27 research outputs found

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    A 3.7 V to 200 V highly integrated DC-DC converter with 70.4% efficiency for portable electrostatic MEMS applications

    No full text

    Hybrid microfluidic CMOS capacitive sensors for lab-on-chip applications

    Get PDF
    Methods and applications of CMOS-based Locs -- Hybrid microfluidic/cmos platform -- Cmos based capacitive sensors for locs -- Direct-write microfluidic packaging procedure -- Core-cbcm capacitive sensor array for locs

    COMBUSTION AND HEAT TRANSFER IN MESO-SCALE HEAT RECIRCULATING COMBUSTORS

    Get PDF
    Combustion in small-scale systems faces problems related to time available for chemical reaction to go to completion and the possible quenching of the reaction by the increased effects of interfacial phenomena (thermal quenching and radical quenching) that occur at the combustor walls due to higher surface to volume ratio. Heat recirculation, where in a portion of the energy from the products is fed back to the reactants through structural conduction is one of the strategies employed in meso-scale combustors to overcome the problems of thermal quenching of the flame. When liquid fuels are employed, structural conduction can help pre-vaporize the fuel and thereby removes the necessity for a fuel atomizer. This dissertation focuses on the design, development and operational characteristics of meso-scale combustors employing heat recirculation principle. Self-sustained combustion of propane-air and methanol-air flames were achieved in sub centimeter dimensions (32.6 mm3). The effects of design and operational parameters like wall thermal conductivity, heat exchanger size/channel length, combustion chamber geometry, equivalence ratio, Reynolds number, and external heat transfer (loss) coefficient on the combustor performance were investigated experimentally and numerically. The experimental procedure involved fabrication of combustors with different geometric features employing materials of different thermal conductivities and then obtaining their operating limits. Thermal performance with respect to various flow conditions was obtained by measuring the reactant preheating and exhaust gas temperatures using thermocouples. Numerical simulations were performed for both reacting and non-reacting flow cases to understand the heat transfer characteristics with respect to various design and operational conditions. Both experiments and numerical simulations revealed that wall thermal conductivity is one of the most important parameters for meso-scale combustor design. For typical meso-scale dimensions wall materials with minimal thermal conductivity (< 1W/m-K), especially ceramics would yield the best performance. Results showed that the most thermally efficient operating condition occurs for fuel lean cases at higher Reynolds numbers. Flame dynamics inside the combustor were investigated through high-speed imaging and flame acoustic spectrum mapping. Due to the small length scales involved, hydrodynamic instabilities have negligible effect on meso-scale combustion. Flame was observed to be extremely stable with negligible fluctuations. However, a significant amount of thermoacoustic phenomena is present within the combustion regime. Chemiluminescence imaging was employed to correctly map the flame zone inside the combustor

    DĂ©tection d'interface et dispositifs de traitement en technologie CMOSP35 pour les biocapteurs VLSI

    Get PDF

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Dual-side etched microstructured semiconductor neutron detectors

    Get PDF
    Doctor of PhilosophyDepartment of Mechanical and Nuclear EngineeringDouglas S. McGregorInterest in high-efficiency replacements for thin-film-coated thermal neutron detectors led to the development of single-sided microstructured semiconductor neutron detectors (MSNDs). MSNDs are designed with micro-sized trench structures that are etched into a vertically-oriented pvn-junction diode, and backfilled with a neutron converting material, such as ⁶LiF. Neutrons absorbed by the converting material produce a pair of charged-particle reaction products that can be measured by the diode substrate. MSNDs have higher neutron-absorption and reaction-product counting efficiencies than their thin-film-coated counterparts, resulting in up to a 10x increase in intrinsic thermal neutron detection efficiency. The detection efficiency for a single-sided MSND is reduced by neutron streaming paths between the conversion-material filled regions that consequently allow neutrons to pass undetected through the detector. Previously, the highest reported intrinsic thermal neutron detection efficiency for a single MSND was approximately 30%. Methods for double-stacking and aligning MSNDs to reduce neutron streaming produced devices with an intrinsic thermal neutron detection efficiency of 42%. Presented here is a new type of MSND that features a complementary second set of trenches that are etched into the back-side of the detector substrate. These dual-sided microstructured semiconductor neutron detectors (DS-MSNDs) have the ability to absorb and detect neutrons that stream through the front-side, effectively doubling the detection efficiency of a single-sided device. DS-MSND sensors are theoretically capable of achieving greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. Prototype DS-MSNDs with diffused pvp-junction operated at 0-V applied bias have achieved 53.54±0.61%, exceeding that of the single-sided MSNDs and double-stacked MSNDs to represent a new record for detection efficiency for such solid-state devices

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Laser Pulses

    Get PDF
    This book discusses aspects of laser pulses generation, characterization, and practical applications. Some new achievements in theory, experiments, and design are demonstrated. The introductive chapter shortly overviews the physical principles of pulsed lasers operation with pulse durations from seconds to yoctoseconds. A theory of mode-locking, based on the optical noise concept, is discussed. With this approximation, all paradoxes of ultrashort laser pulse formation have been explained. The book includes examples of very delicate laser operation in biomedical areas and extremely high power systems used for material processing and water purification. We hope this book will be useful for engineers and managers, for professors and students, and for those who are interested in laser science and technologies

    Printed Electronics-Based Physically Unclonable Functions for Lightweight Security in the Internet of Things

    Get PDF
    Die moderne Gesellschaft strebt mehr denn je nach digitaler KonnektivitĂ€t - ĂŒberall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) fĂŒhrt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von GerĂ€ten werden in unserer tĂ€glichen Umgebung allgegenwĂ€rtig sein und ĂŒber das Internet in Verbindung stehen. Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein SchlĂŒsselelement fĂŒr das IoE, indem sie neuartige GerĂ€tetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. DarĂŒber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengĂŒnstige und großflĂ€chige Herstellung am Einsatzort. Diese einzigartigen Eigenschaften von PE ergĂ€nzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftstrĂ€chtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen. Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener GerĂ€te und Systeme eine der grĂ¶ĂŸten zu lösenden Herausforderungen. Komplexe HochleistungsgerĂ€te interagieren mit hochspezialisierten, leichtgewichtigen elektronischen GerĂ€ten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten GerĂ€ten oder in der Cloud ausgetauscht. Dabei wirft die FĂŒlle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf. Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und SystemkomplexitĂ€t erfordern, was sie wiederum fĂŒr viele leichtgewichtige GerĂ€te ungeeignet macht. Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der GerĂ€teidentifikation und -authentifizierung. Dabei hĂ€ngt das Sicherheitslevel hauptsĂ€chlich von der QualitĂ€t der Entropiequelle und der VertrauenswĂŒrdigkeit der abgeleiteten SchlĂŒssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der SchlĂŒssel sind von großer Bedeutung, um einzelne EntitĂ€ten genau unterscheiden zu können. In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen fĂŒr IoT-GerĂ€te erlangt. PUFs verwenden ihre inhĂ€renten Variationen, um gerĂ€tespezifische eindeutige Kennungen abzuleiten, die mit FingerabdrĂŒcken in der Biometrie vergleichbar sind. Zu den grĂ¶ĂŸten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von SicherheitsschlĂŒsseln nach Bedarf sowie die inhĂ€rente SchlĂŒsselspeicherung. In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische GerĂ€te und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlĂ€ssig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven fĂŒr die SchlĂŒsselgenerierung zur eindeutigen GerĂ€teidentifikation im IoE sind. Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen fĂŒr ressourcenbeschrĂ€nkte gedruckte GerĂ€te und Systeme bereitzustellen. Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere SchlĂŒssel fĂŒr Sicherheitsanwendungen fĂŒr ressourcenbeschrĂ€nkte GerĂ€te bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthĂ€lt. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen. Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgefĂŒhrt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte fĂŒr die Uniqueness- und Reliability-Metriken aufweist. DarĂŒber hinaus werden die IdentifikationsfĂ€higkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusĂ€tzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann. Im dritten Beitrag dieser Arbeit wird zunĂ€chst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind. Des Weiteren werden angefertigte PE-basierte PUF-Cores fĂŒr statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen ĂŒberein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklĂ€rt werden kann. Die Untersuchung der IdentifikationsfĂ€higkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusĂ€tzliches Post-Processing nicht fĂŒr kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur GerĂ€teidentifikation eignet. Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die SicherheitsfĂ€higkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgefĂŒhrt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine AnfĂ€lligkeit fĂŒr Angriffe auf Modellbasis hauptsĂ€chlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhĂ€ngt. DarĂŒber hinaus wird ein Angriffsmodell eingefĂŒhrt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingefĂŒhrt und mit hĂ€ufig verwendeten Classifiers fĂŒr ĂŒberwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP). Die Ergebnisse zeigen, dass die Hybrid-PUF anfĂ€llig fĂŒr modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kĂŒrzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs ĂŒbertreffen die ML-Algorithmen den Sortieralgorithmus
    corecore