11 research outputs found

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    A HIGHLY-SCALABLE DC-COUPLED DIRECT-ADC NEURAL RECORDING CHANNEL ARCHITECTURE WITH INPUT-ADAPTIVE RESOLUTION

    Get PDF
    This thesis presents the design, development, and characterization of a novel neural recording channel architecture with (a) quantization resolution that is adaptive to the input signal's level of activity, (b) fully-dynamic power consumption that is linearly proportional to the recording resolution, and (c) immunity to DC offset and drifts at the input. Our results demonstrate the proposed design's capability in conducting neural recording with near lossless input-adaptive data compression, leading to a significant reduction in the energy required for both recording and data transmission, hence allowing for a potential high scaling of the number of recording channels integrated on a single implanted microchip without the need to increase the power budget. The proposed channel with the implemented compression technique is implemented in a standard 130nm CMOS technology with overall power consumption of 7.6uW and active area of 92×92µm for the implemented digital-backend

    A HIGHLY-SCALABLE DC-COUPLED DIRECT-ADC NEURAL RECORDING CHANNEL ARCHITECTURE WITH INPUT-ADAPTIVE RESOLUTION

    Get PDF
    This thesis presents the design, development, and characterization of a novel neural recording channel architecture with (a) quantization resolution that is adaptive to the input signal's level of activity, (b) fully-dynamic power consumption that is linearly proportional to the recording resolution, and (c) immunity to DC offset and drifts at the input. Our results demonstrate the proposed design's capability in conducting neural recording with near lossless input-adaptive data compression, leading to a significant reduction in the energy required for both recording and data transmission, hence allowing for a potential high scaling of the number of recording channels integrated on a single implanted microchip without the need to increase the power budget. The proposed channel with the implemented compression technique is implemented in a standard 130nm CMOS technology with overall power consumption of 7.6uW and active area of 9292m for the implemented digital-backend

    An Energy-Efficient Spiking CNN Implementation for Cross-Patient Epileptic Seizure Detection

    Get PDF
    This research aims to develop a data-driven computationally efficient strategy for automatic cross-patient seizure detection using spatio temporal features learned from multichannel electroencephalogram (EEG) time-series data. In this approach, we utilize an algorithm that seeks to capture spectral, temporal, and spatial information in order to achieve high generalization. This algorithm's initial step is to convert EEG signals into a series of temporal and multi-spectral pictures. The produced images are then sent into a convolutional neural network (CNN) as inputs. Our convolutional neural network as a deep learning method learns a general spatially irreducible representation of a seizure to improves sensitivity, specificity, and accuracy results comparable to the state-of-the-art results. In this work, in order to avoid the inherent high computational cost of CNNs while benefiting from their superior classification performance, a neuromorphic computing strategy for seizure prediction called spiking CNN is developed from the traditional CNN method, which is motivated by the energy-efficient spiking neural networks (SNNs) of the human brain

    Quantifying Quality of Life

    Get PDF
    Describes technological methods and tools for objective and quantitative assessment of QoL Appraises technology-enabled methods for incorporating QoL measurements in medicine Highlights the success factors for adoption and scaling of technology-enabled methods This open access book presents the rise of technology-enabled methods and tools for objective, quantitative assessment of Quality of Life (QoL), while following the WHOQOL model. It is an in-depth resource describing and examining state-of-the-art, minimally obtrusive, ubiquitous technologies. Highlighting the required factors for adoption and scaling of technology-enabled methods and tools for QoL assessment, it also describes how these technologies can be leveraged for behavior change, disease prevention, health management and long-term QoL enhancement in populations at large. Quantifying Quality of Life: Incorporating Daily Life into Medicine fills a gap in the field of QoL by providing assessment methods, techniques and tools. These assessments differ from the current methods that are now mostly infrequent, subjective, qualitative, memory-based, context-poor and sparse. Therefore, it is an ideal resource for physicians, physicians in training, software and hardware developers, computer scientists, data scientists, behavioural scientists, entrepreneurs, healthcare leaders and administrators who are seeking an up-to-date resource on this subject

    Quantifying Quality of Life

    Get PDF
    Describes technological methods and tools for objective and quantitative assessment of QoL Appraises technology-enabled methods for incorporating QoL measurements in medicine Highlights the success factors for adoption and scaling of technology-enabled methods This open access book presents the rise of technology-enabled methods and tools for objective, quantitative assessment of Quality of Life (QoL), while following the WHOQOL model. It is an in-depth resource describing and examining state-of-the-art, minimally obtrusive, ubiquitous technologies. Highlighting the required factors for adoption and scaling of technology-enabled methods and tools for QoL assessment, it also describes how these technologies can be leveraged for behavior change, disease prevention, health management and long-term QoL enhancement in populations at large. Quantifying Quality of Life: Incorporating Daily Life into Medicine fills a gap in the field of QoL by providing assessment methods, techniques and tools. These assessments differ from the current methods that are now mostly infrequent, subjective, qualitative, memory-based, context-poor and sparse. Therefore, it is an ideal resource for physicians, physicians in training, software and hardware developers, computer scientists, data scientists, behavioural scientists, entrepreneurs, healthcare leaders and administrators who are seeking an up-to-date resource on this subject

    Life Sciences Program Tasks and Bibliography for FY 1997

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page

    Effect of intravenous morphine bolus on respiratory drive in ICU patients

    Get PDF
    corecore