97 research outputs found

    A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

    Get PDF
    A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    Design methods for 60GHz beamformers in CMOS

    Get PDF
    The 60GHz band is promising for applications such as high-speed short-range wireless personal-area network (WPAN), real-time video streaming at rates of several-Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used worldwide. However, transceivers at 60GHz pose several additional challenges over microwave transceivers. In addition to the circuit design challenges of implementing high performance 60GHz RF circuits in mainstream CMOS technology, the path loss at 60GHz is significantly higher than at microwave frequencies because of the smaller size of isotropic antennas. This can be overcome by using phased array technology. This thesis studies the new concepts and design techniques that can be used for 60GHz phased array systems. It starts with an overview of various applications at mm-wave frequencies, such as multi-Gbps radio at 60GHz, automotive radar and millimeter-wave imaging. System considerations of mm-wave receivers and transmitters are discussed, followed by the selection of a CMOS technology to implement millimeter-wave (60GHz) systems. The link budget of a 60GHz WPAN is analyzed, which leads to the introduction of phased array techniques to improve system performance. Different phased array architectures are studied and compared. The system requirements of phase shifters are discussed. Several types of conventional RF phase shifters are reviewed. A 60GHz 4-bit passive phase shifter is designed and implemented in a 65nm CMOS technology. Measurement results are presented and compared to published prior art. A 60GHz 4-bit active phase shifter is designed and integrated with low noise amplifier and combiner for a phased array receiver. This is implemented in a 65nm CMOS technology, and the measurement results are presented. The design of a 60GHz 4-bit active phase shifter and its integration with power amplifier is also presented for a phased array transmitter. This is implemented in a 65nm CMOS technology. The measurement results are also presented and compared to reported prior art. The integration of a 60GHz CMOS amplifier and an antenna in a printed circuit-board (PCB) package is investigated. Experimental results are presented and discussed

    Integrated Antennas and Active Beamformers Technology for mm-Wave Phased-Array Systems

    Get PDF
    In this thesis, based on the indoor channel measurements and ray-tracing modeling for the indoor mm-wave wireless communications, the challenges of the design of the radio in this band is studied. Considering the recently developed standards such as IEEE 802.15.3c, ECMA and WiGig at 60 GHz, the link budget of the system design for different classes of operation is done and the requirement for the antenna and other RF sections are extracted. Based on radiation characteristics of mm-wave and the fundamental limits of low-cost Silicon technology, it is shown that phased-array is the ultimate solution for the radio and physical layer of the mobile millimeter wave multi-Gb/s wireless networks. Different phased-array configurations are studied and a low-cost single-receiver array architecture with RF phase-shifting is proposed. A systematic approach to the analysis of the overall noise-figure of the proposed architecture is presented and the component technical requirements are derived for the system level specifications. The proposed on-chip antennas and antenna-in-packages for various applications are designed and verified by the measurement results. The design of patch antennas on the low-cost RT/Duroid substrate and the slot antennas on the IPD technologies as well as the compact on-chip slot DRA antenna are explained in the antenna design section. The design of reflective-type phase shifters in CMOS and MEMS technologies is explained. Finally, the design details of two developed 60 GHz integrated phased-arrays in CMOS technology are discussed. Front-end circuit blocks such as LNA, continuous passive reflective-type phase shifters, power combiner and variable gain amplifiers are investigated, designed and developed for a 60 GHz phased-array radio in CMOS technology. In the first design, the two-element CMOS phased-array front-ends based on passive phase shifting architecture is proposed and developed. In the second phased-array, the recently developed on-chip dielectric resonator antenna in our group in lower frequency is scaled and integrated with the front-end

    A Power Efficient Server-to-Server Wireless Data Center Network Architecture Using 60 GHz Links

    Get PDF
    Data Centers have become the digital backbone of the modern society with the advent of cloud computing, social networking, big data analytics etc. They play a vital role in processing a large amount of information generated. The number of data centers and the servers present in them have been on the rise over the last decade. This has eventually led to the increase in the power consumption of the data center due to the power-hungry interconnect fabric which consists of switches, routers and switching fabric necessary for communication in the data center. Moreover, a major portion of the power consumed in a data center belongs to cooling infrastructure. The data center’s complex cabling prevents the heat dissipation by obstructing the air flow resulting in the need for a cooling infrastructure. Additionally, the complex cabling in traditional data centers poses design and maintenance challenges. In this work, these problems of traditional data centers are addressed by designing a unique new server-to-server wireless Data Center Network (DCN) architecture. The proposed design methodology uses 60GHz unlicensed millimeter-wave bands to establish direct communication links between servers in a DCN without the need for a conventional fabric. This will reduce the power consumption of the DCN significantly by getting rid of the power-hungry switches along with an increase in the independency in communication between servers. In this work, the previous traffic models of a data center network are studied and a new traffic model very similar to the actual traffic in a data center is modeled and used for simulating the DCN environment. It is estimated that the proposed DCN architecture’s power consumption is lowered by six to ten times in comparison to the existing conventional DCN architecture. Having established the power model of a server-to-server wireless DCN in terms of its power consumption, we demonstrate that such a power-efficient wireless DCN can sustain the traffic requirements encountered and provide data rates that are comparable to traditional DCNs. We have also compared the efficiency and performance of the proposed DCN architecture with some of the other novel DCN architectures like DCell, BCube with the same traffic
    • …
    corecore