29 research outputs found

    A 2.4GHz fast-switching integer-N frequency synthesizer

    Get PDF
    The adaptive bandwidth technique is commonly used to implement fast switching in low-spurious frequency synthesizers. In this technique the high loop bandwidth used during the switching mode has to be restored once switching is complete. The process of restoring the bandwidth adds to the total switching time because of the glitches on the VCO control voltage arising from the perturbation caused in the loop. Often in applications demanding ultra fast switching times and tight error tolerances, the additional settling time due to these secondary glitches can be a significant fraction of the total switching time. In this thesis, a more efficient multi-step bandwidth-switching scheme is proposed that can significantly reduce the total switching time by minimizing the effect of secondary glitches. After satisfactory behavioral simulations, a proof-of-concept test chip integrating a 2.4GHz Integer-N synthesizer is designed and fabricated in the TSMC 0.25mum mixed-signal CMOS process. Simulations using time contraction show that the synthesizer switches 14% faster in the four-step mode compared to the one-step mode for a frequency step of 20MHz and 0.1% error tolerance

    Realization of a voltage controlled oscillator using 0.35 um sige-bicmos technology for multi-band applications

    Get PDF
    The stable growth in wireless communications market has engendered the interoperability of various standards in a single broadband frequency range from hundred MHz up to several GHz. This frequency range consists of various wireless applications such as GSM, Bluetooth and WLAN. Therefore, an agile wireless system needs smart RF front-ends for functioning properly in such a crowded spectrum. As a result, the demand for multi-standard RF transceivers which put various wireless and cordless phone standards together in one structure was increased. The demand for multi-standard RF transceivers gives a key role to reconfigurable wideband VCO operation with low-power and low-phase noise characteristics. Besides agility and intelligence, such a communication system (GSM, WLAN, Global Positioning Systems, etc. ) required meeting the requirements of several standards in a cost-effective way. This, when cost and integration are the major concerns, leads to the exploitation of Si-based technologies. In this thesis, an integrated 2.2-5.7GHz Multi-band differential LC VCO for Multi-standard Wireless Communication systems was designed utilizing 0.35μm SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78GHz, 3.22-3.53GHz, 3.48-3.91GHz and 4.528-5.7GHz) with a maximum bandwidth of 1.36GHz and a minimum bandwidth of 300MHz. The designed and simulated VCO can generate a differential output power between 0.992 dBm and -6.087 dBm with an average power consumption of 44.21mW including the buffers. The average second and third harmonics level were obtained as -37.21 dBm and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment

    Ultra Wideband Oscillators

    Get PDF

    Design and realization of fully integrated multiband and multistandard bi-cmos sigma delta frequency synthesizer

    Get PDF
    Wireless communication has grown, exponentially, with wide range of applications offered for the customers. Among these, WLAN (2.4-2.5GHz, 3.6-3.7GHzand 4.915- 5.825GHz GHz), Bluetooth (2.4 GHz), and WiMAX (2.500-2.696 GHz, 3.4-3.8 GHz and 5.725-5.850 GHz) communication standard/technologies have found largest use local area, indoor – outdoor communication and entertainment system applications. One of the recent trends in this area of technology is to utilize compatible standards on a single chip solutions, while meeting the requirements of each, to provide customers systems with smaller size, lower power consumption and cheaper in cost. In this thesis, RF – Analog, and – Digital Integrated Circuit design methodologies and techniques are applied to realize a multiband / standart (WLAN and WiMAX) operation capable Voltage- Controlled-Oscillator (VCO) and Frequency Synthesizer. Two of the major building blocks of wireless communication systems are designed using 0.35 μm, AMS-Bipolar (HBT)-CMOS process technology. A new inductor switching concept is implemented for providing the multiband operation capability. Performance parameters such as operating frequencies, phase noise, power consumption, and tuning range are modeled and simulated using analytical approaches, ADS® and Cadence® design and simulation environments. Measurement and/or Figure-of-Merit (FOM) values of our circuits have revealed results that are comparable with already published data, using the similar technology, in the literature, indicating the strength of the design methodologies implemented in this study

    Microwave and Millimeter-Wave Signal Power Generation

    Get PDF

    A low power, low noise, 1.8 GHz voltage-controlled oscillator

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaf 97).by Donald A. Hitko.M.S

    Analog Baseband Filters and Mixed Signal Circuits for Broadband Receiver Systems

    Get PDF
    Data transfer rates of communication systems continue to rise fueled by aggressive demand for voice, video and Internet data. Device scaling enabled by modern lithography has paved way for System-on-Chip solutions integrating compute intensive digital signal processing. This trend coupled with demand for low power, battery-operated consumer devices offers extensive research opportunities in analog and mixed-signal designs that enable modern communication systems. The first part of the research deals with broadband wireless receivers. With an objective to gain insight, we quantify the impact of undesired out-band blockers on analog baseband in a broadband radio. We present a systematic evaluation of the dynamic range requirements at the baseband and A/D conversion boundary. A prototype UHF receiver designed using RFCMOS 0.18[mu]m technology to support this research integrates a hybrid continuous- and discrete-time analog baseband along with the RF front-end. The chip consumes 120mW from a 1.8V/2.5V dual supply and achieves a noise figure of 7.9dB, an IIP3 of -8dBm (+2dbm) at maximum gain (at 9dB RF attenuation). High linearity active RC filters are indispensable in wireless radios. A novel feed-forward OTA applicable to active RC filters in analog baseband is presented. Simulation results from the chip prototype designed in RFCMOS 0.18[mu]m technology show an improvement in the out-band linearity performance that translates to increased dynamic range in the presence of strong adjacent blockers. The second part of the research presents an adaptive clock-recovery system suitable for high-speed wireline transceivers. The main objective is to improve the jitter-tracking and jitter-filtering trade-off in serial link clock-recovery applications. A digital state-machine that enables the proposed mixed-signal adaptation solution to achieve this objective is presented. The advantages of the proposed mixed-signal solution operating at 10Gb/s are supported by experimental results from the prototype in RFCMOS 0.18[mu]m technology

    Built-in-self-test of RF front-end circuitry

    Get PDF
    Fuelled by the ever increasing demand for wireless products and the advent of deep submicron CMOS, RF ICs have become fairly commonplace in the semiconductor market. This has given rise to a new breed of Systems-On-Chip (SOCs) with RF front-ends tightly integrated along with digital, analog and mixed signal circuitry. However, the reliability of the integrated RF front-end continues to be a matter of significant concern and considerable research. A major challenge to the reliability of RF ICs is the fact that their performance is also severely degraded by wide tolerances in on-chip passives and package parasitics, in addition to process related faults. Due to the absence of contact based testing solutions in embedded RF SOCs (because the very act of probing may affect the performance of the RF circuit), coupled with the presence of very few test access nodes, a Built In Self Test approach (BiST) may prove to be the most efficient test scheme. However due to the associated challenges, a comprehensive and low-overhead BiST methodology for on-chip testing of RF ICs has not yet been reported in literature. In the current work, an approach to RF self-test that has hitherto been unexplored both in literature and in the commercial arena is proposed. A sensitive current monitor has been used to extract variations in the supply current drawn by the circuit-under-test (CUT). These variations are then processed in time and frequency domain to develop signatures. The acquired signatures can then be mapped to specific behavioral anomalies and the locations of these anomalies. The CUT is first excited by simple test inputs that can be generated on-chip. The current monitor extracts the corresponding variations in the supply current of the CUT, thereby creating signatures that map to various performance metrics of the circuit. These signatures can then be post-processed by low overhead on-chip circuitry and converted into an accessible form. To be successful in the RF domain any BIST architecture must be minimally invasive, reliable, offer good fault coverage and present low real estate and power overheads. The current-based self-test approach successfully addresses all these concerns. The technique has been applied to RF Low Noise Amplifiers, Mixers and Voltage Controlled Oscillators. The circuitry and post-processing techniques have also been demonstrated in silicon (using the IBM 0.25 micron RF CMOS process). The entire self-test of the RF front-end can be accomplished with a total test time of approximately 30µs, which is several orders of magnitude better than existing commercial test schemes
    corecore