent’s preference over strategy profiles is changed by the

normative status of strategies. Different types of ethical agents change their preference in different

ways. Informally, we let agents change their preference as follows:

1. An amoral agent prefers strategy profiles with higher utility.

2. A moral agent prefers strategy profiles with higher normative status.

3. • A selfish agent first prefers strategy profiles with higher utility.

• For two strategy profiles of the same utility, the agent prefers the one which contains its

strategy of higher normative status.

4. • A social agent first prefers strategy profiles which contains its strategy of higher

normative status.

• For two strategy profiles of the same normative status, it prefers strategy profiles with

higher utility.

5. • A negatively impartial agent first classifies strategies into the negatively permitted

category and the prohibited category.

• Then it ranks its strategies using utility within these two categories.

6. • A positively impartial agent first classifies strategies into the positively permitted category

and the not positively permitted category.

• Then it ranks his strategies using utility within these two categories.

We call amoral, selfish, negatively impartial, positively impartial, social and moral agents type-

0, type-1, . . ., type-5 agents respectively. In Lorini (2015), the degree of moral sensitivity is used to

measure the strength of an agent’s moral value on its preference. That is, an agent is more moral if

the degree of moral sensitivity is higher. Combining our terminology with Lorini’s, the degree of

moral sensitivity of type-i agents is higher than that of type-j agents iff i > j.

Given a normative multiagent system, it induces a normative Boolean game, which models the

interaction of multiple ethical agents, by changing the preference of agents.
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Definition 8.5 (normative Boolean game). Given a normative multiagent system (G, N, E) where G =

(Agent, P, π, Goal), it induces a normative Boolean game GN = (Agent, P, π,≺1, . . . ≺n) where ≺i is

the preference of i over strategy profiles such that

1. if i is type-0 (amoral), then s ≺i s′ if

• ui(s) < ui(s′).

2. if i is type-1 (selfish), then s ≺i s′ if

• ui(s) < ui(s′), or

• ui(s) = ui(s′) and the normative status of s′i is higher than that of si.

3. if i is type-2 (negatively impartial), then s ≺i s′ if

• si is prohibited (not negatively permitted) and s′i is negatively permitted, or

• both si and s′i are prohibited and ui(s) < ui(s′), or

• both si and s′i are negatively permitted and ui(s) < ui(s′).

4. if i is type-3 (positively impartial), then s ≺i s′ if

• si is not positively permitted and s′i is positively permitted, or

• both si and s′i are not positively permitted and ui(s) < ui(s′), or

• both si and s′i are positively permitted and ui(s) < ui(s′).

5. if i is type-4 (social), then s ≺i s′ if

• the normative status of s′i is higher than that of si, or

• the normative status of s′i is equal to si and ui(s) < ui(s′).

6. if i is type-5 (moral), then s ≺i s′ if

• the normative status of s′i is higher than that of si.

8.4 Complexity issues

In order to practically build ethical agents, we have to study the complexity of normative reasoning

and decision making in our framework. This section shows that the decision problem of interest

to us are all decidable. When no restriction is imposed, the complexity is high. Under reasonable

restrictions, the complexity turns out to be tractable. Under strong restrictions, the complexity is

low.
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8.4.1 High complexity

According to the complexity results of prioritized input/output logic provided in Chapter 7

(Theorem 7.1), we immediately have the following theorem showing that deciding whether a

strategy is mandatory is in Πp
2 .

Theorem 8.1. Given a normative multiagent system (G, N, E), a type-k agent and his strategy (+p1, . . . ,

+pm,−q1, . . . ,−qn), deciding whether this strategy is mandatory is in Πp
2 , for k ∈ {0, 1, 2, 3, 4, 5}.

The hardness of deciding whether a strategy is mandatory can be proved using a reduction

from the validity problem of 2-QBF∀.

Theorem 8.2. Given a normative multiagent system (G, N, E), a type-k agent and his strategy (+p1, . . . ,

+pm,−q1, . . . ,−qn), deciding whether this strategy is mandatory is Πp
2 -hard for k ∈ {1, 2, 3, 4, 5}.

Proof. We show that the validity problem of 2-QBF∀ can be reduced to our problem.

Let ∀r1 . . . rm∃t1 . . . tnΦ be a 2-QBF∀ where Φ is a propositional formula with variables

in {r1, . . . , rm, t1, . . . , tn}, which is disjoint from {p1, . . . , pm, q1, . . . , qn}. Let E = ∅, O =

{(>, r1), . . . , (>, rm), (>,¬r1), . . . , (>,¬rm), (>, Φ), (>, Φ → (p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn))},

P = ∅, ≥= O×O. Our aim is to show that this 2-QBF∀ is valid iff p1 ∧ . . .∧ pm ∧¬q1 ∧ . . .∧¬qn ∈

outp
1 (O, E, ∅).

• If ∀r1 . . . rm∃t1 . . . tnΦ is valid, then for all valuation V for {r1, . . . , rm} there is a valuation V′

for {t1, . . . , tn} such that V ∪V′ gives truth value 1 to Φ and 0 to ¬Φ.

Let O′ = {(>, r′1), . . . , (>, r′m), (>, Φ), (>, Φ → (p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn))} be

a set such that each r′i is either ri or ¬ri. Then out1(O′, E) = Cn({r′1 . . . , r′m, Φ, Φ →

(p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn)}), which is consistent. Moreover it can be verified that

O′ ∈ maxfamily1(O, E, ∅). Therefore p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ out1(O′, E). By the

construction we can further verify that O′ range over all elements of maxfamily1(O, E, ∅).

Since ≥= ∅, we know maxfamily1(O, E, ∅) = pre f f amily1(O≥, E, ∅). Then we conclude

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ outp
1 (O, E, ∅).

• If ∀r1 . . . rm∃t1 . . . tnΦ is not valid, then there is a valuation V for {r1, . . . , rm} such that for all

valuations V′ for {t1, . . . , tn}, V ∪V′ gives truth value 0 to Φ and 1 to ¬Φ.

Let O′ = {(>, r′1), . . . , (>, r′m), (>, Φ → (p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn))}, where each r′i
is ri if ri ∈ V and it is ¬ri if ri 6∈ V. Then O′ ∈ maxfamily1(O, E, ∅) because out1(O′, E) =

Cn({r′1, . . . , r′m, Φ → (p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn)}) is consistent and adding anything

from {(>,¬r1), . . . , (>,¬rm), (>, Φ)} to O′ will destroy the consistency. Note that ¬Φ ∈
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Cn({r′1, . . . , r′m, Φ → (p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn)}) by the construction of {r′1, . . . , r′m}.

Therefore Φ 6∈ out1(O′, E) and p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn 6∈ out1(O′, E), which further

implies that p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn 6∈ outp
1 (O, E, ∅).

So, we have reduced the validity problem of 2-QBF∀ to our target problem, which shows the

latter is Πp
2 -hard.

Corollary 8.1. Given a normative multiagent system (G, N, E), a type-k agent, where k ∈ {1, 2, 3, 4, 5},

and its strategy (+p1, . . . , +pm,−q1, . . . ,−qn),

1. deciding whether this strategy is prohibited is Πp
2 -complete.

2. deciding whether this strategy is negatively permitted is Σp
2 -complete.

Theorem 8.3. Given a normative multiagent system (G, N, E), a type-k agent, where k ∈ {1, 2, 3, 4, 5},

and his strategy (+p1, . . . , +pm,−q1, . . . ,−qn), deciding whether this strategy is positively permitted is

Πp
2 -complete.

Proof. The Πp
2 hardness is trivial. Here we omit the details. Concerning the Πp

2 membership,

let N = (O, P,≥), P = {(a1, x1), . . . , (am, xm)}. Note that StaPerm1(N, E) = outp
1 ((O ∪

{(a1, x1)})≥, E) ∪ . . . ∪ outp
1 ((O ∪ {(am, xm)})≥, E). The Πp

2 membership follows from the fact that

the Πp
2 class is closed under union.

With the above theorems at hand, we can easily prove that deciding the normative status of

a strategy is Πp
2 -hard and in ∆p

3 =PΣp
2 . Moreover, we can now obtain the complexity result of

deciding which strategy is better in a normative multiagent system.

Theorem 8.4. Given a normative multiagent system (G, N, E), an agent i and two strategy profiles s and

s′, deciding whether s ≺i s′ is in ∆p
3 .

Proof. This problem can be solved by a polynomial time deterministic Turing machine with an Σp
2

oracle. We only need to call the oracle to test if s is mandatory, positively permitted, negative

permitted or prohibited. And the same test for s′. The utility of s and s′ can be calculated in

polynomial time.

The complexity results shown above are not so comforting with respect to the goal of building

ethical agents. But we are still optimistic about the future of deontic logic+Boolean game approach

to ethical agents for the following reasons:

1. Defeasible deontic logic is computationally efficient. If we take defeasible deontic logic out

of our arsenal and use it to replace input/output logic. All those decision problems in this

subsection can be solved efficiently.
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2. Reasonable restrictions may be imposed to input/output logic such that all decision problems

studied in this chapter become tractable. In the following two subsections we study how to

lighten the complexity by adding restrictions to input/output logic.

8.4.2 Low complexity

Inspired by defeasible deontic logic, which uses not all propositional formulas but only (modal)

propositional literals, we propose the following tractable fragment of input/output logic. Let

LitP = P ∪ {¬p : p ∈ P} be the set of literals build on P. Let Lcnl
P be the conjunctions of literals

(CNL) of P. That is, Lcnl
P is the smallest set such that:

• LitP ⊆ Lcnl
P

• if a ∈ Lcnl
P and b ∈ Lcnl

P then a ∧ b ∈ Lcnl
P

For a literal l, we use ∼ l to denote its complement. That is, if l is a propositional atom p, then

∼ l is ¬p. If l is ¬p, then∼ l is p. For ease of exposition, we slightly abuse the notation. For a literal

l and a CNL x, we say l ∈ x if l appears as a conjunct in x. If X is a set of CNLs, then we say l ∈ X

if l ∈ x for some x ∈ L.

Lemma 8.1. Let A be a finite set of formulas from Lcnl
P , and x ∈ Lcnl

P , then whether A ` x can be decided

in polynomial time.

Proof. We can use the following simple algorithm to decide if A ` x.

1. First check if A contains two complementary literals p and ¬p. If yes, then A is inconsistent

and A ` x holds. Otherwise continue.

2. Check if every literal l which appears in x also appears in A. If yes, then A ` x holds.

Otherwise A 6` x.

It can be easily verified that this algorithm costs only polynomial time.

Corollary 8.2. Let A be a finite set of formulas from Lcnl
P , O ⊆ Lcnl

P × Lcnl
P be a finite set of norms, and

x ∈ Lcnl
P . Then x ∈ out1(O, A) can be decided in polynomial time.

Theorem 8.5. Let A be a finite set of formulas from Lcnl
P , O ⊆ Lcnl

P × LitP be a finite set of norms, and

l ∈ LitP. Then l ∈ outp
1 (O

≥, A, ∅) can be decided in polynomial time.

Proof. To decide whether a literal l ∈ outp
1 (O

≥, A, ∅), we use the following procedure:

141



• If there is (a, l) ∈ O such that a ∈ Cn(A) and for all (b,∼ l) ∈ O such that b ∈ Cn(A), we

have (a, l) > (b,∼ l), then we conclude that l ∈ outp
1 (O

≥, A, ∅). Otherwise we conclude that

l 6∈ outp
1 (O

≥, A, ∅).

This procedure can be executed in polynomial time because in the current setting whether a, b ∈

Cn(A) can be decided in polynomial time. Now we prove that this procedure gives the correct

answer.

• Assume there is (a, l) ∈ O such that a ∈ Cn(A) and for all (b,∼ l) ∈ O such that b ∈ Cn(A),

we have (a, l) > (b,∼ l).

1. If there is no (b,∼ l) ∈ O such that b ∈ Cn(A). Then (a, l) ∈ O′ for every

O′ ∈ maxfamily1(O, A, ∅). Therefore (a, l) ∈ O′′ for every O′′ ∈ preffamily1(O
≥, A, ∅).

Then we know l ∈ outp
1 (O

≥, A, ∅).

2. If there is some (b,∼ l) ∈ O such that b ∈ Cn(A). Suppose there is an O′ ∈

preffamily1(O
≥, A, ∅) such that (a, l) 6∈ O′. Let O′′ = (O′ − {(b,∼ l) : b ∈ Cn(A)}) ∪

{(a, l)}. Then O′′ � O′ because (a, l) > (b,∼ l). Note that out1(O′′, A) is consistent.

Therefore O′′ can be extended to O′′′ such that O′′′ ∈ maxfamily1(O, A, ∅). Then we

know O′′′ � O′, which contradicts to O′ ∈ preffamily1(O
≥, A, ∅).

Hence there is no O′ ∈ preffamily1(O
≥, A, ∅) such that (a, l) 6∈ O′. Therefore (a, l) ∈ O′

for every O′ ∈ preffamily1(O
≥, A, ∅), l ∈ outp

1 (O
≥, A, ∅).

• Assume it is not the case that there is (a, l) ∈ O such that a ∈ Cn(A) and for all (b,∼ l) ∈ O

such that b ∈ Cn(A), we have (a, l) > (b,∼ l). Then trivially we have l 6∈ outp
1 (O

≥, A, ∅).

Theorem 8.6. Given a normative multiagent system (G, N, E) where E ⊆ Lcnl
P , O ⊆ Lcnl

P ×

LitP, a type-k agent and his strategy (+p1, . . . , +pm,−q1, . . . ,−qn), deciding whether this strategy is

mandatory/positively permitted/negative permitted/prohibited is in polynomial time, for k ∈ {0, 1, 2, 3, 4, 5}.

Proof. To decide if (+p1, . . . , +pm,−q1, . . . ,−qn) is a mandatory strategy, we simply check if p1 ∈

outp
1 (O

≥, E, ∅), . . ., pm ∈ outp
1 (O

≥, E, ∅), ¬q1 ∈ outp
1 (O

≥, E, ∅), . . ., ¬qn ∈ outp
1 (O

≥, E, ∅). Other

cased are similar.

In light of the above theorem, we know that under those restrictions introduced in this

subsection, the normative status of any strategy can be computed in polynomial time.

Corollary 8.3. Given a normative multiagent system (G, N, E) where E ⊆ Lcnl
P , O ⊆ Lcnl

P × LitP, an

agent i and two strategy profiles s and s′, deciding whether s ≺i s′ is in polynomial time.
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8.4.3 Intermediate complexity

Restricting formulas to literals or CNLs seems too stringent and limits the expressive power of the

logical language. To find a balance between expressive power and complexity, we make use of

Horn formulas, which are well studied in propositional logic programming (Dantsin et al., 2001).

A strict Horn clause is a non-empty disjunction of exactly one propositional atom and zero or

more negated atoms. A strict Horn formula is a conjunction of strict Horn clauses. Let LHorn
P be

the set of strict Horn formulas build from P. For a set of strict Horn formulas A ⊆ LHorn
P , a least

model LM(A) of A is a smallest set P′ ⊆ P such that P′ � A. It is known in propositional logic

programming that every set of strict Horn formulas has a unique least model.

Lemma 8.2. (Dantsin et al., 2001) Let A be a finite set of strict Horn formulas from LHorn
P , and p ∈ P,

then deciding whether p ∈ LM(A) is P-complete.

Corollary 8.4. Let A be a finite set of formulas from LHorn
P , and x ∈ LHorn

P , then deciding whether A ` x

is P-complete.

Proof. It is P-hard because decided whether p ∈ LM(A) can be reduced to this problem. This

problem is in P because to we can decide if A ` x by testing if every atom in x is also in LM(A).

Corollary 8.5. Let A be a finite set of formulas from LHorn
P , O ⊆ LHorn

P × LHorn
P be a finite set of norms,

and x ∈ LHorn
P . Then deciding whether x ∈ out1(O, A) is P-complete.

Theorem 8.7. Let A be a finite set of formulas from LHorn
P , O ⊆ LHorn

P × LitP be a finite set of norms, and

l ∈ LitP. Then deciding whether l ∈ outp
1 (O

≥, A, ∅) is P-complete.

Proof. To decide whether l ∈ outp
1 (O

≥, A, ∅), we use the same procedure as the proof of Theorem

8.5:

• If there is (a, l) ∈ O such that a ∈ Cn(A) and for all (b,∼ l) ∈ O such that b ∈ Cn(A), we

have (a, l) � (b,∼ l), then we conclude that l ∈ outp
1 (O

≥, A, ∅). Otherwise we conclude that

l 6∈ outp
1 (O

≥, A, ∅).

The time complexity of this procedure is P-hard because in the current setting deciding whether

a, b ∈ Cn(A) is P-hard.

Theorem 8.8. Given a normative multiagent system (G, N, E) where E ⊆ LHorn
P , O ⊆ LHorn

P ×

LitP, a type-k agent and his strategy (+p1, . . . , +pm,−q1, . . . ,−qn), deciding whether this strategy is

mandatory/positively permitted/negative permitted/prohibited is P-complete, for k ∈ {1, 2, 3, 4, 5}.
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Proof. To decide if (+p1, . . . , +pm,−q1, . . . ,−qn) is a mandatory strategy, we simply check if p1 ∈

outp
1 (O

≥, E, ∅), . . ., pm ∈ outp
1 (O

≥, E, ∅), ¬q1 ∈ outp
1 (O

≥, E, ∅), . . ., ¬qn ∈ outp
1 (O

≥, E, ∅). Other

cased are similar.

In light of the above theorem, we know that under those restrictions introduced in this

subsection, the computation of the normative status of any strategy is P-complete.

Corollary 8.6. Given a normative multiagent system (G, N, E) where E ⊆ LHorn
P , O ⊆ LHorn

P × LitP, an

agent i which is of type k, k ∈ {1, 2, 3, 4, 5}, and two strategy profiles s and s′, deciding whether s ≺i s′ is

P-complete.

8.5 Related work

There are many types of ethical theories in the literature. At least two of them have found

applications in machine ethics (Gips, 1994): consequentialist and deontological. In consequentialist

theories, actions are evaluated by their consequences. The best action to take now is the action

that results in the best situation in the future. Discussions on whether we should install utilitarian

reasoning to robots can be found in Grau (2011).

In a deontological ethical theory, actions however, may be thought to be moral or immoral

independent of the specific consequences they may cause. Typically, in a deontological ethical

theory actions are judged by deontological moral systems. One of the oldest examples of a

deontological moral system is the Ten Commandments in the Old Testament. Another well-known

deontological moral system is Kant’s categorical imperative, which states “Act only on that maxim

which you can at the same time will to be a universal law.” An example of a modern deontological

moral system is the 10 moral rules proposed by Gert (2005):

1. Don’t kill.

2. Don’t cause pain.

3. Don’t disable.

4. Don’t deprive of freedom.

5. Don’t deprive of pleasure.

6. Don’t deceive.

7. Keep your promise.

8. Don’t cheat.
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9. Obey the law.

10. Do your duty.

Powers (2006) considers the first formulation of Kant’s categorical imperative to determine “what

computational structures such a view would require and to see what challenges remain for its

successful implementation.” Powers proposes to use nonmonotonic logic, especially default logic,

to model Kant’s categorical imperatives.

Our approach can be viewed as another attempt to impose deontological ethical theories (not

Kant’s theory) to machines/robots/artificial agents. Gips (1994) points out that “Whenever a multi-

rule system is proposed, there is the possibility of conflict between the rules.” This creates a problem

that needs to be resolved so that robots will know what to do when conflicts arise. Our approach

(partially) solves this problem, thanks to the power of resolving moral conflicts from norm-based

deontic logic.

8.6 Summary

The aim of this chapter is to provide a formal analysis of ethical agents. Ethical agents have been

extensively studied in moral philosophy and in economics, and their study is identified as one

of the thorniest challenges in artificial intelligence. We have adopted a deontic logic+Boolean

game approach to the construction of ethical agents. We have used deontic logic to reason

about norms and used Boolean games to represent the interaction of agents. We have used

norms to assess the normative status of strategies. Then agents’ preference are changed by the

normative status of strategies. Agents of different types use different procedures to change their

preference. We characterize 6 types of ethical agents: moral, amoral, social, selfish, negatively

impartial and positively impartial. We have studied some complexity issues related to normative

reasoning/status and agents’ preference change. When no restriction is imposed, those decision

problems of interest to us are decidable but the complexity is high. Under certain restrictions we

obtained intermediate and low complexity.
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Chapter 9

Summary and Future Work

9.1 Summary

9.1.1 Norm creation in games

In Chapter 2, we followed Gintis’ proposal (Gintis, 2010) and presented an alternative offline norm

creation framework such that the complexity of norm creation is tractable and every agent will

comply with the created norms. Compared to the social law paradigm, the main features of our

framework are the following:

1. Instead of constraints, norms in our framework work with randomized signals, like traffic

lights, to guide agents’ behavior. We generate randomized signals by computing correlated

equilibrium of games. Such signals are involved in the description of the triggering condition

of norms.

2. Five types of norms were created in Chapter 2: utilitarian, egalitarian, elitist, Nash-product

and opportunity-balanced norms.

(a) Utilitarian norms are created from those correlated equilibria that maximize the sum

of the expect utility of all agents. A utilitarian correlated equilibrium is a correlated

equilibrium that maximizes utilitarian social welfare. In a given game, utilitarian social

welfare sums up the agents’ expected utilities, thus providing a useful measure of the

overall benefit of the society. A utilitarian correlated equilibrium can be computed by

using linear programming with maximizing utilitarian social welfare as the objective

function and requirements of the correlated equilibrium as constrains.
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(b) Egalitarian norms are created from those correlated equilibria which maximize the

expected utility of the poorest agent. Egalitarian social welfare is measured by the

situation of the poorest member of the society. It therefore provides a useful measure

of fairness in cases where the minimum need of all agents are to be satisfied. An

egalitarian correlated equilibrium is a correlated equilibrium that maximizes egalitarian

social welfare. We use linear programming to compute egalitarian correlated equilibria.

The variables of the linear program are random variables representing the probability

assigned to each joint action of the game. The objective function of the linear program is

to maximize the egalitarian social welfare.

(c) Elitist norms are created from those correlated equilibria which maximize the expected

utility of the happiest agent. Elitist social welfare is measured by the situation of the

happiest member of the society. Maximizing elitist social welfare reflects the famous

Matthew effect in sociology which describes the phenomenon where “the rich get richer

and the poor get poorer”. The elitist social welfare is clearly not a fair measure for social

welfare, but it can be useful in cooperation based applications where we require only one

agent to achieve its goals. An elitist correlated equilibrium is a correlated equilibrium

that maximizes elitist social welfare. We use convex optimization to compute elitist

correlated equilibrium. The variables of the linear program are random variables

representing the probability assigned to each strategy profile of the game. The objective

function is to minimize elitist social welfare.

(d) Nash-product norms are created from those correlated equilibria which maximize the

product of the expected utility of all agents. Given a game in which utility function is

non-negative, the Nash-product social welfare is the product of the expected utility of

all agents. Nash-product social welfare can be understood as a compromise between

utilitarian and egalitarian social welfare. On the one hand, just as utilitarian social

welfare, Nash-product social welfare increases with single increasing of individual

utilities. On the other hand, just as egalitarian social welfare, Nash-product social

welfare reaches its maximum when the utilities distributed equally over all agents. A

Nash-product correlated equilibrium is a correlated equilibrium that maximizes Nash-

product social welfare. We use convex optimization to compute Nash-product correlated

equilibrium.

(e) Opportunity-balanced norms are created from those correlated equilibria which are

computed by taking the average of those correlated equilibria which maximize the

expect utility of every single agent. The set of all correlated equilibria of a game is a
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convex set because correlated equilibrium is defined using linear constrains. Therefore

the average of finite many correlated equilibria is again a correlated equilibrium. Given

an arbitrary game with n agents, an opportunity-balanced correlated equilibrium can be

computed as follows:

i. For each agent, use linear programming to compute a correlated equilibrium which

maximizes the agent’s expected utility.

ii. Take the average of the n correlated equilibria from the previous step.

The procedure of norm creation in Chapter 2 is as follows: at first a normal-form game is

given. Then we computed a correlated equilibrium of the given game. The resulting correlated

equilibrium is a probability distribution over agents’ action profiles. We then transform the

probability distribution to randomized signals and create norms and signals to guide agents’

behavior.

9.1.2 Norm emergence in games

In Chapter 3 we proposed a model that supports the emergence of norms via multiagent learning

in social networks. In our model, individual agents repeatedly interact with their neighbors in a

game called Ali Baba and the Thief. In this 2-player game, each agent has two strategies: Ali Baba

and Thief. Each agent has initial utility x. If both agents choose Ali Baba, then their utilities do not

change. If they both choose Thief, then there will be a fight between them and they are both injured.

The resulting utility is 0. If one chooses Ali Baba and the other chooses Thief, then Thief robs Ali

Baba and the utility of the one who chooses Thief increases by d and the other one decreases by d,

where 0 ≤ d ≤ x. We call d the amount of robbery.

We identified norms prescribing no harmful behavior with the strategy of Ali Baba in this game.

In our model this game is repeatedly played by a given amount of agents. Each agent adapts its

strategy by using a learning rule between different rounds of play. We say a norm has emerged in

the population if:

(1) All agents are choosing and will continue to choose the action prescribed by the norm.

(2) Every agent believes that all agents who are relevant in its social network, will choose the

action prescribed by the norm in the next round.

(3) Every agent believes that all other agents who are relevant in its social network, believe that

it is good if the agent chooses the action prescribed by the norm.
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We have used replicator dynamics and imitate-the-best as rules of learning. No social network

is assumed when agents learn by using replicator dynamics while lattice model and small world

model are used when agents use imitate-the-best.

In the stable state of replicator dynamics, a pattern of behavior emerges. In this pattern, a

proportion p of agents choose Thief and a proportion 1− p of agents choose Ali Baba. When d is

very close to 0, norms saying “don’t rob”, “be peaceful” or “don’t harm others” can be viewed as

emerged. On the other hand, when d is very close to x, although it is true that,

• Almost all agents are choosing and will continue to choose Thief.

• All agents believe most agents will choose Thief in the next round.

It is not the case that every agent believe that most agents believe that it is good if the agent chooses

Thief. Therefore norms prescribing “you should rob” do not emerge, even though most agents

choose Thief in the stable state.

We then run simulations for imitate-the-best using the Netlogo platform. We set the population

of agents to a fixed number. Initially, 50% of agents choose Thief. Over time, however, through

agent-agent interactions, a bias toward Ali Baba spreads through the entire network until 100% of

the population choose Ali Baba. At this point, we say that a norm prescribing that there should be

no harmful behavior has emerged.

In the lattice model, our experiments showed that when the amount of robbery is high, the

probability of norm emergence is low. When the amount of robbery decrease, the probability of

norm emergence quickly increase. Given the initial utility x = 1000, when d is less than 400, the

norm “you should not rob” emerges for certain. This is in contrast with the analysis of replicator

dynamics. If d = 400, then according to replicator dynamics a proportion of 40% of agents

will choose Thief, therefore a norm saying there ought to be no robbery does not emerge. Our

experiments also show that in the lattice model there is a leap of the probability of norm emergence

from d = 600 to d = 400.

Just like in the lattice model, our experiments in small world model showed that the probability

of norm emergence increases when the amount of robbery decreases. There is a leap of the

probability of norm emergence from d = 300 to d = 200.

Such leaps suggest that there are critical points of norm emergence which are decided by the

quotient of the initial utility and the amount of robbery in Ali Baba and the Thief. When the

quotient of the initial utility and the amount of robbery is smaller than the critical point, the

probability of norm emergence is high. The probability drops dramatically as long as the quotient

is larger than the critical point.
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9.1.3 Axiomatics of norms

Input/output logic adopts mainly operational semantics: a normative system is conceived in

input/output logic as a deductive machine, like a black box that produces normative statement

as output, when we feed it descriptive statements as input. The procedure of the operational

semantics is divided to three stages. In the first stage, we have in hand a set of propositions (call it

the input) as a description of the current state. We then apply logical operators to this set, say, close

the set by logical consequence. Then we pass this set to the deductive machine and we reach the

second stage. In the second stage, the machine takes the input and produces a set of propositions

as output. In the third stage, we apply logical operators to the output. On the axiomatic side,

input/output logic is characterized by derivation rules about norms. The derivation systems of

input/output logic are axiomatic representations of norms. A norm is represented by an ordered

pair of formulas. Given a set of mandatory norms O, a derivation system is the smallest set which

extends O and is closed under certain derivation rules. The following are the derivation rules that

have been used to build input/output logic:

• SI (strengthening the input): from (a, x) to (b, x) whenever b ` a.

• IEQ (input equivalence): from (a, x) and a a` b to (b, x). Here a a` b means a ` b and b ` a.

• OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).

• WO (weakening the output): from (a, x) to (a, y) whenever x ` y.

• OEQ (output equivalence): from (a, x) and x a` y to (a, y).

• AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).

• Z (zero premise): from nothing to (>,>).

• ID (identity): from nothing to (a, a), for every a ∈ LP.

• T (plain transitivity): from (a, x) and (x, y) to (a, y).

• CT (cumulative transitivity): from (a, x),(a ∧ x, y) to (a, y) .

• MCT (mediated cumulative transitivity): from (a, x′), x′ ` x and (a ∧ x, y) to (a, y).

• ACT (aggregative cumulative transitivity): from (a, x),(a ∧ x, y) to (a, x ∧ y) .

The derivation system based on the rules SI, WO, AND and Z is called deriv1. Adding OR to deriv1

gives deriv2. Adding CT to deriv1 gives deriv3. These five rules together give deriv4. Adding

ID to derivi gives deriv+i for i ∈ {1, 2, 3, 4}. (a, x) ∈ deriv(O) is used to denote that (a, x) is
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derivable from O using rules of derivation system deriv. The rules IEQ, OEQ, and T is used in

the input/output logic of constitutive norms. MCT is introduced by Stolpe (2008a) in his mediated

reusable input/output logic, while ACT is recently introduced by Parent and van der Torre in their

aggregative input/output logic.

One feature of the existing work of input/output logic is: the derivation rules always work in

bundles. When several derivation rules work together, the corresponding operational semantics

is rather complex, and insights of the machinery is therefore concealed. To achieve a deeper

understanding of input/output logic, it is helpful to isolate every single rule and study them

separately.

In Chapter 4 we analyzed various derivation rules of input/output logic in isolation and defined

the corresponding semantics. Then we combine them together to achieve alternative semantics for

several input/output logics. Since the procedure of operational semantics is divided into three

stages, we also classify derivation rules according to different stages:

• Rules of input correspond to operations in the first stage. SI means to close the input by

logical consequence; IEQ means to close the input by logical equivalence; OR ensures that the

input has to be extended to satisfy disjunctive property.

• Rules of output correspond to operations in the third stage. WO means close the output by

logical consequence; OEQ means close the output by logical equivalence; AND ensures that

the output is closed under conjunction.

• Rules of normative system correspond to operations in the second stage. Z means the

normative system O is extended to O ∪ {(>,>)}. ID means to add all norms of the form

(a, a) to the normative system.

• Cross-stage rules affect more than one stages. Such rules typically have the form of

transitivity and some of them can be characterized by fixed-point formalism.

In Chapter 4 we developed alternative semantics for out3 and out+3 . Such alternative semantics

is useful in the study of the complexity of input/output logic. Our alternative semantics for

constitutive input/output logic is adequate for the derivation system of constitutive input/output

logic.

9.1.4 Algebra of norms

Since input/output logic adopts operational rather than possible world semantics, there is no

exterior structure in such operational semantics. Therefore tools to compare the similarity of
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structures, like bisimulation and isomorphism, play no role in input/output logic. This feature

makes it difficult to analyze the similarity of normative systems using input/output logic, although

the equivalence of normative systems can be represented within the input/output framework.

An algebraic framework for analyzing normative systems is introduced by Lindahl and

Odelstad (2000, 2008, 2013); Odelstad and Lindahl (2000). The most general form of the theory

is called theory of joining-systems. A joining-system is a triple (B1, B2, S) where B1, B2 are two

ordered algebraic structures and S a relation between B1 and B2 satisfying some conditions.

In Chapter 5 we developed two variants of theory of joining-systems: Boolean joining-systems

and Heyting joining-systems. A Boolean algebra is a structure A = (A,+, ·,−, 0, 1) where A is a

set, + and · are binary operators on A, − is a unitary operator on A and 0, 1 ∈ A, which satisfies

the following identities: for all x, y, z ∈ A,

1. x + y = y + x, x · y = y · x

2. x + (y + z) = (x + y) + z, x · (y · z) = (x · y) · z

3. x + 0 = x, x · 1 = x

4. x + (−x) = 1, x · (−x) = 0

5. x + (y · z) = (x + y) · (x + z), x · (y + z) = (x · y) + (x · z)

A Boolean joining-system is a triple (B1, B2, S) where B1, B2 are two Boolean algebras and S

is a relation between B1 and B2 satisfying some conditions. Boolean joining-system algebraically

characterizes unconstrained input/output logic in the sense that a norm (a, x) is derivable from a

set of norms O if and only if it is in the space of norms algebraically generated by O.

A frequent belief about input/output logic is that it presupposes classical propositional logic.

Parent et al. (2014) show that this is a misunderstanding by building input/output logic on top

of intuitionistic logic. In Chapter 5 we showed that Heyting joining-systems is an algebraic

companion for intuitionistic input/output logic. Heyting algebra was introduced by Arend

Heyting in 1930s to formalize intuitionistic logic. Heyting algebra generalizes Boolean algebra in

the sense that a Heyting algebra satisfying x + (−x) = 1 is a Boolean algebra. A Heyting algebra is

a partially ordered set (H, 0, 1 ≤, ·,+,→) with a smallest elements 0, a largest element 1 and three

operators ·, + and→ satisfying the following conditions, for all x, y, z ∈ H

1. x ≤ 1

2. x · y ≤ x

3. x · y ≤ y
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4. z ≤ x and z ≤ y implies z ≤ x · y

5. 0 ≤ x

6. x ≤ x + y

7. y ≤ x + y

8. x ≤ z and y ≤ z implies x + y ≤ z

9. z ≤ (x → y) iff z · x ≤ y

A Heyting joining-system is a triple (B1, B2, S) where B1, B2 are two Heyting algebras and S

a relation between B1 and B2 satisfying some conditions. Heyting joining-system algebraically

characterizes unconstrained intuitionistic input/output logic in the same sense as Boolean joining-

system algebraically characterizes unconstrained input/output logic.

Lindahl and Odelstad’s joining-systems, as well as our Boolean and Heyting joining-systems,

provide algebraic representations of norms and normative system. One advantage of such an

algebraic representation is that we can use them to study the similarity of normative systems. In

Chapter 5 we approached the similarity of normative systems by introducing isomorphism and

embedding between normative systems. Using theory of joining-systems, in Chapter 5 we defined

the core of a normative system. We showed that for two finite joining-systems, they are the same

iff their cores are the same.

9.1.5 On the complexity of norm-based deontic logic

We have provided complexity results of many norm-based deontic logics. In Chapter 6 we showed

unconstrained input/output logic is in the 1st level of the polynomial hierarchy. We focused on the

fulfillment problem of unconstrained input/output logic:

• Given a finite set of mandatory norms O, a finite set of formulas A and a formula x, is x ∈

outi(O, A)?

We showed that the fulfillment problem of input/output logic out1, out+1 , out2, out+2 , out4 and out+4
is coNP-complete. For out3 and out+3 , we showed that the complexity of the fulfillment problem is

coNP-hard and in PNP.

We showed that constrained input/output logic are complete for the 2ed level of the polynomial

hierarchy. In the constrained setting, a finite set of mandatory norms O, a subset O′ ⊆ O, a finite

set of input A and a finite set of constrains C are given. We study the complexity of the following

problems:
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• consistency checking: is outi(O, A) consistent with C?

• maxfamily membership: is O′ ∈ max f amilyi(O, A, C)?

• full-join fulfillment: is x ∈ out∪i (O, A, C)?

• full-meet fulfillment: is x ∈ out∩i (O, A, C)?

We showed that for i ∈ {1, 2, 4, 1+, 2+, 4+}, the consistency checking problem is NP-complete,

while for i ∈ {3, 3+}, the consistency checking problem is NP-hard and in PNP. Then we proved

that for i ∈ {1, 2, 4, 1+, 2+, 4+}, the maxfamily membership problem is BH2-complete and for

i ∈ {3, 3+}, the maxfamily membership problem is BH2-hard and in PNP. We further showed

that for i ∈ {1, 2, 3, 4, 1+, 2+, 3+, 4+}, full-join fulfillment problem is NPNP-complete (Σp
2 -complete)

and the full-meet fulfillment problem is coNPNP-complete (Πp
2 -complete).

In Chapter 6 we also studied the complexity of the following decision problems about

permissive input/output logic: given a finite normative system N = (O, P), a finite set of input

A and a formula x:

• negative permission checking: is x ∈ NegPermi(N, A)?

• positive-static permission checking: is x ∈ StaPermi(N, A)?

• positive-dynamic permission checking: is x ∈ DyPermi(N, A)?

Negative and static permission checking in input/output logic are in the 1st level of the polynomial

hierarchy while dynamic permission checking is complete for the 2ed level of the polynomial

hierarchy. We showed that for i ∈ {1, 2, 4}, negative permission checking is NP-complete and

for i = 3, negative permission checking is NP-hard and in PNP. For i ∈ {1, 2, 4}, the positive-

static permission checking is coNP-complete and for i = 3, the positive-static permission checking

is coNP-hard and in PNP. Positive-dynamic permission checking is harder than other permission

checking: For i ∈ {1, 2, 3, 4}, positive-dynamic permission checking is NPNP-complete. The main

source of complexity is that in positive-dynamic permission checking we have to first guess a

consistent input and then check if it produces some inconsistency.

In Chapter 6 we also studied how to impose syntactic restrictions such that decision problems

of unconstrained input/output logic are tractable (in P). For out1 and out3, we achieve tractability

via Post Lattice. Our results showed that if B is a finite set of Boolean functions such that S00 6⊆ [B],

S10 6⊆ B and D2 6⊆ B, and A is a set of B-formulas, all formulas appear in O are B-formulas and x

a B-formula, then deciding if x ∈ outi(O, A) is in P, for i ∈ {1, 3, 1+, 3+}.

Chapter 7 is a continuation of Chapter 6. In Chapter 6, we did not consider priority between

norms. In Chapter 7 we brought priority back to our logic. We studied the complexity of normative
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reasoning by investigating the complexity of prioritized input/output logic, prioritized imperative

logic and deontic default logic. Similar to Chapter 6, we mainly studied the complexity of the

fulfillment problem of norm-based deontic logic. For prioritized input/output logic, the fulfillment

problem is:

• Given a set of prioritized norms O≥, a set of input A, a set of constrains C and a formula x,

decide if x ∈ outp
i (O

≥, A, C).

For prioritized imperative logic, the fulfillment problem is:

• Given a set of prioritized norms O>, a set of input A and a formula x, decide if x ∈

outh
i (O

>, A).

For deontic default logic, the fulfillment problem is:

• Given a set of prioritized norms O>, a set of input A and a formula x, decide if x ∈

outd(O>, A).

Our results in Chapter 7 showed that prioritized input/output logic outp
1 , as well as prioritized

imperative logic, is complete for the 2ed level of the polynomial hierarchy while deontic default

logic is located in the 3ed level of the polynomial hierarchy.

9.1.6 Logic and games for ethical agents

In Chapter 8 we adopted a deontic logic+Boolean game approach to the construction of ethical

agents. We used norm-based deontic logic to reason about norms and use Boolean games to rep-

resent the interaction of agents. We used norms to assess the normative status of strategies. Given

a normative multiagent system (G, N, E), for each agent i, a strategy (+p1, . . . ,+pm,−q1, . . . ,−qn)

is mandatory if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ outp
1 (O

≥, E, ∅).

The strategy is positively permitted if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ StaPerm1(N, E).

The strategy is negatively permitted if

p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn ∈ NegPerm1(N, E).

The strategy is prohibited if
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¬(p1 ∧ . . . ∧ pm ∧ ¬q1 ∧ . . . ∧ ¬qn) ∈ outp
1 (O

≥, E, ∅).

Then agents’ preferences are changed by the normative status of strategies. Agents of different

types use different procedures to change their preferences. We characterize 6 types of ethical agents:

moral, amoral, social, selfish, negatively impartial and positively impartial.

1. An amoral agent prefers strategy profiles with higher utility.

2. A moral agent prefers strategy profiles with higher normative status.

3. • A selfish agent first prefers strategy profiles with higher utility.

• For two strategy profiles of the same utility, the agent prefers the one which contains his

strategy of higher normative status.

4. • A social agent first prefers strategy profiles which contains his strategy of higher

normative status.

• For two strategy profiles of the same normative status, it prefers strategy profiles with

higher utility.

5. • A negatively impartial agent first classifies strategies into negatively permitted category

and prohibited category.

• Then it ranks its strategies using utility within these two categories.

6. • A positively impartial agent first classifies strategies into positively permitted category

and not positively permitted category.

• Then it ranks its strategies using utility within these two categories.

We studied some complexity issues related to normative reasoning/status and agents’ prefer-

ence change. If no restriction is imposed, then for two strategy profiles s and s′, deciding whether s

is better than s′ is in ∆p
3 . By restricting to strict Horn formulas, the complexity becomes P-complete.

By restricting to literals, the complexity is even lower.

9.2 Future work

There are two modules in this thesis: norm generation in games and norm-based deontic logic.

Both modules leave many open problems worthy of studying. In this final section of this thesis, we

first propose future work from a broad perspective, then we give some more concrete problems.

In the first module, we created norms by computing solutions of games and studied the

emergence of norms by running simulations of repeated games. In the sub-module of norm
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creation, we studied the creation of 5 types of norms. Each of these types corresponds to a

meaningful measurement of social welfare. This result suggests some connections between norm

creation and the theory of social choice. In computational social choice, especially in multiagent

resource allocation (Chevaleyre et al., 2006), the egalitarian and the elitist social welfare are both

representatives of the family of k-rank dictator social welfare. In the future we will explore the

creation of other types of norms that maximize some interesting social welfare studied in social

choice theory such as k-rank dictator social welfare.

We are also interested in investigating the limitations and alternatives of our norm creation

framework. In our framework, signals play an important role in the process of creating norms

from correlated equilibrium. Those signals are used to indicate calssical probability distribution

over strategy profiles. Therefore they are classical signals in contrast to quantum signals. In the

literature of quantum game theory, Huberman and Hogg (2003) and La Mura (2005) show that in

some games, if the signals the agents receive are entangled in an intrinsically quantum-mechanical

fashion, then by following the quantum signals, the sum of the expected utility of all agents is

higher than the sum of expected utility in every utilitarian correlated equilibrium. Those results

reveal one limitation of our framework. We leave the exploration of the power of quantum signals

in norm creation as future work.

Dodis et al. (2000) raise the question whether there is a mechanism that eliminates the need for

the mediator (norm creator) to implement correlated equilibrium yet allows the agents to maintain

the high payoffs offered by mediator-assisted strategies. They partially solved this problem by

providing a cryptographic protocol to the two agent correlated element selection problem. Their

results showed that cryptographic protocols can be viewed as alternatives to norms in coordinating

agent’s behavior in games. A comparison between social norms and cryptographic protocols are

worthy of deeper investigation.

In the sub-module of norm emergence, we study norm emergence in the lattice and small world

network using the learning rule imitate-the-best. In the future we are interested in studying how

different network topologies affect the emergence of norms. If we pay attention to the topology

of real networks, we will find out that most of them have a very particular topology: they are

complex networks (Adamic, 1999) with non-trivial wiring schemes. The Internet, is among the most

prominent complex networks found in the real world. Complex networks are well characterized

by some special properties, such as the connectivity distribution (either exponential or power-law)

or the small-world property (Amaral et al., 2000). Our long-term objective is to use multi-agent

learning to study the emergence of norms in various interesting games in complex networks.

Now we turn to the second module. How is deontic logic possible on a positivistic philosophy

of norms? Makinson (1999) considers this question the ’fundamental problem of deontic logic’, and
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called to reconstruct deontic logic as a logic of reasoning about norms. Norm-based deontic logic

offers a solution to this problem. In the past two decades, logicians, philosophers and computer

scientists have made significant progresses on norm-based deontic logic. They have established

semantics and proof theory, proved completeness theorems, solved deontic paradoxes and find

applications in different fields such as artificial intelligence, information security and legal theory.

This thesis contributes some computational results to norm-based deontic logic and extends its

application to machine ethics. We believe norm-based deontic logic is an interesting topic which

is worthy of further development in both theory and application. On the theoretical side, one

limitation of current norm-based deontic logic is that they are all based on propositional logic.

Therefore the expressive power of norm-based deontic logic needs to be increased. The need

of increasing expressive power is also raised by the application of deontic logic to information

security.

Several authors have used deontic logic to specify security policies (Glasgow et al., 1992; Jones

and Sergot, 1992; Demolombe and Jones, 1996; Cuppens-Boulahia and Cuppens, 2008; Cuppens

et al., 2013). These authors outlined the main features of this formalism to provide a flexible and

expressive language for specifying security policies. Deontic logic has been a useful tool in the

specification and reasoning of security policies because key notions in security such as permission,

authorization, prohibition and obligation are exactly the subjects of deontic logic. To apply norm-

based deontic logic to information security, we have to find a balance between expressive power

and computational complexity. On the one hand, propositional logic is too weak to express crucial

notions in security policy such as authority, action and agent. On the other hand, we have proved

that the complexity of norm-based deontic logic is already intractable even if the base logic is

propositional logic. To solve this problem we need to build norm-based deontic logic on top of

an expressive logic, meanwhile use only a fragment of such logic to keep the complexity tractable.

After this is done, we can further proceed to implement norm-based deontic logic using some

programming languages.

Having outlined the future work for the long term, now we discuss more concrete problems

which can possibly be solved in near future.

9.2.1 On norm creation

k-rank dictator

In the literature of multiagent resource allocation (Chevaleyre et al., 2006), the egalitarian and the

elitist social welfare are both representatives of the family of k-rank dictator social welfare. Given

a game and a correlated equilibrium, let EU(τ) = (EU1(τ), . . . , EUn(τ)) be the expected utility
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vector under τ. The ordered expected utility vector EU(τ)∗ is defined as the vector we obtain

when we rearrange the elements of EU(τ) in increasing order. The k-rank dictator social welfare

for a natural number k is measured by the k-poorest agent:

SWk(τ) = EU(τ)∗k

Here EU(τ)∗k means the kth element of the vector EU(τ). For k = 1, we obtain the egalitarian social

welfare. For k = n we obtain the elitist social welfare. A special case of particular interest is the

median rank dictator social welfare which is defined as SWk(τ) with k = n
2 in case n is even and

k = n+1
2 in case n is odd. Indeed, for certain applications the individual level of welfare on an agent

that does at least as well as half of the agents in the system but not better than the other half may

be considered as suitable indicator for overall system performance. Whether k-rank dictator norms

can be created efficiently is left as future work.

VCG mechanism and norm creation

The fact that norms can be created efficiently in our framework is a positive result. But in situations

where the system designer are required to collect the utilities function of each agent, this positive

result has a negative side in the sense that agents can manipulate the procedure of norm creation

by misrepresenting their true utility function. To minimize the possibility of manipulation, we use

a variant of the Vickrey-Clarke-Groves mechanism from the theory of mechanism design (Nisan

and Ronen, 2001) to elicit the true utility function of agents.

Our basic idea is summarized as follows. Given a game G = (Agent, Γ1, . . . Γn, u1, . . . , un), let

the contraction of this game excluding i be G−i = (Agent−{i}, Γ1, . . . , Γi−1, Γi+1, . . . , Γn, u′1, . . . , u′i−1,

u′i+1, . . . , u′n), Where u′j(α1, . . . , αj−1, αj+1, . . . , αn) = (uj(α1, . . . , α1
i , . . . , αn) + . . . + uj(α1, . . . , αk

i , . . . ,

αn))/k, if |Γi| = k. Given a game (Agent, Γ1, . . . Γn, u1, . . . , un), an agent i and its reported utility

function ûi,

1. Compute a utilitarian correlated equilibrium τ̂ for the game (Agent, Γ1, . . . Γn, u1, . . . , ûi, . . . , un).

2. Compute a utilitarian correlated equilibrium τ−i for the game G−i.

3. Extend τ−i to τ̂−i, which is a probability distribution over Γ1 × . . . × Γn such that for all

αi ∈ Γi, τ̂−i(α1, . . . , αi, . . . αn) =
1
|Γi |

τ−i(α1, . . . , αj−1, αj+1, . . . , αn).

4. Let the tax imposed to i for reporting ûi be taxi(ûi) = EUi(τ̂)− EUi(τ̂−i)

Suppose ui is the true utility function of agent i, then the incentive for i to represent a fake utility

function ûi is (EUi(τ̂)− taxi(ûi))− (EUi(τ)− taxi(ui)) = EUi(τ̂−i)− EUi(τ̂−i) = 0. This result
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shows that given the taxation rule explained above, there is no incentive for an agent to report a

fake utility function. A detailed formation of such mechanisms for eliciting the true utility function

is left as future work.

9.2.2 On norm emergence

In the future it is worthy of studying the problem of norm emergence in Ali Baba and the Thief

where agents are situated in a social network different from lattice or the small world model and

use some other learning rules. In particular, we are interested in scale-free networks and fictitious

play.

Scale-free network

A social network’s diameter is defined as the largest distance between any two nodes in the

network. The diameter represents the largest path within the network and characterizes the

compactness and connectivity of the network. A network with a small diameter is very well-

connected, and thus the average path length of the network will be small. On the other hand, a

network with a large diameter will be very sparsely-connected, and the average path length can be

large.

Scale-free networks have the structural property that the connectivity of the network follows a

power law distribution. This means that the network has a small number of nodes which have

a very high connectivity. However, most of the nodes in the network are sparsely-connected.

Two examples that have been studied extensively are the collaboration of movie actors in films

and the co-authorship by mathematicians of papers. The diameter of a scale-free network can

be approximated as the largest distance among hubs plus 2 since this is the distance between a

neighbor of one hub of the longest path and a neighbor of the other hub of the longest path.

Fictitious play

Fictitious play is one of the most important model of learning in games (Fudenberg and Levine,

1998). In this model agents assume that their opponents are playing a fixed strategy. The agents

use their past experiences to build a model of the opponent’s strategy and use this model to choose

their own action.

Fictitious play uses a simple form of learning where an agent remembers everything the other

agent has done and uses this information to build a probability distribution for the other agent’s

expected strategy. Formally, for the two agent case we say that agent i maintains a weight function

ki : Sj → R+. The weight function changes over time as the agent learns. The weight function at
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time t is represented by kt
i . It maintains a count of how many times each strategy has been played

by player j. When at time t− 1 opponent j plays strategy st−1
j then i updates its weight function

with

kt
i(sj) = kt−1

i (sj) +

 1 if st−1
j = sj,

0 if st−1
j 6= sj.

(9.1)

Using this weight function, agent i can assign a probability to j playing any of its sj ∈ Sj

strategies with

Prt
i [sj] =

kt
i(sj)

∑s̃j∈Sj
kt

i(s̃j)
. (9.2)

That is, i assumes j will pick its action proportional to the values in ki(sj). Player i then determines

the strategy that will give it the highest expected utility given that j will play each of its sj ∈ Sj with

probability Prt
i [sj]. In other words, i determines its best response to a probability distribution over

j’s possible strategies.

9.2.3 Axiomatics of norms

Abstract input/output logic

A frequent belief about input/output logic is that it presupposes classical logic (Parent et al., 2014).

In other words, since all works in input/output logic before Parent et al. (2014) used propositional

logic as base logic, it was believed that input/output logic cannot be wrapped around a logic

having a higher expressivity.

Parent et al. (2014) and Sun (2015c) provide evidence that this conjecture is not true. They

take intuitionistic logic and STIT logic (Belnap et al., 2001) respectively as the base logic and

built input/output logic on top of it. Although Parent et al. (2014) and Sun (2015c) prove that

propositional logic is not the only available choice for the object logic of input/output systems, their

findings still need to be generalized before being considered acceptable. Each of them considers a

single base logic.

Carnielli et al. (2013) moves forward on the same path of Parent et al. (2014) and Sun (2015c) by

building input/output logic on top of an arbitrary Tarskian logic. Carnielli et al take an arbitrary

Tarskian logic as base logic and build abstract input/output logic on top of it. Tarskian logic is the

most general logic we can have: intuitionistic logic, STIT logic, first order logic, deontic logic, and

so forth are only special instantiations of Tarskian logic. A Tarskian logic is a pair L = (L,`), where

` is termed as “Tarskian consequence relation” and it is defined as follows.
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Definition 9.1. [Tarskian consequence Wójcicki (1988)] A Tarskian consequence relation over a language L

is a relation `, included in or equal to 2L × L, that satisfies the following properties:

1. reflexivity: For all A ⊆ L, x ∈ L, if x ∈ A then A ` x.

2. cumulative transitivity: If A ` x and for all a ∈ A, B ` a then B ` x.

3. monotony: If A ` x then A ∪ B ` x.

A Tarskian consequence relation is compact if it satisfies the following:

(1) if A ` x then A0 ` x for some finite A0 ⊆ A.

We say that a logic L has true constant and false constant if L contains formulas > and ⊥ satisfying

x ` > and ⊥ ` x for all x ∈ L. Carnielli et al. (2013) say that a logic L has conjunction and

disjunction if L has binary connectives ∧ and ∨ satisfying usual classical properties. It is not

explicitly stated what exactly those properties are in Carnielli et al. (2013). Here we explicitly

require ∧ and ∨ to satisfy the following properties:

(2) a. {x ∧ y} ` x

b. {x ∧ y} ` y

c. {x, y} ` x ∧ y

d. {x, y} ` y ∧ x

e. {x} ` x ∨ y

f. {y} ` x ∨ y

Note that we do not require ∧ and ∨ to satisfy distributivity, which means here we do not exclude

quantum logic which usually falsifies distributivity. Let Cn(•) be the consequence operator of an

arbitrary compact Tarskian logic with true and false constant as well as conjunction and disjunction.

Carnielli et al. (2013) introduce the proof theory and semantics of abstract simple-mined reusable

input/output logic (outT
3 ) but do not prove the completeness. Here we give an alternative semantics

for outT
3 :

Definition 9.2. Let BO
A =

⋃∞
i=0 BO

A,i, where BO
A,0 = Cn(A), BO

A,i+1 = Cn(A ∪O(BO
A,i)),

outT
3 (O, A) = Cn(O(BO

A)).

Let derivT
3 (O) be the proof system of abstract simple-mined reusable input/output logic

proposed in Carnielli et al. (2013). We make the following conjecture and leave the proof of this

conjecture as future work.

Conjecture 9.1. (a, x) ∈ derivT
3 (O) iff x ∈ outT

3 (O, a).
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Parameterized logic programming

Gonçalves and Alferes (2012) show that propositional input/output logic can be embedded into

parametrized logic programming. Parametrized logic programming (Gonçalves and Alferes, 2010)

was introduced as an extension of answer set programming (Gelfond and Lifschitz, 1988) such that

complex formulas are allowed to appear in the head and body of a rule. The main idea is to fix a

Tarskian logic L as parameter logic, and build up logic programs using formulas of L.

The formulas of L are called (parametrized) atoms and a (parametrized) literal is either a

parametrized atom x or its negation not x, where as usual not denotes negation as failure.

Definition 9.3. (Gonçalves and Alferes, 2010) A normal L-parametrized logic program is a set of rules

x ← a1, . . . , am, not b1, . . . , not bn

where a1, . . . , am, b1, . . . , bn, x ∈ L. A definite L-parametrized logic program is a set of rules without

negation as failure, i.e. of the form x ← a1, . . . , am where a1, . . . , am, x ∈ L.

A theory of L is a set of formulas that is closed under the inference relation `. That is, A ⊆ L is a

theory of L if A = Cn(A). An interpretation of an L-parametrized logic program is a theory of L. If

I and J are two interpretations then we say that I � J if I ⊆ J.

Definition 9.4 (Gonçalves and Alferes (2010)). A interpretation I satisfies a rule x← a1, . . . , am, not b1,

. . . , not bn if x ∈ I whenever ai ∈ I for all i ∈ {1, . . . , m} and bj 6∈ I for every j ∈ {1, . . . , n}.

Definition 9.5 (Gonçalves and Alferes (2010)). An interpretation is a model of an L-parametrized logic

program P if it satisfies every rule of P . We denote by ModL(P) the set of models of P .

Definition 9.6 (Gonçalves and Alferes (2010)). The stable model semantics of a definite L-parametrized

logic program P , denoted as SL
P , is its least model with respect to the � relation. That is , I is the stable

model semantics of P if I is a model of P and for all J which is a model of P , I � J.

The above notion is well-defined because it is proved in Gonçalves and Alferes (2010) that every

definite L-parametrized logic program has a unique least model.

We define a modal expansion of a Tarskian logic L = (L,`) to be another logic L� = (L�,`+)

where � is a distinct modal operator that does not appear in L such that:

• L� = L ∪ {�x : x ∈ L}.

• `+⊆ 2L� × L� is a Tarksian consequence relation which satisfies the following:

1. `⊆`+.

2. If x ` y then �x `+ �y.
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3. �x ∧�y `+ �(x ∧ y).

We conjecture that abstract input/output logic based on L can be embedded into L�-parametrized

logic program.

Conjecture 9.2. Given a Tarskian logic L = (L,`), O ⊆ L × L, A ⊆ L, L� = (L�,`+) a modal

expansion of L, let P3 = {x ← a : (a, x) ∈ O} ∪ {�x ← a : (a, x) ∈ O} ∪ {a ←: a ∈ A}. Then

outT
3 (O, A) ⊆ {x : �x ∈ SL�

P3
}.

9.2.4 Algebra of norms

We use more advanced logic and algebra to relate input/output logic and joining-systems and

use them to give a more accurate formal characterization of normative systems. One recent result

from algebraic logic shed lights on this problem: algebraic hybrid logic (Litak, 2006). It is worth

investigating whether similar results can be obtained if we use hybrid logic and its algebraic

companion to replace the logic and algebra we used in this thesis.

9.2.5 On the complexity of normative reasoning

The following directions of future work are worthy of studying:

1. What is the exact complexity of out0, out3, out5, out6, outp
2 , outp

3 and outp
4 ?

2. What is the exact complexity of deontic default logic?

3. Other notions of permission have been studied in Stolpe (2010c). What is the complexity of

Stolpe’s permissive input/output logic?

9.2.6 On ethical agents

One of the most interesting avenues for future research is to integrate other mental attitudes such as

belief and intention into the architecture of agents. More normative positions and types should be

studied in the future. For example we can identify x as weak mandatory if x ∈ ⋃{outi(O′, A) : O′ ∈

preffamilyi(O
≥, A, C)} and let a weak moral agents first classify his strategies into two categories:

weak mandatory and not weak mandatory, then rank his strategies using utility within these two

categories. Another topic worthy of investigating is to extend the expressivity of Boolean games.

The Boolean games we used only allow to express binary preference. Extension of Boolean games

to express more complicated preference has been developed by Bonzon et al. (2009). In the future

we will study solution concepts of normative Boolean games with complicated preference. In
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Boolean games, an action is simply a truth assignment. Extensions are made in dynamic logic

of propositional assignments (Herzig et al., 2011; Balbiani et al., 2013) by allowing action to be

combined using action operators such as sequence, choice and iteration. In the future we will

investigate how to incorporate complex actions into our framework.

9.2.7 Other related directions

On norm change

Theories of normative system change are studied in Boella et al. (2009b) and Stolpe (2010a).

They generalise classical revision theory of the AGM brand to sets of norms. This is achieved

in Stolpe (2010a) by substituting input/output logic for classical logic and tracking the changes.

Operations of derogation and amendment – analogues of contraction and revision – are defined

and characterized, and the precise relationship between contraction and derogation, on the one

hand, and derogation and amendment on the other, is established. The complexity of norm change

in their framework is worthy of studying in the future.

Graded causal theory and prioritized causal calculas

There is a close relation between deontic logic and causal theory. Makinson (1993) shows

that conditional obligation in deontic logic and counterfactual conditionals, an important source

of causal theory, are actually two sides of the same coin. Bochman (2004) uses a variant of

input/output logic to develop causal calculus.

One important problem in causal theory is the problem of isomorphism, the problem that

one collection of data supports many different causal patterns. By incorporating normality into

an account of actual causation, Halpern and Hitchcock (2015) develop graded causal theory to

solve the problem of isomorphism. It seems that we can use a different approach to develop

something similar to graded causal theory. Bochman’s causal calculus is a variant of non-prioritized

input/output logic. By using prioritized input/output logic we can develop a prioritized causal

calculas. Bochman and Lifschitz (2015) prove that causal calculus is to a large extend the same as

Pearl’s causal theory (Pearl, 2000). To what extend will the prioritized causal calculus be the same

as the graded causal theory? How can these two formal frameworks benefit from each other?

Procedural norms and social software

Procedural norms guide agents to achieve justice and fairness. Up to now, deontic logicians

pay little attention to procedural norms (Boella and van der Torre, 2008). Some formal study of
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procedural norms can be found in the literature of social software (van Eijck and Verbrugge, 2015).

A systematical study of the syntax, semantics and complexity of procedural norms is worthy of

further development.
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