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Abstract

This work presents several key aspects in the design of RF integrated cir-
cuits for portable multimedia devices.

One chapter is dedicated to the application of negative-feedback topologies
to receiver frontends. A novel feedback technique suitable for common
multiplier-based mixers is described, and it is applied to a broad-band
dual-loop receiver architecture in order to boost the linearity performances
of the stage. A simplified noise- and linearity analysis of the circuit is
derived, and a comparison is provided with a more traditional dual-loop
topology (a broad-band stage based on shunt-series feedback), showing a
difference in compression point in the order of 10dBm for the same power
consumption. The same principle is also applied to a more conventional
narrow-band stage in which a single loop is employed in order to enhance
noise performances. Noise analysis shows sensible improvements in the
noise figure (up to ∼1dB) in low-performance technologies, when stringent
specifications are considered in terms of power consumption.

A recently-reported current-reuse technique, applied to a complete RX
frontend, is examined in the following chapter in order to sketch a sim-
plified numerical analysis for the performances of the stage. Semi-ideal
models are used in simulations to validate the derived calculations, and
the fundamental limits of the basic structure are discussed. The design
of a current-mode base-band output stage implemented in a 0.13µm tech-
nology is presented: the amplifier draws ∼ 500µA from a 1.2V supply,



ii

providing 35dB gain and 135MHz GBWP.

The integration of high-performance passive components is studied in the
last chapter which presents the first reported toroidal inductor fabricated
in a standard CMOS process. Field-confinement properties of the structure
are exploited in order to reduce the impact of substrate-induced currents.
Basic models are derived in the design phase, and the technological limits of
the device are considered. Measurement results show that a very compact
coil can provide ∼1nH inductance up to 20GHz (physical limit for the
measurement equipment), with a peak quality factor around 10 at 15GHz.



Resumé

I afhandlingen præsenteres forskellige nøgle-aspekter om design af RF in-
tegrerede kredsløb for bærbare multimedia-apparater.

Et kapitel omhandler negativ-feedback topologier til modtager-frontends.
En ny feedback-teknik, der passer til almindelige multiplikator-baserede
mixere, beskrives og anvendes til en bredb̊andsdobbeltsløjfe-modtager-arki-
tektur for at forbedre trinets linearitet. En forenklet støj- og linearitets-
analyse af kredsløbet udledes, og en sammenligning gives med en mere
traditionel dobbeltsløjfe-konfiguration (et bredb̊andstrin baseret p̊a shunt-
series feedback), der viser en forskel i kompressionspunktet i nærheden
af 10dBm med samme strømforbrug. Det samme princip anvendes til et
mere konventionelt smalb̊andstrin: en enkeltsløjfe benyttes for at forbedre
støjegenskaber. En støjanalyse giver mærkbare forbedringer i støjtal (op
til ∼1dB) i lavtydende teknologier, n̊ar strenge specifikationer med hensyn
til strømforbrug tages i betragtning.

En nyligt rapporteret strømgenbrugsteknik (anvendt til en komplet RX-
frontend) undersøges i det næste kapitel for at skitsere en simplificeret
numerisk analyse af trinets ydelser. Semi-ideelle modeller bruges i simule-
ringer for at underbygge udledte beregninger, og strukturens grundlæggen-
de grænser klarlægges. Designet af et current-mode base-band udgangstrin
realiseret i 0.13µm-teknologi fremvises: forstærkeren trækker ∼ 500µA fra
en 1.2V-forsyning og giver 35dB forstærkning sammen med 135MHz GB-
WP.
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Integrationen af højtydende passive komponenter undersøges i det sidste
kapitel, der introducerer den første rapporterede toroidal-induktionsspole
fabrikeret i standard CMOS teknologi. Strukturens feltsbegrænsningsegen-
skaber udnyttes for at nedsætte virkningen p̊a substrat-induceret strøm.
Grundmodeller udledes i designfasen, og komponentens teknologiske græn-
ser behandles. Måleresultater viser, at en meget kompakt spole kan levere
∼1nH induktans op til 20GHz (fysisk grænse for m̊aleapparatet) med en
maksimum kvalitetsfaktor p̊a omkring 10 ved 15GHz.
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Chapter 1

Introduction

“Gallia est omnis divisa in partes tres [. . . ]”
“All Gaul is divided into three parts [. . . ]”
Caius Iulius Caesar, Commentarii De Bello Gallico

Many times since its formulation, Moore’s Law [2] has been under discus-
sion, but it proved itself quite impervious to attacks. The main reason
behind the exponentially-growing number of components1 which can be
crammed onto the same IC is the fact that semiconductor technologies
offer devices with smaller and smaller minimum dimensions. Major cri-
sis points have been faced and overcome in multiple occasions, and the
improvement rate has been constant [3]; in recent years, the progress of
photolithography (among other things) has been so fast that technology
enhancements have repeatedly beaten expectations, and forecasts for the
near-term future are more optimistic than ever [4], as shown in Figure
1.1. The reduction of minimum dimensions is not enough to explain the
astounding progress in VLSI technology: many other parameters have to
scale in order to guarantee a reliable development path. It is interesting
to notice, though, that

• Moore’s Law had been conceived almost a decade before a proper
scaling theory was devised [5], and

1Transistors, in many practical cases.
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Figure 1.1: Historical data and projections for IC technology development
in terms of minimum gate length (Lmin) and supply voltage (VDD). For
Lmin a linear fit is indicated for reference.

• the scaling theory itself has not been followed thoroughly, since for
example supply voltage has been kept constant for a very long time
for no reason but compatibility, as shown in Figure 1.1.

The key-item in scaling theory is the concept of constant field, which en-
sures faster switching of logic gates, lower energy per transition, cheaper
devices. In Table 1.1 the main parameters are associated with their re-
spective scaling factor, function of the common factor λ > 1. RF CMOS
designers have to face the benefits and the drawbacks of a scaling technique
which is targeting purely digital applications.2 Key aspects like operating
frequency, noise and linearity (among others) are heavily influenced by the
scaling strategy.

1. Faster logic gates means for certainty higher cut-off frequency fT and
maximum oscillation frequency fmax, and this has a major positive

2“[. . . ] the process is optimized and characterized primarily for one tradeoff: that
between speed and power dissipation.” [6]
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Table 1.1: Scaling behaviour according to the constant-field theory.

Parameter Scaling factor
tox

1
λ

L 1
λ

W 1
λ

xj
1
λ

Na λ

Nd λ

VT
1
λ

VDD
1
λ

impact on RF performances [7]. There is also a very peculiar side-
effect, though: in inductively-degenerated LNAs the inductance on
the source must be inversely proportional to fT in order to provide
correct input impedance matching, and today designers are finding
increasing difficulties in tuning this passive component without sac-
rificing noise performances.

2. Noise performances can be also expected to be positively influenced
by scaling, in terms of minimum noise figure as well as sensitivity
to deviation from optimal noise matching [8]. Therefore the design
of LNAs should be easier, because lower noise levels can be achieved
over a wider range of design parameters (bias, transistors’ dimensions
and so on). It should be noted however that VCO designers will ex-
perience serious troubles coping with 1

f noise. Gate-oxide thickness
must be scaled together with Lmin; being a few percent of the channel
length, tox is approaching the sub-nanometre scale, but a thickness
below 1nm is not enough to keep direct tunnelling currents at rea-
sonable levels [9]. The introduction of materials with high dielectric
constant (so-called “high-κ materials”) can alleviate this problem,
but integration of such structures is still difficult [10], and the poor
quality of these insulators leads to bad noise performances [11].

3. Linearity is indeed affected by scaling, but in a negative way. It
can be shown that optimal biasing for maximum linearity moves to-
ward higher and higher currents [12], and this is in contrast with
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the natural tendency to reduce power consumption. The reduction
of supply voltage has also a dramatic negative impact on linearity
performances.

4. Scaling of threshold voltage has not been very aggressive, and it is
probably close to its limits, due to the fact that the value of VT is
intimately connected to thermal potential φth = kBT/q [13], there-
fore apart from reducing operating temperature3 there are very few
chances to overcome this limitation on the long run. Subthreshold
operation is widely popular in low-frequency analogue circuits, but
it still must be fully exploited in RF, and this is probably one of the
main challenges for the incoming years.

The amount of bandwidth in excess and the improvement of high-frequency
noise performances suggest the possibility to employ negative feedback in
order to relax linearity design constraints, particularly in the design of RX
front-ends. This goes in the direction of implementing a broadband stage
that is capable of handling several communication standards at a time,
thereby providing a solution that can serve different applications and is
easy to migrate from a technology node to the next, since it relies on
non-tuned passives (i.e. resistors) and on transistors’ performances that
are continuously improving. In Chapter 2 we describe a novel approach
to negative feedback applied to Gilbert-cell mixers, that leads to a dual-
loop RX front-end with broad-band operation and high linearity. The
same principle is also applied to a more traditional single-loop narrow-
band stage.

Reduction of supply voltage is simply not enough in order to guarantee
a continuous path of lower and lower power consumption, especially con-
sidering battery-operated implementions: the number of features increases
at a pace hardly sustainable by digital CMOS roadmap. Several design
techniques try to address this issue, and current-reusing is definitely one
of the most interesting. Recently the first implementation of a stacked
structure comprising LNA, mixer and VCO biased by the same current
has been proposed [1]. The difficulties of providing the correct trade-offs
between all different aspects of RF design just sum up when three different
blocks are sharing the same devices (active and passive); the robustness of
the design must be thoroughly evaluated, too. In Chapter 3 a simplified
analysis is proposed in order to grasp the basic behaviour of the stage and

3This is also a viable option [14], but not for mainstream consumer products.
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verify the functionality of the circuit at first order.

The great breakthrough of RF CMOS technology is the possibility of in-
tegrating a large amount of digital functions on the same chip together
with analogue circuitry, but integration of passive components remains a
key necessity in modern radios. Even though we have not examined the
subject in detail, we can assume that newer technologies will provide bet-
ter performances in terms of inductors, varactors and the like [8]. Sharing
the same silicon substrate is always a matter of isolating critical parts of
the circuit from each other, but this turns out particularly difficult when
several coils are integrated on the same die. In the quest for the integra-
tion of the perfect component (compact, scalable, not prone to inducing
currents in the substrate), an implementation of a toroidal inductor is pro-
posed in Chapter 4 in order to demonstrate the superior field-confinement
properties of this structure, which has never been implemented in standard
CMOS technologies before. Design considerations are presented together
with basic modelling and measurement results.

Some conclusions are drawn in the final chapter.



6



Chapter 2

Receiver front-ends based
on negative feedback

Traditional active mixers based on the Gilbert cell [15], like the one de-
picted in Figure 2.1a, are ubiquitous in modern RF architectures. The
design of such cells is carried out under the general assumption that the
linearity of the block is intimately related to the linearity of the transcon-
ductor (M1 in the figure). To improve linearity performances, several solu-
tions have been devised, most of which are based on the following methods
[16]: feedback, feedforward, predistortion and piecewise approximation. In
practice many applications exploit a combination of these techniques. A
non-exhaustive overview of the most popular approaches includes:

1. source degeneration, which is the most basic form of negative feed-
back.

2. Stages based on multiple-gated transistors (MGTR) combine oppos-
ing nonlinear contributions in order to cancel non-linearities, thereby
resembling the feedforward approach [17].

3. Several implementations rely on the MOS I-V characteristic to pre-
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M1

M2 M3LO+ LO-

IF+IF-

RF M1

M2 M3LO+ LO-

IF+IF-

RF

vm

(a) (b)

Figure 2.1: A down-conversion mixer based on the Gilbert cell: conven-
tional arrangement (a) and modified topology (b).

distort the input signal and rebuild it at the output, by using for
example a transconductor based on a cross-quad cell [16].

4. The so-called CMOS “gm-cell”, which is a variant of the bipolar-based
“multi-tanh” technique [18] that exploits perfectly the piecewise ap-
proximation approach.

In Table 2.1 several solutions found in the literature are presented. When-
ever possible, simulation results have been listed, rather than measurement
results. Some implementations exploit specific linearization techniques,
others are chosen among the present state-of-the-art, in order to provide
useful comparisons. Feedback-based solutions have been traditionally rel-
egated to low-frequency applications, because of the intrinsic bandwidth
reduction associated with the feedback. As more advanced technologies
become available, bandwidth limitations become less and less critical. To
fully exploit the capabilities of negative feedback, it would be beneficial
to embrace the complete cell (transconductor and switching pair) into the
feedback loop, rather than closing the loop locally by means of source de-
generation.
In Figure 2.1b a slightly-modified multiplier cell is depicted: as explained
in the following, the node vm offers an unmodulated amplified replica of
the input RF signal. This node will be fed back into the loop. The actual
implementation of the load might differ, since many different alternatives
are feasible, but the basic concept is well illustrated in the figure.
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Table 2.1: Reported implementations of down-convertion mixers based on
the Gilbert cell.

Method Gain NF IBIAS@VDD IIP3@freq.
1 2 3 4 [dB] [dB] [mA] [V] [dBm] [GHz]

[19] • 5 18 3.8@2 13@0.9

[20] • 9.48 17.69 4.7@2 3@2.4

[21] • 10 24.2 0.6@1 6@2

[22] • • -2.8 N/A 1.4@2.5 -20@N/A

[23] • 16 13.1 4@1.8 9@2.1

[24] • 26.6 11.9 1.2@1.5 -0.1@2.4

[25] • 16.6 16.5 5@1.8 12.12@2.1

[17] • 16.5 17.2 3@1.8 9@2.4

[26] • 1.7 14.5 4.4@2 4.9@2.4

[27] • -6.5 N/A 3.2@1.25 15@0.9

[28] • 3.3 14.87 3.7@1.5 5.46@2.4

[29] • -9.1 N/A 2.5@1.2 9.5@0.9

[30] • 6.5 11 6.9@1 3.5@8

[31] • 2 13.5 5.2@0.9 3.5@0.9

[32] • 4.7 N/A 1.8@1 10.3@5.5

[33] • • 6.6 21.4 N/A@1.8 1.5@1.69

[34] 6 18.5 7@3.3 11.5@1.9

[35] 2 N/A N/A@2 20@24

[36] 8.3 24.5 5.5@0.9 0@5.25

[37] 12.76 12.4 1.8@1.8 -6.9@5.7

[38] 7 N/A N/A@3.3 4.5@30

[39] 11.9 13.9 3.2@1 -3@2.4
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t

iRF

R C RC

(a) (b)

R C RC

iin

vh vt
vm vm

Figure 2.2: Full-switched model of a differential pair used as a mixer (a)
and R − C network resembling the passive load (b).

In Figure 2.2a we have reproduced the cell in Figure 2.1b by modelling
the differential pair (M1 − M2) as a couple of switches, controlled by a
time-varying periodic function at frequency fLO; we indicate the function
as mLO(t). The computation of the output voltage can be developed with
the aid of Figure 2.2b. We can easily show that the following relations
hold:

vh = iinR
1 + sCR

2

1 + sCR
, (2.1)

vt = iin
R

2
sCR

1 + sCR
, (2.2)

vm = iin
R

2
. (2.3)

We can then define equivalent impedances, as follows:

Zh � vh

iin
= R

1 + sCR
2

1 + sCR
, (2.4)

Zt � vt

iin
=

R

2
sCR

1 + sCR
, (2.5)

Zm � vm

iin
=

R

2
. (2.6)



2.1 Dual-loop implementation 11

The application to the structure in Figure 2.2a is straightforward, due to
the symmetry properties:

vIF = −iRF
1 + mLO

2
Zh − iRF

1 − mLO

2
Zt −

−
(
−iRF

1 + mLO

2
Zt − iRF

1 − mLO

2
Zh

)
. (2.7)

By simplification, we get:

vIF = −iRF · mLO (Zh − Zt)

= −iRF · mLO · R

1 + sCR
, (2.8)

which is exactly the result that we expected: the structures in Figure
2.1a and 2.1b are equivalent with respect to the down-converted signal.
The fundamental property of middle point vm is revealed by the following
equation:

vm = −iRF
1 + mLO

2
Zm − iRF

1 − mLO

2
Zm

= −iRF
R

2
. (2.9)

The input RF current is amplified without any kind of filtering nor mixing.
This voltage can be used in active feedback circuit topologies, as we will
show in the rest of the chapter. More detailed calculations related to the
properties of node vm can be found in Appendix A.

2.1 Dual-loop implementation

Traditional single-stage broad-band LNAs for RF applications present a
fundamental trade-off between input matching, noise figure and linearity.
The best possible compromise might turn out to be simply not good enough
for the particular application. To break the trade-off, several solutions
have been proposed, among which feed-forward [40] and negative feedback
should be mentioned. The latter is quite popular, but certain limitations
occur when a single-loop feedback is implemented. As an example, we can
examine the simplified schematic in Figure 2.3. By inspection we can easily
get the following result:

Zin =
Rf

1 + A
. (2.10)
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In order to provide correct input matching, the forward gain A must be
carefully controlled. By imposing Zin = RS we get:

Gloop = − A

A + 2
, (2.11)

vout

vS
= −A

2
. (2.12)

The loop gain can not be arbitrarily large, in fact it is going to be smaller
than unity. In these conditions, negative feedback does not provide benefits
in terms of linearity. For all these reasons, a dual-loop solution is a more
sensible choice, but without proper care for the loop properties a dual-loop
configuration can not guarantee any benefit by itself. As a practical case,
we can study the shunt-series stage depicted in Figure 2.4, which resem-
bles the topology in Figure 2.3 and does exhibit a dual loop: the source
degeneration (R1 in the figure) provides a stable forward gain (in principle
A ≈ RL

R1
) and the shunt feedback (given by Rf ) defines the correct input

matching. However, some limitations occur in practical implementations.
We can easily determine the following results:

Zin =
(1 + gm1R1)(Rf + RL)

1 + gm1(R1 + RL)
, (2.13)

vout

vS
=

Zin

Zin + RS
RL

1 + gm1(R1 − Rf )
(1 + gm1R1)(Rf + RL)

, (2.14)

Gloop = − gm1RLRS

(1 + gm1R1)(Rf + RL + RS)
. (2.15)

If we impose perfect matching (Zin = RS), we can determine the value of
Rf as a function of RS , R1, RL and gm1 . By imposing Rf > 0, we can
easily determine a practical limitation for the value of the degeneration
resistance: R1 < RS . Since the loop-gain of the series feedback is equal

Rf

RS

vS

vout

Zin

-A

Figure 2.3: A simple negative-feedback stage.
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vS

RS

R1

RLRf

M1

vout

Zin

Figure 2.4: A shunt-series input stage.

to gm1R1, given for example RS = 50Ω > R1 it turns out quite difficult
to boost such loop-gain way above unity. So the series feedback alone can
not provide much benefit in terms of linearization. On the other hand, the
same matching condition Zin = RS affects Gloop as well, and the expression
in (2.15) becomes:

Gloop = − gm1RL

gm1RL + 2 + 2gm1R1
, (2.16)

|Gloop| < 1.

We can conclude that any dual-loop topology must provide more degrees
of freedom in order to accommodate strict input-matching requirements
and highly-demanding linearity specifications.

The proposed topology is shown in Figure 2.5. Both input stage and
mixer exhibit local feedback implemented as source degeneration (Rs1, R2),
but the circuit exploits also a dual-loop feedback involving both stages,
provided by the node vm and the resistor R3. Node vm can be directly fed
back into the loop, since there is no DC coupling. Loads R and RL can be
easily implemented by means of active devices, but in the following we will
treat them as purely resistive loads. We will show that the dual loop has
a high and controllable loop-gain, leading to a robust configuration with
good properties in terms of linearity and input matching.
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LO+ LO-

IF+ IF-

R R

RS

vS

R3

R2

RL

Rs1

vm

iRF

Figure 2.5: A dual-loop high-linearity stage.

2.1.1 Circuit analysis

To simplify the analysis of the stage, we consider a stripped-down version
operating at a single frequency: as explained in Appendix A, if we neglect
the impedance related to capacitance C we can define an equivalent resis-
tance R1 � Rs1//R

2 and disregard the mixing operation with respect to RF
signals. The simplified schematic is shown in Figure 2.6: the output signal
is actually i2, which is the RF current that is going to be down-mixed and
converted into a differential voltage signal. It might be useful in this case
to derive a semi-ideal model based on a single nullor (see Appendix B).
The nullor-based schematic is shown in Figure 2.7. Due to the (ideal)
properties of the nullor, we easily find:

i2 =
va

R1
, (2.17)

iS =
va − R3 · iS

R2
+ i2, (2.18)

from which we can obtain the basic results:

Zin =
va

iS
=

(
1 +

R3

R2

)
R1R2

R1 + R2
, (2.19)

i2 = vS
1

R1

(
1 + RS

Zin

) . (2.20)
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RS

vS Zin

i2

M2
i1

M1

R1

R3

R2

RL

vc

vd

iS

vb

Figure 2.6: Simplified stage for first-order analysis.

Reverting to Figure 2.6, we can derive a proper set of equations:

va = vS − RSiS , (2.21)
vb = −RLi1, (2.22)
vc = R1(i1 − i2), (2.23)
vd = R2(iS + i2), (2.24)

iS =
va − vd

R3
, (2.25)

i1 = gm1(va − vc), (2.26)
i2 = −gm2(vb − vd). (2.27)

It is important to notice that these equations, although they do not include
but the most ideal parameters, can be easily modified to take parasitics into
account, since the number of relevant signals do not change. By solving
the equations, we find:

R∆ � (R2 + R3) {(1 + gm1R1) [1 + gm2(R2//R3)] + gm1gm2R1RL} ,

(2.28)
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RS

vS

va

iS

iS

Zin +

+-

-

R1

R2

R3

i2

i2

vc

Figure 2.7: Dual-loop stage based on the nullor representation.

Zin =
R∆

(1 + gm1R1)(1 + gm2R2) + gm1gm2RL(R1 + R2)
, (2.29)

va = vS
Zin

Zin + RS
, (2.30)

vb =
−vagm1RL {R3 + R2 [1 + gm2(R3 − R1)]}

R∆
, (2.31)

vc =
vaR1 {gm2R2 + gm1(R2 + R3) [1 + gm2(RL + R2//R3)]}

R∆
, (2.32)

vd =
vaR2 {1 − gm1 [gm2RL(R3 − R1) − R1]}

R∆
, (2.33)

i1 =
vagm1 [R2 + R3 + gm2R2(R3 − R1)]

R∆
, (2.34)

i2 =
gm2va {gm1R3RL + R2 [1 + gm1(R1 + RL)]}

R∆
. (2.35)

Simplifications can be made assuming that RL is adequately large, so that
gm1RL, gm2RL � 1, and R1, R2 � RL. Under these assumptions, we get:

Zin ≈
(

1 +
R3

R2

)
R1R2

R1 + R2
, (2.36)

i2 ≈ vS
1

R1

(
1 + RS

Zin

) , (2.37)
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Figure 2.8: Simplified stage for first-order noise calculations.

which can be directly compared with (2.19) and (2.20). Deriving the loop-
gain is not obvious, since there are actually two feedback loops. It is
anyway easy to notice that by removing the connection from node vb to
the gate of transistor M2 we can cut the outer loop. The total loop-gain
can be determined directly:

Gloop = − gm1gm2RL[R2RS + R1(R2 + R3 + RS)]
(1 + gm1R1){R3 + RS + R2[1 + gm2(R3 + RS)]} . (2.38)

2.1.2 Noise

Some rough noise calculations can be performed with the help of Figure
2.8. It is easy to demonstrate that all relevant noise sources can be seen as
linear combination of the currents depicted in the figure, namely ia, ib, ic
and id. First of all we have to calculate the transfer with respect to these
sources:

i2 = Ga · ia + Gb · ib + Gc · ic + Gd · id, (2.39)
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in,RS
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R1 in,R1
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in,M2

in,R3
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Figure 2.9: Simplified stage with noise sources.

Ga =
RSZin

Zin+RS
· gm2 {gm1R3RL + R2 [1 + gm1(R1 + RL)]}

R∆
, (2.40)

Gb =
Zin

Zin+RS
· gm2RL(R2 + R3 + RS)(1 + gm1R1)

R∆
, (2.41)

Gc =
Zin

Zin+RS
· gm1gm2R1RL(R2 + R3 + RS)

R∆
, (2.42)

Gd =
Zin

Zin+RS
· gm2R2 [(R3 + RS)(1 + gm1R1) + gm1RSRL]

R∆
, (2.43)

where of course R∆ and Zin are defined as in (2.28)-(2.29). In Figure 2.9
the main noise sources are depicted. It is then easy to evaluate the different
contributions:

i2 = Ga · in,RS
+ Gc · in,R1 + Gd · in,R2 + (Ga − Gd) · in,R3 +

+(Gc − Gb) · in,M1 − (Gc + Gd) · in,M2 + Gb · in,RL
. (2.44)
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Figure 2.10: Noise analysis of the stage based on the nullor representation.

The noise factor can then be derived directly, considering that all these
noise contributions will sum up with the signal:

F = 1 +
G2

c · i2n,R1
+ G2

d · i2n,R2
+ (Ga − Gd)2 · i2n,R3

+ G2
b · i2n,RL

G2
a · i2n,RS

+

+
(Gc − Gb)2 · i2n,M1

+ (Gc + Gd)2 · i2n,M2

G2
a · i2n,RS

. (2.45)

The above expression can be greatly simplified by means of nullor approx-
imation. First of all, by inspection we find out that node vb is actually
inside the nullor itself. From (2.39) and the following, we derive:

Gb

Gc
=

1 + gm1R1

gm1R1
. (2.46)

We can refer to Figure 2.10 to derive new expressions for current gains:
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Table 2.2: Different noise contributions in the dual-loop topology.

Source Contribution
RS 1

R1
R1
RS

(
1 + RS

R2+R3

)2

R2
R2
RS

(
RS

R2+R3

)2

R3
R3
RS

(
RS

R2+R3

)2

RL
1

g2
m1

RLRS

[
(1 + gm1R1) ·

(
1 + RS

R2+R3

)]2

M1
γ

gm1RS

(
1 + RS

R2+R3

)2

M2 γ · gm2
RS

[
R1·(R2+R3+RS)+RSR2

R2+R3

]2

Ga ≈ RS · (R2 + R3)
RSR2 + R1 · (R2 + R3 + RS)

, (2.47)

Gb ≈ 1 + gm1R1

gm1R1
· R1 · (R2 + R3 + RS)
RSR2 + R1 · (R2 + R3 + RS)

, (2.48)

Gc ≈ R1 · (R2 + R3 + RS)
RSR2 + R1 · (R2 + R3 + RS)

, (2.49)

Gd ≈ RSR2

RSR2 + R1 · (R2 + R3 + RS)
. (2.50)

The expression found in (2.45) is still valid. We can write the noise density
for a MOS transistor as follows: i2n,M = 4kBTγgm (like e.g. in [41], where
the typical value of γ = 2

3 valid for long-channel devices is used). Differ-
ent contributions are summarized in Table 2.2 (the contribution from the
source is unitary). Some useful indications come from this approximated
analysis:

• R1 and R3 should be the dominant noise sources.

• To minimize the overall noise figure, R2 should be somewhat larger
than R1, and R1 should be as small as possible. Reducing R1 value
will eventually lead to:
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a) higher and higher noise contribution from M1,

b) lower and lower feed-back loop-gain.

• The limit condition R3 → 0 leads to a theoretical NF> 3dB.

2.1.3 Linearity

The linearity analysis can not be performed by brute force: introducing
arbitrarily non-linear terms in equations (2.21)-(2.27) lead to unmanage-
able results. A softer approach, based on a semi-iterative method, is then
preferred. Since our simplified schematic is virtually operating at a single
frequency, we want ultimately to derive a polynomial approximation like:

i2 ≈ gS · vS + α2 · v2
S + α3 · v3

S , (2.51)

where gs is the small-signal transconductance resulting from (2.21)-(2.27),
and α2 − α3 are appropriate non-linear coefficients. In fact, we will derive
only α3, since input signal vS is a harmonic signal and even-order distortion
doesn’t affect the transfer properties at the frequency of interest:

vS = v0 · cos ω0t, (2.52)

i2 ≈ α2v
2
0

2
+

(
gsv0 +

3α3v
3
0

4

)
cos ω0t +

+
α2v

2
0

2
cos 2ω0t +

α3v
3
0

4
cos 3ω0t. (2.53)

The following assumptions are considered:

1. the non-linearities are concentrated on the transconductors, i.e. M1

and M2 in Figure 2.6. Equations (2.26)-(2.27) are modified as follows:

i1 = gm1(va − vc) + î1, (2.54)

i2 = −gm2(vb − vd) − î2. (2.55)

The new system is solved with respect to non-linear terms î1 and î2:

i2 = gS · vS + Ĝ1 · î1 + Ĝ2 · î2. (2.56)
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2. Third-order non-linearities are implemented through empirical fac-
tors that depend only on the gate-source voltage:

î1 � α31(va − vc)3, (2.57)

î2 � α32(vb − vd)3. (2.58)

First we can solve the (still linear) system (2.26)-(2.27) with respect to the
non-linear terms defined in (2.54)-(2.55):

Ĝ1 =
Zin

Zin+RS
· gm2RL(R2 + R3 + RS)

R∆
, (2.59)

Ĝ2 = −
Zin

Zin+RS
· (1 + gm1R1)(R2 + R3 + RS)

R∆
. (2.60)

By substitution of (2.57)-(2.58) in (2.56) we find:

i2 = gS · vS + Ĝ1 · α31(va − vc)3 + Ĝ2 · α32(vb − vd)3. (2.61)

The expressions of va, vb, vc and vd here used are the solutions of the linear
system, i.e. (2.30)-(2.33). We introduce those expressions in (2.61) and we
radically simplify to get the following result:

R̂T � (R2 + R3 + RS) ·
(

Zin

Zin + RS

)4

, (2.62)

α3 = α31
gm2R̂T RL[R2 + R3 + gm2R2(R3 − R1)]3

R4
∆

+

+α32
R̂T (1 + gm1R1){gm2R3RL + R2[1 + gm1(R1 + RL)]}3

R4
∆

.

(2.63)

To quantify non-linear terms α31 and α32 we have to consider second-order
effects in the MOS I-V characteristic: the simple quadratic expression
ID ∝ (VGS − VT )2 does not provide any high-order non-linearity. Many
mechanisms have been studied and implemented in advanced MOS models
[42], among which:

• threshold voltage modulation (due to different mechanisms like body
effect),
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• mobility reduction due to vertical field,

• velocity saturation,

• bulk charge effect.

For the sake of simplicity, only one of them will be examined, and since
we have assumed that non-linear terms are functions of the gate-source
voltage, mobility reduction due to vertical field is the preferred choice. We
rewrite the I-V characteristic as follows:

ID =
1
2

µn0

1 + θ(VGS − VT )
C ′

ox

W

L
(VGS − VT )2 (2.64)

=
k0

1 + θ(VGS − VT )
(VGS − VT )2, (2.65)

where

µn0 is the effective mobility at VGS = VT ,
θ is the vertical-field reduction factor and
k0 is equal to 1

2µn0C
′
ox

W
L .

Given an input signal vgs on top of the bias voltage Vgs, the output current
can be determined as a sum of bias current Id, a linear term id and a non-
linear term îd:

Id + id + îd =
k0(Vgs + vgs − VT )2

1 + θ(Vgs + vgs − VT )

=
k0

1 + θ(Vgs − VT )
(Vgs + vgs − VT )2

1 + θvgs

1+θ(Vgs−VT )

. (2.66)

We can approximate the following term:

1

1 + θvgs

1+θ(Vgs−VT )

≈ 1 − θvgs

1 + θ(Vgs − VT )
, (2.67)
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and (2.66) becomes:

Id + id + îd 	 k0(Vgs + vgs − VT )2

1 + θ(Vgs − VT )

[
1 − θvgs

1 + θ(Vgs − VT )

]
	 k0(Vgs − VT )2

1 + θ(Vgs − VT )
+

+k0(Vgs − VT )
2 + θ(Vgs − VT )

[1 + θ(Vgs − VT )]2
vgs +

+k0
1 − θ(Vgs − VT )

[1 + θ(Vgs − VT )]2
v2

gs −

− k0 · θ
[1 + θ(Vgs − VT )]2

v3
gs, (2.68)

Id =
k0(Vgs − VT )2

1 + θ(Vgs − VT )
, (2.69)

id 	 k0(Vgs − VT )
2 + θ(Vgs − VT )

[1 + θ(Vgs − VT )]2
vgs, (2.70)

îd 	 k0
1 − θ(Vgs − VT )

[1 + θ(Vgs − VT )]2
v2

gs −

− k0 · θ
[1 + θ(Vgs − VT )]2

v3
gs. (2.71)

From (2.71) we can derive the third-order polynomial coefficient:

α3i � − k0i
· θi

[1 + θ(Vgsi
− VTi

)]2
, (2.72)

where the index i refers to the specific transistor Mi.

2.1.4 Numerical results

The simulation of the stage is quite problematic because the different par-
asitics disseminated in the circuit reduce the loop gain (in magnitude and
phase) very rapidly. We can identify a few parasitics among the most
critical ones:

1. the finite output resistance of the input transistor (gds1),
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Figure 2.11: Main linear parameters: conversion gain, noise figure and
loop-gain. Results from simulations are indicated with “×”-markers.

2. the gate-drain capacitance of the input transistor (Cgd1),

3. the gate-drain capacitance of the switching pair in the mixer,

4. the total capacitance from the drain of transistor M2 to ground.

Many solutions can be devised to reduce the effects of these parasitics
(for example, an obvious improvement for 1. and 2. would be a cascode
transistor), but in this context we want to validate the results derived in the
previous sections. Therefore we make use of semi-ideal transistor models,
where the main parasitics have been stripped down. These simplifications
enable us to perform simulations of critical parameters based on linear
analyses (e.g. conversion gain and noise figure), but unfortunately prevent
any non-linear simulation from completing successfully. For this reason,
non-linear analysis will be entirely based on numerical calculations. Semi-
ideal models are based on a 0.35µm process. The bias currents of the input
stage (Ibias1) and the mixer (Ibias2) are swept at the same time. Calculated
values for conversion gain and loop-gain exhibit excellent matching with
simulations, whereas NF shows a difference around 0.2dB, due to the fact
that the contribution from M2 at low frequencies has been disregarded.
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Figure 2.12: Output-referred 1-dB compression point for the proposed
circuit and a front-end based on a shunt-series input stage.

Linearity analysis is performed on the basis of the calculations from the
previous section. It is useful to have a term of comparison: the same
approach that we described in Section 2.1.3 is applied to a front-end based
on a shunt-series input stage (see Figure 2.4) and a conventional multiplier-
based active mixer (like the one in Figure 2.1). The results are shown in
Figure 2.12 in terms of output-referred 1-dB compression point. In Table
2.3 the main design parameters are summarized.

2.2 Application to a narrow-band receiver

Narrow-band LNAs based on tuned LC-tanks are extensively used in state-
of-the-art receiver chains, where specifications are highly demanding; in
Table 2.4 a selection of existing implementations is presented. The se-
lective nature of LC resonators determines a high rejection of adjacent
blockers, and the relatively low number or critical noise sources has a pos-
itive impact on total noise figure. A simplified configuration is shown in
Figure 2.13a: the inductive degeneration provides the correct matching



2.2 Application to a narrow-band receiver 27

Table 2.3: Main parameters related to results in Figures 2.11 and 2.12.

Dual-loop Shunt-series
RS 50Ω 50Ω

R1 10Ω 10Ω

R2 10Ω 50Ω

R3 90Ω N/A

Rf N/A 1kΩ

RL 3.7kΩ 3.7kΩ

R 1kΩ 1kΩ

Ibias1 2÷4mA 2÷4mA

Ibias2 2÷4mA 2÷4mA

VDD 2.5V 2.5V

[41], and a cascode stage reduces the impact of the Miller effect related
to gate-drain capacitance at transistor M1. The mixer is built as a direct
implementation of the Gilbert multiplier.

The open loop configuration can be easily modified to exploit negative
feedback as shown in Figure 2.13b; to simplify the structure the following
assumptions are made:

1. The contribution of the cascode transistor in the LNA is omitted.

2. Since we are interested in the operation around resonance, we repre-
sent the load LC tank with the equivalent parallel resistance Rd.

3. No parasitics are considered except for the gate-source capacitance
of transistor M1. Switches and transconductors are ideal.

4. The quality factor of tuning inductor Lg is considered infinite.

5. At high frequency, the load resistors of the mixer combine in parallel
with the degeneration inductor Ls. We assume that the equivalent
parallel resistance of the inductor is marginally affected.



28 Receiver front-ends based on negative feedback

Table 2.4: Reported implementations of narrow-band receiver front-ends
based on tuned LC-tanks.

Gain NF Freq. IBIAS@VDD Tech.
[dB] [dB] [GHz] [mA] [V] [nm]

[43] 51.5 2.9 0.894 29@2.6 250
[44] 7 11.77 1.1 22@1 350
[45] 28.4 1.4 5 11.2@1.8 180
[46] 47 5.6 2.1 9@1.8 180
[47] 92 4.8 1.6 17@1.6 180 1

[48] 110 4 1.6 15@1.6 180 2

[49] 44 7 1.6 5@1.8 180
[50] 31 3.5 2.4 3.9@1.8 180
[51] 17.8 1 2.4 2.3@1.2 180
[52] 26 3.5 5.825 30@1.2 130
[53] 30 3 0.915 2@1.8 180
[54] 28 4.7 2.4 20.3@1.8 180
ib. 30 5.1 5 25.4@1.8 180
[55] 28 12.5 60 7.5@1.2 130 3

[56] 38 1.8 1.6 60@1.4 90 4

[57] 50 3.9 1.9 11@1.2 130
[58] 20.4 19 2.4 0.5@1 180 5

ib. 30.5 10.1 2.4 0.5@1 180 6

[59] 33 1.7 0.85 18.6@1.5 65
[60] 16 8.5 5 6.3@1.8 180 7

[61] 31.5 2.1 1.9 22@1.5 90 8

1 performances refer to the complete radio
2 gain and current consumption include the whole chain
3 based on common-gate topology
4 current consumption refers to the complete radio
5 LNA and Mixer are stacked
6 folded-cascode LNA+Mixer
7 current consumption includes VCO
8 current consumption includes LO drivers
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Figure 2.13: A typical LNA-Mixer chain based on LC-tank resonators (a),
and the proposed topology (b). Biasing details are omitted.

Concerning the last assumption, we observe that the source-degeneration
inductor can be conveniently represented at resonance frequency by an
inductance and a series resistance (like in Figure 2.14a) or by an inductance
and a parallel resistance (see Figure 2.14b) [16]. The impedance at node
vm (equal to R

2 + 1
s2C ) is connected in parallel, and if we neglect the

contribution from capacitance 2C we can define the total impedance as

Zs = sLp//Rp1//
R

2
. (2.73)

According to assumption 5. we consider Rp1 ≈ Rp1//R
2 . The simplified cir-

cuit results as in Figure 2.15. We will express the degeneration impedance
Zs in the Laplace domain in the following forms, using well-known series-
parallel transformations:

Zs(s) ≈ R1 + sLs (2.74)

≈ sLpRp1

Rp1 + sLp
. (2.75)

2.2.1 Circuit analysis

Once again, we study the behaviour of the simplified circuit at a single
frequency, and the output signal is the current i2. From the figure we can
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Figure 2.15: Simplified circuit derived from Figure 2.13b.

easily define a fundamental set of equations, like we did for the dual-loop
stage:

va = vS − iS(RS + sLg), (2.76)
vb = −Rdi1, (2.77)
vc = Zs(s) · (iS + i1 + i2), (2.78)
iS = sCgs1(va − vc), (2.79)
i1 = gm1(va − vc), (2.80)
i2 = −gm1vb. (2.81)

First of all, we can easily determine the input impedance as follows:
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Zin(s) =
1

sCgs1

+ sLg + Zs(s) +
gm1Zs(s)

sCgs1

(1 + gm2Rd). (2.82)

The result does not differ from the usual one [41] except for the multiplying
factor (1 + gm2Rd). By using (2.74) we find:

Zin(s) = R1 +
gm1Ls

Cgs1

(1+ gm2Rd)+ s · (Lg +Ls)+
1 + gm1R1(1 + gm2Rd)

sCgs1

.

(2.83)
We define the unity-gain frequency ωT � gm1

Cgs1
= 2πfT for transistor M1,

and we can determine the degeneration inductance Ls and the tuning in-
ductance Lg by imposing input matching at the operating frequency ω0:


[Zin(ω0)] = RS ⇒ Ls =
RS − R1

ωT (1 + gm2Rd)
, (2.84)

�[Zin(ω0)] = 0 ⇒ Lg =
1 + gm1R1(1 + gm2Rd)

ω2
0Cgs1

− Ls. (2.85)

The optimal value for Ls will be effectively smaller, compared to the tra-
ditional open-loop case, by a factor equal to (1 + gm2Rd); this can be a
significant problem in high-performance technologies, since the low value
of Ls can be difficult to control accurately. The tuning inductance Lg will
not differ substantially, since gm1R1 � 1. We can determine the transcon-
ductance of the stage as follows:

gs � i2
vS

, (2.86)

gs(s) =
gm1gm2Rd

Zin(s)
Zin(s)+RS

1 + s · Cgs1 [s · Lg + Zs(s)] + gm1Zs(s)(1 + gm2Rd)
. (2.87)

The expression in (2.87) can be greatly simplified if we assume perfect
matching at the resonance frequency:

gs(s) =
1
2

gm1gm2Rd

s · Cgs1RS
, (2.88)

which is the same result that we would obtain with an open-loop stage.
Therefore the total conversion gain is not affected by the feedback.

From equations (2.76)-(2.81) we can derive an expression for the loop-gain.
By using the same technique described at the end of Section 2.1.1 we find:

Gloop(s) = − gm1gm2RdZs(s)
1 + gm1Zs(s) + s · Cgs1 [RS + s · Lg + Zs(s)]

. (2.89)
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Figure 2.16: Simplified stage for first-order noise calculations.

To simplify the expression we might try to evaluate the limit for R1 −→ 0:

lim
R1→0

Gloop(ω0) = − gm2Rd

2 + gm2Rd
, (2.90)

which shows that the loop-gain is smaller than unity in magnitude around
the operating frequency.

2.2.2 Noise

Noise analysis is performed by means of fictitious current sources ia, ib and
ic shown in Figure 2.16, like in Section 2.1.2. The transfer functions are
easily determined:

i2 = Ga · ia + Gb · ib + Gc · ic, (2.91)

Ga(s) =
gm1gm2RdRS

1 + sCgs1 [sLg + Zs(s)] + gm1Zs(s)(1 + gm2Rd)
, (2.92)

Gb(s) =
gm2Rd{1 + gm1Zs(s) + sCgs1 [sLg + RS + Zs(s)]}

1 + sCgs1 [sLg + RS + Zs(s)] + gm1Zs(s)(1 + gm2Rd)
, (2.93)

Gc(s) =
gm1gm2RdZs(s)

1 + sCgs1 [sLg + RS + Zs(s)] + gm1Zs(s)(1 + gm2Rd)
. (2.94)

In this simplified analysis, induced gate noise is neglected: even though it
plays an important role in inductively-degenerated LNAs [62], its contri-
bution will be the same for both structures in Figure 2.13. In Figure 2.17
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the main noise sources are depicted. The different contributions around
operating frequency are evaluated as follows:

F = 1 +
i2n,M1

· |Gc(ω0) − Gb(ω0)|2 + i2n,M2
· |Gc(ω0)|2

i2n,RS
· |Ga(ω0)|2

+

+
i2n,Zs

· |Gc(ω0)|2 + i2n,Rd
· |Gb(ω0)|2

i2n,RS
· |Ga(ω0)|2

= 1 + γgm1RS

∣∣∣∣Gc(ω0) − Gb(ω0)
Ga(ω0)

∣∣∣∣2 + γgm2RS

∣∣∣∣Gc(ω0)
Ga(ω0)

∣∣∣∣2 +

+
RS

Rp1

∣∣∣∣Gc(ω0)
Ga(ω0)

∣∣∣∣2 +
RS

Rd

∣∣∣∣Gb(ω0)
Ga(ω0)

∣∣∣∣2 . (2.95)

To provide a useful comparison with the traditional open-loop stage, we
summarize the different contributions to the total noise factor in Table 2.5.
The results are calculated around operating frequency for R1 → 0. The
factor related to M2 includes two terms, because the transistor generates
noise at high frequency (and it gets down-converted together with the sig-
nal) and at low frequency (where 1

f -noise will be dominant, even though we
have chosen not to include it explicitly in the calculations); the simplified
formula overestimates the latter term quite a bit. In the closed-loop solu-
tion several terms exhibit improvements in noise contributions, specifically
M2, Rd and Rp1.
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Table 2.5: Noise contributions for the proposed stage compared to the
traditional case.

Closed loop Open loop
RS 1 1

M1 γgm1RS

(
ω0
ωT

)2

γgm1RS

(
ω0
ωT

)2

M2 γgm2RS

(
ω0
ωT

)2
1

(1+gm2Rd)2 + γgm2RS

(
ω0
ωT

1
gm2Rd

)2 (
4 + π2

2

)
+γgm2RS

(
ω0
ωT

)2
1
2

(
π

gm2Rd

)2

Rp1
RS

Rp1

(
ω0
ωT

1
1+gm2Rd

)2
RS

Rp1

(
ω0
ωT

)2

Rd
RS

Rd

(
ω0
ωT

2+gm2Rd

1+gm2Rd

)2
RS

Rd

(
2 ω0

ωT

)2

R RS

R

(
ω0
ωT

π
gm2Rd

)2
RS

R

(
ω0
ωT

π
gm2Rd

)2

2.2.3 Numerical analysis

Like we did in Section 2.1.4, we use simplified models to perform simu-
lations. In this case, only linear parameters will be extracted, so we can
compare simulations results with previously derived calculations. From a
quick glance at Table 2.5 we can conclude that the most critical parame-
ters in noise analysis are the unity-gain frequency fT and the transconduc-
tance of the second stage gm2 ; therefore sweeping the bias current of the
second stage (Ibias2) and the unity-gain frequency sounds like a sensible
choice. Figure 2.18 shows that the noise contribution from transistor M2

is actually overestimated, but the general trend of the calculations match
the behaviour seen in simulations. The difference between open-loop and
closed-loop solution can be as high as ∼ 0.76dB. Simulations are based on
a 0.35µm process, and the main parameters are summarized in Table 2.6.
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unity-gain frequency (bottom) for the proposed stage and the traditional
open-loop stage. Calculations are shown as lines (continuous line and
dashed line respectively), whereas simulations are indicated with mark-
ers.
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Table 2.6: Main parameters related to results in Figure 2.18.

Closed loop Open loop
RS 50Ω 50Ω
Ibias1 2mA 2mA

Ibias2

0.1-0.5mA 0.1-0.5mA 1

0.1mA 0.1mA 2

fT
2GHz 2GHz 1

2-6GHz 2-6GHz 2

VDD 2.5V 2.5V
fLO 900MHz 900MHz
Q@fLO 10 10
Ltank 2nH 2nH

1 conditions for results in Figure 2.18 (top)
2 conditions for results in Figure 2.18 (bottom)



Chapter 3

Simplified analysis of a
current-reuse

LNA-Mixer-VCO
architecture

In the past years, battery-operated portable devices have been pushing the
development of power-saving techniques to the limit. Approaches based on
current reuse are extremely effective, for different reasons:

• the supply voltage of large systems is determined by complex archi-
tecture specifications, if not by the voltage provided by the battery
itself. Therefore even if a single block could be operated at a much
lower voltage, in practice this is not a viable option to save power.

• Given a certain supply voltage, current consumption of different
blocks is determined by a number of non-trivial trade-offs, but it
is generally possible to identify one or very few critical blocks that
determine a lower bound for power usage.
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Figure 3.1: Examples of current-reuse topologies: a stacked LNA-Mixer
(a) and a self-oscillating mixer (b).

To get as close as possible to the aforementioned lower limit, stacking
multiple stages over the same bias source sounds like a very sensible choice.
A couple of popular examples are given in Figure 3.1:

(a) a narrow-band LC-based LNA can provide bias current for a conven-
tional Gilbert-based mixer [63][64],

(b) the bias current of a VCO can be used to supply a common-base
double-balanced mixer [65]. These architectures are commonly re-
ferred to as self-oscillating mixers (SOM).

The LNA-Mixer-VCO (LMV ) architecture presented in [1] is capable of
stacking an LNA, a mixer and a VCO over the same bias current. LC-
tank VCOs and active mixers share the same principle (i.e. a pair of
switching MOS transistors), but the LC-tank can not offer high impedance
at low frequencies (where the down-converted signal should be collected):
an additional stage must be inserted, thereby providing isolation between
the LO output and the down-converted signal. A schematic of the LMV
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Figure 3.2: The LMV cell: complete circuit (a) and simplified schematic
with parasitics at output nodes (b).

cell is reproduced in Figure 3.2a:

• transistor M0 is a transconductor configured as a narrow-band LNA,
which is also supplying bias current for the rest of the circuit.

• Transistors M3 − M4 provide the necessary negative resistance to
induce oscillation; capacitor Cd should behave as a short-circuit at
radio frequencies.

• Transistors M1−M2 are operated as switches to synthesize the mixing
function. The R−C network is just a decoupling high-pass filter that
carries the LO signal back to the input of the mixer.

The adopted description is very simplified and somehow inaccurate (e.g.
we can say that M3 − M4 are also involved in the mixing operation), but
it can be useful to a large extent for a first-order analysis of the stage.
Calculating the transfer characteristic of this cell (i.e. the conversion gain
and the output bandwidth, among other things) is not obvious, since there
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Figure 3.3: Waveforms for the simplified schematic in Figure 3.2b: steady-
state operation for vIF = 0 (a) and perturbed waveforms when a signal
vIF is applied (b).

is apparently no load to convert the IF current signal into a differential
voltage (like the R − C low-pass filter in Figure 3.1a, for instance). In
particular, the influence of parasitics at the output nodes must be taken
in serious consideration. Based on the simplified schematic in Figure 3.2b,
we will develop a first-order analysis of the stage, in order to quantify the
impact of parasitic capacitance Cp. As a fundamental precondition, we
assume that transistors M1 − M4 behave as ideal switches.

3.1 Effective resistance at output nodes

First of all, we consider the limit case Cp → 0. Referring to Figure 3.2b,
we define:

Itail = I0 + iRF · sin(ωRF t), (3.1)
VLO+ = VDD + V0 · sin(ω0t), (3.2)
VLO− = VDD − V0 · sin(ω0t). (3.3)

For iRF = 0, transistors M1 − M4 are switching on and off periodically,
and we can easily conclude that the couple M1, M4 is on half of the time,
whereas the couple M2, M3 is on the rest of the time. All relevant wave-
forms are summarized in Figure 3.3a. We will show that by applying a
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probe signal vIF = vIF+ − vIF− at low frequency and evaluating the cur-
rent iIF associated with it, we can calculate an equivalent resistance RIF .

We assume that the test signal does not interfere with the oscillation,
therefore waveforms VLO+ and VLO− do not change. We can also safely
assume that the behaviour of the couple M1, M2 is not affected at the
first order, since a low-frequency voltage at the drains does not influence
normal operation; finally, we observe that the couple M3, M4 will indeed be
affected, since one transistor will be on for a longer time and the other will
be on for a shorter time: the reason is related to the fact that the switching
threshold is reduced for one transistor and increased for the other. The
concept is illustrated by the waveforms in Figure 3.3b: in every half-period,
there is a time-slot τ in which the tail current I0 is flowing entirely either
through M1, M3 or through M2, M4. We can easily derive the following
equations:

vIF

2
= V0 sin ω0τ, (3.4)

iIF =
I0

T0
2 − I0

(
T0
2 − 2τ

)
T0

, (3.5)

where T0 = 2π
ω0

. From the previous equations, we can determine

τ =
1
ω0

arcsin
vIF

2V0

≈ vIF

2ω0V0
, (3.6)

iIF =
2I0τ

T0

≈ vIF

2ω0V0

2I0

T0
=

I0

2πV0
vIF , (3.7)

RIF � vIF

iIF

≈ 2πV0

I0
. (3.8)

The last equation shows that there is an effective resistance acting at low
frequencies, which is related to the amplitude of the oscillation and to the
bias current. We can also express (3.8) in another form:

V0

I0
≈ 1

π
ω0LtankQ =⇒ RIF ≈ 2ω0LtankQ, (3.9)
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Figure 3.4: SC-theory applied to the LMV cell.

where Q is the quality factor of inductor Ltank. To complete the analysis,
we notice that the capacitance Cd is in parallel to the effective resistance
RIF , therefore the complete transfer function can be expressed as follows:

vIF

iRF
≈ 2

π

RIF

1 + sCdRIF
. (3.10)

The last equation helps us to determine an upper limit for the GBWP of
the stage.

3.2 Parasitics-related losses

We want to evaluate the impact of parasitic capacitance Cp. Since we treat
transistors M1 − M4 as ideal switches, we can greatly simplify the circuit
by applying the theory of switched capacitors (SC). As a further simplifi-
cation, we consider the impedance of the tank negligible. The simplified
structure is depicted in Figure 3.4, where obviously we have C1 = C2 = Cp.
In this case we are interested in the RF signal injected by Itail, therefore
the DC component I0 is disregarded. During a phase (for example φ1) the
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input current injects a certain amount of charge Qin in the system:

Qin =
∫ T0

2

0

(Itail(t) − I0) dt (3.11)

= iRF

∫ T0
2

0

sin(ωRF t) dt = iRF

∫ T0
2

0

sin
2πt

TRF
dt (3.12)

≈ iRF

∫ T0
2

0

sin(ω0t) dt =
2iRF

ω0
. (3.13)

This charge is going to be shared by Cd and C2. During the (instanta-
neous) transition φ1 −→ φ2, capacitor C2 is discharged, and the charge
Qd, already present on Cd, is redistributed partially on C1. At this point
we can repeat for phase φ2 the same steps (of course C1 and C2 have oppo-
site roles): the input RF current has opposite sign now, but it is injected on
the opposite side. A detailed sequence is depicted in Figure 3.5. Given the
periodic nature of the system, the entire behavioural analysis boils down
to a single discrete-time dynamic equation:

Qd(n + 1) =

redistribution

of the charge︷ ︸︸ ︷
(1 − α)Qd(n) +

sharing of the

input charge︷ ︸︸ ︷
(1 − α)Qin(n) , (3.14)

where α � Cp

Cp+Cd
. In the Z-domain we can rewrite (3.14) as follows:

zQd(z) = (1 − α) [Qd(z) + Qin(z)] , (3.15)

H(z) � Qd(z)
Qin(z)

=
1 − α

z − 1 + α
. (3.16)

We can easily perform a proper mapping from the Z-domain to the Laplace-
domain; since we are interested in frequencies close to DC, we can approx-
imate the mapping function as follows:

z = e
sT0
2 ≈ 1 +

sT0

2
=⇒ H(s) =

1 − α

α + sT0
2

. (3.17)
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Figure 3.5: Complete cycle φ1 − φ2. Different charge-discharge processes
are indicated.



3.3 Numerical results 45

From (3.13) and (3.17) we derive the total transfer function:

Qin ≈ 2iRF

ω0

Qd = Cd · vIF

 vIF

iRF
≈ 2

ω0Cd
· 1 − α

α + sT0
2

(3.18)

≈ 2
ω0

· 1 − α

αCd
· 1
1 + sT0

2α

(3.19)

≈ 2
ω0Cp

· 1
1 + sT0

2α

. (3.20)

We notice that the transfer function in (3.20) has a diverging behaviour
for Cp → 0: this stems from the fact that the lossy mechanism described
in Section 3.1 is not taken into consideration here.

All in all, equations (3.10) and (3.20) provide reasonable asymptotic bounds
for the GBWP of the stage, as it is shown in Section 3.3. In Appendix
C we try to provide a unified formulation which embraces the SC-based
approach leading to (3.20), and to give a more rigorous explanation for the
effective resistance described in Section 3.1.

3.3 Numerical results

To prove the validity of limits (3.10) and (3.20) we perform simulations of
the LMV structure in semi-ideal conditions:

• MOS transistors are stripped-down of their main capacitive para-
sitics, in order to resemble ideal switches as much as possible,

• current source Itail is ideal,

• the LC tank is implemented as an ideal centre-tapped inductor, in
which the mutual coupling between the two branches is equal to
unity.

We write the transfer function as follows:

vIF

iRF
=

Rgain

1 + s
BW-3dB

. (3.21)
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Figure 3.6: Calculation results from (3.10) and (3.20) (continuous and
dashed lines respectively) together with simulation results (“×” markers).
The low-frequency gain (on top) and the -3dB bandwidth (bottom) are
shown.
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Table 3.1: Main parameters for results in Figure 3.6.

f0 1.6GHz

I0 1mA

Ltank 5nH

Q@f0 20

Cd 10pF

It is then easy to extract parameters Rgain and BW-3dB from simulations
using PSS+PAC analyses in Cadence. R© Results are plotted in Figure 3.6,
whereas main parameters are summarized in Table 3.1: we can appreciate
that asymptotic curves from (3.10) and (3.20) follow the simulations quite
closely in the peripheral regions, and the transition between (3.10)- and
(3.20)-regime (which happens for Cp ∼ 50 ÷ 100fF in the figure) is very
sharp. As predicted by (3.20), the roll-off of Rgain as a function of Cp is
extremely fast, and this makes this structure rather prone to degradation
in performance due to parasitics. To alleviate the problem substantially,
a current-mode output is chosen in practical implementations: it can be
proven that performance degradation due to parasitic capacitance Cp is
radically reduced [66].

3.4 Current-mode output stage

A simple current-mode output stage is depicted in Figure 3.7a; the fully-
differential operational amplifier should be able to drive a relatively low
resistance, therefore a topology based on a super-cascode stage is preferred
(see Figure 3.7b). In order to reduce the required voltage headroom, a self-
biased active load is chosen: the final configuration is drawn in Figure 3.7c,
where capacitor Cout provides additional low-pass filtering. The fully-
differential op-amp schematic is reported in Figure 3.8 (biasing details are
simplified). The basic circuit (a) consists of

• a differential pair M7 − M8,
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Figure 3.7: A current-mode output stage: simple solution (a), super-
cascode with passive load (b) and active load (c).

• an active load M5 − M6,

• a cascode stage M9 − M10 followed by

• a self-biased active load M11 − M12 − Rload.

This folded-cascode topology makes the most out of the reduced supply
voltage, but the fully differential circuitry requires a common-mode feed-
back (CMFB) loop, which is sketched in Figure 3.8b. Very large resistors
(Ra > 100kΩ) are used in order to sense the DC voltage at the inputs
and feed it into the loop. A basic amplifier OpAmp2 performs the com-
parison with the reference voltage Vref in order to provide the required
bias voltage Vbias2 to pair M5 − M6. This solution provides reasonable
phase margin, even though the gate of M5 − M6 is a high-gain node; the
filter Rb − Cb offers one extra degree of freedom to adjust the open-loop
frequency-response of the CMFB. Referring again to Figure 3.7c, we notice
one additional problem: super-cascode transistors M1−M4 must be biased
with a current which is directly spilled from the bias current of VCO’s core.
Therefore, such bias current must be determined accurately, and for this
reason reference voltage Vref must be generated internally. The complete
schematic is displayed in Figure 3.8c: devices M1a − M4a are a replica
of the super-cascode stage M1 − M4, they are biased with an adjustable
reference current Ibias2 , and the source of M1a −M2a provides the correct
Vref. OpAmp2 is a simple differential pair with an active load (M13 −M16

in the figure). A summary of measured results for the LMV in [1] is pre-
sented in Table 3.2, together with simulated parameters for the amplifier
in Figure 3.8; the micrograph of the chip is reproduced in Figure 3.9, and
some measurement results are reported in Figure 3.10.
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Figure 3.8: Op-Amp schematic: simplified circuit (a), CMFB loop in evi-
dence (b) and complete schematic (c).
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Table 3.2: Summary of measured parameters.
LMV cell in [1]

Gain 36dB
NF (3÷5MHz) 4.8dB
IIP3 -19dBm
CP1dB,out -31dBm
PN@1MHz -104dBc/Hz
Ibias 4.5mA
VDD 1.2V
Amplifier in Figure 3.8

Gain 35dB
GBWP 135MHz√
〈i2n,in〉 4.25nA/

√
Hz

φm (CMFB loop) 68o

Figure 3.9: Micrograph of the chip presented in [1].
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Figure 3.10: Measurement results from [1]: s11 plot (top) and conversion
gain (bottom). Input reflection coefficient is lower than -10dB in the range
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Chapter 4

Toroidal inductors in
standard CMOS processes

Planar spiral inductors are key passive components in any integrated RF
design [16]. In Table 4.1 several implementations from the present state-
of-the-art are summarized, and we can see that these components are ex-
tremely area-hungry; recently it has been proposed to mitigate this issue
by integrating active components underneath [83][84], but such coils have
anyway the strong tendency to induce RF currents into the substrate. In
some applications, magnetic field confinement might be needed, especially
when large systems with several different coils are integrated on the same
die: mutual interference between coils is likely going to jeopardize over-
all performances. In this sense, solenoid-based inductors can be a handy
choice, and toroidal geometry is definitely preferable because it is very
compact and symmetrical: even the internal area can be actively used.
Good properties of toroidal inductors have been exploited in advanced mi-
cromachining processes [85], but CMOS processes present much different
issues. In the following pages a possible approach to toroids’ integration
is presented: the aim of this implementation is not competing in terms
of performances, but rather demonstrating the feasibility of this kind of
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Table 4.1: Performance of integrated inductors in CMOS-compatible tech-
nologies.

Area L Q@fpeak Technology
[µm2] [nH]

[67] 180×180 0.127 48@10GHz 0.25µm

[68] 240×240 4 22@5GHz N/A

[69] 120×120 2 11.2@5GHz 0.25µm

[70] N/A 2 8@2GHz 0.25µm 1

[71] 300×300 5.6 9@2.4GHz 0.18µm 2

[72] 160×200 1.3 15@8GHz 0.35µm

[73] 21×21 0.42 >15@50GHz 0.13µm SiGe

[74] 390×390 2.3 34@7.5GHz 90nm 1

[75] N/A 3 10.8@3.5GHz 0.18µm

[76] N/A 3.4 15.7@2.45GHz 0.13µm 3

[77] N/A 0.93 24.9@5GHz 0.13µm

ib. N/A 3.5 16@2.4GHz 0.13µm

[78] N/A N/A 16@6GHz 0.35µm

[79] 380×380 1.8 41@5GHz 90nm 1

[80] 825×825 1 51@1GHz N/A 4

[81] 165×165 2 12@10.5GHz 90nm

[82] 232×232 1.1 >13@20GHz 0.13µm

1 The coil is not exactly integrated on the die, therefore area
consumption is not an issue, but the WLP technology is
nonetheless compatible with CMOS processing.

2 The dimensions of the coil are estimated by inspecting the
die micrograph.

3 SOI processing is applied.
4 A CMOS-compatible post-processing is applied.
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solution, with respect to obvious technology limitations. The figures sum-
marized in Table 4.1 reveal that planar coils are quiet effective in terms
of quality factor, which is the ultimate bottle-neck in the vast majority
of RF designs. Nevertheless, cross-talking can become a serious issue in
the future, since nanometre-scale technologies offer the possibility to inte-
grate larger and larger systems on the same die. Under this perspective,
field-confinement properties of toroidal inductors become appealing, also
because internal area might be effectively utilized.

4.1 Physical implementation

The structure resembles a rectangular-section toroid, and the windings are
evenly spaced along the circle. The single winding is built by using the
top metal layer running along the radius, a stack of vias going down to the
bottom metal level, the bottom metal layer itself running along the radius
in the opposite direction, and another stack of vias to get back at top metal
level. A graphical representation can be seen in Figure 4.1. Planar induc-
tors can be accurately characterized by means of 2.5D electro-magnetic
simulations: the structure is basically extended over 2 dimensions, and
this hugely simplifies the analysis. In the case of toroids, pure 3D analysis
is necessary, since the structure itself is not planar. Nevertheless the dimen-
sions involved are extreme, since the total area is in the order of fractions
of mm2, whereas the distance between close windings can be as small as
a few µm: simulations might be extremely slow and compromises must be
accepted in terms of accuracy. Some qualitative analysis can be performed,
though. Figure 4.2 shows a possible setup: the 3D structure is enclosed
into a box (resembling the oxide), and the two terminals are driven out for
probing on opposite sides of the box, on top and bottom. The negative
terminal (together with the bottom plane of the box) is grounded, whereas
the positive terminal is driven with a probing signal (basically a constant
voltage). The toroid (on the left) is compared with a 2-turn square planar
inductor (on the right), which occupies roughly the same area and should
provide (according to design kit models) approximately the same induc-
tance. This setup has been simulated with a 3D finite-elements simulator
(COMSOL MultiphysicsTM) in order to provide a qualitative analysis of
the structure with respect to the most significant property: field confine-
ment. The normal component of the magnetic field is plotted in magnitude
on the silicon plane (in the middle of the picture) and on the cross section
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Figure 4.1: 3D representation of the complete structure.
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Positive terminal

Negative terminal

Ground plane

Min

Max

Figure 4.2: 3D representation of a finite-elements simulation setup (on top)
together with the results, that show the distribution of the magnetic field
magnitude along the silicon plane (middle) and the cross-section (bottom),
for the toroidal structure (left) and a reference planar inductor (right).

(at the bottom): the simulation shows that the field is reasonably enclosed
in the toroid, especially when compared with the planar spiral inductor. A
close-up plot, shown in Figure 4.3, reveals that the field is actually running
along the path inside the toroid. In the following, we try to exploit these
properties and investigate the behaviour of the component through simple
straightforward calculations.

4.2 Modelling

Two different approaches are examined in order to analyze the structure
and provide reasonable design guidelines. The aim is not providing an
accurate model, but rather clear indications about different trade-offs.
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Figure 4.3: Magnetic flux density simulation along the silicon plane for the
toroidal inductor.

4.2.1 Classical approach

An air-core rectangular-section toroidal inductor can be easily modelled by
means of static Maxwell’s equations. A straightforward calculation leads
to a well known value for the inductance:

Lcoil =
µ0h

2π
n2 log

(
r0 + �

r0

)
, (4.1)

where

µ0 is the magnetic permeability in air (the core is actually built with mul-
tilayer oxide, but magnetic properties do not change significantly);

h is the height of the rectangular section of the toroid, as distance between
top and bottom metal layers;

n is the number of windings;

r0 is the internal radius of the toroid;

� is the difference between external and internal radius.

The calculations are carried on under rather restrictive assumptions:
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1. wire dimensions are negligible;

2. flux dispersion outside the toroid is very low;

3. magnetic field is constant along toroid symmetry axis.

None of them is actually verified in this case, but we might get some useful
indications anyway. The square dependency shown in (4.1) is very appeal-
ing: very high Q values could be achieved with many windings, since the
resistance is growing linearly with n. However, in practical implementa-
tions the physical dimensions must be considered. A major shortcoming
for this kind of structure would be the dominant impact of contact re-
sistance associated with vias. In fact, the availability of copper vias is
a necessary precondition for the implementation of the coil. In the rest
of this section we will consider only the contribution associated with the
metal lines, but we will bear in mind that in practice that contribution
can be as important as the contact resistance (if not even less important).
With this simplification we get a total DC resistance

RDC ≈ 2R�
�

w
n, (4.2)

where R� is the average metal sheet resistance in Ω/�, and w is the width
of the metal stripe. Furthermore, windings cannot be infinitely close to
each other; if s is the minimum spacing between close lines, we can pack
the windings as much as possible, but ultimately we get:

2πr0 ≈ n(w + s) ⇒ n ≈ 2πr0

w + s
. (4.3)

Combining equations (4.1), (4.2) and (4.3) and assuming a simple expres-
sion for the impedance (Z(ω) ≈ RDC + ωLcoil), we can find a compact
and elegant expression for the quality factor normalized with respect to
the frequency:

Q

ω
≈ Lcoil

RDC
≈ µ0h

2R�
· w

w + s
·
log

(
1 + �

r0

)
�
r0

. (4.4)

This final result shows that performances are basically limited by tech-
nology, because the upper limit for (4.4) is in any case µ0h/2R�. Some
marginal optimization can be achieved using wide and short metal stripes.
The design parameters in Table 4.2 lead to an inductance value of ∼ 0.3nH.
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Figure 4.4: A single metal stripe with related parameters (a) and a series
of mutually-coupled inductors (b).

4.2.2 Local approach

A self-inductance is associated with the field generated locally by each
metal line [86]. This self-inductance can be approximated by means of a
widely used expression:

Lself =
µ0

2π
�

[
log

(
2�

w + t

)
+ 0.50049 +

w + t

3�

]
, (4.5)

where � is the length of the line, w is the width and t is the thickness,
as shown in Figure 4.4(a). This approach is extremely versatile, because
mutual correlations between neighbours can be calculated as well; the final
expression for the total inductance will be in the form:

L =

self︷ ︸︸ ︷
N∑

k=1

Lk +

mutual︷ ︸︸ ︷∑
k �=j

Lk,j . (4.6)

where N is the number of metal lines. For example, in Figure 4.4(b) we
can see a special case where mutual coupling is considered only between
adjacent lines, leading to a total inductance which is still linearly depen-
dent with respect to the number of windings. The expressions in [86] are
tailored around a planar structure, nevertheless it might be possible to con-
sider special correction factors in order to accommodate a full 3D structure
like the toroid. Such kind of approach has been followed [85] with a good
matching between experimental results and numerical model. To get quick
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indications, we shall try to focus on fundamental results. The most im-
portant fact is that the total inductance is basically linear with respect
to the number of metal stripes, and therefore to the number of windings
n. We choose not to consider any kind of mutual effect, as a first-order
approximation. Referring to a single metal line as in Figure 4.4(a), we
define Lself as in (4.5), and

Rm ≈ R�
�

w
, (4.7)

where R� has appropriate values for top and bottom metal layers. Based
on these assumptions, we find out some indications for the final design:
metal lines should be wide and long.

4.3 Design

As previously shown, the two modelling approaches provide different indi-
cations, but the first one is not applicable in this case, because it’s based
on assumptions that are not verified; we shall focus on the indications from
the second approach. We can simplify the calculations considering a single
turn, since no mutual coupling between turns is considered. Resistance
from vias stacks should be added to the total resistance, and then some
capacitance should be considered in order to estimate self-resonance. Stray
capacitance between turns can be easily neglected, as the main contribu-
tion comes from bottom metal-to-substrate capacitance. The expression
for the single stripe is straightforward:

Cox = εox
w�

hox
, (4.8)

where εox is the effective dielectric constant of the oxide, and hox is the
distance between the bottom plate and the substrate. The expression is
valid for bottom metal lines, since we consider Cox = 0 for top metal
lines. In order to dimension a test-coil, we decide to follow some general
guidelines:

• the total inductance should be relatively large (L � 1nH), otherwise
de-embedding the parasitics can produce misleading results,
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(a) (b)

Figure 4.5: Micro photograph of the die (a) and measurement setups (b).
From the upper-left quadrant, clockwise: 1-port test setup, 2-port de-
embedding setup, 1-port de-embedding setup, 2-port test setup.

• parasitic capacitance should not limit the self-resonance too much (a
reasonable target is fself � 5GHz),

• DC resistance should of course be minimized.

In addition, regular design rules for CMOS processes must be followed. For
example, arbitrarily wide metal lines cannot be fabricated. Design choices
and estimated parameters are summarized in Table 4.2. The physical lay-
out of the device is particularly complicated because of the geometry of
the toroid itself. It is useful to build a parametric automated procedure
to perform all the drawing steps; for the details, see Appendix D. The
complete silicon die can be seen in Figure 4.5a. It has been fabricated in
a standard CMOS 0.13µm process with 6 copper metal lines and copper
vias.

4.4 Measurement approach and results

The measurements are carried directly on the die by means of standard
Ground-Signal-Ground (GSG) microprobes. A 1-port and a 2-port mea-
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surement setup is provided on each die (even though only 2-port mea-
surements are used in practice for data analysis, 1-port measurements are
useful for quick checks), together with de-embedding counterparts, in or-
der to rule out contributions from pads and parasitics. De-embedding is
accomplished by means of an open-circuit structure, as shown in Figure
4.5b. Data analysis is carried on through manipulation of admittance pa-
rameters, since the de-embedded values are given by a simple difference:

Ydut(ω) = Ydir(ω) − Yde(ω), (4.9)

where

Ydut(ω) is the de-embedded result,

Ydir(ω) is the measured admittance matrix of the coil,

Yde(ω) is the measured admittance matrix of the open-circuit de-embedding
structure.

This approach provides reasonable results, though some limitations exist:

• short-circuit de-embedding is not performed, and this might have a
significant impact especially on Q factor measurements [87]. The
quality factor is going to be underestimated, but previous implemen-
tations in older technologies demonstrated that the underestimation
is not dramatic;

• the inductor itself can shield the pads [88], but for the sake of sim-
plicity we chose not to perform any calibration aimed to alleviate
this issue. Because of this effect, the Q factor will suffer further
underestimation.

To get a closer insight, the idea is to build a very simple Π model like the
one showed in Figure 4.6, based on measurement results. Such model is
extremely rough, since it does not contain frequency-dependent elements
nor mutual couplings, but it is useful in order to make comparisons with
hand calculations. More sophisticated approaches can be found in the
literature [89].



64 Toroidal inductors

Table 4.2: Design parameters and
estimated values.

Param. Value
r0 ∼40µm

� ∼60µm

w ∼12µm

n 20
L ∼1.4nH
R ∼6.2Ω
Cox ∼0.45pF

Table 4.3: Equivalent Π model pa-
rameters.

Param. Value
L ∼1.1nH
R ∼6.13Ω
Cox ∼0.42pF
Csub ∼5fF
Rsub ∼115Ω
Cstray ∼2fF

RL

Csub RsubCsubRsub

Cstray CoxCox

Figure 4.6: Simple Π model of the inductor.

The procedure is totally empirical: model and measurements data are fed
into a simulation tool which applies a straightforward optimization routine
to extract the model parameters. The results are summarized in Table 4.3.

It should be easily appreciated the fact that extracted parameters show
a good matching with hand calculations already seen in Table 4.2. The
inductance itself is easily the most critical parameter, but this is no surprise
since we did not account for any mutual correlation between windings. The
de-embedded data can be easily manipulated in order to extract relevant
performance information. In Figure 4.7 a plot of the Q factor is shown,
together with the effective inductance at different frequencies. We can see
a clear trend: the quality factor is increasing as the frequency grows, as
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Figure 4.7: Measured Q factor and inductance of the coil.

anticipated. This means that eddy currents induced in the substrate do
not interfere heavily. The inductance value is reasonably constant over the
whole range. In Figure 4.8 we can see the real and imaginary part of the
impedance, whereas in Figure 4.9 we show the S-parameters on a Smith
chart, for 1-port and 2-port measurements. The model is of course not
very accurate at high frequencies.

The practical manufacturability of a toroidal inductor with good area-
consumption characteristics has been demonstrated. Results show that this
implementation cannot challenge a traditional spiral inductors on a perfor-
mance level, but field confinement properties fulfil the expectations, and
high-frequency behaviour suggests that certain applications can greatly
benefit from this kind of approach. First-order modelling has been really
helpful in the design phase, showing also decent matching with measure-
ments, but nonetheless great improvements can be achieved in this area.
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Figure 4.8: One-port measurement of the impedance, shown in terms of
real and imaginary part, together with the Π-model approximation (solid
lines).
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Figure 4.9: S-parameter plots for 1-port and 2-port measurements (on
the left and on the right side respectively), together with the Π-model
approximation (solid lines).



Chapter 5

Conclusions

“Σκόπει δή, [. . . ] ὦ Κέβης, εἰ ἐκ πάντων τῶν
εἰρημένων τάδε ἡμῖν συμβαίνει [. . . ];”

“Then reflect, [. . . ] Cebes: is not this the
conclusion of the whole matter [. . . ]?”
Plato, Phaedo

The aim of this work is to exploit the capabilities of CMOS processes
for RF applications. The promise of an ever-growing level of integration
and interaction with the digital domain is very appealing, and the goal of
a full-fledged single-chip radio looks close [90][91]. Portable devices will
especially benefit from this (r)evolutionary path: a very compact and low-
power structure will embrace several wireless standards at a time, thereby
providing multiple functions (e.g. GPS, UMTS, Bluetooth and so on. . . )
with a respectable battery life. In order to offer a wide perspective of the
subject, different aspects of RF IC design have been taken into considera-
tion.

The application of negative feedback to the design of RX front-ends has
been approached in Chapter 2 on a simulation level. The possibility to
embrace a traditional Gilbert-based mixer in the loop without the need
for radical circuit modifications has been presented. From this starting
point, the concept of dual-loop feedback has been proposed as a viable so-
lution for the very demanding trade-off between input matching, noise and



68 Conclusions

linearity. A first-order analysis has been performed with the aid of sim-
plified BSIM3 models and detailed calculations: the analysis demonstrates
radical linearity improvements, stable performance and reliable noise be-
haviour. A single-loop narrow-band solution has been introduced as a
straight-forward application of the feedback approach: the possibility to
improve noise performances (especially for low-performances cheap tech-
nologies) has been shown, and a reliable (though very simplified) noise
analysis has been sketched and compared with simulations based on the
aforementioned models.

Current-reuse techniques can be successfully applied to ultra low-power
systems in order to shrink power consumption to the lowest possible limit.
A very effective approach has been presented in Chapter 3: the LMV cell
efficiently performs the difficult task of integrating an LNA, a mixer and a
VCO over the same bias current. A simplified analysis of the structure has
been derived, in order to fit the complex trade-offs related to the different
blocks sharing the same components. A detailed description of the current-
mode output stage has been offered, and measurements results have been
summarized, in order to show the remarkable properties of the LMV stage.

In top-performance RF systems the use of integrated inductors is not only
a necessity, but an ultimate bottle-neck.1 As CMOS technology moves
on, we can expect improvements in performance and characterization of
integrated planar inductors, but the devices remain bulky and difficult
to scale, and they present the unpleasant feature of inducing strong RF
currents in the substrate. An alternative solution has been portrayed in
Chapter 4 in the form of a toroidal inductor. The first implementation in
CMOS process has been presented, together with a first-order modelling
approach and measurements. Overall performances show difficulties in
competing with more traditional planar inductors, but the ultimate target
of field-enclosure has been achieved without penalties in terms of area
consumption.

1“From the point of view of RF circuits, the lack of a good inductor is by far the
most conspicuous shortcoming of standard IC processes.” [16]
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Appendix A

Multiplier-based mixers with
passive load

As we have shown in Chapter 2, node vm in Figure 2.1 (the picture is re-
produced in Figure A.1 together with the simplified schematic based on the
full-switched model) presents an amplified unmodulated replica of the RF

R C RC

(a) (b)

vm

t

iRF

R C RC
vm

M1

M2 M3LO+ LO-

IF+IF-

RF

Figure A.1: A down-conversion mixer based on the Gilbert cell: schematic
(a) and full-switched model (b).
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current signal provided by transconductor M1. The fundamental results
concerning the down-converted signal and the node vm are summarized in
equations (2.8)-(2.9), which are reported here for convenience:

vIF = −iRF · mLO · R

1 + sCR
, (A.1)

vm = −iRF
R

2
. (A.2)

The node vm is actively used into a feedback topology: if we connect
it to another node vb in the loop, we must consider the influence of the
impedance Zb at that node. Referring to Figure A.2, the calculations get
a little bit involved, but they can be summarized as follows:

Zh � vh

iin
=

R

(
1

sC +
Zb(R+ 1

sC )
Zb+R+ 1

sC

)
R + 1

sC +
Zb(R+ 1

sC )
Zb+R+ 1

sC

, (A.3)

Zt � vt

iin
=

R
(

R·Zb

Zb+R+ 1
sC

)
R + 1

sC +
Zb(R+ 1

sC )
Zb+R+ 1

sC

, (A.4)

Zm � vm

iin
=

R
Zb(R+ 1

sC )
Zb+R+ 1

sC

R + 1
sC +

Zb(R+ 1
sC )

Zb+R+ 1
sC

. (A.5)

After some manipulation we find out that (A.1) still holds: the output
mixing product is unaffected. We can then calculate the voltage at node
vm:

vm = −iRF · Zm = −iRF
sCRZb

1 + sC(R + 2Zb)
. (A.6)

vh
vm

vt
iin

R R

C C

Zb

Figure A.2: R − C low-pass network with buffer input impedance.



73

Obviously the limit of the previous expression is the same that we found
in (A.2):

lim
Zb→∞

Zm =
R

2
. (A.7)

We can evaluate two different situations:

Zb = Rb ⇒ Zm =
sCRRb

1 + sC(R + 2Rb)
, (A.8)

Zb =
1

sCb
⇒ Zm =

C
Cb

1 + 2C
Cb

· R

1 + sCR
1+ 2C

Cb

. (A.9)

In the first case the transfer function resembles a first-order high-pass filter,
whose cut-off frequency is smaller than ω0 � 1

RC . Since ω0 � ωRF ,1 we
can conclude that the transfer at node vm is basically flat at the frequencies
of interest. This is the most relevant case for the applications presented
in Chapter 2. In the second case (Zb = 1

sCb
) we have a first-order low-

pass filter; the transfer is acceptable as long as the cut-off frequency is
reasonably larger than the RF carrier, which means:

ω1 �
1 + 2C

Cb

CR
� ωRF ⇒ 1 +

2C

Cb
� ωRF CR. (A.10)

Since ωRF CR � 1, we conclude that Cb must be extremely small compared
to C.

In practical implementations, the value of resistance R will be such that
the voltage drop across the resistor will be too high. In order to provide a
more compact biasing solution, we might think about draining DC current
from the tail generator, as in Figure A.3. Solutions (a) and (b) are perfectly
equivalent in principle to the original solution shown in Figure A.1a, and
therefore all results presented in equations (A.1)-(A.2) hold. There are
some differences that can not be seen at a first glance, and solution (b)
should perform better in terms of

switching: the differential pair must switch a smaller amount of current;

conversion gain: the output resistance of the DC current source should
be compared with the switching pair input resistance rather than the
load resistance R.

1ωRF is the RF carrier frequency.
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vm vm

LO+ LO+LO- LO-

iRF iRF

(a) (b)

VBIAS

VBIASVBIAS

Figure A.3: Ideal mixers with active DC current drain.

RF

LO+ LO-

vm
IF+IF-

M1

M2 M3

Figure A.4: A resistive-load mixer with parasitic components.

There is another point, that is more subtle. In Figure A.4 we have indicated
some critical parasitics that can affect the functionality of the stage. From
the point of view of the differential signal iM2 − iM3 (which is going to
be down-converted) parasitic capacitors at nodes IF+ and IF− provide
simply an additional low-pass filtering (at first order); however, the same
capacitors attenuate the common-mode signal iM2 + iM3 and affect the
transfer at node vm directly. Given a certain capacitance Cpar at both
nodes, equation (A.2) becomes

vm = −1
2

R

1 + sRCpar
. (A.11)

All these considerations lead us to prefer the solution in Figure A.3b, since
the influence of parasitics at output nodes should be minimized.



Appendix B

Nullor-based representation
of amplifiers

Transmission parameters provide a very convenient way to represent the
behaviour of 2-port linear circuits. We can refer to Figure B.1 to define
the relationships between relevant signals as follows:(

vin

iin

)
=

(
A B
C D

)
︸ ︷︷ ︸
chain matrix

·
(

vout

iout

)
. (B.1)

Transmission parameters A, B, C and D can be reciprocated to obtain
transfer parameters, somewhat more familiar in electronic design:

iin iout

vin vout
A B

C D

Figure B.1: A 2-port circuit represented by its transmission parameters.
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v=0

i=0

+

+-

-

(a) (b) (c)

Figure B.2: Symbols of a nullator (a), a norator (b) and a nullor (c).

µ � 1
A = vout

vin

∣∣∣
iout=0

: voltage gain,

γ � 1
B = iout

vin

∣∣∣
vout=0

: transadmittance,

ζ � 1
C = vout

iin

∣∣∣
iout=0

: transimpedance,

α � 1
D = iout

iin

∣∣∣
vout=0

: current gain.

An ideal amplifier can be represented by means of two components, a
nullator and a norator [92]:

a nullator (see Figure B.2a) is an ideal 2-terminal element which enforces
both a zero-voltage and a zero-current between its terminals,

a norator (see Figure B.2b) is an ideal 2-terminal element which imposes
no constraints on its branch current and voltage.

The nullor is a combination of a nullator and a norator. Such element is
associated with an all-zeros chain matrix:(

vin

iin

)
=

(
0 0
0 0

)
·
(

vout

iout

)
. (B.2)

In Figure B.2c the common symbol for the nullor is given. An example
of a single-amplifier topology represented with the use of a nullor is given
in Figure B.3 [93]. The nullator imposes the same voltage vin at both its
terminals, but no current flows into them. Therefore the current flowing
into R1 is determined entirely by vin, and the norator determines the
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(a) (b)

−

+vin
vout

vin

vout

R1
R2 R1

R2

vin

i1

+

+-

-

Figure B.3: A conventional operational amplifier used in a non-inverting
feedback topology (a) and its representation based on the nullor (b).

output voltage accordingly. The following equations describe the behaviour
of the circuit and determines familiar relationships:

i1 =
vin

R1
,

vout = vin + i1 · R2 = vin

(
1 +

R2

R1

)
.
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Appendix C

A unified approach to the
analysis of the LMV cell

In Chapter 3 we have performed a simplified analysis of the LMV cell
based on two approaches, leading to equations (3.10) and (3.20); such
equations describe the behaviour of the stage by means of two different
asymptotic scenarios. In the following, we will try to provide a single
model that accounts for both aspects of the problem. We will modify the
approach followed in Section 3.2 in order to accommodate additional lossy
mechanisms that limit the GBWP of the stage for low values of parasitic
capacitance. The starting point is again Figure 3.4 and Figure 3.5. First of
all, we have to examine carefully what happens during transition φ1 −→ φ2

(and similarly φ2 −→ φ1). Referring to Figure C.1, we consider only
the core of the oscillator and we apply a test current iprobe. During the
transition, transistors M3 − M4 work as current generators, and we can
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IF+ IF-

LO+LO-

M3 M4

Ztank

i4

Ztank

i3

iprobe

Figure C.1: Evaluation of resistance at the sources of M3 and M4.

sum up all relevant equations as follows:

i3 = gm3(vLO+ − vIF+) (C.1)
= gm3(−Ztank · i4 − vIF+) (C.2)
= gm3(Ztank · iprobe − vIF+), (C.3)

i4 = gm4(vLO− − vIF−) (C.4)
= gm4(−Ztank · i3 − vIF−) (C.5)
= gm4(−Ztank · iprobe − vIF−), (C.6)

Gd � iprobe

vIF− − vIF+
=

gm3gm4

gm3 + gm4 − 2gm3gm4Ztank
. (C.7)

Capacitor Cd is discharged almost instantaneously, therefore we can ap-
proximate (C.7) as follows:

Gd ≈ gm3gm4

gm3 + gm4

. (C.8)

Assuming that the discharge is taking place in a very short time inter-
val [−∆t, ∆t] around the transition instant, the charge loss can be easily



81

determined:

− Cd
dvIF

dt
= GdvIF (C.9)

⇓
vIF (∆t) = vIF (−∆t)e−

1
Cd

∆t
−∆t

Gd(t)dt; (C.10)

∆Qd = CdvIF (−∆t)e−
1

Cd

∆t
−∆t

Gd(t)dt − CdvIF (−∆t)(C.11)

≈ −Qd(−∆t)
Cd

∫ ∆t

−∆t

Gd(t)dt, (C.12)

We can calculate Gd explicitly by means of equations (53)-(54) in [94]:
they have been derived for a common-source switching pair, but they can
fit this analysis at first order.

gm3 = k0V0

(
− sin ϕ +

√
2 sin2 Φ − sin2 ϕ

)
; (C.13)

gm4 = k0V0

(
sin ϕ +

√
2 sin2 Φ − sin2 ϕ

)
; (C.14)

k0 � 1
2
µn0C

′
ox

W

L
; (C.15)

Φ � arcsin

√
I0

2k0V 2
0

. (C.16)

where ϕ � ω0t, Φ = ω0∆t is the angle corresponding to time interval ∆t,
and V0,I0 are defined as in Section 3.1. By further processing we find:

Gd(ϕ) = k0V0
sin2 Φ − sin2 ϕ√
2 sin2 Φ − sin2 ϕ

, (C.17)∫ ∆t

−∆t

Gd(t)dt =
1
ω0

∫ Φ

−Φ

Gd(ϕ)dϕ

≈ k0V0
Φ2

ω0

≈ I0

2ω0V0
, (C.18)

∆Qd ≈ −Qd(−∆t)
Cd

I0

2ω0V0
, (C.19)

β � I0

2Cdω0V0
=⇒ ∆Qd ≈ −β · Qd(−∆t). (C.20)
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Since we have determined the charge losses during the transition, we can
rewrite (3.14) as follows:

Qd(n + 1) =

redistribution

of the charge

and losses during

the transition︷ ︸︸ ︷
(1 − α)(1 − β)Qd(n)+

sharing of the

input charge︷ ︸︸ ︷
(1 − α)Qin(n) , (C.21)

and procede to determine the total transfer function using the same ap-
proximations as above.

H(z) � Qd(z)
Qin(z)

=
1 − α

z − (1 − α)(1 − β)
, (C.22)

H(s) ≈ 1 − α

1 + sT0
2 − (1 − α)(1 − β)

, (C.23)

vIF

iRF
=

2
ω0Cd

H(s) ≈ 2
ω0Cd

· 1 − α

α + β − αβ
· 1
1 + sT0

2(α+β−αβ)

. (C.24)

We can easily verify that the following limits hold:

β � α =⇒ losses due to Cp are negligible

=⇒ vIF

iRF
≈ 2

π

RIF

1 + sCdRIF
as in (3.10),

α � β =⇒ losses due to Cp dominate

=⇒ vIF

iRF
≈ 2

ω0Cp
· 1
1 + sT0

2α

as in (3.20).

In Figure C.2, numerical results from (C.24) are shown together with sim-
ulation results (simulation parameters are the same as in Table 3.1, and
reproduced in Table C.1 for convenience). It is possible to refine the figures
given by (C.24) by means of numerical analysis: referring to Figure C.3,
we consider Ztank = 0, and we write the differential equations at nodes
IF+ and IF−.

(Cp + Cd)
dvIF−

dt
− Cd

dvIF+

dt
+ gm4vIF− = 0; (C.25)

(Cp + Cd)
dvIF+

dt
− Cd

dvIF−
dt

+ gm3vIF+ = 0. (C.26)
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Figure C.2: Calculation results from (C.24) without and with numerical
correction (continuous and dashed lines respectively) together with sim-
ulation results (“×” markers). The low-frequency gain (on top) and the
-3dB bandwidth (bottom) are shown.
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IF+ IF-

LO+LO-

M3 M4

Ztank

i4

Ztank

i3

Cd CpCp

Figure C.3: Equivalent circuit for the numerical analysis based on differ-
ential equations at nodes IF+ and IF−.

Table C.1: Main parameters for results in Figure C.2.

f0 1.6GHz

I0 1mA

Ltank 5nH

Q@f0 20

Cd 10pF

To solve the system, we use expressions for gm3 − gm4 directly, as given
by (C.13)-(C.14). The results are plotted in Figure C.2 (dashed lines).
Numerical corrections provide good matching, especially for high values of
Cp, but the behaviour in the transition region,1 which is probably going to
be more relevant for practical design, is better grasped by the asymptotic
limits in (3.10) and (3.20).

1Cp < 100fF in the plot.



Appendix D

Layout automation based
on SKILL scripting language

The layout of integrated inductors is a tedious procedure that can be
greatly sped up using automated tools. Cadence R© design environment
offers a very advanced scripting language named SKILL. A parametric cell
can be created using this language: once the cell has been added to the
design library, the layout tool will prompt the user a single mask contain-
ing all customizable parameters, and then it will design the cell according
to the input.
In the case of the toroidal inductor described in Chapter 4, we refer to
Figure D.1a to determine the sequence of drawing steps. Given a certain
number of turns n, internal radius r0, minimum width ws and cross-section
�, before drawing the pattern for the vias we must check that all metal lines
respect the minimum clearance, otherwise the parameter r0 must be ad-
justed. Once the pattern is drawn, we can complete the structure with
metal lines, as shown in Figure D.1b. In the following pages the SKILL
code for all the necessary steps is presented. It’s preferable to separate the
definition of user parameters and the actual design procedure (which in
turn can make use of several other procedures).
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r0 �

vias

bottom metal layer

top metal layer

input
port

(a) (b)

ws

Figure D.1: Top view of the toroid: the pattern for the placement of the
vias (a) and the complete structure (b).

Constants

Pi=3.141596

sq2=1.414213562

minGrid=0.005 ; in micrometers

This procedure fixes points on the grid

procedure(grid(x step)

step=max( minGrid fix(round(step/minGrid))*minGrid )

fix(round(x/step))*step

) ;grid

A procedure to build multilayer metal connections

procedure( rectS( cv w l step x0 y0 layerlist vialist)

let( ( minw, ; minimum dimensions

layer, ; index

nx1, ny1, nx2, ny2,; number of contacts for each axis

wvia1, dist1,; VIAs’ geometry parameters



87

wvia2, dist2,; VIAs’ geometry parameters

border1, border2,; VIAs’ geometry parameters

POenc ; PADOPEN geometry parameters

)

wvia1 = 0.19

dist1 = 0.29

wvia2 = 0.36

dist2 = 0.54

border1= 0.05

border2= 0.09

POenc = 0.7

minw = 0

w = max( minw grid( w step ) )

l = max( minw grid( l step ) )

x0 = grid( x0 step )

y0 = grid( y0 step )

foreach( layer layerlist

if( layer=="alucap"

then

dbCreatePolygon( cv list("alucap" "induct")

list(x0:y0 x0:(y0+w) (x0+l):(y0+w) (x0+l):y0))

else

dbCreatePolygon( cv layer

list(x0:y0 x0:(y0+w) (x0+l):(y0+w) (x0+l):y0))

) ; if( layer=="alucap" )

) ; foreach( layer layerlist )

nx1 = fix( (l-2*border1+dist1)/(wvia1+dist1) )

ny1 = fix( (w-2*border1+dist1)/(wvia1+dist1) )

nx2 = fix( (l-2*border2+dist2)/(wvia2+dist2) )

ny2 = fix( (w-2*border2+dist2)/(wvia2+dist2) )

foreach( layer vialist

if( layer=="M6_M5"

then

leCreateContact( cv layer (x0+grid((0.5*l) step)):(y0+grid((0.5*w)

step)) "R0" wvia2 wvia2 ny2 nx2 (wvia2+dist2) (wvia2+dist2)

"center" "center" )

else if( layer=="padopen"

then

dbCreatePolygon( cv list("padopen" "induct")

list((x0+POenc):(y0+POenc) (x0+POenc):(y0+w-POenc)

(x0+l-POenc):(y0+w-POenc) (x0+l-POenc):(y0+POenc)))

else

leCreateContact( cv layer
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(x0+grid((0.5*l) step)):(y0+grid((0.5*w) step))

"R0" wvia1 wvia1 ny1 nx1 (wvia1+dist1) (wvia1+dist1)

"center" "center" ))

) ; multiple if

) ; foreach( layer vialist )

) ; let

) ; procedure( rectS )

; User interface

pcDefinePCell(

list( ddGetObj( "LV_PCells" ) "rectStack" "layout" )

( (Width float 11.99)

(Length float 30.0)

(Grid float 0.005)

(X0 float 0.0)

(Y0 float 0.0)

(metal1 boolean "TRUE")

(metal2 boolean "TRUE")

(metal3 boolean "FALSE")

(metal4 boolean "FALSE")

(metal5 boolean "FALSE")

(metal6 boolean "FALSE")

(alucap boolean "FALSE")

)

cv=pcCellView

layerlist = list( )

vialist = list( )

minlayer = 8

maxlayer = 0

when( metal1 == t

minlayer = 1

maxlayer = 1)

when( metal2 == t

minlayer = min( minlayer 2 )

maxlayer = max( maxlayer 2 ))

when( metal3 == t

minlayer = min( minlayer 3 )

maxlayer = max( maxlayer 3 ))

when( metal4 == t

minlayer = min( minlayer 4 )

maxlayer = max( maxlayer 4 ))

when( metal5 == t

minlayer = min( minlayer 5 )

maxlayer = max( maxlayer 5 ))

when( metal6 == t
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minlayer = min( minlayer 6 )

maxlayer = max( maxlayer 6 ))

when( alucap == t

minlayer = min( minlayer 7 )

maxlayer = max( maxlayer 7 ))

if( minlayer==1

then

layerlist = cons( "metal1" layerlist)

) ; if( minlayer==1 )

if( minlayer==2

then

layerlist = cons( "metal2" layerlist)

) ; if( minlayer==2 )

if( minlayer==3

then

layerlist = cons( "metal3" layerlist)

) ; if( minlayer==3 )

if( minlayer==4

then

layerlist = cons( "metal4" layerlist)

) ; if( minlayer==4 )

if( minlayer==5

then

layerlist = cons( "metal5" layerlist)

) ; if( minlayer==5 )

if( minlayer==6

then

layerlist = cons( "metal6" layerlist)

) ; if( minlayer==6 )

if( minlayer==7

then

layerlist = cons( "alucap" layerlist)

) ; if( minlayer==7 )

for( i (minlayer+1) maxlayer

if( i==2

then

layerlist = cons( "metal2" layerlist)

vialist = cons( "M2_M1" vialist)

) ; if( i==2 )

if( i==3

then

layerlist = cons( "metal3" layerlist)

vialist = cons( "M3_M2" vialist)

) ; if( i==3 )

if( i==4

then

layerlist = cons( "metal4" layerlist)

vialist = cons( "M4_M3" vialist)

) ; if( i==4 )
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if( i==5

then

layerlist = cons( "metal5" layerlist)

vialist = cons( "M5_M4" vialist)

) ; if( i==5 )

if( i==6

then

layerlist = cons( "metal6" layerlist)

vialist = cons( "M6_M5" vialist)

) ; if( i==6 )

if( i==7

then

layerlist = cons( "alucap" layerlist)

vialist = cons( "padopen" vialist)

) ; if( i==7 )

) ; for( i (minlayer+1) maxlayer )

layerlist = reverse(layerlist)

vialist = reverse(vialist)

rectS( cv Width Length Grid X0 Y0 layerlist vialist)

) ; pcDefinePCell

A procedure to build multilayer metal connections with 45o ro-
tation

procedure( rectS45( cv w l step x0 y0 layerlist vialist)

let( ( minw, ; minimum dimensions

weff, leff ; effective dimensions

layer, ; index

na1, nb1, na2, nb2,; number of contacts for each axis

wvia1, dist1,; VIAs’ geometry parameters

wvia2, dist2,; VIAs’ geometry parameters

border1, border2 ; VIAs’ geometry parameters

POenc ; PADOPEN geometry parameters

)

wvia1 = 0.19

dist1 = 0.29

wvia2 = 0.36

dist2 = 0.54

border1= 0.05

border2= 0.09

POenc = 0.7

POenc = grid( POenc*sq2 step )

minw = 4.4

w = max( minw w )



91

l = max( w l )

x0 = grid( x0 step )

y0 = grid( y0 step )

weff = max( grid( w/sq2 step ) grid( minw/sq2 step ) )

leff = max( grid( l/sq2 step ) grid( minw/sq2 step ) )

foreach( layer layerlist

if( layer=="alucap"

then

dbCreatePolygon( cv list("alucap" "induct") list(x0:y0 (x0-weff):

(y0+weff) (x0+leff-weff):(y0+leff+weff) (x0+leff):(y0+leff)))

else

dbCreatePolygon( cv layer list(x0:y0 (x0-weff):(y0+weff)

(x0+leff-weff):(y0+leff+weff) (x0+leff):(y0+leff)))

) ; if( layer=="alucap" )

) ; foreach( layer layerlist )

na1 = fix( (weff-0.5*wvia1+0.5*dist1-2*border1)/(wvia1

+dist1) )

na2 = fix( (weff-0.5*wvia2+0.5*dist2-2*border2)/(wvia2

+dist2) )

nb1 = fix( (leff-weff)/(wvia1+dist1) )

nb2 = fix( (leff-weff)/(wvia2+dist2) )

foreach( layer vialist

if( layer=="M6_M5"

then

for( i 1 na2

leCreateContact( cv layer (x0+leff-weff):(y0+leff+weff-wvia2

-2*border2-(wvia2+dist2)*(i-1)) "R0" wvia2 wvia2 1 (2*i-1)

(wvia2+dist2) (wvia2+dist2) "center" "center" )

leCreateContact( cv layer x0:(y0+wvia2+2*border2+(wvia2

+dist2)*(i-1)) "R0" wvia2 wvia2 1 (2*i-1) (wvia2+dist2)

(wvia2+dist2) "center" "center" )

) ; for( i 1 na2 )

for( i 1 nb2

leCreateContact( cv layer (x0+leff-weff-(i-1)*(wvia2+dist2)):(y0

+leff-dist2+2*border2-0.5*wvia2-(i-1)*(wvia2+dist2)) "R0" wvia2

wvia2 1 2*na2-1) (wvia2+dist2) (wvia2+dist2) "center" "center" )

) ; for( i 1 nb2 )

else if( layer=="padopen"

then

dbCreatePolygon( cv list("padopen" "induct") list(x0:(y0+POenc)

(x0-weff+POenc):(y0+weff) (x0+leff-weff):(y0+leff+weff-POenc)

(x0+leff-POenc):(y0+leff)))

else

for( i 1 na1

leCreateContact( cv layer (x0+leff-weff):(y0+leff+weff-wvia1

-2*border1-(wvia1+dist1)*(i-1)) "R0" wvia1 wvia1 1 (2*i-1)

(wvia1+dist1) (wvia1+dist1) "center" "center" )

leCreateContact( cv layer x0:(y0+wvia1+2*border1+(wvia1
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+dist1)*(i-1)) "R0" wvia1 wvia1 1 (2*i-1) (wvia1+dist1)

(wvia1+dist1) "center" "center" )

) ; for( i 1 na1 )

for( i 1 nb1

leCreateContact( cv layer (x0+leff-weff-(i-1)*(wvia1+dist1)):(y0

+leff-dist1+2*border1-0.5*wvia1-(i-1)*(wvia1+dist1)) "R0" wvia1

wvia1 1 (2*na1-1) (wvia1+dist1) (wvia1+dist1) "center" "center" )

) ; for( i 1 nb1 )

)

) ; multiple if

) ; foreach( layer vialist )

) ; let

) ; procedure( rectS45 )

; User interface

pcDefinePCell(

list( ddGetObj( "LV_PCells" ) "rectStack45" "layout" )

( (Width float 11.99)

(Length float 30.0)

(Grid float 0.005)

(X0 float 0.0)

(Y0 float 0.0)

(metal1 boolean "TRUE")

(metal2 boolean "TRUE")

(metal3 boolean "FALSE")

(metal4 boolean "FALSE")

(metal5 boolean "FALSE")

(metal6 boolean "FALSE")

(alucap boolean "FALSE")

)

cv=pcCellView

layerlist = list( )

vialist = list( )

minlayer = 8

maxlayer = 0

when( metal1 == t

minlayer = 1

maxlayer = 1)

when( metal2 == t

minlayer = min( minlayer 2 )

maxlayer = max( maxlayer 2 ))

when( metal3 == t

minlayer = min( minlayer 3 )

maxlayer = max( maxlayer 3 ))

when( metal4 == t
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minlayer = min( minlayer 4 )

maxlayer = max( maxlayer 4 ))

when( metal5 == t

minlayer = min( minlayer 5 )

maxlayer = max( maxlayer 5 ))

when( metal6 == t

minlayer = min( minlayer 6 )

maxlayer = max( maxlayer 6 ))

when( alucap == t

minlayer = min( minlayer 7 )

maxlayer = max( maxlayer 7 ))

if( minlayer==1

then

layerlist = cons( "metal1" layerlist)

) ; if( minlayer==1 )

if( minlayer==2

then

layerlist = cons( "metal2" layerlist)

) ; if( minlayer==2 )

if( minlayer==3

then

layerlist = cons( "metal3" layerlist)

) ; if( minlayer==3 )

if( minlayer==4

then

layerlist = cons( "metal4" layerlist)

) ; if( minlayer==4 )

if( minlayer==5

then

layerlist = cons( "metal5" layerlist)

) ; if( minlayer==5 )

if( minlayer==6

then

layerlist = cons( "metal6" layerlist)

) ; if( minlayer==6 )

if( minlayer==7

then

layerlist = cons( "alucap" layerlist)

) ; if( minlayer==7 )

for( i (minlayer+1) maxlayer

if( i==2

then

layerlist = cons( "metal2" layerlist)

vialist = cons( "M2_M1" vialist)

) ; if( i==2 )

if( i==3

then

layerlist = cons( "metal3" layerlist)

vialist = cons( "M3_M2" vialist)
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) ; if( i==3 )

if( i==4

then

layerlist = cons( "metal4" layerlist)

vialist = cons( "M4_M3" vialist)

) ; if( i==4 )

if( i==5

then

layerlist = cons( "metal5" layerlist)

vialist = cons( "M5_M4" vialist)

) ; if( i==5 )

if( i==6

then

layerlist = cons( "metal6" layerlist)

vialist = cons( "M6_M5" vialist)

) ; if( i==6 )

if( i==7

then

layerlist = cons( "alucap" layerlist)

vialist = cons( "padopen" vialist)

) ; if( i==7 )

) ; for( i (minlayer+1) maxlayer )

layerlist = reverse(layerlist)

vialist = reverse(vialist)

rectS45( cv Width Length Grid X0 Y0 layerlist vialist)

) ; pcDefinePCell

Procedures to determine toroid’s dimensions

procedure( dmin( R phi w s l )

let( (k,minDist,dist)

k=0

minDist=2*R

dist=minDist

while( ((R*sin((1+k)*phi)-R*sin(k*phi))>w && (dist>0))

dist=((l+R)*w*cos((k+0.5)*phi)-R*w*cos(k*phi)-2*l*R*sin(0.5*phi)

+(sin(phi)-2*sin(0.5*phi))*R**2-R*w*sin(k*phi)+l*w*sin((0.5

+k)*phi)+R*w*sin((0.5+k)*phi))**2/((R*cos(k*phi)-(l+R)*cos((k

+0.5)*phi))*(R*sin(k*phi)-(l+R)*sin((k+0.5)*phi))*sqrt((2

+R*sin(k*phi)-R*sin((k+1)*phi)+(w-R*cos(k*phi)+R*cos((k

+1)*phi))*((l+R)*sin((k+0.5)*phi)-R*sin(k*phi))/((l+R)*cos((k

+0.5)*phi)-R*cos(k*phi)))**2+(w-R*cos(k*phi)+R*cos((1+k)*phi)

+(R*cos(k*phi)-(l+R)*cos((k+0.5)*phi))*(w+R*sin(k*phi)-R*sin((1
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+k)*phi))/(R*sin(k*phi)-(l+R)*sin((k+0.5)*phi)))**2))

if( ((dist<minDist)&&(dist>0))

minDist=dist

) ; if( (dist<minDist) )

k=k+1

) ; while( ((R*sin((1+k)*phi)-R*sin(k*phi))>w) )

minDist

)

)

procedure( Rmin( w s n step )

let( (phi,R1,dist1,R2,dist2,distm)

phi=2*Pi/n

R1=0.5*(w+s)/sin(0.5*phi)

dist1=dmin( R1 phi w s l )

R2=2*R1

dist2=dmin( R2 phi w s l )

while( (dist2<s)

R2=R2+R1

dist2=dmin( R2 phi w s l )

) ; while( (dist2<s) )

distm=dmin( (0.5*(R1+R2)) phi w s l )

while( ((R2-R1)>2*step)

if( distm>s

then

R2=0.5*(R1+R2)

dist2=distm

else

R1=0.5*(R1+R2)

dist1=distm

) ; if( distm>s )

distm=dmin( (0.5*(R1+R2)) phi w s l )

) ; while( ((R2-R1)>2*step) )

grid( R2 step )

)

)
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Procedures to draw the toroid

procedure( toro( cv n R l w step isInt mlayerlist mvialist )

let( ( i, phi,; cycle indexes

x1, y1, x2, y2,; moving coordinates

leff,; check for internal or external pins

blayer, tlayer ; layers

)

minw = 4.4

maxw = 11.99

mins = 0.6

w = max( minw grid( w 2*step ) )

w = min( maxw w )

l = max( grid( l 2*step ) (w+mins) )

if( isInt

then

leff = l

else

leff = -l

) ; if( isInt )

R = max( grid( R step) Rmin( w mins n step ) )

blayer = list()

tlayer = list()

blayer = cons( "pintext" blayer )

blayer = cons( "metal1" blayer )

tlayer = cons( "pintext" tlayer )

tlayer = cons( "metal6" tlayer )

phi=0

x1=R+0.5*(l-leff)

y1=0

for(i 0 n-1

x2 = grid( ((R+0.5*(l+leff))*cos(phi+Pi/n)) step )

y2 = grid( ((R+0.5*(l+leff))*sin(phi+Pi/n)) step )

if( (y1<y2)

then

if( (x1<x2)

then

dbCreatePolygon(cv list( "metal1" "pintext" ) list( (x1-0.5*w):

(y1-0.5*w) (x1+0.5*w):(y1-0.5*w) (x2+0.5*w):(y2-0.5*w) (x2

+0.5*w):(y2+0.5*w) (x2-0.5*w):(y2+0.5*w) (x1-0.5*w):(y1+0.5*w)))

else

dbCreatePolygon(cv list( "metal1" "pintext" ) list( (x1-0.5*w):

(y1-0.5*w) (x1+0.5*w):(y1-0.5*w) (x1+0.5*w):(y1+0.5*w) (x2

+0.5*w):(y2+0.5*w) (x2-0.5*w):(y2+0.5*w) (x2-0.5*w):(y2-0.5*w)))

)

else

if( (x1<x2)
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then

dbCreatePolygon(cv list( "metal1" "pintext" ) list( (x2-0.5*w):

(y2-0.5*w) (x2+0.5*w):(y2-0.5*w) (x2+0.5*w):(y2+0.5*w) (x1

+0.5*w):(y1+0.5*w) (x1-0.5*w):(y1+0.5*w) (x1-0.5*w):(y1-0.5*w)))

else

dbCreatePolygon(cv list( "metal1" "pintext" ) list( (x2-0.5*w):

(y2-0.5*w) (x2+0.5*w):(y2-0.5*w) (x1+0.5*w):(y1-0.5*w) (x1

+0.5*w):(y1+0.5*w) (x1-0.5*w):(y1+0.5*w) (x2-0.5*w):(y2+0.5*w)))

)

)

rectS( cv w w step (x2-0.5*w) (y2-0.5*w) mlayerlist

mvialist)

phi = phi+2*Pi/n

x1 = grid( ((R+0.5*(l-leff))*cos(phi)) step )

y1 = grid( ((R+0.5*(l-leff))*sin(phi)) step )

if( (y1<y2)

then

if( (x1<x2)

then

dbCreatePolygon( cv list("metal6" "pintext") list( (x1-0.5*w):

(y1-0.5*w) (x1+0.5*w):(y1-0.5*w) (x2+0.5*w):(y2-0.5*w) (x2

+0.5*w):(y2+0.5*w) (x2-0.5*w):(y2+0.5*w) (x1-0.5*w):(y1+0.5*w)))

else

dbCreatePolygon( cv list("metal6" "pintext") list( (x1-0.5*w):

(y1-0.5*w) (x1+0.5*w):(y1-0.5*w) (x1+0.5*w):(y1+0.5*w) (x2

+0.5*w):(y2+0.5*w) (x2-0.5*w):(y2+0.5*w) (x2-0.5*w):(y2-0.5*w)))

)

else

if( (x1<x2)

then

dbCreatePolygon( cv list("metal6" "pintext") list( (x2-0.5*w):

(y2-0.5*w) (x2+0.5*w):(y2-0.5*w) (x2+0.5*w):(y2+0.5*w) (x1

+0.5*w):(y1+0.5*w) (x1-0.5*w):(y1+0.5*w) (x1-0.5*w):(y1-0.5*w)))

else

dbCreatePolygon( cv list("metal6" "pintext") list( (x2-0.5*w):

(y2-0.5*w) (x2+0.5*w):(y2-0.5*w) (x1+0.5*w):(y1-0.5*w) (x1

+0.5*w):(y1+0.5*w) (x1-0.5*w):(y1+0.5*w) (x2-0.5*w):(y2+0.5*w)))

)

)

rectS( cv w w step (x1-0.5*w) (y1-0.5*w) mlayerlist

mvialist)

) ; for(i 0 n-1)

) ; let

) ; toro

; User interface

pcDefinePCell(
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list( ddGetObj( "LV_PCells" ) "toro" "layout" )

( (Width float 4.4)

(Length float 6.4)

(N_coils int 44)

(Radius float 58.84)

(Grid float 0.005)

(Internal boolean "TRUE")

(metal1 boolean "TRUE")

(metal2 boolean "TRUE")

(metal3 boolean "FALSE")

(metal4 boolean "FALSE")

(metal5 boolean "FALSE")

)

cv=pcCellView

blayer

mlayerlist = list( "metal1" "metal2" "metal3" "metal4"

"metal5" )

mvialist = list( "M2_M1" "M3_M2" "M4_M3" "M5_M4" "M6_M5" )

minlayer = 6

maxlayer = 0

when( metal1 == t

minlayer = 1

maxlayer = 1)

when( metal2 == t

minlayer = min( minlayer 2 )

maxlayer = max( maxlayer 2 ))

when( metal3 == t

minlayer = min( minlayer 3 )

maxlayer = max( maxlayer 3 ))

when( metal4 == t

minlayer = min( minlayer 4 )

maxlayer = max( maxlayer 4 ))

when( metal5 == t

minlayer = min( minlayer 5 )

maxlayer = max( maxlayer 5 ))

if( minlayer==1

then

mlayerlist = remd( "metal1" mlayerlist)

) ; if( minlayer==1 )

if( minlayer==2

then

mlayerlist = remd( "metal2" mlayerlist)

) ; if( minlayer==2 )

if( minlayer==3

then

mlayerlist = remd( "metal3" mlayerlist)

) ; if( minlayer==3 )
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if( minlayer==4

then

mlayerlist = remd( "metal4" mlayerlist)

) ; if( minlayer==4 )

if( minlayer==5

then

mlayerlist = remd( "metal5" mlayerlist)

) ; if( minlayer==5 )

for( i (minlayer+1) maxlayer

if( i==2

then

mlayerlist = remd( "metal2" mlayerlist)

mvialist = remd( "M2_M1" mvialist)

) ; if( i==2 )

if( i==3

then

mlayerlist = remd( "metal3" mlayerlist)

mvialist = remd( "M3_M2" mvialist)

) ; if( i==3 )

if( i==4

then

mlayerlist = remd( "metal4" mlayerlist)

mvialist = remd( "M4_M3" mvialist)

) ; if( i==4 )

if( i==5

then

mlayerlist = remd( "metal5" mlayerlist)

mvialist = remd( "M5_M4" mvialist)

) ; if( i==5 )

) ; for( i (minlayer+1) maxlayer )

mlayerlist = reverse(mlayerlist)

mvialist = reverse(mvialist)

toro( cv N_coils Radius Length Width Grid

Internal mlayerlist mvialist)

) ; pcDefinePCell
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Appendix E

Publications

The following papers resulted from the different research projects related
to this study.

Published

• Andreani, P., Wang, X., Vandi, L. and Fard, A., “A Study of Phase
Noise in Colpitts and LC-Tank CMOS Oscillators”, IEEE Journal of
Solid-State Circuits, vol. 40, no. 6, 2005. [94]

• Vandi, L., Andreani, P., Temporiti, E., Sacchi, E., Bietti, I., Ghezzi,
C. and Castello, R., “Toroidal inductors in CMOS processes”, Pro-
ceedings of IEEE 23rd NORCHIP Conference, 2005. [82]

• Liscidini, A., Mazzanti, A., Tonietto, R., Vandi, L, Andreani, P. and
Castello, R., “A 5.4mW GPS CMOS Quadrature Front-End Based on
a Single-Stage LNA-Mixer-VCO”, Proceedings of IEEE International
Solid-State Circuits Conference, 2006. [1]
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Accepted for publication

• Vandi, L., Andreani, P., Temporiti, E., Sacchi, E., Bietti, I., Ghezzi,
C. and Castello, R., “A toroidal inductor integrated in a standard
CMOS process”, Accepted for publication on Springer Analog Inte-
grated Circuits and Signal Processing International Journal. [95]

• Liscidini, A., Mazzanti, A., Tonietto, R., Vandi, L., Andreani, P.
and Castello, R., “Single-Stage Low Power Quadrature RF Receiver
Front-End: The LMV cell”, Accepted for publication on IEEE Jour-
nal of Solid-State Circuits. [66]

Submitted for publication

• Vandi, L., Andreani, P., Tired, T. and Mattisson, S., “A novel ap-
proach to negative feedback in RX front-ends”, Submitted for publi-
cation to IEEE 24th NORCHIP Conference, 2006. [96]
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[63] Sjöland, H., Karimi-Sanjaani, A. and Abidi, A., “A merged CMOS
LNA and mixer for a WCDMA receiver,” IEEE Journal of Solid-State
Circuits, vol. 38, no. 6, pp. 1045–1050, 2003.

[64] Behbahani, F., Firouzkouhi, H., Chokkalingam, R., Delshadpour, S.
et al., “A fully integrated low-IF CMOS GPS radio with on-chip ana-
log image rejection,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 12, pp. 1721–1727, 2002.

[65] van der Tang, J. and Kasperkovitz, D., “A 0.9-2.2 GHz monolithic
quadrature mixer oscillator for direct-conversion satellite receivers,”
IEEE 43rd International Solid-State Circuits Conference, pp. 88–89,
436, 1997.

[66] Liscidini, A., Mazzanti, A., Tonietto, R., Vandi, L. et al., “Single-
Stage Low Power Quadrature RF Receiver Front-End: The LMV
cell,” Accepted for publication on IEEE Journal of Solid-State Cir-
cuits, 2006.

[67] De Cock, W. and Steyaert, M., “A CMOS 10GHz voltage controlled
LC-oscillator with integrated high-Q inductor,” Proceedings of the
27th European Solid-State Circuits Conference, pp. 498–501, 2001.

[68] Lee, C.-Y., Chen, T.-S., Deng, J.-S. and Kao, C.-H., “A simple system-
atic spiral inductor design with perfected Q improvement for CMOS
RFIC application,” IEEE Transactions on Microwave Theory and
Techniques, vol. 53, no. 2, pp. 523–528, 2005.



110 BIBLIOGRAPHY

[69] Lin, T.-Y., Juang, Y.-Z., Wang, H.-Y. and Chiu, C.-F., “A low power
2.2-2.6GHz CMOS VCO with a symmetrical spiral inductor,” Proceed-
ings of the 2003 International Symposium on Circuits and Systems,
vol. 1, pp. I–641, 2003.

[70] Yoon, S.-W., Pinel, S. and Laskar, J., “A CMOS voltage-controlled
oscillator using high-Q on-chip inductor implemented in a wafer-level
package,” Digest of IEEE MTT-S International Microwave Sympo-
sium, p. 4 pp., 2005.

[71] Berny, A., Niknejad, A. and Meyer, R., “A 1.8-GHz LC VCO With
1.3-GHz Tuning Range and Digital Amplitude Calibration,” IEEE
Journal of Solid-State Circuits, vol. 40, no. 4, pp. 909–917, 2005.

[72] DeAstis, G., Cordeau, D., Paillot, J.-M. and Dascalescu, L., “A 5-
GHz Fully Integrated Full PMOS Low-Phase-Noise LC VCO,” IEEE
Journal of Solid-State Circuits, vol. 40, no. 10, pp. 2087–2091, 2005.

[73] Dickson, T., LaCroix, M.-A., Boret, S., Gloria, D. et al., “30-100-GHz
inductors and transformers for millimeter-wave (Bi)CMOS integrated
circuits,” IEEE Transactions on Microwave Theory and Techniques,
vol. 53, no. 1, pp. 123–133, 2005.

[74] Dupuis, O., Sun, X., Carchon, G., Soussan, P. et al., “24 GHz LNA
in 90nm RF-CMOS with high-Q above-IC inductors,” Proceedings of
the 31st European Solid-State Circuits Conference, pp. 89–92, 2005.

[75] Findley, P., Ali Rezvani, G. and Tao, J., “Novel differential inductor
design for high self-resonance frequency,” IEEE International Electron
Devices Meeting, pp. 467–470, 2005.

[76] Gianesello, F., Gloria, D., Raynaud, C., Tinella, C. et al., “Integration
of ultra wide band high pass filter using high performance inductors in
advanced high resistivity SOI CMOS technology,” Topical Meeting on
Silicon Monolithic Integrated Circuits in RF Systems, p. 4 pp., 2006.

[77] Guo, J.-C., “Low-K/Cu CMOS-based SoC technology with 115-GHz
fT , 100-GHz fmax, low noise 80-nm RF CMOS, high-Q MiM capac-
itor, and spiral Cu inductor,” IEEE Transactions on Semiconductor
Manufacturing, vol. 19, no. 3, pp. 331–338, 2006.

[78] Jian, H., Tang, Z., He, J., He, J. et al., “Standard CMOS technology
on-chip inductors with pn junctions substrate isolation,” Asia and
South Pacific Design Automation Conference, vol. 2, p. D/5, 2005.



BIBLIOGRAPHY 111

[79] Linten, D., Sun, X., Carchon, G., Jeamsaksiri, W. et al., “Low-Power
Voltage-Controlled Oscillators in 90-nm CMOS Using High-Quality
Thin-Film Postprocessed Inductors,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 9, pp. 1922–1931, 2005.

[80] Raieszadeh, M., Monajemi, P., Yoon, S.-W., Laskar, J. et al., “High-Q
integrated inductors on trenched silicon islands,” 18th IEEE Interna-
tional Conference on Micro Electro Mechanical Systems, pp. 199–202,
2005.

[81] Tiemeijer, L., Havens, R., de Kort, R., Scholten, A. et al., “Record
RF performance of standard 90 nm CMOS technology,” IEEE Inter-
national Electron Devices Meeting, pp. 441–444, 2005.

[82] Vandi, L., Andreani, P., Temporiti, E., Sacchi, E. et al., “Toroidal
inductors in CMOS processes,” Proceedings of IEEE 23rd NORCHIP
Conference, pp. 293–296, 2005.

[83] Nastos, N. and Papananos, Y., “RF Operation of MOSFETs Under
Integrated Inductors,” IEEE Transactions on Microwave Theory and
Techniques, vol. 54, no. 5, pp. 2106–2117, 2006.

[84] Zhang, F., Chu, C.-F. and Kinget, P., “Voltage-controlled oscillator in
the coil,” IEEE Custom Integrated Circuits Conference, pp. 587–590,
2005.

[85] Liu, W., Suryanarayanan, J., Nath, J., Mohammadi, S. et al.,
“Toroidal Inductors for Radio-Frequency Integrated Circuits,” IEEE
Transactions on Microwave Theory and Techniques, vol. 52, no. 2, pp.
646–654, 2004.

[86] Greenhouse, H., “Design of planar rectangular microelectronic induc-
tors,” IEEE Transactions on Parts, Hybrids and Packaging, vol. PHP-
10, no. 2, pp. 101–109, 1974.

[87] Troedsson, N., Wernehag, J. and Sjöland, H., “Differential measure-
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