284 research outputs found

    A 4-Wire Interface SoC for Shared Multi- Implant Power Transfer and Full-duplex Communication

    Get PDF
    This paper describes a novel system for recovering power and providing full-duplex communication over an AC-coupled 4-wire lead between active implantable devices. The target application requires a single Chest Device be connected to a Brain Implant consisting of multiple identical optrodes that record neural activity and provide closed loop optical stimulation. The interface is integrated within each optrode SoC allowing full-duplex and fully-differential communication based on Manchester encoding. The system features a head-to-chest uplink data rate (1.6 Mbps) that is higher than that of the chest-to-head downlink (100kbps) superimposed on a power carrier. On-chip power management provides an unregulated 5 V DC supply with up to 2.5 mA output current for stimulation, and a regulated 3.3 V with 60 dB PSRR for recording and logic circuits. The circuit has been implemented in a 0.35 ÎĽm CMOS technology, occupying 1.4 mm 2 silicon area, and requiring a 62.2 ÎĽA average current consumption

    Adaptive Power Regulation and Data Delivery for Multi-Module Implants

    Get PDF
    Emerging applications for implantable devices are requiring multi-unit systems with intrabody transmission of power and data through wireline interfaces. This paper proposes a novel method for power delivery within such a configuration that makes use of closed loop dynamic regulation. This is implemented for an implantable application requiring a single master and multiple identical slave devices utilising a parallel-connected 4-wire interface. The power regulation is achieved within the master unit through closed loop monitoring of the current consumption to the wired link. Simultaneous power transfer and full-duplex data communication is achieved by superimposing the power carrier and downlink data over two wires and uplink data over a second pair of wires. Measured results using a fully isolated (AC coupled) 4-wire lead, demonstrate this implementation can transmit up to 120 mW of power at 6 V (at the slave device, after eliminating any losses). The master device has a maximum efficiency of 80 % including a dominant dynamic power loss. A 6 V constant supply at the slave device is recovered 1.5 ms after a step of 22 mA

    Four-Wire Interface ASIC for a Multi-Implant Link

    Get PDF
    This paper describes an on-chip interface for recovering power and providing full-duplex communication over an AC-coupled 4-wire lead between active implantable devices. The target application requires two modules to be implanted in the brain (cortex) and upper chest; connected via a subcutaneous lead. The brain implant consists of multiple identical “optrodes” that facilitate a bidirectional neural interface (electrical recording and optical stimulation), and the chest implant contains the power source (battery) and processor module. The proposed interface is integrated within each optrode ASIC allowing full-duplex and fully-differential communication based on Manchester encoding. The system features a head-to-chest uplink data rate (up to 1.6 Mbps) that is higher than that of the chest-to-head downlink (100 kbps), which is superimposed on a power carrier. On-chip power management provides an unregulated 5-V dc supply with up to 2.5-mA output current for stimulation, and two regulated voltages (3.3 and 3 V) with 60-dB power supply rejection ratio for recording and logic circuits. The 4-wire ASIC has been implemented in a 0.35-μm CMOS technology, occupying a 1.5-mm 2 silicon area, and consumes a quiescent current of 91.2 μA. The system allows power transmission with measured efficiency of up to 66% from the chest to the brain implant. The downlink and uplink communication are successfully tested in a system with two optrodes and through a 4-wire implantable lead

    Wireless power transfer for combined sensing and stimulation in implantable biomedical devices

    Get PDF
    Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie.Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris.Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source

    Bidirectional Wireless Telemetry for High Channel Count Optogenetic Microsystems

    Full text link
    In the past few decades, there has been a significant progress in the development of wireless data transmission systems, from high data rate to ultra-low power applications, and from G-b per second to RFID systems. One specific area, in particular, is in wireless data transmission for implantable bio-medical applications. To understand how brain functions, neural scientists are in pursuit of high-channel count, high-density recordings for freely moving animals; yet wire tethering issue has put the mission on pause. Wireless data transmission can address this tethering problem, but there are still many challenges to be conquered. In this work, an ultra-low power ultra-wide band (UWB) transmitter with feedforward pulse generation scheme is proposed to resolve the long-existing problem in UWB transmitter. It provides a high-data rate capability to enable 1000 channels in broadband neural recording, assuming 10-bit resolution with a sampling rate of 20 kHz to accommodate both action potential (AP) and local field potential (LFP) recording, while remaining in ultra- low power consumption at 4.32 pJ/b. For the bi-directional communication between the wireless and recording/ stimulating module, a bit-wise time-division (B-TDD) duplex transceiver without cancellation scheme is presented. The receiver works at U-NII band (5.2GHz) and shares the same antenna with UWB transmitter. This significantly reduces the area consumption as well as power consumption for implantable systems. The system can support uplink at 200 Mbps for 1000 recording channels and downlink at 10 Mbps for 36 stimulation channels. With a 3.7 Volt 25mAh rechargeable battery, the system should be able to operate more than 1.5 hours straight for both recording and stimulation, assuming 1 LED channel with 100 µA, 10% duty-cycled stimulating current. The B-TDD transceiver is integrated with a dedicated recording/ stimulation optogenetic IC chip to demonstrate as a complete wireless system for implantable broadband optogenetic neural modulation and recording. The fully integrated system is less than 5 gram, which is suitable for rodent experiments.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155242/1/yujulin_1.pd

    Learning-Based Hardware Design for Data Acquisition Systems

    Get PDF
    This multidisciplinary research work aims to investigate the optimized information extraction from signals or data volumes and to develop tailored hardware implementations that trade-off the complexity of data acquisition with that of data processing, conceptually allowing radically new device designs. The mathematical results in classical Compressive Sampling (CS) support the paradigm of Analog-to-Information Conversion (AIC) as a replacement for conventional ADC technologies. The AICs simultaneously perform data acquisition and compression, seeking to directly sample signals for achieving specific tasks as opposed to acquiring a full signal only at the Nyquist rate to throw most of it away via compression. Our contention is that in order for CS to live up its name, both theory and practice must leverage concepts from learning. This work demonstrates our contention in hardware prototypes, with key trade-offs, for two different fields of application as edge and big-data computing. In the framework of edge-data computing, such as wearable and implantable ecosystems, the power budget is defined by the battery capacity, which generally limits the device performance and usability. This is more evident in very challenging field, such as medical monitoring, where high performance requirements are necessary for the device to process the information with high accuracy. Furthermore, in applications like implantable medical monitoring, the system performances have to merge the small area as well as the low-power requirements, in order to facilitate the implant bio-compatibility, avoiding the rejection from the human body. Based on our new mathematical foundations, we built different prototypes to get a neural signal acquisition chip that not only rigorously trades off its area, energy consumption, and the quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects. In the framework of big-data and high-performance computation, such as in high-end servers application, the RF circuits meant to transmit data from chip-to-chip or chip-to-memory are defined by low power requirements, since the heat generated by the integrated circuits is partially distributed by the chip package. Hence, the overall system power budget is defined by its affordable cooling capacity. For this reason, application specific architectures and innovative techniques are used for low-power implementation. In this work, we have developed a single-ended multi-lane receiver for high speed I/O link in servers application. The receiver operates at 7 Gbps by learning inter-symbol interference and electromagnetic coupling noise in chip-to-chip communication systems. A learning-based approach allows a versatile receiver circuit which not only copes with large channel attenuation but also implements novel crosstalk reduction techniques, to allow single-ended multiple lines transmission, without sacrificing its overall bandwidth for a given area within the interconnect's data-path

    Low-Power Circuits for Brain–Machine Interfaces

    Get PDF
    This paper presents work on ultra-low-power circuits for brain–machine interfaces with applications for paralysis prosthetics, stroke, Parkinson’s disease, epilepsy, prosthetics for the blind, and experimental neuroscience systems. The circuits include a micropower neural amplifier with adaptive power biasing for use in multi-electrode arrays; an analog linear decoding and learning architecture for data compression; low-power radio-frequency (RF) impedance-modulation circuits for data telemetry that minimize power consumption of implanted systems in the body; a wireless link for efficient power transfer; mixed-signal system integration for efficiency, robustness, and programmability; and circuits for wireless stimulation of neurons with power-conserving sleep modes and awake modes. Experimental results from chips that have stimulated and recorded from neurons in the zebra finch brain and results from RF power-link, RF data-link, electrode- recording and electrode-stimulating systems are presented. Simulations of analog learning circuits that have successfully decoded prerecorded neural signals from a monkey brain are also presented

    Development of Advanced Closed-Loop Brain Electrophysiology Systems for Freely Behaving Rodents

    Full text link
    [ES] La electrofisiología extracelular es una técnica ampliamente usada en investigación neurocientífica, la cual estudia el funcionamiento del cerebro mediante la medición de campos eléctricos generados por la actividad neuronal. Esto se realiza a través de electrodos implantados en el cerebro y conectados a dispositivos electrónicos para amplificación y digitalización de las señales. De los muchos modelos animales usados en experimentación, las ratas y los ratones se encuentran entre las especies más comúnmente utilizadas. Actualmente, la experimentación electrofisiológica busca condiciones cada vez más complejas, limitadas por la tecnología de los dispositivos de adquisición. Dos aspectos son de particular interés: Realimentación de lazo cerrado y comportamiento en condiciones naturales. En esta tesis se presentan desarrollos con el objetivo de mejorar diferentes facetas de estos dos problemas. La realimentación en lazo cerrado se refiere a todas las técnicas en las que los estímulos son producidos en respuesta a un evento generado por el animal. La latencia debe ajustarse a las escalas temporales bajo estudio. Los sistemas modernos de adquisición presentan latencias en el orden de los 10ms. Sin embargo, para responder a eventos rápidos, como pueden ser los potenciales de acción, se requieren latencias por debajo de 1ms. Además, los algoritmos para detectar los eventos o generar los estímulos pueden ser complejos, integrando varias entradas de datos en tiempo real. Integrar el desarrollo de dichos algoritmos en las herramientas de adquisición forma parte del diseño experimental. Para estudiar comportamientos naturales, los animales deben ser capaces de moverse libremente en entornos emulando condiciones naturales. Experimentos de este tipo se ven dificultados por la naturaleza cableada de los sistemas de adquisición. Otras restricciones físicas, como el peso de los implantes o limitaciones en el consumo de energía, pueden también afectar a la duración de los experimentos, limitándola. La experimentación puede verse enriquecida cuando los datos electrofisiológicos se ven complementados con múltiples fuentes distintas. Por ejemplo, seguimiento de los animales o miscroscopía. Herramientas capaces de integrar datos independientemente de su origen abren la puerta a nuevas posibilidades. Los avances tecnológicos presentados abordan estas limitaciones. Se han diseñado dispositivos con latencias de lazo cerrado inferiores a 200us que permiten combinar cientos de canales electrofisiológicos con otras fuentes de datos, como vídeo o seguimiento. El software de control para estos dispositivos se ha diseñado manteniendo la flexibilidad como objetivo. Se han desarrollado interfaces y estándares de naturaleza abierta para incentivar el desarrollo de herramientas compatibles entre ellas. Para resolver los problemas de cableado se siguieron dos métodos distintos. Uno fue el desarrollo de headstages ligeros combinados con cables coaxiales ultra finos y conmutadores activos, gracias al seguimiento de animales. Este desarrollo permite reducir el esfuerzo impuesto a los animales, permitiendo espacios amplios y experimentos de larga duración, al tiempo que permite el uso de headstages con características avanzadas. Paralelamente se desarrolló un tipo diferente de headstage, con tecnología inalámbrica. Se creó un algoritmo de compresión digital especializado capaz de reducir el ancho de banda a menos del 65% de su tamaño original, ahorrando energía. Esta reducción permite baterías más ligeras y mayores tiempos de operación. El algoritmo fue diseñado para ser capaz de ser implementado en una gran variedad de dispositivos. Los desarrollos presentados abren la puerta a nuevas posibilidades experimentales para la neurociencia, combinando adquisición elextrofisiológica con estudios conductuales en condiciones naturales y estímulos complejos en tiempo real.[CA] L'electrofisiologia extracel·lular és una tècnica àmpliament utilitzada en la investigació neurocientífica, la qual permet estudiar el funcionament del cervell mitjançant el mesurament de camps elèctrics generats per l'activitat neuronal. Això es realitza a través d'elèctrodes implantats al cervell, connectats a dispositius electrònics per a l'amplificació i digitalització dels senyals. Dels molts models animals utilitzats en experimentació electrofisiològica, les rates i els ratolins es troben entre les espècies més utilitzades. Actualment, l'experimentació electrofisiològica busca condicions cada vegada més complexes, limitades per la tecnologia dels dispositius d'adquisició. Dos aspectes són d'especial interès: La realimentació de sistemes de llaç tancat i el comportament en condicions naturals. En aquesta tesi es presenten desenvolupaments amb l'objectiu de millorar diferents aspectes d'aquestos dos problemes. La realimentació de sistemes de llaç tancat es refereix a totes aquestes tècniques on els estímuls es produeixen en resposta a un esdeveniment generat per l'animal. La latència ha d'ajustar-se a les escales temporals sota estudi. Els sistemes moderns d'adquisició presenten latències en l'ordre dels 10ms. No obstant això, per a respondre a esdeveniments ràpids, com poden ser els potencials d'acció, es requereixen latències per davall de 1ms. A més a més, els algoritmes per a detectar els esdeveniments o generar els estímuls poden ser complexos, integrant varies entrades de dades a temps real. Integrar el desenvolupament d'aquests algoritmes en les eines d'adquisició forma part del disseny dels experiments. Per a estudiar comportaments naturals, els animals han de ser capaços de moure's lliurement en ambients emulant condicions naturals. Aquestos experiments es veuen limitats per la natura cablejada dels sistemes d'adquisició. Altres restriccions físiques, com el pes dels implants o el consum d'energia, poden també limitar la duració dels experiments. L'experimentació es pot enriquir quan les dades electrofisiològiques es complementen amb dades de múltiples fonts. Per exemple, el seguiment d'animals o microscòpia. Eines capaces d'integrar dades independentment del seu origen obrin la porta a noves possibilitats. Els avanços tecnològics presentats tracten aquestes limitacions. S'han dissenyat dispositius amb latències de llaç tancat inferiors a 200us que permeten combinar centenars de canals electrofisiològics amb altres fonts de dades, com vídeo o seguiment. El software de control per a aquests dispositius s'ha dissenyat mantenint la flexibilitat com a objectiu. S'han desenvolupat interfícies i estàndards de naturalesa oberta per a incentivar el desenvolupament d'eines compatibles entre elles. Per a resoldre els problemes de cablejat es van seguir dos mètodes diferents. Un va ser el desenvolupament de headstages lleugers combinats amb cables coaxials ultra fins i commutadors actius, gràcies al seguiment d'animals. Aquest desenvolupament permet reduir al mínim l'esforç imposat als animals, permetent espais amplis i experiments de llarga durada, al mateix temps que permet l'ús de headstages amb característiques avançades. Paral·lelament es va desenvolupar un tipus diferent de headstage, amb tecnologia sense fil. Es va crear un algorisme de compressió digital especialitzat capaç de reduir l'amplada de banda a menys del 65% de la seua grandària original, estalviant energia. Aquesta reducció permet bateries més lleugeres i majors temps d'operació. L'algorisme va ser dissenyat per a ser capaç de ser implementat a una gran varietat de dispositius. Els desenvolupaments presentats obrin la porta a noves possibilitats experimentals per a la neurociència, combinant l'adquisició electrofisiològica amb estudis conductuals en condicions naturals i estímuls complexos en temps real.[EN] Extracellular electrophysiology is a technique widely used in neuroscience research. It can offer insights on how the brain works by measuring the electrical fields generated by neural activity. This is done through electrodes implanted in the brain and connected to amplification and digitization electronic circuitry. Of the many animal models used in electrophysiology experimentation, rodents such as rats and mice are among the most popular species. Modern electrophysiology experiments seek increasingly complex conditions that are limited by acquisition hardware technology. Two particular aspects are of special interest: Closed-loop feedback and naturalistic behavior. In this thesis, we present developments aiming to improve on different facets of these two problems. Closed-loop feedback encompasses all techniques in which stimuli is produced in response of an event generated by the animal. Latency, the time between trigger event and stimuli generation, must adjust to the biological timescale being studied. While modern acquisition systems feature latencies in the order of 10ms, response to fast events such as high-frequency electrical transients created by neuronal activity require latencies under 1ms1ms. In addition, algorithms for triggering or generating closed-loop stimuli can be complex, integrating multiple inputs in real-time. Integration of algorithm development into acquisition tools becomes an important part of experiment design. For electrophysiology experiments featuring naturalistic behavior, animals must be able to move freely in ecologically meaningful environments, mimicking natural conditions. Experiments featuring elements such as large arenaa, environmental objects or the presence of another animals are, however, hindered by the wired nature of acquisition systems. Other physical constraints, such as implant weight or power restrictions can also affect experiment time, limiting their duration. Beyond the technical limits, complex experiments are enriched when electrophysiology data is integrated with multiple sources, for example animal tracking or brain microscopy. Tools allowing mixing data independently of the source open new experimental possibilities. The technological advances presented on this thesis addresses these topics. We have designed devices with closed-loop latencies under 200us while featuring high-bandwidth interfaces. These allow the simultaneous acquisition of hundreds of electrophysiological channels combined with other heterogeneous data sources, such as video or tracking. The control software for these devices was designed with flexibility in mind, allowing easy implementation of closed-loop algorithms. Open interface standards were created to encourage the development of interoperable tools for experimental data integration. To solve wiring issues in behavioral experiments, we followed two different approaches. One was the design of light headstages, coupled with ultra-thin coaxial cables and active commutator technology, making use of animal tracking. This allowed to reduce animal strain to a minimum allowing large arenas and prolonged experiments with advanced headstages. A different, wireless headstage was also developed. We created a digital compression algorithm specialized for neural electrophysiological signals able to reduce data bandwidth to less than 65.5% its original size without introducing distortions. Bandwidth has a large effect on power requirements. Thus, this reduction allows for lighter batteries and extended operational time. The algorithm is designed to be able to be implemented in a wide variety of devices, requiring low hardware resources and adding negligible power requirements to a system. Combined, the developments we present open new possibilities for neuroscience experiments combining electrophysiology acquisition with natural behaviors and complex, real-time, stimuli.The research described in this thesis was carried out at the Polytechnic University of Valencia (Universitat Politècnica de València), Valencia, Spain in an extremely close collaboration with the Neuroscience Institute - Spanish National Research Council - Miguel Hernández University (Instituto de Neurociencias - Consejo Superior de Investigaciones Cientí cas - Universidad Miguel Hernández), San Juan de Alicante, Spain. The projects described in chapters 3 and 4 were developed in collabo- ration with, and funded by, Open Ephys, Cambridge, MA, USA and OEPS - Eléctronica e produção, unipessoal lda, Algés, Portugal.Cuevas López, A. (2021). Development of Advanced Closed-Loop Brain Electrophysiology Systems for Freely Behaving Rodents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179718TESI

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    High Temperature Materials Laboratory 18th Annual Report October 1, 2004 Through September 30, 2005

    Full text link
    • …
    corecore