1,276 research outputs found

    Digital controlled oscillator (DCO) for all digital phase-locked loop (ADPLL) – a review

    Get PDF
    Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL

    Delay Flip-Flop (DFF) Metastability Impact on Clock and Data Recovery (CDR) and Phase-Locked Loop (PLL) Circuits

    Get PDF
    Modeling delay flip-flops for binary (e.g., Alexander) phase detectors requires paying close attention to three important timing parameters: setup time, hold time, and clock edge-to-output (or briefly C2Q time). These parameters have a critical role in determining the status of the system on the circuit level. This study provided a guideline for designing an optimum DFF for an Alexander phase detector in a clock and data recovery circuit. Furthermore, it indicated DFF timing requirements for a high-speed phase detector in a clock and data recovery circuit. The CDR was also modeled by Verilog-A, and the results were compared with Simulink model achievements. Eventually designed in 45 nm CMOS technology, for 10 Gbps random sequence, the recovered clock contained 0.136 UI and 0.15 UI peak-to-peak jitter on the falling and rising edges respectively, and the lock time was 125 ns. The overall power dissipation was 21 mW from a 1 V supply voltage. Future work includes layout design and manufacturing of the proposed design

    Exceeding octave tunable Terahertz waves with zepto-second level timing noise

    Full text link
    Spectral purity of any millimeter wave (mmW) source is of the utmost interest in low-noise applications. Optical synthesis via photomixing is an attractive source for such mmWs, which usually involves expensive spectrally pure lasers with narrow linewidths approaching monochromaticity due to their inherent fabrication costs or specifications. Here, we report an alternative option for enhancing the spectral purity of inexpensive semiconductor diode lasers via a self-injection locking technique through corresponding Stokes waves from a fiber Brillouin cavity exhibiting greatly improved phase noise levels and large wavelength tunability of ~1.8 nm. We implement a system with two self-injected diode lasers on a common Brillouin cavity aimed at difference frequency generation in the mmW and THz region. We generate tunable sub-mmW (0.3 and 0.5 THz) waves by beating the self-injected two wavelength Stokes light on a uni-travelling carrier photodiode and characterize the noise performance. The sub-mmW features miniscule timing noise levels in the zepto-second (zs.Hz^-0.5) scale outperforming the state of the art dissipative Kerr soliton based micro-resonator setups while offering broader frequency tunability. These results suggest a viable inexpensive alternative for mmW sources aimed at low-noise applications featuring lab-scale footprints and rack-mounted portability while paving the way for chip-scale photonic integration.Comment: 31 page

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    Digital Intensive Mixed Signal Circuits with In-situ Performance Monitors

    Get PDF
    University of Minnesota Ph.D. dissertation.November 2016. Major: Electrical/Computer Engineering. Advisor: Chris Kim. 1 computer file (PDF); x, 137 pages.Digital intensive circuit design techniques of different mixed-signal systems such as data converters, clock generators, voltage regulators etc. are gaining attention for the implementation of modern microprocessors and system-on-chips (SoCs) in order to fully utilize the benefits of CMOS technology scaling. Moreover different performance improvement schemes, for example, noise reduction, spur cancellation, linearity improvement etc. can be easily performed in digital domain. In addition to that, increasing speed and complexity of modern SoCs necessitate the requirement of in-situ measurement schemes, primarily for high volume testing. In-situ measurements not only obviate the need for expensive measurement equipments and probing techniques, but also reduce the test time significantly when a large number of chips are required to be tested. Several digital intensive circuit design techniques are proposed in this dissertation along with different in-situ performance monitors for a variety of mixed signal systems. First, a novel beat frequency quantization technique is proposed in a two-step VCO quantizer based ADC implementation for direct digital conversion of low amplitude bio- potential signals. By direct conversion, it alleviates the requirement of the area and power consuming analog-frontend (AFE) used in a conventional ADC designs. This prototype design is realized in a 65nm CMOS technology. Measured SNDR is 44.5dB from a 10mVpp, 300Hz signal and power consumption is only 38μW. Next, three different clock generation circuits, a phase-locked loop (PLL), a multiplying delay-locked loop (MDLL) and a frequency-locked loop (FLL) are presented. First a 0.4-to-1.6GHz sub-sampling fractional-N all digital PLL architecture is discussed that utilizes a D-flip-flop as a digital sub-sampler. Measurement results from a 65nm CMOS test-chip shows 5dB lower phase noise at 100KHz offset frequency, compared to a conventional architecture. The Digital PLL (DPLL) architecture is further extended for a digital MDLL implementation in order to suppress the VCO phase noise beyond the DPLL bandwidth. A zero-offset aperture phase detector (APD) and a digital- to-time converter (DTC) are employed for static phase-offset (SPO) cancellation. A unique in-situ detection circuitry achieves a high resolution SPO measurement in time domain. A 65nm test-chip shows 0.2-to-1.45GHz output frequency range while reducing the phase-noise by 9dB compared to a DPLL. Next, a frequency-to-current converter (FTC) based fractional FLL is proposed for a low accuracy clock generation in an extremely low area for IoT application. High density deep-trench capacitors are used for area reduction. The test-chip is fabricated in a 32nm SOI technology that takes only 0.0054mm2 active area. A high-resolution in-situ period jitter measurement block is also incorporated in this design. Finally, a time based digital low dropout (DLDO) regulator architecture is proposed for fine grain power delivery over a wide load current dynamic range and input/output voltage in order to facilitate dynamic voltage and frequency scaling (DVFS). High- resolution beat frequency detector dynamically adjusts the loop sampling frequency for ripple and settling time reduction due to load transients. A fixed steady-state voltage offset provides inherent active voltage positioning (AVP) for ripple reduction. Circuit simulations in a 65nm technology show more than 90% current efficiency for 100X load current variation, while it can operate for an input voltage range of 0.6V – 1.2V

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply
    • …
    corecore