1,443 research outputs found

    UAV/UGV Autonomous Cooperation: UAV Assists UGV to Climb a Cliff by Attaching a Tether

    Full text link
    This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.Comment: 7 pages, 8 figures, accepted to 2019 International Conference on Robotics & Automation. Video: https://youtu.be/UzTT8Ckjz1

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Adaptive Learning Terrain Estimation for Unmanned Aerial Vehicle Applications

    Get PDF
    For the past decade, terrain mapping research has focused on ground robots using occupancy grids and tree-like data structures, like Octomap and Quadtrees. Since flight vehicles have different constraints, ground-based terrain mapping research may not be directly applicable to the aerospace industry. To address this issue, Adaptive Learning Terrain Estimation algorithms have been developed with an aim towards aerospace applications. This thesis develops and tests Adaptive Learning Terrain Estimation algorithms using a custom test benchmark on representative aerospace cases: autonomous UAV landing and UAV flight through 3D urban environments. The fundamental objective of this thesis is to investigate the use of Adaptive Learning Terrain Estimation algorithms for aerospace applications and compare their performance to commonly used mapping techniques such as Quadtree and Octomap. To test the algorithms, point clouds were collected and registered in simulation and real environments. Then, the Adaptive Learning, Quadtree, and Octomap algorithms were applied to the data sets, both in real-time and offline. Finally, metrics of map size, accuracy, and running time were developed and implemented to quantify and compare the performance of the algorithms. The results show that Quadtree yields the computationally lightest maps, but it is not suitable for real-time implementation due to its lack of recursiveness. Adaptive Learning maps are computationally efficient due to the use of multiresolution grids. Octomap yields the most detailed maps, but it produces a high computational load. The results of the research show that Adaptive Learning algorithms have significant potential for real-time implementation in aerospace applications. Their low memory load and variable-sized grids make them viable candidates for future research and development

    Planetary Rover Inertial Navigation Applications: Pseudo Measurements and Wheel Terrain Interactions

    Get PDF
    Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other hand, using exteroceptive sensors for localization slows rover driving speed, reduces rover traversal rate, and these sensors are sensitive to the terrain features. Given the advantages and disadvantages of both methods, this thesis focuses on two objectives. First, improving the proprioceptive localization performance without significant changes to the rover operations. Second, enabling adaptive traversability rate based on the wheel-terrain interactions while keeping the localization reliable. To achieve the first objective, we utilized the zero-velocity, zero-angular rate updates, and non-holonomicity of a rover to improve rover localization performance even with the limited available sensor usage in a computationally efficient way. Pseudo-measurements generated from proprioceptive sensors when the rover is stationary conditions and the non-holonomic constraints while traversing can be utilized to improve the localization performance without any significant changes to the rover operations. Through this work, it is observed that a substantial improvement in localization performance, without the aid of additional exteroceptive sensor information. To achieve the second objective, the relationship between the estimation of localization uncertainty and wheel-terrain interactions through slip-ratio was investigated. This relationship was exposed with a Gaussian process with time series implementation by using the slippage estimation while the rover is moving. Then, it is predicted when to change from moving to stationary conditions by mapping the predicted slippage into localization uncertainty prediction. Instead of a periodic stopping framework, the method introduced in this work is a slip-aware localization method that enables the rover to stop more frequently in high-slip terrains whereas stops rover less frequently for low-slip terrains while keeping the proprioceptive localization reliable
    • …
    corecore