1,033 research outputs found

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen

    An Examination of Environmental Applications for Uncooled Thermal Infrared Remote Sensing Instruments

    Get PDF
    Advancements in system design for thermal instruments require assessment of potential environmental applications and appropriate data processing techniques. A novel multi-band thermal imaging system was proposed by DRS Leonardo for the National Aeronautics and Space Administration Earth Science Technology Office Instrument Incubator Program, for which these criteria were assessed. The Multi-Band Uncooled Radiometer Imager (MURI) is a six spectral channel instrument designed to collect images in the thermal infrared, specifically in the range of 7.5 to 12.5 μm. The work detailed in this thesis characterizes the ability of a thermal imager with an uncooled microbolometer focal plane array to provide valuable data for environmental science applications. Here, a pair of studies using simulated data demonstrates the ability of a multispectral instrument such as MURI to detect enhanced levels of atmospheric methane using a novel approach that performs similarly to a state of the art algorithm when applied to MURI data. The novel method is evaluated using a controlled concentration simulated dataset to determine the extent of its detection capabilities and its dependence on atmospheric conditions. The methane investigations reveal the system is capable of detecting a 20 m thick CH4 plume of 10-20 ppm above background levels when column water vapor is low using both the NDMI and matched filter approaches. Additionally, land surface temperature and emissivity retrieval techniques were applied to experimental MURI data recorded during initial test flights to assess their accuracy with MURI data. Utilizing split window and Temperature Emissivity Separation make this examination distinct as this establishes that proven methods can be applied to uncooled multiband imager data. Application of these methods to MURI data demonstrated the system is capable of temperature retrievals with Root Mean Square Errors of less than 1 K to measured reference values and surface emissivity retrievals within 2% of reference database values. The definition and application of the Normalized Differential Methane Index in this thesis demonstrates a novel approach for detection of enhanced plumes of methane utilizing a multispectral system with only a single band allocated to methane absorption features

    Investigation of natural environment by space means. Geobotany, Geomorphology, soil sciences, agricultural lands, landscape study

    Get PDF
    Reports given by Soviet specialists at a meeting of Socialist countries on remote sensing of the earth using aerospace methods are presented

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Application of Multi-Sensor Fusion Technology in Target Detection and Recognition

    Get PDF
    Application of multi-sensor fusion technology has drawn a lot of industrial and academic interest in recent years. The multi-sensor fusion methods are widely used in many applications, such as autonomous systems, remote sensing, video surveillance, and the military. These methods can obtain the complementary properties of targets by considering multiple sensors. On the other hand, they can achieve a detailed environment description and accurate detection of interest targets based on the information from different sensors.This book collects novel developments in the field of multi-sensor, multi-source, and multi-process information fusion. Articles are expected to emphasize one or more of the three facets: architectures, algorithms, and applications. Published papers dealing with fundamental theoretical analyses, as well as those demonstrating their application to real-world problems
    corecore