447 research outputs found

    Estimation of wall shear stress using 4D flow cardiovascular MRI and computational fluid dynamics

    Get PDF
    Electronic version of an article published as Journal of mechanics in medicine and biology, 0, 1750046 (2016), 16 pages. DOI:10.1142/S0219519417500464 © World Scientific Publishing CompanyIn the last few years, wall shear stress (WSS) has arisen as a new diagnostic indicator in patients with arterial disease. There is a substantial evidence that the WSS plays a significant role, together with hemodynamic indicators, in initiation and progression of the vascular diseases. Estimation of WSS values, therefore, may be of clinical significance and the methods employed for its measurement are crucial for clinical community. Recently, four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has been widely used in a number of applications for visualization and quantification of blood flow, and although the sensitivity to blood flow measurement has increased, it is not yet able to provide an accurate three-dimensional (3D) WSS distribution. The aim of this work is to evaluate the aortic blood flow features and the associated WSS by the combination of 4D flow cardiovascular magnetic resonance (4D CMR) and computational fluid dynamics technique. In particular, in this work, we used the 4D CMR to obtain the spatial domain and the boundary conditions needed to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. Similar WSS distributions were found for cases simulated. A sensitivity analysis was done to check the accuracy of the method. 4D CMR begins to be a reliable tool to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. The combination of both techniques may provide the ideal tool to help tackle these and other problems related to wall shear estimation.Peer ReviewedPostprint (author's final draft

    A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics

    Get PDF
    We present a novel, cost-efficient methodology to simulate aortic haemodynamics in a patient-specific, compliant aorta using an MRI data fusion process. Based on a previously-developed Moving Boundary Method, this technique circumvents the high computational cost and numerous structural modelling assumptions required by traditional Fluid-Structure Interaction techniques. Without the need for Computed Tomography (CT) data, the MRI images required to construct the simulation can be obtained during a single imaging session. Black Blood MR Angiography and 2D Cine-MRI data were used to reconstruct the luminal geometry and calibrate wall movement specifically to each region of the aorta. 4D-Flow MRI and non-invasive pressure measurements informed patient-specific inlet and outlet boundary conditions. Luminal area closely matched 2D Cine-MRI measurements with a mean error of less than 4.6% across the cardiac cycle, while physiological pressure and flow distributions were simulated to within 3.3% of patient-specific targets. Moderate agreement with 4D-Flow MRI velocity data was observed. Despite lower peak velocity, an equivalent rigid-wall simulation predicted a mean Time-Averaged Wall Shear Stress (TAWSS) 13% higher than the compliant simulation. The agreement observed between compliant simulation results and MRI data is testament to the accuracy and efficiency of this MRI-based simulation technique

    Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated.</p> <p>Methods</p> <p>Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification.</p> <p>Applications</p> <p>Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thrombo-embolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters.</p> <p>Conclusions</p> <p>Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.</p

    Fluid–structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients

    Get PDF
    Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data; and to assess the capacity of advanced fluid dynamics markers to stratify aneurysm progression risk. Eight Marfan syndrome (MFS) patients, four with stable and four with dilating aneurysms of the proximal aorta, and four healthy controls were studied. FSI and CFD simulations were performed with MRI-derived geometry, inlet velocity field and Young's modulus. Flow displacement, jet angle and maximum velocity evaluated from FSI and CFD simulations were compared to 4D flow MRI data. A dimensionless parameter, the shear stress ratio (SSR), was evaluated from FSI and CFD simulations and assessed as potential correlate of aneurysm progression. FSI simulations successfully matched MRI data regarding descending to ascending aorta flow rates (R2 = 0.92) and pulse wave velocity (R2 = 0.99). Compared to CFD, FSI simulations showed significantly lower percentage errors in ascending and descending aorta in flow displacement (−46% ascending, −41% descending), jet angle (−28% ascending, −50% descending) and maximum velocity (−37% ascending, −34% descending) with respect to 4D flow MRI. FSI- but not CFD-derived SSR differentiated between stable and dilating MFS patients. Fluid dynamic simulations of the thoracic aorta require fluid–solid interaction to properly reproduce complex haemodynamics. FSI- but not CFD-derived SSR could help stratifying MFS patients.This study was funded by Ministerio de Economía y Competitividad (grant no. RTC-2016-5152-1), Fundació la Marató de TV3 (grant no. 20151330), FP7 People: Marie-Curie Actions (grant no. 267128), Instituto de Salud Carlos III (grant nos PI14/0106 and PI17/00381) and ‘la Caixa’ Foundation. M.V. was funded by CompBioMed2, grant agreement ID: 823712, funded under: H2020-EU.1.4.1.3; and SILICOFCM, grant agreement ID: 777204, funded under: H2020-EU.3.1.5.Peer ReviewedPostprint (published version

    The Maastricht Acquisition Platform for Studying Mechanisms of Cell–Matrix Crosstalk (MAPEX):An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease

    Get PDF
    Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5–5.5 cm or shows a growth rate of &gt;0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of &lt;55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue–cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell–matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.</p

    Computational analysis of blood flow and stress patterns in the aorta of patients with Marfan syndrome

    Get PDF
    Personalised external aortic root support (PEARS) was designed to prevent progressive aortic dilatation, and the associated risk of aortic dissection, in patients with Marfan syndrome by providing an additional support to the aorta. The objective of this thesis was to understand the biomechanical implications of PEARS surgery as well as to investigate the altered haemodynamics associated with the disease and its treatment. Finite element (FE) models were developed using patient-specific aortic geometries reconstructed from pre and post-PEARS magnetic resonance (MR) images of three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients’ pulse pressure was applied with a zero-displacement constraint at all boundaries. Results showed that peak aortic stresses and displacements before PEARS were located at the sinuses of Valsalva but following PEARS surgery, they were shifted to the aortic arch, at the intersection between the supported and unsupported aorta. The zero-displacement constraint at the aortic root was subsequently removed and replaced with downward motion measured from in vivo images. This revealed significant increases in the longitudinal wall stress, especially in the pre-PEARS models. Computational fluid dynamics (CFD) models were developed to evaluate flow characteristics. The correlation-based transitional Shear Stress Transport (SST-Tran) model was adopted to simulate potential transitional and turbulence flow during part of the cardiac cycle and flow waveforms derived from phase-contrast MR images were imposed at the inlets. Qualitative patterns of the haemodynamics were similar pre- and post-PEARS with variations in mean helicity flow index (HFI) of -10%, 35% and 20% in the post-PEARS aortas of the three patients. A fluid-structure interaction (FSI) model was developed for one patient, pre- and post-PEARS in order to examine the effect of wall compliance on aortic flow as well as the effect of pulsatile flow on wall stress. This model excluded the sinuses and was based on the laminar flow assumption. The results were similar to those obtained using the rigid wall and static structural models, with minor quantitative differences. Considering the higher computational cost of FSI simulations and the relatively small differences observed in peak wall stress, it is reasonable to suggest that static structural models would be sufficient for wall stress prediction. Additionally, aortic root motion had a more profound effect on wall stress than wall compliance. Further studies are required to assess the statistical significance of the findings outlined in this thesis. Recommendations for future work were also highlighted, with emphasis on model assumptions including material properties, residual stress and boundary conditions.Open Acces

    Patient-specific computational fluid dynamics-assessment of aortic hemodynamics in a spectrum of aortic valve pathologies.

    Get PDF
    OBJECTIVES: The complexity of aortic disease is not fully exposed by aortic dimensions alone, and morbidity or mortality can occur before intervention thresholds are met. Patient-specific computational fluid dynamics (CFD) were used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress (WSS), and oscillatory shear index (OSI) in the thoracic aorta. METHODS: A total of 45 subjects were divided into 5 groups: volunteers, aortic regurgitation-tricuspid aortic valve (AR-TAV), aortic stenosis-tricuspid aortic valve (AS-TAV), aortic stenosis-bicuspid aortic valve right-left cusp fusion (BAV[RL]), and aortic stenosis-right-non cusp fusion (AS-BAV[RN]). Subjects underwent magnetic resonance angiography, with phase-contrast magnetic resonance imaging at the sino-tubular junction to define patient-specific inflow velocity profiles. Hemodynamic recordings were used alongside magnetic resonance imaging angiographic data to run patient-specific CFD. RESULTS: The BAV groups had larger mid-ascending aorta diameters (P < .05). Ascending aorta flow was more eccentric in BAV (flow asymmetry = 78.9% ± 6.5% for AS-BAV(RN), compared with 4.7% ± 2.1% for volunteers, P < .05). Helicity was greater in AS-BAV(RL) (P < .05). Mean WSS was elevated in AS groups, greatest in AS-BAV(RN) (37.1 ± 4.0 dyn/cm2, compared with 9.8 ± 5.4 for volunteers, P < .05). The greater curvature of the ascending aorta experienced highest WSS and lowest OSI in AS patients, most significant in AS-BAV(RN) (P < .05). CONCLUSIONS: BAV displays eccentric flow with high helicity. The presence of AS, particularly in BAV-RN, led to greater WSS and lower OSI in the greater curvature of the ascending aorta. Patient-specific CFD provides noninvasive functional assessment of the thoracic aorta, and may enable development of a personalized approach to diagnosis and management of aortic disease beyond traditional guidelines

    Two-Minute k-Space and Time–accelerated Aortic Four-dimensional Flow MRI: Dual-Center Study of Feasibility and Impact on Velocity and Wall Shear Stress Quantification

    Get PDF
    PURPOSE: To investigate the two-center feasibility of highly k-space and time (k-t)–accelerated 2-minute aortic four-dimensional (4D) flow MRI and to evaluate its performance for the quantification of velocities and wall shear stress (WSS). MATERIALS AND METHODS: This cross-sectional study prospectively included 68 participants (center 1, 11 healthy volunteers [mean age ± standard deviation, 61 years ± 15] and 16 patients with aortic disease [mean age, 60 years ± 10]; center 2, 14 healthy volunteers [mean age, 38 years ± 13] and 27 patients with aortic or cardiac disease [mean age, 78 years ± 18]). Each participant underwent highly accelerated 4D flow MRI (k-t acceleration, acceleration factor of 5) of the thoracic aorta. For comparison, conventional 4D flow MRI (acceleration factor of 2) was acquired in the participants at center 1 (n = 27). Regional aortic peak systolic velocities and three-dimensional WSS were quantified. RESULTS: k-t–accelerated scan times (center 1, 2:03 minutes ± 0:29; center 2, 2:06 minutes ± 0:20) were significantly reduced compared with conventional 4D flow MRI (center 1, 12:38 minutes ± 2:25; P < .0001). Overall good agreement was found between the two techniques (absolute differences ≤15%), but proximal aortic WSS was significantly underestimated in patients by using k-t–accelerated 4D flow when compared with conventional 4D flow (P ≤ .03). k-t–accelerated 4D flow MRI was reproducible (intra- and interobserver intraclass correlation coefficient ≥0.98) and identified significantly increased peak velocities and WSS in patients with stenotic (P ≤ .003) or bicuspid (P ≤ .04) aortic valves compared with healthy volunteers. In addition, k-t–accelerated 4D flow MRI–derived velocities and WSS were inversely related to age (r ≥−0.53; P ≤ .03) over all healthy volunteers. CONCLUSION: k-t–accelerated aortic 4D flow MRI providing 2-minute scan times was feasible and reproducible at two centers. Although consistent healthy aging- and disease-related changes in aortic hemodynamics were observed, care should be taken when considering WSS, which can be underestimated in patients

    Estimation of wall shear stress using 4D flow cardiovascular MRI and computational fluid dynamics

    Get PDF
    Company In the last few years, wall shear stress (WSS) has arisen as a new diagnostic indicator in patients with arterial disease. There is a substantial evidence that the WSS plays a significant role, together with hemodynamic indicators, in initiation and progression of the vascular diseases. Estimation of WSS values, therefore, may be of clinical significance and the methods employed for its measurement are crucial for clinical community. Recently, four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has been widely used in a number of applications for visualization and quantification of blood flow, and although the sensitivity to blood flow measurement has increased, it is not yet able to provide an accurate three-dimensional (3D) WSS distribution. The aim of this work is to evaluate the aortic blood flow features and the associated WSS by the combination of 4D flow cardiovascular magnetic resonance (4D CMR) and computational fluid dynamics technique. In particular, in this work, we used the 4D CMR to obtain the spatial domain and the boundary conditions needed to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. Similar WSS distributions were found for cases simulated. A sensitivity analysis was done to check the accuracy of the method. 4D CMR begins to be a reliable tool to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. The combination of both techniques may provide the ideal tool to help tackle these and other problems related to wall shear estimatio

    Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients

    Get PDF
    Treatments for coarctation of the aorta (CoA) can alleviate blood pressure (BP) gradients(D), but long-term morbidity still exists that can be explained by altered indices of hemodynamics and biomechanics. We introduce a technique to increase our understanding of these indices for CoA under resting and nonresting conditions, quantify their contribution to morbidity, and evaluate treatment options. Patient-specific computational fluid dynamics (CFD) models were created from imaging and BP data for one normal and four CoA patients (moderate native CoA: D12 mmHg, severe native CoA: D25 mmHg and postoperative end-to-end and end-to-side patients: D0 mmHg). Simulations incorporated vessel deformation, downstream vascular resistance and compliance. Indices including cyclic strain, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were quantified. Simulations replicated resting BP and blood flow data. BP during simulated exercise for the normal patient matched reported values. Greatest exercise-induced increases in systolic BP and mean and peak DBP occurred for the moderate native CoA patient (SBP: 115 to 154 mmHg; mean and peak DBP: 31 and 73 mmHg). Cyclic strain was elevated proximal to the coarctation for native CoA patients, but reduced throughout the aorta after treatment. A greater percentage of vessels was exposed to subnormal TAWSS or elevated OSI for CoA patients. Local patterns of these indices reported to correlate with atherosclerosis in normal patients were accentuated by CoA. These results apply CFD to a range of CoA patients for the first time and provide the foundation for future progress in this area
    corecore