3,742 research outputs found

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

    Get PDF
    In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0 dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi

    CMOS Integrated Switched-Mode Transmitters for Wireless Communication

    Get PDF

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Microwave class-E power amplifiers: a brief review of essential concepts in high-frequency class-E PAs and related circuits

    Get PDF
    Since Nathan Sokal's invention of the class-E power amplifier (PA), the vast majority of class-E results have been reported at kilohertz and millihertz frequencies, but the concept is increasingly applied in the ultrahigh-frequency (UHF) [1]-[13], microwave [14]-[20], and even millimeter-wave range [21]. The goal of this article is to briefly review some interesting concepts concerning high-frequency class-E PAs and related circuits. (The article on page 26 of this issue, "A History of Switching-Mode Class-E Techniques" by Andrei Grebennikov and Frederick H. Raab, provides a historical overview of class-E amplifier development.)We acknowledge support, in part, by a Lockheed Martin Endowed Chair at the University of Colorado and in part by the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO) through TEC2014-58341-C4-1-R and TEC2017-83343-C4-1-R projects, cofunded with FEDER

    Design of Low-Power Transmitter and Receiver Front End

    Get PDF
    This thesis focuses on the design of "RF front-end blocks" for the transmitter and receiver. The blocks include the low noise amplifier (LNA) and mixer downconversion at the receiving side, while the power amplifier includes the pre-driver circuit, and mixer up-conversion at the transmitter side. All of the blocks were designed in a 65nm design kit. The basics of these RF blocks are first described in chapters two to four. After that, the general principle of operations is then described and different topologies are discussed. In chapter 5 the proposed design is discussed. The proposed design is composed of a differential IDCS narrow band LNA, with a passive down-conversion mixer on the receiving side, designed for bluetooth low energy (BLE) applications, that operates at 2.4 GHz with a 1.2 V supply voltage. The overall conversion gain at the receiving side was found to be greater than 13 dB with a double side band noise figure of 8.3 dB having a 1 dB compression point of -11.8 dB, and with IIP3 of -2.06 dBm having a power consumption of 251 ÎŒwatts. On the transmission side, a power amplifier with a pre-driver circuit and a passive up-conversion mixer has been designed to operate at a 1.2 V supply at the frequency of operation 2.4 GHz, having overall gain of 24 dB with maximum power added efficiency of 34% when using maximum output power of 11 dBm. The Cadence virtuoso design kit was used for simulation. Additionally, the layout considerations were discussed, followed by presentation of the post-layout results and graphs, and, finally, some conclusions have been drawn

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-ÎŒm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-ÎŒm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    mmWave Spatial-Temporal Single Harmonic Switching Transmitter Arrays for High back-off Beamforming Efficiency

    Full text link
    This paper presents a spatial-temporal single harmonic switching (STHS) transmitter array architecture with enhanced efficiency in the power back-off (PBO) region. STHS is an electromagnetic and circuit co-designed and jointly optimized transmitter array that realizes beamforming and back-off power generation at the same time. The temporal dimension is originally added in STHS to achieve back-off efficiency enhancement, which can be combined with conventional power back-off enhancement methods such as Doherty amplifiers and envelope tracking. The design is validated through a simulation of a two-stage power amplifier in 65-nm CMOS at 77 GHz, which achieves a peak drain efficiency (DE) of 24.2%, a 22% DE at 3-dB PBO, 16% DE at 6-dB PBO, and 10.2% at 9-dB PBO. The efficiency exhibits a 57% improvement at 3-dB PBO, 100% improvement at 6-dB PBO, and 190% improvement at 9-dB PBO compared with class A/B amplifier
    • 

    corecore