CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Estimation of wall shear stress using 4D flow cardiovascular MRI and computational fluid dynamics
Authors
Jordi Casacuberta Puig
Roberto Castilla López
+3 more
Pedro Javier Gámez Montero
Gustavo Adolfo Raush Alviach
Eduardo Soudah Prieto
Publication date
1 January 2016
Publisher
'World Scientific Pub Co Pte Lt'
Doi
Abstract
Electronic version of an article published as Journal of mechanics in medicine and biology, 0, 1750046 (2016), 16 pages. DOI:10.1142/S0219519417500464 © World Scientific Publishing CompanyIn the last few years, wall shear stress (WSS) has arisen as a new diagnostic indicator in patients with arterial disease. There is a substantial evidence that the WSS plays a significant role, together with hemodynamic indicators, in initiation and progression of the vascular diseases. Estimation of WSS values, therefore, may be of clinical significance and the methods employed for its measurement are crucial for clinical community. Recently, four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has been widely used in a number of applications for visualization and quantification of blood flow, and although the sensitivity to blood flow measurement has increased, it is not yet able to provide an accurate three-dimensional (3D) WSS distribution. The aim of this work is to evaluate the aortic blood flow features and the associated WSS by the combination of 4D flow cardiovascular magnetic resonance (4D CMR) and computational fluid dynamics technique. In particular, in this work, we used the 4D CMR to obtain the spatial domain and the boundary conditions needed to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. Similar WSS distributions were found for cases simulated. A sensitivity analysis was done to check the accuracy of the method. 4D CMR begins to be a reliable tool to estimate the WSS within the entire thoracic aorta using computational fluid dynamics. The combination of both techniques may provide the ideal tool to help tackle these and other problems related to wall shear estimation.Peer ReviewedPostprint (author's final draft
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
UPCommons (Universitat Politècnica de Catalunya)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/102...
Last time updated on 28/02/2025
UPCommons. Portal del coneixement obert de la UPC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/102...
Last time updated on 01/05/2017