2,257 research outputs found

    Development of a multi-hop wireless sensor system for the dynamic event monitoring of civil infrastructure and its extension for seismic response monitoring

    Get PDF
    The dynamic response of civil infrastructures under transient dynamic events is of particular interests for structural engineers, because these event-induced responses usually provide useful insights into the real dynamic behavior of civil infrastructures under extreme conditions. Monitoring these dynamic event induced vibrations are among the most frequently conducted measurements and experiments in the structural engineering field, and a cheaper, simpler and more flexible monitoring system is always under pursuit of civil engineers. One particular such request comes from the seismic response monitoring applications. Seismic response monitoring for general civil infrastructure is critical in high-risk earthquake areas like Japan. It contributes to earthquake safety by providing quantitative measurement that enables improved understanding and predictive modeling of the earthquake response of these engineered systems. However, due to the limitations of the current monitoring systems, such seismic response records of general civil infrastructure are usually not available. Therefore, this research describes a novel development of an autonomous dynamic event monitoring system using Wireless Smart Sensor Network(WSSN), which is further extended to support the purpose of long-term seismic response monitoring. This developed WSSN monitoring system is portable and low-cost, it has a potential to provide long-term seismic response monitoring for a wide range of civil infrastructure. This system can run on existing power sources readily available in common civil infrastructure and thus is able to perform long-term continuous sensing as demanded by the seismic response monitoring applications. A quick and stable event detection method is developed to trigger the recording of the complete seismic response and also eliminate possible false alerts caused by unexpected disturbance. Long-term network-wide time synchronization is guaranteed by a customized long-term Flooding Time Synchronization Protocol(FTSP) so that the all sensor nodes in the network can provide consistent time records of their captured seismic response. An efficient multi-hop service module is also incorporated into the system to disseminate commands and accommodate the need of collecting data in a reliable and prompt manner after major earthquakes, the integrated multi-hop data collection protocol provides a theoretically optimum data collection efficiency. Various experiments have been done to validate the developed programs. Suggestions are also given towards the final realization of successful long-term implementation of the developed monitoring system.報告番号: ; 学位授与年月日: 2012-09-27 ; 学位の種別: 修士 ; 学位の種類: 修士(工学) ; 学位記番号: ; 研究科・専攻: 工学系研究科社会基盤学専

    Smart Agent and Modified Master-Backup Algorithm for Auto Switching Dynamic Host Configuration Protocol Relay through Wireless Router

    Get PDF
    Several problems happened in a wireless router which is the number of clients that connected to DHCP (Dynamic Host Configuration Protocol) services and also durability in connectivity. Wireless router which is used in the office nowadays usually has a small memory and also CPU power. Memory or CPU sometimes could be running out when a wireless router does some background services. DHCP is one of the services needed to run in a wireless router. DHCP is interrupted when memory or CPU is full. DHCP relay and modification of the backup algorithm needed to overcome this situation when the memory or CPU in the wireless router is limited. The modification of the backup algorithm is a mechanism to switch the main router with the backup router when the main router memory is busy. DHCP relay could become a DHCP server directly when the main router is busy. Wireless router in another side could be formatted with open-source OS such as OpenWRT to become bridge interface that connected to DHCP relay. The scenario that tested in this research is using Cisco DHCP relay services in combination with OpenWRT wireless router, in variation with Mikrotik original “capsman” protocol with DHCP relay in combination with wireless-enabled Mikrotik and also in combination with OpenWRT wireless router. The result shows that OpenWRT in configuration with DHCP relay and backup algorithm could extend the number of a client connected, and also the durability of the wireless router runs its services as DHCP forwarder to DHCP relay and DHCP server. Theoretically, the number of the client that could connect in class C IPv4 address is 253 clients. Practically, in some wireless router brand, the number of the client is limited to 15 to 30 clients because that number is an optimal client for consuming the bandwidth. DHCP relay scenario could extend that limit to have a larger number of the client, and the new backup algorithm in combination also doesn’t decrease IP release time significantly from usual DHCP using a direct connection

    Cyber-Physical Co-Design of Wireless Control Systems

    Get PDF
    Wireless sensor-actuator network (WSAN) technology is gaining rapid adoption in process industries because of its advantages in lowering deployment and maintenance cost in challenging environments. While early success of industrial WSANs has been recognized, significant potential remains in exploring WSANs as unified networks for industrial plants. This thesis research explores a cyber-physical co-design approach to design wireless control systems. To enable holistic studies of wireless control systems, we have developed the Wireless Cyber-Physical Simulator (WCPS), an integrated co-simulation environment that integrates Simulink and our implementation of WSANs based on the industrial WirelessHART standard. We further develop novel WSAN protocols tailored for advanced control designs for networked control systems. WCPS now works as the first simulator that features both linear and nonlinear physical plant models, state-of-art WirelessHART protocol stack, and realistic wireless network characteristics. A realistic wireless structural control study sheds light on the challenges of WSC and the limitations of a traditional structural control approach under realistic wireless conditions. Systematic emergency control results demonstrate that our real-time emergency communication approach enables timely emergency handling, while allowing regular feedback control loops to effectively share resources in WSANs during normal operations. A co-joint study of wireless routing and control highlights the importance of the co-design approach of wireless networks and control

    Mobile Coordinated Wireless Sensor Networks with Fault-Tolerance for Structural Health Monitoring

    Get PDF
    This paper introduces the Structural health monitoring (SHM) using Mobile Access Coordinated Wireless Sensor Network (MA-WSN) energy - efficient scheme for time sensitive applications. In Sensor Networks with Mobile Access points (SENMA), the mobile access points (MAs) traverse the network to collect information directly from each sensor. To organize disjoint nodes forming into small groups in high energy level, sensors are used in clustering methods, where each cluster has a coordinator referred as Cluster Head (CH). Early detection of failure CHs will reduce the data loss and provide possible minimal recovery efforts. Failure CHs are unable to connect to automatically organized another cluster head of access node and this access node collect and transfer data directly. So a new technique has been proposed in this paper which improves the life time of sensor nodes or it minimizes the maximum energy used by the sensor for transmitting data to the base station and also ensures monitoring quality. The performance of the proposed placement method has been tested by NS2 simulations and the result is compared with the sensor placement using effective independence method. This method obtains almost the same placement quality as that provided by using effective independence method, but with improvement in system life time

    Promoting Quality of Service in Substitution Networks with Controlled Mobility

    Get PDF
    International audienceA substitution network is a rapidly deployable backup wire- less solution to quickly react to network topology changes due to failures or to ash crowd e ects on the base network. Unlike other ad hoc and mesh solutions, a substitution network does not attempt to provide new services to customers but rather to restore and maintain at least some of the services available before the failure. Furthermore, a substitution net- work is not deployed directly for customers but to help the base network provide services to the customers. Therefore, a substitution network is not, by de nition, a stand-alone network. In this paper, we describe the quality of service architecture for substitution networks and discuss pro- visioning, maintenance, and adaptation of QoS inside and between the base network and the substitution network

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    An Approach to Select Cluster Head in Wireless Sensor Networks

    Get PDF
    Recent advancement in mobile network and wireless technologies has resulted in improvements in sensor networks. But there are various challenges and security threats that disturb the Wireless communication. This paper proposes a technique called cluster head selection, which is used for selecting the cluster head. The longevity of a network can be enhanced by using a group of mobile sensor network. The role of the head of this group is collecting data and forwarding it. This data is transferred to the head by the other nodes in the group. We are using fuzzy logic scheme for selecting cluster head. AOMDV protocol is used for path identification in sensor network

    Modeling and Implementation of Wireless Sensor Networks for Logistics Applications

    Get PDF
    Logistics has experienced a long time of developments and improvements based on the advanced vehicle technologies, transportation systems, traffic network extension and logistics processes. In the last decades, the complexity has increased significantly and this has created complex logistics networks over multiple continents. Because of the close cooperation, these logistics networks are highly dependent on each other in sharing and processing the logistics information. Every customer has many suppliers and vice versa. The conventional centralized control continues but reaches some limitations such as the different distribution of suppliers, the complexity and flexibility of processing orders or the dynamics of the logistic objects. In order to overcome these disadvantages, the paradigm of autonomous logistics is proposed and promises a better technical solution for current logistics systems. In autonomous logistics, the decision making is shifted toward the logistic objects which are defined as material items (e.g., vehicles, containers) or immaterial items (e.g., customer orders) of a networked logistics system. These objects have the ability to interact with each other and make decisions according to their own objectives. In the technical aspect, with the rapid development of innovative sensor technology, namely Wireless Sensor Networks (WSNs), each element in the network can self-organize and interact with other elements for information transmission. The attachment of an electronic sensor element into a logistic object will create an autonomous environment in both the communication and the logistic domain. With this idea, the requirements of logistics can be fulfilled; for example, the monitoring data can be precise, comprehensive and timely. In addition, the goods flow management can be transferred to the information logistic object management, which is easier by the help of information technologies. However, in order to transmit information between these logistic objects, one requirement is that a routing protocol is necessary. The Opportunistic relative Distance-Enabled Uni-cast Routing (ODEUR ) protocol which is proposed and investigated in this thesis shows that it can be used in autonomous environments like autonomous logistics. Moreover, the support of mobility, multiple sinks and auto-connection in this protocol enhances the dynamics of logistic objects. With a general model which covers a range from low-level issues to high-level protocols, many services such as real time monitoring of environmental conditions, context-aware applications and localization make the logistic objects (embedded with sensor equipment) more advanced in information communication and data processing. The distributed management service in each sensor node allows the flexible configuration of logistic items at any time during the transportation. All of these integrated features introduce a new technical solution for smart logistic items and intelligent transportation systems. In parallel, a management system, WSN data Collection and Management System (WiSeCoMaSys), is designed to interact with the deployed Wireless Sensor Networks. This tool allows the user to easily manipulate the sensor networks remotely. With its rich set of features such as real time data monitoring, data analysis and visualization, per-node management, and alerts, this tool helps both developers and users in the design and deployment of a sensor network. In addition, an analytical model is developed for comparison with the results from simulations and experiments. Focusing on the use of probability theory to model the network links, this model considers several important factors such as packet reception rate and network traffic which are used in the simulation and experiment parts. Moreover, the comparison between simulation, experiment and analytical results is also carried out to estimate the accuracy of the design and make several improvements of the simulation accuracy. Finally, all of the above parts are integrated in one unique system. This system is verified by both simulations in logistic scenarios (e.g., harbors, warehouses and containers) and experiments. The results show that the proposed model and protocol have a good packet delivery rate, little memory requirements and low delay. Accordingly, this system design is practical and applicable in logistics

    Practical and Robust Power Management for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks: WSNs) consist of tens or hundreds of small, inexpensive computers equipped with sensors and wireless communication capabilities. Because WSNs can be deployed without fixed infrastructure, they promise to enable sensing applications in environments where installing such infrastructure is not feasible. However, the lack of fixed infrastructure also presents a key challenge for application developers: sensor nodes must often operate for months or years at a time from fixed or limited energy sources. The focus of this dissertation is on reusable power management techniques designed to facilitate sensor network developers in achieving their systems\u27 required lifetimes. Broadly speaking, power management techniques fall into two categories. Many power management protocols developed within the WSN community target specific hardware subsystems in isolation, such as sensor or radio hardware. The first part of this dissertation describes the Adaptive and Robust Topology control protocol: ART), a representative hardware-specific technique for conserving energy used by packet transmissions. In addition to these single-subsystem approaches, many applications can benefit greatly from holistic power management techniques that jointly consider the sensing, computation, and communication costs of potential application configurations. The second part of this dissertation extends this holistic power management approach to two families of structural health monitoring applications. By applying a partially-decentralized architecture, the cost of collecting vibration data for analysis at a centralized base station is greatly reduced. Finally, the last part of this dissertation discusses work toward a system for clinical early warning and intervention. The feasibility of this approach is demonstrated through preliminary study of an early warning component based on historical clinical data. An ongoing clinical trial of a real-time monitoring component also provides important guidelines for future clinical deployments based on WSNs
    corecore