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Abstract

Transceivers which form the core of many wireless communications products often
require a low noise voltage-controlled oscillator (VCO) for frequency shifting or synthesis
in RF front-end circuitry. Since many wireless applications are focused on portability,
low power operation is a necessity. Techniques for implementing oscillators are explored
and then evaluated for the purposes of simultaneously realizing low noise and low power
operation. Models for the design of oscillators and the analysis of oscillation stability are
covered, and methods of calculating phase noise are discussed.

These models and theories all point to the need for a high quality, passive, integrated
inductor to meet the system goals. Results from an experimental study of spiral and bond
wire inductors built onto a silicon substrate are presented. The information gleaned from
this study was used in selecting an inductor built from bond wires for use in a VCO for
1.8 GHz applications. Using characterization data, a model for the inductor was con-
structed for circuit simulation purposes.

The design of a differential VCO circuit in a silicon bipolar process is detailed, including
transistor considerations, development of a low voltage topology, and noise matching to
the oscillator gain stage. On-chip varactors are integrated as a vital component of a tun-
able resonator, and a number of interface issues which impact the VCO design are intro-
duced. Circuit simulation results which demonstrate the robustness of the oscillator are
provided. Preliminary measurements on the fabricated VCO circuits gauge the oscillator
noise spectral density to be -118dBc/Hz at a 1MHz offset, drawing just 5 mA from a sup-
ply of only 1.8 V. Oscillation is supported with power consumption levels as small as
3.2mW from a 0.91 V supply, achieving -96dBc/Hz at the same carrier offset.

Thesis Supervisor: Charles G. Sodini
Title: Professor of Electrical Engineering
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I. Introduction

Boosted by the FCC's opening of the air waves to commercial, digital and spread-

spectrum radio-based products, and reinforced by the mantra of recent consumer electron-

ics spending ("Smaller, faster, better, cheaper"), the wireless communications design field

is bustling with activity. Transceivers intended for RF/microwave applications such as

these often call upon a voltage-controlled oscillator (VCO), a circuit which generates a

signal of a frequency dictated by an input control voltage. Popular uses for such a device

are as the tunable element in a frequency shifting stage, or as an integral part of a phase-

locked loop (PLL). A PLL typically forms the basis for frequency synthesis and data

recovery operations, and will be briefly examined later in this chapter. A widespread

effort to perform these tasks more accurately while supporting current market trends has

led to increased research in monolithic VCOs.

Many of the wireless applications are focused on portability, for which low power

operation is a necessity if the product is to be successful. In commercial industries, suc-

cess implies achieving a large customer base. For wireless data link products, having

many users translates into a crowded frequency domain, thus the noise performance of the

RF front-end circuitry cannot be arbitrarily sacrificed in the pursuit of decreased power

and cost. The noise contributions of the elements within an oscillator lead to random fluc-

tuations in the phase of the generated signal, resulting in a noise spectrum at the output.

(Noise also affects the amplitude, but this is of a lesser concern.) When used in a wireless

transmitter, the phase noise of an oscillator becomes a part of the radiated spectrum,

potentially interfering with signals existing in adjacent channels-signals which may be

much weaker in amplitude. For this reason, the amount of noise generated by an oscillator

is often quantified by a measurement of its (phase) noise spectral density at a given offset

from the carrier frequency. The offsets specified are based on system requirements and/or

measurement capability, but are typically 10kHz, 100kHz, or I MHz. However, for com-

parison purposes, the phase noise spectrum may be extrapolated from a single point

assuming a slope of -20dB/decade. The origins of this characteristic are investigated in

Chapter 2.



1.1 Recent Efforts in VCO Circuits

Much of the increased activity in this area has targeted the 902-928MHz ISM

(Industrial-Scientific-Medical) band, wherein several methods of realizing an oscillator

have been explored. An early work demonstrated that tunable, relaxation-based oscilla-

tors implemented in a silicon bipolar technology could reach this frequency range [1], but

noise and power were not concerns in this effort. The arrival of micron and sub-micron

feature size CMOS processes has carried the promise of low power and high integration

levels to this band of operation, leading to the debut of 900MHz CMOS ring oscillators in

1994 [2]-[6]. Having anticipated this trend, several studies were also published over the

same time frame which advanced methods for analysis of timing jitter (phase noise) in

these circuits [7][8]. The best reported phase noise figure for a CMOS inverter ring

voltage-controlled oscillator at 900MHz is -83dBc/Hz at a 100kHz offset, achieved with a

power dissipation of 7.4mW from a 5V supply [5][6].

Despite the simplicity of this implementation, resonant oscillators have garnered

the most attention as the noise levels typically required for wireless data link applications

have been a limiting constraint. The most common approach to integrating a resonator

has been to use passive, planar spiral inductors constructed from the metallization levels

within a process. Using this technique, Duncan, et.al., have developed a 5V oscillator

with quadrature outputs in the 1 GHz range, which consumes about 80mW in a bipolar cir-

cuit to attain a -87dBc/Hz phase noise level at an offset of 100kHz [9]. Ali and Tham also

used spiral inductors with an emitter-coupled pair active element to operate a 3V, 10mW

oscillator at 900MHz which yielded -101 dBc/Hz at 100kHz from the carrier [10].

Realizing that most of the resonator loss occurs in the substrate as RF energy cou-

ples into it from the inductor, several groups have used spiral inductors from beneath

which the silicon has been etched. A back-side etch performed the selective substrate

removal for the 1 GHz oscillator of Basedau and Huang, which was implemented in a 1 gm

CMOS process [11]. A single-ended output with a noise spectral density of -95dBc/Hz

(100kHz offset) was produced with 1.5V supplying 16.5mW. By a different processing

technique-using a top-side gaseous etch to clear cavities beneath the spiral inductors-

Rofougavan, et. al, designed a quadrature oscillator, also with CMOS gain elements (1 gm

NMOS transistors) [12]. Consuming 30mW from a 3V supply, this VCO yielded a noise



spectrum 85dB down from the carrier (1Hz integration bandwidth), at an offset 100kHz

away from a 900MHz center frequency.

A similar path has evolved among the efforts in the multi-GHz range (e.g., 1.8GHz

and 2.4GHz applications). Soyuer and Warnock pushed relaxation oscillators up to 5GHz

in a 0.8gm bipolar process [13], but did not characterize the phase noise performance of

their circuit which dissipated 70mW. In an attempt to obtain better performance while

maintaining a tightly integrated circuit, Aytur and Razavi developed a ring oscillator com-

posed of two differential gain stages with bipolar transistors [14]. Low power levels were

reported (3mW in the VCO from a 3V supply), but the phase noise characteristics were

comparatively poor, with measured spectral densities of -74dBc/Hz and -88dBc/Hz at

spot frequencies I MHz and 4MHz from the carrier, respectively.

Perhaps even more so in this higher frequency range, inductorless designs have

remained a novelty, while spiral inductors in lumped element resonators have proven to be

the primary means of implementation. Perhaps the original work in monolithic, 1.8GHz,

harmonic VCOs was by Nguyen and Meyer [15], an unusual design in that a tuning ele-

ment (e.g., a varactor) was not involved, but rather the control voltage was used to steer

current between two LC resonators with center frequencies split 180MHz apart. The

oscillation was smoothly tunable between the two center frequencies, and achieved

100kHz offset phase noise levels of -88dBc/Hz while dissipating 70mW at 5V. Soyuer,

et. al., have taken spiral inductors to extremes, first with a four-level metal bipolar imple-

mentation of a 2.4GHz oscillator [16], then with a 4GHz VCO using a CMOS gain stage

in a five-level metal process [17]. The bipolar circuit generated a single-ended output

using 50mW from a 3.6V supply, creating -92dBc/Hz of noise 100kHz away from the

2.4GHz carrier. The CMOS VCO used a source-coupled pair in a 3V, 18mW circuit, with

the 4GHz output being developed across a 50Q resistor in one drain terminal, and the res-

onator located in the other. Noise performance was measured to be -106dBc/Hz at an off-

set of 1 MHz.

An alternative approach to on-chip resonators was advanced by Craninckx and

Steyaert, who used pad-to-pad bond wires as inductors [18]. With this technique, a VCO

built in a CMOS process reached 1.8GHz, having a phase noise level -85dBc/Hz just

10kHz from the carrier. Operating with a supply of 3V, this circuit dissipated 24mW. As



a point of comparison, Piazza and Huang describe a 1.6GHz VCO using an external reso-

nator for GPS (Global Positioning System satellite) receivers [19]. While the nature of

the digital spread-spectrum signaling in this application requires only modest noise perfor-

mance, the rationale offered for this strategy was that a savings in power could be realized

with the higher Q, off-chip components. With a single-ended circuit implemented in a

bipolar process, measured noise performance was -95dBc/Hz, 100kHz away from the

oscillation, at an energy consumption rate of 3.2mW from a 3V supply.

1.2 System Overview and Specifications

The VCO being designed as the core of this thesis is an integral part of a PLL-

based frequency synthesizer which, along with a power amplifier to drive the antenna and

a bandpass filter to remove harmonics induced by amplifier non-linearity, forms the high

data rate RF transmitter for a low power, wireless sensors research program at MIT. A

simplified block diagram of the transmit function is shown on the following page in Figure
deo1-1. The VCO produces an output signal ( 0, of frequency o = i , which is divided

down (in terms of frequency), and then compared with a fixed frequency reference (¢REF)

source. The output of the phase detector-fundamentally the result of a logical XOR

operation-is a time periodic signal, the DC component of which is proportional to the

difference between the phase of the reference and the phase of the scaled VCO output.

The lowpass filter then removes the high frequency components (e.g., d(OREF)) from the

phase detector output, leaving the low frequency signal Vc , the control voltage for the

VCO-Výc = KP( REF- -), where K is the gain of the phase comparator in Volts per

radian. The VCO output signal can then be expressed as 0o(t) = K Vc(t)dt, where K, is the

oscillator gain in radians per second per Volt. For further discussion of the basics of

phase-locked loops, the components within them, and the design of frequency synthesiz-

ers from them, the reader is referred to any number of modern texts such as Crawford [20].

When the PLL is in lock, the frequency of the output signal will be a multiple of

the reference frequency, the multiplication factor being the localized time-average value

of the divider. In the proposed high rate transmitter [21], the digital data modulates the RF

signal by dynamically selecting the divide value via the modulus controller. The workings

of this controller and the implementation details of the frequency synthesizer are well



rtance for the VCO, however, are the

linearity of its transfer characteristic

, and the spectral purity of the VCO

ffrequency synthesizer.

gets

set

1.8GHz

- 140 dBc/Hz

- 120dBc/Hz

< 20mW

een penned; it is the RF transmitter

lot the oscillator by itself. Nonethe-

synthesizer, approximate targets for

e 1-1. System requirements call for

continuously from 1 bit/s to 1 Mbit/s,

a rate. The phase noise density at a

B signal-to-noise ratio in the output

)r reference purposes, and is derived

the output power spectrum. These

PHASE

[:

I

POWERIt Tt"r%

(o



numbers are optimistic, being more stringent than current standards such as GSM and

DECT, but have been crafted with the intention of pushing technology. Definitions will

become more precise as the wireless sensor system matures and unfolds so that

performance-optimizing trade-offs can be made between system blocks.

1.3 Scope of the Project

As a piece of MIT's wireless sensor project, a collaborative research effort forged

to further low-power circuit design techniques for wireless applications, the goal of this

thesis is to develop a monolithic VCO which operates around 1.8 GHz, is compatible with

other required electronics, and has power consumption and phase noise characteristics that

are at the leading edge of the art. Efforts entail the design, simulation, and layout of an

integrated circuit in a silicon bipolar process-hereafter referred to as the L-band Mono-

lithic Voltage-Controlled Oscillator (LMVCO) chip-containing the oscillator and other

circuitry needed to fulfill system and testing requirements. A die photo shown on the fol-

lowing page in Figure 1-2 illustrates the work, in which the VCO has been identified along

with input circuitry, a buffer/frequency divider (divide by 2), 50Q output driver for a bal-

anced 900MHz signal, and the inductors used in the oscillator. The buffer/divider circuit

drives a pair of coplanar waveguide probe pads from which the differential 1.8 GHz signal

can be sensed. Also included on the finished silicon are probable test cells with the capac-

itors, varactors, and transistors singled out from the VCO. (The inductors are handled on

other die sites.) Four LMVCO chip versions evolved over the course of this project to

explore new varactor devices and tuning mechanisms; these are explained in Chapter 4.

Eventually, a single chip implementation of the transmitter will be sought, but in

order to expedite development during the initial phases of the project, research has been

focused on smaller units. The remainder of the phase-locked loop which controls the

VCO has been constructed in a 0.6gm CMOS technology, in which handling a signal tran-

sitioning at 1.8 GHz has proven to be difficult [21]. To overcome this limitation, the first

stage of the prescaler is accomplished on the LMVCO chip (the divide by 2 circuit). This

effectively places the RF output of the frequency synthesizer at the on-chip ground-signal-

ground RF probe pads, while the feedback chain of the PLL is completed via the 900MHz

signal produced by the bipolar frequency divider stage. This reduced speed signal is then



driven off the LMVCO chip by the 50U output amplifier, onto a microstrip trace feeding

the CMOS transmitter IC that houses the rest of the prescaler, phase/frequency detector,

and lowpass filter. The loop is then closed by communication in the reverse direction of

the baseband data stream, serving as the control input to the VCO.

Input
Stage

VCo I

|

I

rFnI rf-i

I II • I IrL|M|>"'5I . I

1.8GHz
RF output L

via GSG pads
(2 sides)

Varactor
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VCo

Bond Wire

Bond Wire

r

CB
I Transistor

from
VCoL.

Inductor

Inductor

1 r ---

5.67pF
I I poly-nplg

Capacitor
from VCO

.J L -J

3.15 pF
I poly-nplg

Capacitor
from VCO

I..--

Figure 1-2. Photograph of LMVCO chip.
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1.4 The Analog Devices RF25 (ADRF) Silicon Bipolar Process

Achieving the wireless sensor project goals of small size and low power operation

points to the need to realize a system with high levels of integration. Although microwave

integrated circuits have been the nearly exclusive province of GaAs technologies over the

previous decade, continual improvements in silicon wafer processing have pushed the per-

formance envelope of silicon-based devices to the point where they are now a feasible

alternative for many applications in the low GHz range. With increasing commercialism

bringing cost, size, and power conscious market opportunities into these frequency bands,

silicon technologies are rapidly gaining a foothold. Whenever these issues are present,

silicon inevitably becomes the choice provided circuit and system performance require-

ments can be met.

The power dissipated in RF circuitry is generally of the static variety, either in the

DC drive levels needed to support device and circuit operation at the required frequencies,

or in converting to RF energy. This is the case with most microwave oscillators, typified

by those presented in Section 1.1; thus there is no inherent power savings to choosing one

transistor type over the other (CMOS or bipolar). For VCOs then, the decision will prima-

rily be based upon the needs to integrate other forms of circuitry (e.g., power amplifiers,

digital signal processing), although bipolar transistors in current processes generally yield

higher operating frequencies for a given bias level. Restated in terms more directly rele-

vant to the MIT wireless sensors project, this suggests that BJTs should allow for a lower

power consumption in meeting system requirements. Similar conclusions can be drawn

regarding noise; compared with CMOS, bipolar devices generally have both lower noise

figures at the frequencies of interest, and also reduced levels of surface and recombination

effects which give rise to flicker noise.

With these factors to consider, Analog Devices' RF25 (ADRF) technology is a

good choice for this project. The cornerstone of this process is a double-polysilicon, self-

aligned, NPN transistor suitable for 5 V operation with a peak fT of 25 GHz, reachable with

a current density of 0.3mA/gm 2. To reduce base resistance-a major contributor to noise

figure-p+ base polysilicon is used to make contact to a heavily-doped extrinsic base

region in the single-crystal silicon that is deeper than the intrinsic base width. This extrin-

sic diffusion pocket surrounds the active device area to minimize base (link) resistance.



Yet another limiting device factor in microwave circuit design is the collector-to-substrate

capacitance of the transistor, the presence of which degrades high frequency performance.

Forming the collectors in a lightly doped epitaxial layer (10O-cm, p-type) on top of an

even more lightly doped p-type wafer (20L-cm) helps to minimize this capacitance, as

does generous spacing between the collector structure and the p-isolation regions which

encircle the devices.

Conventional lateral PNP transistors are offered in ADRF, which use the NPN

base handle for collector and emitter contact, while the NPN collector region, n+ buried

layer, and n+ collector tie (n+ plug) serve as the PNP base terminal. The resulting device

works well enough to obtain peak values for fT and the gVA product of 70MHz and 1000,

respectively. To complete the active device arsenal, NMOS transistors with 0.7 gm effec-

tive channel lengths are also available. An unsilicided, p+ layer is used for the gate mate-

rial, resulting in higher than typical gate resistances and threshold voltages, but the

MOSFET is well suited for RF switching duty.

The same p+ layer used for the n-channel gates is also used in several passive

devices. The capacitors within the ADRF stable use this layer as the top plate over 230 A
of oxide, grown on a bottom plate made from the n+ collector plug implant. A capaci-

tance per unit area of 1.5fF/gm 2 is yielded by this MOS structure, with a ratio of 15:1

between this value and the bottom plate parasitic. Two p+ polysilicon resistors are also

supported. To realize lower resistances, the upper plate of the capacitor provides 150Q/U

with a temperature coefficient of 300 ppmfoc). A compensation implant is available to

increase the resistance to 800Q/Li, but with wider process and temperature variation

(-800ppm(oC)). Further process information and characterization data have been docu-

mented in an article published by Analog Devices [22].

1.5 Preliminary Measured Results

The LMVCO chips have been designed and fabricated in this process. As of this

writing, wafers have been received, and some preliminary measurements have been con-

ducted. Diced VCOs are placed in open-lid RF packages, with non-critical DC signals

wire bonded to package pins; remaining signals are probed on chip. Cascade Air Copla-

narTM microwave probes are used to pick up the 1.8GHz signal. Designed to work with a



supply of 1.8V, 5mA (including a bias stage), the VCO has proven functional at this 9mW

level, achieving a measured noise density of -118 dBc/Hz at a 1 MHz offset. The remain-

der of the SSB phase noise spectrum is shown in Figure 1-3. This measurement was taken

open loop with an HP8563E spectrum analyzer equipped with the phase noise utility,

which has a noise floor of about -133dBm. The noise floor is reached by the VCO spec-

trum at an offset of 3MHz from its -10dBm carrier. Glitching in the measurement at

100kHz was later traced to a piece of laboratory equipment that was located adjacent to

the spectrum analyzer, and is not inherent in the LMVCO chip. The continuity of the

trend to either side of the 100kHz offset also supports this assertion. Finally, the close-in

characteristic is a result of some modulation occurring in the open loop VCO. Closed

loop measurements may be taken to exorcise this source of error from the data.
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Figure 1-3. Measured phase noise spectrum of the VCO at 1.8V, 9mW.

While this performance is no small accomplishment, the series of LMVCO chips

was designed as a low power exploration vehicle, so it is natural to inquire as to the extent



to which consumption may be reduced. Lowering the supply to 1.5 V demonstrated no

appreciable decline in performance, although the noise spectrum began to rise for values

smaller than this. Similarly, degradations in oscillation amplitude and noise performance

were observed for reductions in bias current. With either a 1.5V or 1.8V supply, oper-

ation was sustained with 3.1 mA of VCO current, but with phase noise readings hovering

around -100dBc/Hz, I MHz away from the carrier. Oscillation is supported with power

levels as low as 3.2mW with a supply of 0.9V, yielding -96dBc/Hz at the same 1IMHz

offset.

Figure 1-4. Measured tuning range of the VCO at 1.8V, 9mW.

The tuning range data for the VCO is graphed above in Figure 1-4. As used in the

frequency synthesizer, the input signal to the oscillator will be bounded by the 3 V supply

of the operational amplifier which drives it, but here the oscillation frequency has been

gauged out to 5 V to demonstrate the capability of ADRF to handle larger potentials. At

the middle of the input control voltage range, the VCO gain is 12MHz/V. This is some-

what below the nominal value of 20MHz/V intended for this VCO design, a fact which is

likely correlated with the low center frequency observed in preliminary parts. As previ-

ously mentioned, this oscillator is designed to operate at 1.8GHz, but instead has been

seen to tune only from 1.646GHz to 1.696GHz. While this variation is within process tol-

erances (as demonstrated in Chapter 4), the device test structures on LMVCO chip silicon

have not yet been probed, so it remains unclear whether the lower oscillation frequency is
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due to something systematic in the design, or merely owed to capacitance values toward

the upper end of their statistical ranges. Further laboratory evaluation will be conducted

to determine the source of this error, and to better characterize the low power operation of

the oscillator. Although not a priority for the first turn of silicon, tuning mechanisms to

allow for correction of process variations will be considered for future revisions of the

VCO.

1.6 Simulation and Design Tools

The primary aid for the circuit design work in this project has been ADICE (Ana-

log Devices Integrated Circuit Emulator). SPICE-like linear and transient analyses are

supported with an extended Gummel-Poon model of bipolar transistors. Enhancements for

simulating thermal, weak avalanche, quasi-saturation, and Early voltage bias dependence

effects have been implemented, and the models have been expanded for more accurate

handling of parasitic elements in the epitaxial collector region. Modeling data have been

encoded into scalable "super-models" written for ADICE, which calculate model parame-

ters for custom layout devices. Using this approach, the ADICE netlister enters a unique

subcircuit call for each element in the schematic (captured with Cadence's Composer),

which then access parameterized .SUBCKT definitions in ADICE libraries. These defini-

tions include a network of devices to account for parasitic effects in the NPN transistors

and passive circuit elements.

While this helps to ensure accurate circuit simulation, it is often not the quickest,

nor most theoretically conducive, design tool. Circuit dependencies and optimization

methodologies have been developed and explored with linear circuit models using the

general-purpose MATLAB® and Maple® mathematics programs. Specific examples in

this work include the analysis of an optimum noise match to the gain stage in the oscilla-

tor, and the effects of changes in the positive feedback structure upon the negative resis-

tance element; both of these techniques are examined in Chapter 4.

1.7 Preview of the Thesis

Chapter 4, the last in this document, details the circuit design of the LMVCO

chip. The impact of system considerations on the design of the VCO are discussed, from



which the choices of circuit devices and topology are unfolded. A linear noise matching

analysis is presented, along with the simulation design data used to pen the circuit param-

eters. The tunable resonator is tackled next, including versions with experimental varactor

structures. This chapter concludes with extensive simulation results, along with a brief

treatise on frequency drift.

The theoretical foundation for this design work is built in Chapter 2. Oscillator

configurations are pondered, and the criteria for stable oscillation are presented for the

harmonic class of oscillators (i.e. those using a resonant element). An overview of resona-

tor circuit models is provided as a prelude to a discussion of the existing theories of oscil-

lator noise. This serves to illustrate the importance of high quality passive components, of

which on-chip inductors have generally been a key performance barrier. An empirical

look at methods of improving integrated inductors is the topic of Chapter 3.

Although each of the remaining three chapters covers a vital part of the oscillator

design-from the theoretical, to the pragmatic, and finally the circuits and simulations

themselves-each is constructed to stand on its own. Cross-references are provided

where useful, however, an attempt was made to carry along sufficient introductory and

explanatory material so the reader may delve into any aspect of the work without a lot of

backtracking. Throughout this thesis, each unit is internally summarized, and reference

lists are provided at the end of each chapter. Hopefully, this approach will make the infor-

mation contained within to be more easily accessible.
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II. Oscillator Theory

A fundamental element of most RF transceiver architectures is a voltage-

controlled oscillator (VCO), an element which generally consumes a significant portion of

the overall power budget in low power applications. In addition, the performance of the

VCO, measured in terms of its output noise spectrum, is a determining factor in several

key limitations and capabilities of modem wireless data transmission systems. Although

they are used in many applications, oscillators-particularly those used in communica-

tions circuits-often lie hidden behind a symbol in a block diagram, emblazoned in an

aura of mystique. Due to their non-linear nature, oscillators tend to defy the normal meth-

ods of circuit analysis, leaving in their wake almost as many models and design tech-

niques as there are circuit topologies. The diversity which has resulted should aid the

designer; just as each oscillator configuration works better in some applications than oth-

ers, certain models fit some circuits better than others. Choosing among these possibilities

constitutes a large portion of the "art" of oscillator design.

2.1 Oscillator Configurations and Considerations

At the broadest level, oscillators can be thought of as existing within two classes:

those based upon the controlled relaxation of an energy storage device, and those regu-

lated by the frequency response of a resonant element. The ring oscillator, a special type

of relaxation oscillator using only parasitic storage elements, deserves notice unto itself

due to the unique application domains and design methodologies which apply to it. Some

forms of each of these three configurations may be integrated with a variety of processes,

devices, and techniques, providing a well-rounded arsenal to the circuit designer.

2.1.1 Ring Oscillators

A ring oscillator is constructed from a string of inverting stages, with the output of

the chain tied back around to the input in an astable fashion (i.e. an odd number of inver-

sions exists within the string). Enough delay is built into the chain such that-in the

absence of severe loading-each node completely transitions between low and high states.



Since the only energy storage devices within the ring are the parasitic elements of the tran-

sistors themselves (plus the wiring), this circuit freely runs at a speed limited only by the

gate delay of a process and the number of stages needed to achieve the required delay in

the chain of at least 180'. This astable mode of operation generally calls for at least three

stages in the ring (more can be used to operate at slower frequencies), but two inverting

stages have been used [1] with a differential circuit topology.

CMOS ring oscillators, in particular, find common use alongside digital circuitry

in moderate frequency applications. However, despite recent processing advances, the

desired 1.8GHz band remains a difficult target. This is a result of the nature of device

scaling, which calls for a reduction in supply voltage to accompany the scaling of channel

lengths to maintain reliability. As a result, overall gate transition times have not been

scaling at the same rate. Even if this frequency were reachable, recent research has indi-

cated that the CMOS ring oscillator approach would not meet the phase noise and power

targets for this application. Although it has been shown that timing jitter should be

reduced with shorter channel lengths (due to a reduction in gain) [2], work with CMOS

ring oscillators at 900MHz [3] indicates that the phase noise remains high compared with

other configurations. Another key limitation of the CMOS inverter approach is that power

consumption is proportional to frequency; thus it is not clear that this technique can yield

low power, high frequency oscillators.

2.1.2 Relaxation Oscillators

Instead of relying on node parasitics to slew circuit switching, an energy storage

element is explicitly added to the circuit in other forms of relaxation oscillators. The

charging and discharging of this device, typically a capacitor, by controlled currents gen-

erates a well-determined voltage characteristic which may be used as a timing base.

These multivibrator circuits are easily integrated, and find widespread use in low to mod-

erate frequency applications such as the classic 555 IC timer. Recent efforts have

extended emitter-coupled multivibrators into the GHz range [4][5], but good noise perfor-

mance and the fast slewing rates that are required come only at the expense of high power

consumption. Another potential downside of using relaxation oscillators for wireless pur-

poses is that they generate waveforms with high harmonic content, a side effect which

may necessitate increased filtering in both transmit and receive signal paths.



2.1.3 Resonant Oscillators

Circuits which produce a sinusoidal (or nearly sinusoidal) excitation as determined

by a narrowband filter-a resonator-are termed resonant, or harmonic, oscillators. The

resonant device may consist of a crystal to provide for oscillation in the low RF range,

lumped inductive and capacitive components for operation up to a few GHz, or distributed

elements and cavities for use in the microwave and millimeter wave bands. Regardless of

the frequency range, the chosen resonator needs to be coupled to an active element which

supplies energy to support the oscillations. Many devices and topologies are possible, of

which some of the more commonly used transistor based configurations have been given

names such as Hartley, Pierce, Clapp, and Colpitts. These names refer to distinctions in

the implementation of positive feedback around the gain stage and how the resonator is

coupled to the resulting arrangement; however they remain quite general terms which do

not imply the use of any particular circuit.

As an integral part of the frequency synthesizer for a wireless transmitter, a VCO

is required which simultaneously operates at low power levels and minimizes the output

spectrum due to phase noise while being monolithically compatible with other required

electronics. Resonator based oscillator architectures offer the best performance at micro-

wave frequencies along with minimal active element requirements; the challenge, how-

ever, remains finding a monolithic resonator of sufficient quality. This issue is addressed

in part by the subsequent chapter dealing with monolithic inductors.

2.1.4 Tuning the Frequency of Oscillation

To this point, the discussion has not made mention of the need to vary the fre-

quency of oscillation. This operation is straightforward with relaxation (including ring)

oscillators, where the most popular method is to modulate the current which charges/dis-

charges the storage element. A voltage-to-current converter can be prepended to achieve

a voltage-controlled oscillator. Some relaxation architectures rely upon comparators or

Schmitt triggers to drive the toggling between states; these circuits allow an additional

possibility of changing the frequency by manipulating the (voltage) trip point at which the

transition takes place.

The situation is somewhat more involved for resonant oscillators wherein a change

in frequency calls for alteration of the value of a passive component. Instruments exist



which allow this to be done mechanically, but active, electronic control is required for

many applications. Either a tunable inductor or a variable capacitor is needed, and the lat-

ter option-termed a varactor-is the most oft-used. This device exploits the voltage-

dependence of a p-n junction capacitance under reverse bias. To the first-order, the

voltage-capacitance characteristic goes as C o V-
m, where m _1/3 for linearly graded

devices, but approaches m = 1/2 for abrupt junction doping profiles. This varactor rela-

tionship generally results in a narrow tuning range and a highly non-linear frequency ver-

sus voltage gain curve. Active inductors have been tried in an attempt to improve upon

these limitations [6][7], but often have frequency constraints and have consumed signifi-

cant power. As a result, most modem narrowband systems make use of a varactor (e.g.,

[8][9][10]), wherein efforts are then placed into designing circuits and specifications

around the v m characteristic.

2.2 Oscillation Criteria

At higher RF and microwave frequencies-where only the simplest oscillator

topologies predominate-the negative resistance port model is generally the least cumber-

some to use, and carries the additional benefit of being easily compatible with s-parameter

device characterization. For these reasons, emphasis here is upon the negative resistance

viewpoint, although feedback models may be equivalently applied to much of the dis-

cussion. Feedback methods are developed in many texts, such as Clarke and Hess [ 11 ].

Figure 2-1. Basic components of a negative resistance oscillator.

A two-port model of an oscillator is shown in the diagram above, and contains

three basic components: a frequency-selective device (resonator), an active element which



creates poles in the right-half of the s-plane (or, equivalently, a negative resistance), and

some kind of loading or termination. In the example of Figure 2-1, the negative resistance

element is constructed by placing positive feedback around a gain stage, such that the

impedance looking into one of the ports has a negative real part at the frequencies of inter-

est. To this port, the resonator is connected, which largely determines the frequency of

oscillation. Termination of the other port must be chosen to ensure the existence of the

negative resistance region. The output may be taken from either port, since it may be

shown [12] that if one port is oscillating, so too is the other. Loading the input (negative

resistance) port effectively lowers the quality factor of the resonator, and can also lead to

frequency pulling. Placing the load at the output (termination) port may instigate the need

for a matching network, and may make guaranteeing oscillation difficult if the output

power or loading varies.

Figure 2-2. One-port negative resistance model of an oscillator.

One-port negative resistance elements may also be used as shown in Figure 2-2 (in

this example, the diode could be a Gunn diode or an IMPATT diode-refer to Sze [13] or

Carr [14] for these and other options). The placement of the load should match the config-

uration of the resonator and the negative resistance element, an important detail which

will be discussed further. By folding the termination of a two-port device into the active

element, two-port oscillators may be collapsed down to this simplified model. Here, the

admittance looking into the active device is denoted Ya (s), and that in the opposite

direction is labeled Yr (s).



2.2.1 Negative Resistance Device Configurations

The above discussion, and figures which accompany it, used admittances-Ya (s)

and Y,(s)-to characterize the circuit. This selection is not arbitrary. In the handling of

this topic, many references-probably originating with Kurokawa [15]-have been made

to distinctions between "voltage-controlled negative resistance" elements (VCNRs) and

those which are "current-controlled" (ICNRs). Unfortunately, little clarification has gen-

erally accompanied these references, which are most likely derived from DC i-V

characteristics. A VCNR would describe a device in which the current through it was a

single-valued function of the voltage across it. The situation is reversed for ICNRs; an

indicative plot of each is shown in Figure 2-3. These gauges, however, are of little merit

when the active device exhibits no negative resistance at DC. Nor do these definitions

help to convey the importance of the distinctions.

Input voltage -

ICjR _

Input current -

Figure 2-3. DC i-V characteristics with regions of negative resistance.

A more coherent approach may be embarked upon by considering a fundamental

assumption of resonant oscillators-that it is non-linearities (i.e. limiting) on the part of

the active element which set the amplitude of the oscillation, an occurrence without which

the oscillation would grow without bound. The significance is held by the manner in

which the amplitude of the signal is limited-whether the negative resistance element

clamps the current levels or the voltage levels of the signals impressed upon it. Therein

lies the assumption made by Kurokawa [15] in his landmark treatise on negative-

resistance oscillators: that either the voltage across the active element is "near-sinusoidal"



(i.e. the current is clamped while the voltage swings freely-a VCNR), or else the current

through the device is unhindered (ICNR), and the voltage is clamped instead. From each

of these assumptions are drawn parallel sets of oscillation criteria, which are presented in

the section which follows.

At this point, however, the designer may be left flagging, still without a solid

means by which to decipher between these configurations, and therefore unable to discern

which oscillation criteria are to be fulfilled. In some circuits, the distinction may be

readily apparent, such as with an emitter-coupled pair with positive feedback (e.g., see Ali

and Tham [8]), wherein the current is limited to that supplied by the tail source. When the

feedback is DC (the positive input and output are hard-wired to form a one-port negative

resistance element), the i-V curve which results is the VCNR shown previously in

Figure 2-3. Even in such circuits, however, objective proof should be sought. One good

methodology for achieving numerical verification has been suggested by Niehenke [16].

A signal source of the desired oscillation frequency is placed to drive the negative resis-

tance port of the active element, and then both the impedance and admittance of the device

are charted as a function of increasing signal amplitude. A situation where the magnitude

of the real part of the impedance (IRI) at this frequency is seen to decrease monotonically

with amplitude indicates that the voltage is being limited. This case is consistent with the

ICNR definition. Reciprocally, a monotonic decrease in the magnitude of the conductance

is consistent with a VCNR. For the emitter-coupled pair element discussed earlier, the

impedance and admittance as a function of signal power were calculated with Libra and

are plotted in Figure 2-4. As can be seen, this circuit is characterized as having a negative

conductance which decreases with signal power, while the value of the negative resistance

increases over the same range.

Additional cautionary notes should be appended, however, since if the magnitude

of the reactance (of the active device) is large, both |RI and IGI can decrease. It may be

shown that given a constant (or nearly constant) value of x, |RI and IGI are directly propor-

tional (i.e. both increase or both decrease) for the condition |RI < •Xl . The key here is

monotonicity; the significance of this, as well as the VCNR/ICNR distinction, will

become more translucent in the next section.
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Figure 2-4. ECP negative resistance characteristic with increasing signal power.

2.2.2 Criteria for Oscillation

Provided that the harmonic content is low in the voltage across the active element,

Kurokawa [15] demonstrated that in the condition of steady-state oscillation, the complex

conjugate poles are on the j0-axis at the frequency where the imaginary parts of Ya (s) and

Yr (s) sum to zero. Mathematically, the condition of stable oscillation applicable to a

voltage-controlled negative resistance may be stated as:

9I { YUa (%) } + 91 { Yr (j0 ) } = 0

3 { Y a(j 0o) } + 3 { Yr (j0o0 )} = 0,

which then may be solved for the frequency. (For simplicity, the amplitude dependence of

the active element has been dropped.) To ensure that the proper oscillations build from

initial conditions, it is necessary that the poles originate in the right-half of the s-plane so

that the circuit is unstable about the initial operating point. Including this requirement,

and recasting the equations in terms of conductance and susceptance yields:

Ga (00) + Gr (W0 o) < 0

Ba (00) + Br (00) = 0 .

Kurokawa also illustrated that once the desired condition of steady-state oscil-

lation is reached, the circuit must then be stable about the resulting operating point. Thus,

200
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perturbations injected into the oscillator at this point must decay with time. Assuming

that the frequency dependence of Ya (s) is negligible over the narrow band of interest, the

oscillation will be stable provided the following statement holds:

a G (A)I )0  Br) (0)) + aBa(A) )3Gr (O) < 0
aA A = Ao 0 = (0o A = Ao o = (o

where A and o represent the amplitude and frequency of the oscillation, of which A0 and

o are the respective steady-state values. Since Ga is negative, it is important to note that

the above expression involves the partial derivative of its magnitude. Implied in this

equation is that slope of Br must be positive, since it is the degradation of |Gal in VCNR-

based resonant oscillator circuits that is responsible for limiting the amplitude of the sig-

nal. Hence the importance of monotonicity in Ga (A): without this trait, oscillator stability

cannot be guaranteed. The stability criterion means that when a voltage-controlled nega-

tive resistance active element has been used (as assumed in the discussion to this point), a

parallel resonance must be chosen to reliably produce oscillations. Although this will be

seen more clearly in the next section, an intuitive argument may be made for this case by

noting that the primary variable about a parallel resonator is the voltage across it (as

opposed to the current through each individual circuit element within it), thus a voltage-

controlled negative resistance must be used with it.

If a current-controlled active element (ICNR) is used instead, one then needs to

consider impedances, resistances, and reactances in place of their respective reciprocals.

The valid set of criteria for steady-state oscillation with this type of circuit can be obtained

by taking the dual of each of the previous relationships. In this case, the constraint that

falls out of the stability consideration is that the current-controlled negative resistance ele-

ment must be mated to a series resonance, for which the reactance has a positive slope

with increasing frequency.

Words of caution are appended to this body of theory by Nguyen [17], who real-

ized that some higher order effects could trip up the designer. Specifically, the presence of

additional poles and zeros in the transfer function (often from parasitic elements) can

make the basic steady-state oscillation criteria appear to be met from impedance or admit-

tance plots, when in fact the circuit is stable. Another potential pitfall occurs when the



oscillation equations are satisfied at more than one frequency. This results in simulta-

neous oscillation at each of these frequencies, generating a signal with multiple spectral

components. These possibilities can be addressed by simply adhering to good, basic cir-

cuit design practice. The designer should always investigate the operation of the circuit

over a broad sweep of frequency and bias points to ensure desired operation. A plot of the

impedance at the resonator port over frequency will indicate multi-oscillations if more

than one zero-crossing of the phase lies within the negative resistance band (the frequency

range over which the active element produces a negative resistance). Nguyen further rec-

ommends use of Nyquist or root locus plots (with bias current as the "gain"); in the latter

case, the designer should verify that one set (and only one set) of complex conjugate poles

are in the right-half of the s-plane, and that they remain comfortably there over a range of

bias conditions. Transient (time-domain) simulations are also a valuable tool, one which

usually provides clear indications of the existence of either circuit stability or multi-

oscillation.

Once the circuit is known to oscillate, attention turns toward estimating the ampli-

tude of the signal which is produced. Again, time-domain simulations provide a good

indication, the accuracy of which is limited only by that of the large-signal device models.

An iterative frequency-domain approach may also be used. The oscillation amplitude sta-

bilizes where the energy supplied by the active element balances that dissipated in the res-

onator; for a voltage-controlled negative resistance, this occurs when the magnitude of the

negative conductance equals the conductance of the parallel resonator to which it is

joined. When a current-controlled device is used, oscillation builds until the magnitude of

the negative resistance has fallen to the point where it is equaled by the parasitic resistance

of the series resonator.

2.3 Resonator Circuit Models

Regardless of how the resonator used in conjunction with the negative resistance

element is physically implemented, lumped inductor-capacitor (LC) circuit models are

widely used to model their behavior. With the proper choice of component values, LC cir-

cuits are a valid method of modeling a wide variety of second-order systems. Loss is

modeled by the addition of a resistor, and is often quantified in terms of the quality factor



(Q) of the second-order system. In such systems of the bandpass variety, Q is also equal

to the center frequency of the filter's response divided by the half-power bandwidth of it.

For a series RLC circuit, the quality factor expressed in terms of the circuit parameters is

Q = Z0 /Rs, where z0 is the characteristic impedance of the LC pair (zo = 1-7c). With a

parallel configuration, the reciprocal applies: Q = Rp/Zo. For convenience in working with

resonator circuits, the frequency response of a representative example (f0=1GHz, Q=5)

has been plotted in Figure 2-6 on the following page. The magnitude and phase, along

with the real and imaginary components, of the impedance of a parallel RLC circuit

appear in the left-hand column, with the associated graphs for admittance accompanying

on the right. The series resonator is simply the dual of this case, for which the impedance

plots are those in the right column, along with admittance on the left. Here it can clearly

observed (for oscillator stability purposes) that it is the susceptance of parallel resonator

and the reactance of a series resonator which have positive slopes with frequency.

Often, the loss associated with an inductor and a capacitor is known, and it is use-

ful to determine the quality factor of the resonator constructed from them. If the loss in

each of the reactive components is modeled by a series resistance, the equivalent parallel

resistance may be shown to be Rp = ZO/ (R + Rc), as indicated in the diagram below. The

equivalency of the circuits holds for both frequency response (f0 , Q) and for thermal noise

generated by the resistive components. Alternatively, and more generally, the quality fac-

tor of the resonator may be expressed in terms of the Q of each component:

1 _ 1 1
O QLOC

Figure 2-5. Parallel resonator equivalent circuits using simple modeling of loss.

Figure 2-5. Parallel resonator equivalent circuits using simple modeling of loss.
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2.4 Oscillator Noise Theory

As suggested by the discussion of resonator circuit models, even a strict adherence

to the theory presented thus far will not yield an oscillator which provides an ideal impulse

in the frequency spectrum. This spectrum of finite width results from noise in the oscilla-

tor circuit, and is shaped in conjunction with the resonator and circuit non-linearities.

Oscillator noise is generally considered as being comprised of two components. The first

of these is the spectrum resulting from time-varying changes in the amplitude of the oscil-

lation, and is termed amplitude, or AM, noise. The latter piece of the spectrum is owed to

random perturbations in the phase of the oscillatory signal, and has become labeled phase

noise (or FM noise).

For wireless transmitter applications (particularly in a crowded frequency space),

it is imperative to investigate the origins of the noise spectrum and its relationships to the

circuit variables. Leeson [18] performed some of the original work in oscillator noise the-

ory with a plausibility argument to explain the characteristics of the spectrum resulting

from phase noise in a feedback oscillator. A diagram of the single-sideband oscillator

spectrum is shown below in Figure 2-7, where the power spectral density relative to car-

rier power is plotted versus offset from the carrier frequency.

Figure 2-7. Leeson's oscillator phase noise model.

Leeson argued that for frequencies outside of the resonator corner frequency

(fo/ (2Q)), the resonator is effectively out of the circuit, leaving only the thermal (Johnson)

noise power of the active gain stage, folded around the carrier (contributing a factor of

dBc/Hz

2kT F
Po

iog~xi
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two), and made worse by the noise factor (F) of the active gain element. This sets the

noise floor of the spectrum, and is shown relative to the power in the carrier. For fre-

quency offsets inside of the fo/ (2Q) corner, random fluctuations in phase at the input of the

gain stage-resulting from voltage and current noise-are translated into frequency devia-

tions by the phase-to-frequency transfer characteristic of the resonator (e.g., refer to

Figure 2-6). Leeson reasoned that since the resonator is a second-order filter, the noise

spectrum should correspondingly have a second-order roll-off. Finally, nearby the carrier,

the oscillator will exhibit upconversion of flicker noise from the active elements used to

implement the circuit, with the point of transition to the -30dB/decade slope being the

device 1/f noise corner.

More than a decade later, Sauvage [19] demonstrated this view to be true quite

generally, as did Lindenmeier [20] several years later, who then also verified that the

effects on the oscillator spectrum due to amplitude noise were small compared with that

resulting from phase noise. Using a generalized polynomial function to describe the non-

linear gain element, Lindenmeier derived the power spectral density due to noise for the

band characterized by a second-order roll-off (flicker noise and the thermal noise floor

were not explicitly considered). Separating the components arising from amplitude and

phase variations, and expressing them in terms of circuit design parameters, Lindenmeier

achieved:

I( k T F ' 4•2

SAM(Af) = 10log PkTF) + 42Q /f 2 '

FM po2Q2 ( (Af/) IfSFM(A) llog [(kTF)( 1 ((]

which are in dBc/Hz (power in a 1 Hz bandwidth in decibels relative to the carrier power).

Epsilon (E) is a ratio of the relative change in oscillation amplitude over a given change in

loading, and is generally on the order of unity. For large offsets from the carrier frequency

(i.e. large Af), the contributions from both noise components are equal. However, inside

of the resonator's corner frequency, the spectrum due to amplitude variation levels off

while that resulting from phase noise continues its second-order slope. Since this same



corner frequency also marks the entrance of the noise floor into the picture, the oscillator's

phase noise dominates for all frequency offsets of interest.

Through this work, it is seen that the quality factor of the resonator is a big deter-

mining factor, since the phase noise spectrum is reduced by 02. Power, however, also

plays a significant role, entering the picture both through the noise figure of the oscillator

gain stage, which is dependent upon the bias of the active devices, and also through the

output power in the carrier (Po ) and its association to the DC power consumed in the VCO

circuit. This relationship sets up a design trade-off between phase noise and power con-

sumption, about which size of the active device(s) is the fulcrum. Placement of the

"fulcrum" is a fundamental circuit design issue, and is discussed further in Chapter IV.

2.4.1 Oscillator Noise Matching

Optimization of the transistor geometry and bias to minimize noise figure is

exactly the procedure which is followed for designing low noise amplifiers (LNAs) used

in RF/microwave applications. With LNAs, the designer typically exercises one addi-

tional degree of freedom: the source impedance. A matching network is frequently used

to transform the impedance presented to the LNA (e.g., 50Q, real) to that which mini-

mizes the noise figure of the active device(s) (i.e. F0o). Lindenmeier [20] realized that

something akin to this can be carried out with oscillators.

An oscillator requires poles in the right-half of the s-plane (a negative resistance).

These poles are usually created by placing positive feedback around an amplifier stage,

such as demonstrated earlier in Figure 2-1. In these circuits, the feedback network carries

some fraction of the output signal back around to the input, an action which is often mod-

eled in circuit theory by a transformer. Within this representation, the source impedance

presented to the amplifier is the output impedance of the oscillator gain stage divided by

the square of the transformer turns ratio. By modifying the feedback (i.e. turns) ratio, a

measure of impedance matching can be achieved. The ability to minimize phase noise in

this fashion is consistent with the concepts of noise matching, and is a valuable tool for

improving oscillator performance.



2.4.2 Other Phase Noise Analysis Methods

In his generally well accepted work, Lindenmeier modeled a transistor as a non-

linear transconductance element, teamed it with a resonator, and derived a phase noise

model dependent upon quality factor and noise figure-two linear circuit parameters.

Recent thoughts that this first-order treatment may be optimistic, coupled with a desire to

incorporate additional circuit elements and effects into the calculation, have led to a

renewed push for methods of phase noise analysis and simulation. Once an accurate com-

putational tool has been identified, numerical oscillator circuit optimization may be

performed.

Some success has been reported using Kirtner's approach to calculating phase

noise [21] [22], but this method is not easy to implement, and is not readily available to the

circuit designer. New commercial tools such as Compact Software's Microwave Harmon-

ica have been imbued with phase noise analysis capability [23], but as of yet have not

found widespread usage in published work. Another option is to use a time-domain simu-

lator to perform a transient noise analysis, which is a traditional SPICE-like transient anal-

ysis in which current noise sources are appended in parallel with each noisy circuit

element. Each "noise" source consists of a number of sinusoidal current sources with ran-

dom amplitudes, phases, and frequencies. One commercially available product, Eldo,

offers a feature to automate this analysis. Following this with a DFT makes for an inter-

esting possibility, although the CPU load is necessarily heavy to obtain the required

numerical accuracy from the transient simulator engine.

The discussion in this section has focused upon harmonic oscillators. Theory of

noise in relaxation-based oscillators uses a different analytical tact, based on time domain

jitter rather than frequency domain noise and shaping. For work in this area, the reader is

referred to the oft-mentioned Abidi paper [2], or to two more recent efforts [24][25].
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III. Monolithic Inductors

Inductors, the "forgotten" elements in much of conventional integrated circuit

design, find wide application in circuits designed to work at the upper RF and microwave

frequency ranges. Impedance matching to the external world to maximize power transfer

and to minimize distributed effects cannot, in general, be accomplished with resistances

and capacitances alone. Inductances are also valuable in constructing frequency-selective

filters, isolating DC supplies from RF signal energy, tuning amplifiers for narrowband or

low noise applications, and promoting stability in gain stages. For signals approaching

(and in) the microwave portion of the spectrum, usable values of inductors fall below

10nH-values which may be achieved monolithically. Inductance is only one aspect,

however; although recent research efforts have yielded some improvements [1][2], the

capabilities afforded by current semiconductor technology are not adequate for all

needs. Whether a monolithic solution is feasible depends on each usage.

3.1 System Considerations for the Inductors

Earlier chapters have expressed that the need for low power and good phase noise

in an oscillator translates into a high quality (high Q) resonator. Waveguide (e.g., micro-

strip) resonant elements find popular application at higher microwave frequencies, but are

too unwieldy at the desired 1.8 GHz to be efficiently used on chip. Acoustic resonators are

a possibility, but entail difficult IC manufacturing issues which need to be addressed; thus

LC tanks remain a more viable option.

Semiconductor processing techniques lend themselves well to manufacturing good

monolithic capacitors. Quality factors above 30 are not uncommon, and values as high as

80 have been reported with standard interconnect technology [1]. Most of the loss in inte-

grated, lumped-element resonators thus accrues due to the on-chip inductors which have

only been available (in typical silicon processes) with Q's approaching 5 [3][4]. Several

efforts have tried to remedy this situation by using active, inductance-simulating circuits

[5]-[8], but generally have resulted in high power consumption. For low power applica-



tions, passive inductors integrable onto silicon substrates are preferable. Along with these

criteria, structures with inductances in the 1 to 10nH range, increased quality factors, and

self-resonant frequencies of at least 4 to 5 GHz are needed for L-band circuits.

3.2 Monolithic Inductor Test Wafer

To help achieve the desired inductor and circuit performance, a set of monolithic

structures were designed and fabricated in MTL. P-type silicon wafers, taken from the 14

to 24Q-cm bin, were chosen for the starting material as being representative of a typical,

high-speed, bipolar or BiCMOS process. A top-level metal was simulated with a depo-

sition of 1 gm thick AlSi metallization onto 2.15 gm of field oxide, and then patterning the

metal with a plasma etch. For timeliness of design and processing, only one mask was

used, a plot of which is shown in Figure 3-1 on the following page.

The spiral inductors on this test wafer were drawn with 3, 4, and 5 turns, and in

both square and octagonal shapes. The width and spacing of the metal lines composing

these structures were varied in terms of their ratio in such a way that the total spiral area

was kept nearly constant for a given number of turns (i.e. the metal pitch remained the

same). Three width-to-spacing ratios were constructed; the base line consisted of 15 tm

wide conductors and 15gm of space between them, while "thick" utilized a 20g m/10gm

ratio, and "thin" was the opposite-10 gm/20 gm. Since only one metal level was avail-

able, a bond wire was used to jumper the center point of the spiral out to a co-planar

waveguide (microwave) probe pad in a one-port configuration. Although the presence of

this jumper does change the measurements, the wire was characterized individually and its

effects correspondingly backed out of the spiral inductor data.

In addition to the spirals, bond wire inductors were also built in one-port and two-

port configurations. These rely upon the parasitic elements of wire, which are dominated

by an inductive component for IC-sized bond wires at moderate microwave frequencies

and down through RF. For manufacturing consistency, it is desirable to have the wires

which form the inductors jump from one bond pad to another on the same integrated cir-

cuit die, as opposed to bonding from a die to the lead frame. Since the value of the induc-

tance in the wire is primarily a function of the horizontal distance between bond pads,

good tolerances can be achieved with the pad-to-pad bonds [9].
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Figure 3-1. Metal mask pattern for monolithic inductor test wafer.

The two-port bond wire inductors consisted of a single wire bonded between pads

set apart by a distance which was varied between 0.5mm and 3mm and encased by co-

planar waveguide (CPW) probe pads. The one-port structures were built from two paral-

lel bond wires as shown in Figure 3-2. One wire is bonded from a signal pad out to a
"shorting bar" of metal, and the other runs back from this bar to the ground pad of the

CPW probe. Both gold and aluminum bond wires of 1 mil (25.4 pm) diameter were tried,

along with both ball and wedge bonds. This latter type of bond offers a significantly

smaller contact patch, but results in a portion of the wire at either end being relatively near

the lossy substrate.



Figure 3-2. Photo of one-port bond wire inductors (1.25mm and 2mm).

3.3 Monolithic Inductor Wafer Test Methodology

As mentioned several times previously, each of the inductor structures were linked

to co-planar waveguide probe pads to allow for accurate high frequency, on-wafer charac-

terization. Cascade Microtech's K-band (up to 40GHz) WPH-series probes were used

along with semi-flex cable to connect to a Hewlett Packard 8510 C network analyzer, and

the setup was calibrated using the standard open/short/50K2 load/thru-line methodology.

Scattering matrix parameters were then measured and logged for the inductors, from

which the desired information could be extracted. Although linear elements are being

characterized, the source was set at a power level of OdBm (1 mW)-representative of sig-

nal levels in the VCO-to prevent second-order effects from skewing measurements away

from actual conditions of usage.

For the one-port inductors, slI maps directly to an impedance (a conversion per-

formed by the HP8510) which can be easily calculated or read from a Smith chart. The

situation for the two-port bond wires is only slightly more involved, wherein slI repre-

sents the impedance of the inductor in series with a 500 resistance (the load resistor). On

a Smith chart, the plot of sll versus frequency is the same as for the one-port, except that it

is referenced to the 502 circle instead of the unit (0Q) circle. The transmission parameter



data (S21 =S12 in the case of passive elements) is also meaningful in this context as the fre-

quency response of the inductor when used in a matched circuit. This information is use-

ful for filter design, and also aids the distillation of physical effects from the experimental

results.

The measured s-parameters can be directly input into some circuit simulators (e.g.,

Libra) to reproduce the operation of the inductor, or a lumped element model may be fit to

the data to achieve the same functionality in SPICE engines. Important figures of merit

can also be extracted from the measurements to compare and evaluate the structures, with

the most important numbers in this application being inductance, quality factor, and self-

resonant frequency. The value of the inductance provided by a structure can be calculated

from the imaginary part of its impedance for each frequency point. Similarly, the quality

factor (Q), defined as the ratio of energy stored in an element to energy dissipated by it, is

equal to the magnitude of the imaginary part of the element's impedance divided by the

real part. It is important to note that for these inductor structures, in general, Im {ZL} # OL,

as parasitic capacitances begin to roll off this value in the frequency range of interest. At

the frequency where the reactance of these capacitors equals that of the inductance, the

impedance is entirely real. This is the frequency of self-resonance, the point at which the

structure stops behaving as an inductor.

3.4 Inductor Characterization Results

After fabrication was completed, four samples of each inductor were bonded with

wire so that an expedient survey of the structures could be conducted. Following a com-

parison of the parameters and frequencies of interest, a few of the more promising induc-

tors were chosen for more detailed characterization. The initial data also allowed some

conclusions regarding bond wire material, wire diameter, and bond type, which were use-

ful in framing the "fine resolution" experiment.

A summary of the survey findings is depicted on the following pages for both the

spirals (Figure 3-3) and the bond wire inductors (Figure 3-4). The effects of the jumper

wire used to access the inside of the spiral were estimated from two-port bond wire mea-

surements and then backed out of the data presented in Figure 3-3. This graph has been

divided into sections by the number of turns in the spiral: the inductance (L) and quality



factor (Q) of the 3-turn, 4-turn, and 5-turn structures are plotted from left to right. The

key along the horizontal axis of the plot indicates that a given point corresponds either to

an octagonal shape or to a square layout with the metal line width as shown. Both of the

octagons were drawn with 20gm metal width and 10gm spacing as described earlier in

Section 3.2 (i.e. the "thick" line width and spacing).

Figure 3-3. Survey of MTL spiral inductors at 1.8GHz.

It is interesting to note that for a square spiral, the inductance is fairly constant for

a given number of turns and metal pitch, but the quality factor is improved as the metal

width to spacing ratio is increased. This is consistent with the findings of S. Chaki, et. al.

[2], and can result in a significant improvement for smaller-valued inductors. Another

useful detail borne out in the above graphs is that the octagonal structure exhibited an

improved Q when compared to its square brethren of the same number of turns. The

inductance was also diminished (by about 15%), but the increase in Q (20% to 30%) over-

shadowed this drop. In general, the more circular the structure, the greater the quality fac-

tor will be for a given inductance, as resistive corners are alleviated and finally eliminated

as a circle is approached. This fact-that a significant amount of the series resistance in a
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spiral occurs in the corners-is also the motivation behind the design guideline to leave

open the middle area of the spirals: tight turns introduce many corners without adding

much inductance. This latter result stems from the nature of the inductance, which arises

due to mutual coupling between parallel lines of some length. If the length is short, so too

is the value of the inductor.
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Figure 3-4. Survey of MTL bond wire inductors at 1.8 GHz.

The inductance and the quality factor for the bond wire inductors are plotted above

against the length of the bond wires used, with one-port structures comprised of two

lengths of wire, and two-port inductors made of one. The data suggest a very nearly linear

relationship between inductance and length, with no indication of material dependence at

1.8GHz. Since the value of the two-port inductor nearly equals that of the one-port con-

structed with the same lengths of wire, one may infer that mutual coupling exists between

the parallel wires which has a deleterious effect upon inductance. Additional measure-

ments and calculations could be carried out to isolate the self-inductance terms from the

mutual coupling, but attaining this distinction was not a goal of the experiment.

Although difficulties in achieving consistent bonds with gold wire on the AlSi

metallization resulted in some measurement scatter, it remains evident that gold wire did

not provide a higher Q than did aluminum. This suggests that the primary loss mechanism

in the bond wire inductors is capacitive coupling into the substrate, an assertion which is

further supported by comparison of measured data to values computed by FastHenry.

(FastHenry is an electromagnetic simulation tool developed at MIT which extracts induc-
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tance and resistance parameters from arbitrary 3-D shapes, but does not account for

capacitance.) Simulations using FastHenry predict quality factors of around 30 for the

bond wire inductors at 1.8 GHz, which is optimistic by more than a factor of two. The val-

ues of series inductance extracted by the simulations were also significantly higher than

the measured reactances would indicate, again pointing to capacitive loading as rolling off

this number.

All of the bond wire inductors performed very similarly with one exception: the

two-port structures exhibited a much lower Q-numbers low enough, in fact, to be achiev-

able by the spiral elements which were characterized. The lower values can be expected

since, with the one-port configuration, one terminal of the bond wire network is placed at

an AC ground, a move which shorts a parasitic-laden terminal of the device. Even so, the

two-port inductors, along with the rest of the bond wire structures, achieved self-resonant

frequencies (fSR) above 20GHz (where the frequency sweep ended) until the longest wire

lengths were reached. The longer wires made observable that fSR for the gold one-ports

was marginally lower than that for the aluminum, which brings up the last distinction

between these inductors. This reduction in fSR is not so much attributable to the element

constituting the wires, but rather to the way in which the wires were attached to the metal.

Both ends of each aluminum wire were attached via wedge bonds, while one bond for

each of the gold wires was a ball bond (the equipment at MTL was incapable of termin-

ating wires in ball bonds at both ends). Thus the results seem to indicate that the smaller

contact area of the wedge overcomes any disadvantages which may accrue due to the non-

perpendicular fashion in which this bond attaches the wire to the die.

The metal comprising the spiral inductors is both more resistive and closer to the

lossy silicon substrate than that for the bond wires. These factors conspire to restrict the

spiral devices to functioning at much lower frequencies, as is depicted in Figure 3-5 on the

subsequent page. Coming somewhat as a surprise, fsR for the spirals seems to be more

closely linked to the total area occupied by the spiral, rather than the total area of metalli-

zation within it. For a square-shaped device of a given number of turns, fsR remained con-

stant, independent of the width to spacing ratio. As with Q, the octagonal structures

exhibited a significant increase in fSR over their square counterparts with the same number

of turns.
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Self-resonant frequency is a common metric for inductors, analogous in many

ways to the unity current gain frequency (fT) of an active device. A large quality factor is

generally desirable with an inductor, but the value of Q goes to zero at fsR. Similar to the

way in which transistors need to be used in conventional IC design well away from f, an

inductor should not be used at frequencies approaching fsR. To be sure, such a use will

result in a very low Q. Perhaps more importantly, however, is that near fsR, higher-order

parasitic effects which are not accurately modeled may predominate, potentially resulting

in localized pockets of capacitive behavior (i.e. where d(Im {z}) <0) and an unpredictable

phase response.

3.4.1 Detailed Data on Bond Wire Inductors

The survey of the monolithic inductor structures revealed several important find-

ings: the bond wire inductors-particularly the one-port devices---outperformed the spi-

rals, gold wires offered no discernible advantage, and the wedge-bonded aluminum wires

provided the most repeatable results. In addition, the initial data set allowed for a cali-

OCT
3-T



bration of the bond wire lengths that are required to achieve the inductor values desired for

the VCO circuitry. Although the data indicate that smaller-valued inductors yield higher

quality factors, a balance needs to be struck for a resonator since capacitors also tend to

perform poorly and consume significant die area as they become large. For the VCO

application, inductances in the vicinity of 2nH were looked at with this trade-off in mind.

Based upon the survey results, one-port inductors with aluminum bond wires were chosen

in the lengths of 1.25mm, 1.5mm, 2mm, and 2.5mm for more detailed characterization.

Ten additional structures in each of these four configurations were bonded and measured;

the results at 1.8GHz are presented below in Figure 3-6 (inductance) and Figure 3-7 (Q).

Figure 3-6. Inductance of MTL one-port bond wire inductors at 1.8GHz.

As before, the inductances of the one-port bond wire structures closely fit a linear

model, lending further support to the premise that the inductance originates primarily

from the horizontal lengths of wire. The data fit the line:

L = 0.13 + 1.04 (length),

where the length is given in mm and the inductance is in nH. These values are consistent

with the work of J. Craninckx and M. Steyaert [9], in which numbers of approximately

1 nH per mm were achieved for similar devices.
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Figure 3-7. Quality factor of MTL one-port bond wire inductors at 1.8GHz.

Slightly increased scatter about a linear approximation was prevalent in the quality

factor data, but the average value at each length of wire was still within one standard devi-

ation of the norm. The interpolation model here is:

Q = 14.7 - 1.02 (length),

with length in mm. Although one needs to exercise caution when attributing physical sig-

nificance to a statistical fit, the low value of the y-intercept-the "theoretical" Q with

zero-length bond wires-seems to support the notion that a large portion of the loss in this

structure is occurring at the bonding sites.

Inductance and quality factor have been addressed, but one issue that remains is

that of repeatability. Some doubt has been raised regarding bond wire inductors [10], but

this has largely concerned bonds from the silicon die to the lead frame. In this study of

inductance elements constructed with a manual bonding machine, the 1.5mm, 2mm, and

2.5mm wires yielded 3a tolerances on the inductance of ±12% (the variation in the shorter

1.25mm wires was slightly greater). This is comparable to the absolute accuracy achiev-

able for monolithic capacitors, and these numbers could improve with automated equip-

ment adapted for this operation. Since bond wire inductors are added following the
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conclusion of fabrication, there may exist an additional possibility: gauging the capaci-

tance in the resonator at wafer probe. This could allow a measure of course trimmability

in the oscillator center frequency by alteration of the nominal bond length (i.e. the layout

of a chip could allow for multiple bond sites).

3.4.2 Lumped Element Model of S-parameter Data

Although the linear regression analyses of the previous section could be utilized to

interpolate results for any length of wire (and could even form the basis of a scalable

model), the most accurate "model" is the measured data itself. The 2mm structure was

selected for use in the VCO circuit due to its proximity to the desired inductance value.

The s-parameter data for each sample of this length were inspected for outliers and then

averaged at each frequency point. In order to reproduce these measured s-parameters in

SPICE simulations, a circuit model was developed which contained an inductor, some

series resistance, capacitive coupling elements both along the wire and to the substrate,

plus some resistive losses within the substrate. This circuit was connected as a one-port

network, and then the HSPICE optimizer was set upon it.

A least square error optimization drove the fringing capacitance (between the par-

allel bond wires in this case) term to zero. This is not entirely surprising since the wires

are separated by a fair distance (125 gm). A "T" model for the bond wire was then tried,

but its center leg was similarly optimized away by the HSPICE algorithms. Left behind

was the frequently used circuit model depicted on the following page in Figure 3-8, where

all of the parasitic capacitance is lumped in with the bond pads at either end of the wire.

This model fits the data well, as shown by the comparison of the modeled to measured s-

parameters in Figure 3-9. Although some small, higher frequency excursions-which

were consistently observed for the inductors-are not handled well by the model, its

validity remains strong within the range of interest.

Even though there were no intentions of creating a broadly scalable device repre-

sentation, nor desires of being able to extrapolate from it, the resulting circuit does seem to

embody a good deal of physical intuition. The value of the series resistance fit to the data

is comparable to that extracted by FastHenry calculations at 1.8GHz (where the skin

effect is significant for bond wires). The capacitors to substrate are about what one would

expect for top-level metal only bond pads, and the substrate resistance is on par with that



witnessed for capacitive structures in more detailed EM simulations as well as in device

characterization data pertaining to substrate ties.
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Figure 3-8. Lumped element model of the 2mm one-port bond wire inductor.
Figure 3-8. Lumped element model of the 2mm one-port bond wire inductor.

Figure 3-9. Comparison of SPICE model to s-parameter data.
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3.5 Other Possibilities

A number of additional thoughts may come to mind regarding the improvement of

monolithic inductor structures such as those employing bond wires. A high resistivity

substrate reduces the effects of coupling capacitances, thereby increasing the quality fac-

tor of inductors built upon it. However, this tact is incompatible with production silicon

wafer processes because it requires expensive float-zone crystal wafers. Thicker dielec-

trics place the inductive elements further above the substrate, reducing the value of the

metal to substrate capacitance and thereby increasing Q. Again, this benefit is provided to

any metal structure built upon the deeper insulator, but the designer is limited in this

regard by the available process.

Thicker metal helps the spiral inductors [1], but moving to larger diameters will

not likely improve the bond wire elements because the skin depth (about 1 gm in alumi-

num at 2GHz) is a small fraction of even the narrowest wires. Although, in this study,

gold did not appear to provide any advantages, this may be a consequence of the fact that

the bonds were not as good as those achieved with aluminum. In any event, for the bond

wire inductors, the potential for improvement due to a more conductive medium is tem-

pered by the issue of skin depth, which is inversely proportional to the square root of con-

ductivity (8 1/o v ). Hence, in moving to gold wire from aluminum, the reduction in the

series resistance term will be at most 10%.

Another strategy to improve resonator quality factors is to contain the energy in

non-lossy dielectrics. Using a lower metal level to shield an inductor structure from the

silicon substrate can improve Q, but unless the dielectric is very thick, the inductance is

reduced to values too low to be worthwhile. So while this rules out the use of ground

planes for spiral inductors built with standard interconnect technology, the possibility

remains for the bond wire devices. (Experimental data indicate that the inductance

accrues mostly to the horizontal length of wire between bonds, while much of the loss

occurs at the pads.) The test wafer designed for this experiment did not have the required

second level of metallization, but an inductor structure with a ground plane beneath it has

been implemented on LMVCO chip silicon. The effect of the ground plane may then be

evaluated based on the performance of this inductor compared to a control device without

the lower level of metal.
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IV. 1.8GHz (L-band) Monolithic VCO Design

It has often been said that the best way to get a functional oscillator circuit is by

trying to design an amplifier. While it may be true that embedding high gain stages in a

medium replete with parasitic reactances opens the door to uninvited oscillations, increas-

ingly accurate modeling and simulation, along with appropriate design practices, have

generally allowed the intended purpose to carry the day. Similarly, with VCOs, careful

attention to design guidelines and simulation of parasitic elements and their effects on

phase and feedback goes a long way toward minimizing uncertainty in the final product.

The theoretical underpinnings of oscillator design were discussed in Chapter 2, including

the important concepts of start-up, stability, and noise performance. Being able to effec-

tively deal with these issues releases the designer from the constraints of existing circuits,

allowing for creative exploration of new solutions to meet new challenges, while miti-

gating the risks of trying something different.

4.1 System Considerations for the VCO

Previous chapters have provided the background of an ultra-low power wireless

sensor with a high performance 1.8 GHz transmitter. In the proposed architecture, the data

to be transmitted modulates the frequency synthesizer, within which the VCO produces

the RF spectrum to be output to the antenna. Since the oscillator's phase noise becomes a

part of the transmitted spectrum, a low noise design is critical to system operation. How-

ever, for the system to be useful, it must survive on a limited supply of battery power;

hence minimization of its consumption is also an important goal. To meet these criteria,

and in keeping with overall system size targets, it was argued in Chapter 2 that a fully

monolithic, silicon-based, harmonic oscillator is the desired approach.

One of the primary challenges to designing high-frequency circuits in a silicon

substrate is its (relatively) high conductivity (for a dielectric). The first problem this poses

is that silicon makes a poor dielectric in which to store or propagate electromagnetic

fields. The loss that occurs in the substrate makes achieving high Q inductors and resona-

tor structures a formidable challenge-an issue covered in Chapter 3. Another difficulty



with silicon is that it offers limited isolation between circuits, particularly a problem in

highly integrated systems. Thinning the wafers helps, as does liberal use of substrate ties

in the layout (to shunt substrate noise to a low impedance ground or supply), including

grounding of the back side of the die when possible. Adding deep trench isolation around

devices is another beneficial step, but is not available in all processes. From a circuit

design standpoint, utilization of fully differential topologies to reduce the effects of com-

mon-mode noise-which couples into signal paths from the substrate-should be strongly

considered wherever feasible.

In addition to striving for the noise and power targets set forth in the introductory

chapter, the VCO transfer function and interfaces must be designed in conjunction with

the transmitter. The critical parameters of an oscillator transfer's characteristic are gain,

linearity, and tuning range. VCO gain, typically labeled K,, relates the change in the fre-

quency of the output signal for a given change in the input control voltage. Linearity, in

this context, refers to the degree to which the gain remains constant over the tuning range.

This range of output frequencies that can be produced by the VCO is usually limited by

the extents of the signals which may be applied to the tuning element (along with the gain

achievable by this element).

As used in the synthesizer of the wireless sensor, the input signal to the VCO will

be the modulation information for the data to be transmitted, data which may be at rates up

to 1 Mbit/s. At the minimum, the VCO tuning range must cover the bandwidth required

for this data rate, given the type of data coding and form of keying employed. In practice,

the range must also be broad enough to center the oscillator in the desired frequency band

regardless of processing variations; however the mechanism used for this calibration need

not be the same one activated by the input data signal. In the framing of the synthesizer

architecture, this signal was assumed to be controlling an on-chip varactor, thus the design

is based upon a low gain and allows for wide tolerances. The specified values, for an

input control voltage range of 0 to 3V (relative to chip ground), are summarized in

Table 4-1.

While the input to the VCO will be a signal at a comparatively low frequency, the

output generated will be the RF signal in the 1.8GHz band. In the proposed transmitter

architecture, this output signal will need to drive a power amplifier and also a frequency



divider (in the feedback loop), perhaps through some distance of interconnect. On the

scale of an integrated circuit, these distances will be electrically short (in silicon, 1 mm is

about l/100 at 2GHz), so the effects of the interconnect metal will be primarily resistive

and capacitive loading, rather than creating signal reflections due to characteristic imped-

ance mismatches. So while buffering will be needed to protect the VCO from capacitive

loading, and to isolate it from switching in the divider circuit, the buffers required for the

integrated transmitter can be designed for voltage signals. This paradigm will not hold for

the initial turn of test silicon, since the capability to probe the RF signal is desired, and

also because the synthesizer proof of concept test bed will not be fully integrated. As a

result, the LMVCO chip will require impedance-matched output buffers.

Table 4-1: VCO Gain Specifications

Input voltage range (Vin) 0 to 3 V

Nominal VCO gain @ Vin= 1.5V 20MHz/V

Maximum VCO gain 40MHz/V

Minimum VCO gain 10MHz/V

4.2 VCO Circuit Design

When confronted with a new problem, one of the first things a circuit designer

considers are the devices which are available to solve that problem. As briefly covered in

the initial chapter, for this project, a silicon bipolar process was chosen that was designed

with the goal of allowing for low power, low noise, RF and microwave circuits. While the

ADRF process provides a rich array of circuit elements, the components required for a

harmonic VCO will draw from a select few of the offerings. To implement the positive

feedback mechanism, transformer-like magnetically coupled line sections could be con-

structed in the metal levels, but lumped capacitors are more efficient at the frequencies

under consideration. Metal-insulator-metal (MIM) capacitors would be optimal for this

work, but the only structures available are of the poly-n+ variety. These capacitors will

also form a portion of the tunable resonator, in conjunction with inductors characterized in

the previous chapter and one of several possible p-n junctions for use as a varactor. Per-



haps most importantly, for the active gain elements, the vertical NPN transistors are the

only real choice for their high frequency and low noise capabilities, although both NMOS

and lateral PNP devices are accessible in ADRF for biasing and switching purposes.

4.2.1 Transistor Considerations

Choosing transistor sizes for use in the gain stage of the oscillator is an exercise in

balancing noise performance and power consumption. Bipolar devices with large emitter

areas are preferred in order to minimize the ohmic resistances in the base and emitter

which contribute significantly to noise figure. However, large transistors need large bias

currents to be "fast" enough, both in terms of fMAX and f, at the chosen current density. To

support oscillation, a transistor must have greater than unity power gain at the desired fre-

quency, which requires sufficient bias current to fulfill the condition of fMAX being greater

than the frequency of oscillation. (In quantifying transistor performance, fMAX is also

referred to as the maximum oscillation frequency.) In addition, the unity current gain fre-

quency (fT) of the device has a strong dependence upon bias current density, which in turn

sets the transistor current gain at the frequency of interest ((f = fT=/f). Partly as a result of

this relationship, the noise figure of a transistor is a function of its collector current, for

which there is typically an optimum value. Below this optimum bias level, reduced beta

and increased values of the transistor small-signal resistance-through which the collector

shot noise current flows-conspire to yield greater noise figures. For higher than optimal

bias currents, the increase in noise results largely from increased base (shot) noise current

flowing in the source and extrinsic base resistances, but current-crowding and base push-

out (the Kirk effect) also contribute. As a result of these noise and speed concerns, the

bias current levels in the VCO are constrained; the key to reducing power, then, is clearly

by reducing the supply voltage.

4.2.2 Negative Resistance Element Topology

Being able to support a large signal swing with a meager supply voltage is the first

topological issue to be addressed. The RF power generated by an oscillator depends on

the ability of its gain element to sustain losses in the resonator, feedback structure, and

load under large-signal conditions. One way to create an amplifier stage which accommo-

dates a large output signal is by biasing the collector of an NPN through a frequency-



selective element that is low impedance at DC, and high impedance at the desired RF fre-

quency. A quarter-wavelength line (usually combined with radial stubs and lumped

capacitors at the supply end) is often used in narrowband microwave systems, but a basic

inductor also has this property. Since an inductor cannot support an average (DC) poten-

tial, the full supply voltage is impressed upon the collector of the transistor. While this

aids low voltage operation and removes one source of power dissipation, taking the RF

signal at the collector also maximizes the available room for output swing by centering it

around the highest voltage in the circuit. (Swinging above the supply rail does not present

junction bias problems for the collector of an NPN built in a p- substrate.) In addition to

providing a DC current path, the collector inductor may be designed as part of the resona-

tor-a vignette which will be discussed further. One possibility embodying these con-

cepts is sketched below in Figure 4-1.

I I

I --I
Figure 4-1. Single-ended common-base oscillator circuit.

In this circuit, a common-base amplifier stage provides positive gain from the

emitter to the collector, allowing the feedback provided by the capacitive divider to be of

the positive sense. These elements comprise a negative resistance generator, to which a

resonator may be attached. Initially taking the collector inductor to be large, a first-order,

small-signal analysis (with transistor parameters gm, rt, and C.) of the generator yields

the impedance looking into the output port to be:



Zout(s) - + gm + S ( 2C + C2)
rrt I+ + sC r +sC 2 r

r,, s1 + C2  ( +s (C) + C2 r

Separating out and then simplifying the real components renders the condition for a nega-

tive resistance at the output port (9 {Zut(s) } < 0 ):

C1

CIt + C 2

where p is the low frequency transistor current gain. Hence by choosing capacitor values

such that c2 > C1, a negative resistance is ensured for all frequencies where the model

remains valid. An oscillator may then be constructed with this element by connecting a

resonance to the output port. A stability analysis would show that a parallel resonator is

compatible with this negative resistance element, thus the existing devices may be

utilized. The resonant frequency for the parallel combination of the collector inductor and

the capacitive voltage divider will largely determine the rate at which the circuit will oscil-

late (in this configuration, c, is in parallel with c2 ):

2 7fo
C2 C2LI +CLC 1 + C 2

Another possible topology which can make use of the collector inductor bias

scheme is the same Colpitts-style oscillator, but with an emitter-coupled pair gain stage as

pictured in Figure 4-2. Qualitatively, the operation of the negative resistant element in

this circuit may be understood by noting that for a voltage source applied to the output

node, the current drawn is determined by one transistor in the pair (QL), but changes in the

source voltage are fed to the base of the opposite transistor (QR). As the voltage applied

to the output port increases, more of the tail current flows through transistor QR, and less

from the output node. Thus, a negative resistance is realized, to which a resonator-that

again may be formed by the parallel combination of the collector inductor and the capaci-



tive feedback circuit-may be attached to create an oscillator. (As further evidence, the

negative resistance of an emitter-coupled pair structure such as the one discussed here was

analyzed numerically as an example in Chapter 2.)

Figure 4-2. Single-ended ECP oscillator circuit.

In this form, the differential pair offers two primary benefits over the single tran-

sistor common-base variant: less distortion in the output, and the ability to take the output

signal as the collector current of QR, thereby incurring no loading of the resonator. How-

ever, this application will ultimately require a fully differential oscillator, in which form

the two circuits are equivalent on these counts. Furthermore, there are a number of impor-

tant advantages to the common-base implementation. First, all of the nodes in the com-

mon-base oscillator are low impedance for low frequencies; this will help keep substrate

noise due to adjacent circuitry from modulating the RF output. Along the same lines, the

bias scheme is much cleaner-since base bias resistors not required for the common-base

gain stages, a lower noise circuit should result. Another benefit of common-base amplifi-

ers over the common-emitter configuration is that base-collector capacitance is grounded

at one end, so the high frequency performance will not be hindered by the Miller effect (a

problem in fully differential versions of the emitter-coupled pair oscillator). Finally, the

noise matching analysis conducted in the following section indicated some favorability

with regards to the ease of which the common-base oscillator circuit could be resolved and

tuned for low noise performance-a meaningful design issue.



4.2.3 Noise Matching

By deriving the impedance looking into the negative resistance port of the

common-base Colpitts oscillator, it was demonstrated that this circuit will create poles in

the right half of the s-plane for a broad range of capacitor ratios. It is worthwhile to inves-

tigate if this flexibility may be used to buy some improvement in the oscillator perfor-

mance by noise matching. Providing a noise figure optimizing input match to the gain

stage in the oscillator is a linear problem, and may be handled apart from other noise

concerns.

For the purposes of small-signal modeling, the feedback action of the capacitors is

sometimes replaced by an ideal transformer because of the fixed ratio between the AC

voltages at the output and the input. However, this is not accurate in all cases. Namely,

the transformer also dictates that if the voltage at the input of the gain stage is Vou,/n, then

the current flowing from the capacitors into the emitter is n times that which flows into C1 .

Rather than rely upon this artifice, a small-signal model was again constructed for the

common-base oscillator as done in the previous section, except now with the resonator

taken into account. The transfer functions between each of the primary noise sources in

the oscillator circuit and the RF output port were then derived. With L and R respectively

denoting the values of the inductance and the equivalent resistance in the resonator (refer

to Section 2.3), the characteristic polynomial of the system is found to be:

D~) {r (Ct+C2 C 3  L 2
D(s) = {r(C,+C2)LC}s + {rt(C +C +C2) L+LCi}s +

L
{r n ( C n+C+C 2) + (P+ 1)}s+ (P+ 1).

In this analysis, p is not the high-frequency current gain (i.e. #3 P1) ), but rather is used as

a contraction for gr,. The transfer function between the thermal noise voltage in the

extrinsic base resistance ( v /Af = 4kTrb V2/Hz ) and the oscillator output port is:

V~tS ~~tC 3  2
Vout {rCLC } s + {L(C 1 -f3 C 2) }S

Hv (s) = (s) - Db vb D(s)



for the current in the base due to shot noise ( i./Af = 2 qI, A 2
/Hz ):

2
vout {rTLC 1 } s 2+ {IPL} s

Hi (s) = -(s) =D(s)
b lb D(s)

for shot noise current in the collector ( i /Af = 2ql c A2/Hz )

2
Vout {rL(C.+ 2C, + C2) }s2+ {(203+l)L}s

Hi(s) = (S) (s)B Ic  D(s)

and for the thermal noise voltage due to the resonator loss ( v /Af = 4kTR V2/Hz )

L 2 L
S{r.(C, +C 1 +C 2) s + { (103+ 1)L }s

H r(s) = ut(s) = D
r vr  D(s)

Assuming that the noise sources are uncorrelated, all of their contributions at the oscillator

output port are then summed, yielding a spectrum given by:

2 2 2 F2.()2+H2 22 )2
Vou t = HV (s)vb + H (s) b + H(s)lic + H V(s)vR '

When plotted as a function of frequency, this equation delineates a power spectrum

composed of the additive white noise sources in the circuit, and shaped by the oscillator.

This spectrum represents the noise floor of the oscillator at the output port, and it may be

integrated to achieve the phase noise (e.g., see Craninckx and Steyaert [1] or Sauvage [2]).

However, a more intuitive feel may gleaned from Leeson's work [3]. As presented in

Chapter 2, Leeson predicted a slope of -20dB/decade in the oscillator spectrum around the

carrier resulting from a phase-to-frequency translation that arises from the response of the

resonator coupled with the feedback mechanism. This characteristic will continue until its

line intercepts the circuit noise floor which, Leeson argued, should occur at the half-power

corner frequency of the resonator. Thus, in reducing the system noise floor calculated

with the expression above, the rest of the oscillator phase noise spectrum should be

"pulled" down along with it.



Figure 4-3. Noise floor at oscillator output port with feedback ratio as a parameter.

As a starting point, the base resistance and small-signal parameters were calculated

with ADICE from a model for a transistor with a single 0.8gm by 10gm emitter and

biased with a collector current of 1 mA. These values, along with an oscillation frequency

of 1.8GHz, a resonator with a Q of 10, and 1mW of output power, were entered into the

noise floor analysis, and evaluated with the feedback ratio (n = Vout/Vin = 1 + C2 /C 1 ) being

varied; the results are plotted above in Figure 4-3. Consistent with Lindenmeier's suppo-

sition [4], the noise floor is seen to be lowered as the transformer (feedback) ratio is

increased from unity to a value of about two, and then begins to rise for larger values of n.

This analysis tool is a vital part of the design iteration process which will become more

fully developed in the following section. Once the total feedback capacitance is set to

obtain the desired frequency of oscillation, the output noise floor is then computed to opti-

mize the ratio of the capacitors. This procedure is embodied by the following design rela-

tions:

C2 = nCtotal,
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4.2.4 Differential Oscillator Design

Previous sections have identified benefits and methods of analysis for a common-

base Colpitts oscillator, but a fully differential version needs to be developed due to the

high levels of integration which will be realized in the completed product. Merely

appending a second copy of the single-ended circuit will not work, as this only results in

two freely running oscillators with an indeterminate phase difference. Some form of cou-

pling is needed, and one possibility is a capacitive connection between the emitters as

shown below. The addition of this branch allows for one side of the oscillator to draw cur-

rent at the expense of the other, which is precisely the mechanism needed to achieve the

1800 phase split.

Figure 4-4. Differential common-base Colpitts oscillator circuit.

To verify that this circuit does indeed produce a negative resistance between the

output nodes, a small-signal analysis was carried out as done earlier for the single-ended

design. This time, the condition for the existence of a negative resistance was found to be:

CICI + 2C 2 '

which again covers the frequency span over which the model is valid. For added insight

into the effects of the feedback structure, the linear analysis was used to explore the



dependencies of the impedance at the output port upon capacitor ratios and total (series)

capacitance. Using the device parameters as calculated for the noise analysis of the pre-

ceding section (except with L made large), first the amount of capacitance in the feedback

voltage divider was fixed and the transformation ratio was varied. The results for

n E {1.5,2,2.5,3} are plotted in Figure 4-5, where it is observed that the negative resistance

generated (provided that it exists) depends only weakly upon the capacitor ratio. Next,

this ratio was fixed at n = 2, and the total divider capacitance was scaled. As shown

below, the impacts here are more pronounced-significant even for variations in the

capacitance of 20%. The importance of this finding has to do with the selection of the res-

onator, the relevance of which will become apparent shortly.
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Figure 4-5. Effects of the feedback structure on negative resistance.

It is now expeditious to revisit transistor sizing issues, and to put numbers behind

some of the thoughts expressed earlier. The first detail at which to look is that of transistor

geometry. When the noise figure is dominated by base resistance (as is generally the case

for silicon bipolar devices), it is expected that the lower noise should result by maximizing

the emitter perimeter-to-area ratio and the surrounding base contact area. This helps to

reduce the series resistance and alleviate current crowding effects, thus transistors are

often seen composed of a long emitter stripe of the minimum allowable width. Better per-

formance can be achieved however, by dividing the long stripe into numerous smaller

emitters, and then interspersing them with base contacts. To verify this, the input noise
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voltage for a common-base gain stage using an ADRF NPN transistor with 8 gm2 of emit-

ter area was calculated in ADICE over a sweep of bias currents for devices with 1, 2, and

4 emitters of minimum width (0.8 gm). Since flicker noise is not included in the transistor

models, the computed input noise spectrum is uniform over frequency up until the point

where device gain begins to fall. One low frequency point from the spectrum of each

device was selected at each bias level, and the results plotted below.

Figure 4-6. Emitter perimeter/area ratio effects on NPN input noise spectral density.

A low frequency point was chosen because it is the transistor's baseband spectrum

which is modulated about the oscillator carrier, however reductions at this point also cor-

respond to a decrease in the minimum noise figure (NFMIN) that may be achieved by the

device with an optimum noise match (For). As a point of reference, the thermal noise

voltage spectral density of a 50Q resistor at room temperature is 0.9 nV/Fr-z. In a 500

environment with an input properly matched to the applied signal, the spectral densities of

0.5 nV/.Fi-z, 1 nV/FH-z, and 1.5 nV/fH-z, translate into noise figures of 1.17dB, 3.49dB, and

5.77dB, respectively.

Although using smaller emitters to constitute a given area does help, the noise lev-

els indicated in Figure 4-6 for 8 gm2 transistors are still quite high, and process limitations

constrain the perimeter-to-area ratio which can be achieved (through the minimum
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Figure 4-7. Emitter area effects on NPN input noise spectral density.
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allowed area for an emitter opening). The only way to further reduce the noise spectrum

is by using larger transistors. Keeping the smallest emitter size from the previous simu-

lation, the input noise spectral density for devices with an increasing number of stripes

was recorded in Figure 4-7 on the preceding page. The noise density levels continue to be

pushed down as more emitters are added (18 in the largest device shown), albeit with

diminishing returns-as the amount of noise from the parasitic base resistance decreases,

other noise sources become significant. Not surprisingly, however, the reduction of noise

via larger devices comes with a penalty. As illustrated in Figure 4-8 (notwithstanding the

glitch in modeling), the bigger transistors are slower (smaller fT) for a given bias current.

Of course, for a low power design, this begs the question of what is fast enough.

The first criterion is that the transistor must be "fast enough" to have power gain at the

desired frequency in order to support oscillation. As derived in [5] and [6], the unity

power gain frequency may be approximated in terms of fT as:

I~ 2[rf 1/2fMAX =

where rb is the extrinsic base resistance and c, is the base-collector depletion capacitance.

For some of the larger devices under consideration, fMAX, as calculated from this expres-

sion, has been graphed in Figure 4-9 on the following page. The numbers here are overly

optimistic, being about one-third higher than actual, published results for similarly-sized

transistors in this process [7]. Even heeding this warning, it must also be kept in mind that

this figure of merit is an extrapolated value from measurements at lower frequencies.

Some margin, then, should be built into the design to ensure that higher order, deleterious

effects have not excessively taxed the power gain at the frequency of desired oscillation.

In addition, this factor of safety should also make provision for the losses in the resonator,

thereby providing for reliable start-up and amplitude of oscillations.

Similar concessions should also be made with regards to the nominal value of a

transistor's unity current gain frequency. The models and circuits used in most design

work with bipolar transistors assume a substantial current gain (i.e. p >> 1) in the forward-

active regime of operation. Without an adequate margin in the design frequencies, the

models, and the design techniques and circuit simulations for which they form the basis,



are rendered inaccurate. Since f, is lower than fMAX for the ADRF NPNs (as it is with most

silicon bipolar transistors), this is usually the more stringent axiom. While it may be pos-

sible-through multiple turns of silicon-to achieve a functional oscillator that operates

near the unity power gain frequency of the devices within the circuit, where permissible,

designs should back away from this edge in order to have a reasonable chance of

succeeding.
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Figure 4-9. Emitter area effects on NPN unity power gain frequency.

Based on these considerations of noise, speed, and power, as quantified by the data

presented, transistors for the oscillator gain stage were chosen to be sized with 15, 2.5 gm

by 0.8gm emitters, and nominally biased with 2mA of collector current. This selection

should result in a value of around 10 for the fT over design frequency ratio, and a noise

spectral density of 0.7 nV/,fiz (corresponding to a noise figure of slightly over 2dB in a

50 environment). Accommodations are made, however, in the VCO test chip, to alter

the bias on the common-base transistors in the oscillator, thereby allowing some further

optimization in this multi-dimensional space.
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Now that the gain stage devices have been set, a large-signal analysis of the nega-

tive resistance that they generate (when used in conjunction with the capacitors from the

previous analyses) may be performed. Again, the collector inductors are made immense

in value, and a time-varying, sinusoidal source of 1.8 GHz is placed between the differen-

tial outputs. Transient simulations are run in ADICE, and the impedance looking into the

output port is extracted from a Fourier analysis. Both the impedance and the admittance

are plotted below as a function of signal (oscillation) amplitude.
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Figure 4-10. Negative resistance of differential Colpitts with increasing signal amplitude.

The most important observation is that both the negative resistance and the nega-

tive conductance degenerate as the signal builds. As noted in Chapter 2, this will be the

case when the magnitude of the imaginary part is larger than that of the real component.

In this instance, Kurokawa's stability criterion will be satisfied with either a parallel or a

series resonance. This does not imply, however, that both will work equally well. Of con-

siderable importance is the amount of the negative resistance or negative conductance that

is produced. In this example, an oscillation may be supported with a series resonator pro-

vided that it has less than about 21 Q of resistance. Given a typical, lumped element, reso-

nator with a characteristic impedance of 30, this level of negative resistance will allow

for a quality factor as low as 1.43. Using the same inductive and capacitive elements in a

parallel configuration, the resonator conductance needs to be smaller than about 4.6mS for

an oscillation to begin, which corresponds to a Q of 7.2. Given the similar rates of degra-
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dation in resistance and conductance with increasing amplitude, in this form, the negative

resistance circuit should support a larger output signal with a series resonance. However,

to use the collector inductor as an integral piece of the resonance, the chosen topology is

constrained to a parallel resonant circuit. Herein lies the value of being able to change the

total capacitance in the feedback structure as demonstrated in Figure 4-5. This mecha-

nism allows the negative resistance element to be more optimally tuned to drive the

desired form of resonance. An increase in the feedback capacitance allows for a greater

negative conductivity.

With this analysis performed, another design iteration may take place. The transis-

tor sizing and the selection of their bias level in an effort to reduce the achievable noise

figure (NFMIN) affected the base resistance and junction capacitances as well as the small-

signal device parameters. As a result, the oscillation frequency shifts (particularly with

respect to c,), as does the optimum feedback ratio for noise matching purposes. The

amount of feedback capacitance is first adjusted to center the oscillator (time-domain sim-

ulations are helpful here), and then the capacitor ratio is optimized through the linear noise

analysis (Section 4.2.3). As just discussed, these actions change the negative resistance

developed by the amplifier, so the effects upon oscillation start-up, amplitude, and stability

need to be evaluated. Transient oscillator simulations help to gauge this, but the imped-

ance at the output is also recomputed and then compared with the loss in the resonator.

Additional iterations continue from this point until a satisfactory design is reached.

4.2.5 Tunable Resonator Design and VCO Interface Issues

Thus far in this circuit design, a lot of discussion has focused on the capacitive

voltage divider which forms the feedback network as well as part of the resonator. Little

mention has been made of the resonator's other half, yet the inductors constitute a vital

piece of the oscillator. In fact, the value of the inductors was chosen during the design

process just detailed, once an idea was acquired regarding the amount of resonator capaci-

tance would be needed to achieve the required tuning range, negative resistance, and

quality factor. However, for accuracy in modeling and simulation, the selection was taken

from among the discrete units available on the test wafer discussed in Chapter 3. With the

choice of the 2mm one-port bond wire inductor (about 2.1nH at 1.8GHz), a lumped

model for it was incorporated into the simulations. This leaves the capacitance in the res-



onator as the one remaining degree of freedom for bringing the oscillator frequency into

the band of interest.

In the spirit of up-integration, tuning within this frequency band is accomplished

by means of an on-chip varactor. The depletion capacitance of a p-n junction under

reverse bias is described by a function of the form:

V a-m
C] = 1+ AS jo A Vbi

wherein VA is the applied reverse-biasing potential and cJ0 is the zero bias junction capac-

itance which scales with diode area. The remaining parameters-the grading exponent

and the built-in potential-are fixed by the doping profile that comprises the junction. To

maximize its effect on the resonator center frequency, and to avoid changing the feedback

ratio while tuning the oscillator, the varactor is placed in parallel with the bond wire

inductors and the capacitive voltage divider. Then, by using the applied voltage as the

mechanism by which to tune the frequency, an expression for the oscillator gain may be

derived as follows:

ose a ( -1/2)(lm -1/2 -3/2 VA (m + 1)
K- 1 LC ) = L C C 1 +v- aVA 21r a VA tot) 4n Vbi tot j0 Vb i

For some aspects of the design, it is easier to work with the gain written in terms of the

frequency of oscillation:

= osc Cj{ VA (m + 1)
2 = Vbi Ctot Vbi

In either expression, ct, t denotes the total capacitance in the resonator, and consists of a

"fixed" part-from the feedback capacitors-plus a portion which varies with tuning due

to the varactor. Although the value of Cto, is now established by the inductor that was

chosen, several methods of affecting the gain are indicated here. From a device stand-

point, a variety of p-n junctions exist within ADRF, offering the possibility of choosing

among several values for the grading factor and built-in potential. Within the circuit



design, both the varactor size (to change C-o) and the levels of reverse bias voltage may be

used as variables to help meet the gain specifications (set forth in Section 4.1). Other

important factors include the physical limitations of the junction (reverse breakdown volt-

age), and also the Ohmic resistances in the device-the varactor is a constituent of the res-

onator, and thus losses in it contribute to overall quality factor degradation.

In considering p-n junctions for use as a varactor, the obvious starting point is with

the available bipolar transistors. The base-emitter junction of the NPN is unsuited for fre-

quency tuning duty because the heavy doping results in a low breakdown voltage (in

ADRF, 2V is the maximum reverse bias potential which may be sustained by this

junction). More robust is the junction between the base and collector of this device, which

can safely withstand 5 V. While this will suffice, it is still not a good choice as a varactor

for a couple of reasons. The first difficulty arises from the ADRF process flow, in which

the intrinsic base and collector regions are implanted through the emitter opening,

meaning that the base implant cannot be had without the emitter, and as a result, the full

base resistance will be present in the diode structure (which would yield a poor Q).

Another hindrance in forming a good varactor with this device is the selectively implanted

(intrinsic) collector, a step used to increase the collector doping under the intrinsic base,

thereby delaying the onset of the Kirk effect to higher current densities. While this

implant provides for a higher transistor f, at bias levels of interest, it leaves behind a very

gradually sloping base-collector junction, which translates into a low gain varactor (i.e.
ac•

low a'). A better candidate comes from the lateral PNP device, wherein both junctions
a VA

have the same composition: the extrinsic base handle region from the NPN forms both the

emitter and collector terminals of the PNP, and the collector structure of the NPN is the

PNP base. This junction is more steeply graded, with m = 0.3, and has the added benefit

that the anode contact can be made directly above the junction for reduced resistive loss.

At the time of the design, little characterization data existed for the use of this

junction as a varactor. A model was available for a minimum size lateral PNP transistor,

which included junction capacitance parameters and terminal resistances that were fit to

device measurements. In order to obtain any degree of accuracy in the simulation and

design work with regards to frequency tuning, the layout of the device from which the

model has been constructed was copied exactly with one exception: the emitter "dot" was



removed, leaving only the collector ring to base junction. The remaining diode is imbued

with a zero bias capacitance of 39.0fF; this "emitter-less PNP" structure was used as the

unit cell from which the needed varactors were constructed. Other relevant parameters for

the unit cell are summarized in Table 4-2. For simulation purposes, other needed SPICE

model values were also taken from the lateral PNP base-collector junction data.

Table 4-2: Model Parameter Data for PNP-based Varactor Unit Cell

Zero bias capacitance Cjo 39.0tfF

Junction grading exponent m 0.3
Room temperature built-in potential Vbi 1.1 Vt

Base resistance rb 45Q

Collector resistance rc  5 02

tValues listed fit a model to capacitance characterization data, and do not represent physical measurements.

With this information, the design procedure is straight-forward. The total resona-

tor capacitance is known, as is the desired oscillator gain (20MHz/V). A nominal applied

voltage is chosen, for which the required c10 is solved. This value of VA is chosen based

on device and circuit considerations. In the transmitter of the wireless sensor, the control

signal input to the VCO will be from an operational amplifier in the phase comparator

with a 3 V supply, so the range of input voltages will be from chip ground up to this supply

level (the op-amp can drive its output to within about 300mV of either rail). Since the

VCO design is focused on achieving low power through low voltage (a supply of less than

3V), the end of the varactor diode connected to the negative resistance port will be tied to

a DC level intermediate to the input voltage range. To avoid forward biasing the varactor,

a level shifting stage is needed for the control voltage input. One possibility is to feed the

phase comparator output to the base of a lateral PNP used as an emitter-follower

(grounded collector) stage, with a number of diode-connected NPN transistors and a resis-

tor up to a larger (e.g., 5V) supply voltage. In ADRF, a 3 VBE stack (the PNP and two

NPNs) yields 2.3V at 20pA of bias current; when driving the cathode terminal, this shift

is enough to support a positive supply voltage for the VCO (VCCv) of up to about 2.5 V-

depending on the RF signal swing-for the entire range of inputs. A schematic of this

input stage is included in the Appendix.



Squeezing from the other end to constrain the lower bound of VCCv is the on-chip

buffer and frequency divider circuitry that interfaces to the VCO. A common-collector

stage follows each oscillator output to protect the resonator quality factor from loading,

and to isolate the VCO from the switching action of the divider. In addition to providing

the inputs to the ECL latches in the divide-by-two block, this buffering stage must also be

designed to power a 50Q load for first silicon empiricism. A differential pair is the basis

of each latch, and with the buffer stage that precedes these latches, the common-mode out-

put voltage for the VCO is required to be at least 2 VBE + VCEsa . With this consideration, and

after some preliminary simulation work, 1.8V was chosen as the nominal value of vccv.

Given a level shift of 2.3V in the input stage, the reverse bias voltage applied to the varac-

tor at the center of the input range will be: VA = 1.5V+ 2.3V- 1.8V= 2V.

Once the varactor capacitance is solved using this value, the amount of feedback

capacitance needed to comprise C,o, can be computed. This calculation must also account

for device parasitics-primarily C, and c. in the buffering stages of the frequency divider

and in the oscillator, and also the collector-to-substrate junction capacitance (Cjs) of the

oscillator gain stage transistors. Noise and negative resistance concerns are then checked

again as detailed in the previous section. For this VCO design, Co, = 3.741pF, yielding

C 0o = 1.172pF for a mid-range gain of 20MHz/V. Allowing for the other device capaci-

tances in the circuit, 1.789pF = (C 1 C2 ) / (C l + C 2 ) remains for the feedback network. The

optimal transformer ratio for minimizing noise is evaluated to be n = 2.8, which is satisfied

by C, = 2.783pF and C2 = 5.01pF.

To achieve the required varactor size, 30 of the "emitter-less PNP" unit cells must

be used. Unfortunately, in this case, capacitance is not the only attribute of a p-n junction.

Parasitic resistances (and, at higher microwave bands, contact and metallization induc-

tances) limit the Q of the device, an effect which can impact the quality factor of the reso-

nator. For moderate frequencies, the varactor Q follows:

2fosc2rRsCJ fsc 2n (rb + rc) Cj

The qualifier "moderate" implies frequencies large enough such that the series resistance

(Rs) dominates the response rather than the output resistance in parallel with the junction,



but not so high that the previously mentioned inductances come into play. Since the

junction capacitance increases with area while the resistance terms scale inversely by the

same factor, the varactor quality factor is independent of size (to the first order).

Using the values listed in Table 4-2, the "emitter-less PNP" should exhibit a Q of

45 at 1.8 GHz. While this amount of loss is not negligible, it is significantly less than the

contribution of the bond wire inductors (which have a Q of about 13). The remaining res-

onator components are the poly-n+ feedback capacitors, for which the quality factor is a

bit uncertain at the time of the design. The bottom plate of this structure is the n+ collec-

tor contact diffusion, and has a sheet resistivity of 30Q/L; this should allow for capacitors

having Qs approaching 30 at 1.8 GHz. However, the scalable ADICE models provided for

these devices are more pessimistic, yielding numbers closer to 10 at these frequencies.

With these capacitor models, and including all relevant transistor capacitances, the imped-

ance of the differential resonator-as seen at the negative resistance port-is plotted

below for an input control voltage of 1.5 V.
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From this analysis, the quality factor may be gauged in two ways: from the band-

width between 121 = max(4) points, or from Q = (-) . Either method yields Q = 8.2,

which seems consistent with the data for each constituent of the resonator. As a worst-

case approach, this quality factor, and the scalable ADICE capacitor models from which it

was computed, have been used throughout the design process. On LMVCO silicon, each

of the devices used in the oscillator have been separated out into individual test sites; these

will be characterized so that circuit performance may be better understood.

In an effort to make further, perhaps future, improvements, two experimental var-

actor structures have been implemented in the VCO. Although these devices were not

well characterized at the time of the design, it is anticipated that they will allow for a

higher VCO gain for a given varactor capacitance, or, for this design, more feedback

(fixed) capacitance for the specified tuning range. The benefits of moving in this direction

were noted in the previous section. In addition to the three varactor structures, a fourth

LMVCO chip variation was designed: a version with a differential input control signal.

Whether the added common-mode noise rejection this configuration offers will be

required in the ultimate system is unclear, but it does avail one other potential advantage:

the ability to externally "trim" the VCO transfer characteristic by placing an offset

between the inputs. Since this adaptation will incorporate an input circuit based upon a

differential transistor pair, another possibility may easily be explored-that of having volt-

age gain in the input stage. If this voltage gain is labeled Ki , then the overall gain of the

oscillator is KiKv, and this product is designed to the specifications of Table 4-1. Again,

with Ki > 1, a smaller varactor may be used to accomplish the tuning range goals. Another

possibility is that the gain of the input stage need not be constant-it may be made non-

linear in a fashion that compensates for the varactor characteristic (such as with

Vou t = (in) ). Although this compensation capability was not exercised on LMVCO sil-

icon, the final version does employ a gain of K i = 2 between the single-ended VCO control

voltage and the differential input signal, allowing the nominal gain of 20MHz/V to be

reached with 22 of the "emitter-less PNP" unit cells along with lightly recalibrated feed-

back capacitor values. Schematics showing device sizes for the differential input VCO,

and accompanying input stage, are included in the Appendix.



4.2.6 The Differential Colpitts VCO Circuit

Now that the resonator design has been concluded, all that remains incomplete for

the VCO is a means of biasing it. Returning to the circuit of Figure 4-4, current sources

and a voltage reference are required in addition to the supply rails. In a power conscious

context, simple current mirrors are preferred because emitter degeneration resistors and

cascode devices dissipate power. A comparison with ideal sources shows that using sim-

ple mirrors does not degrade the amplitude of the oscillation, thus this basic scheme is

retained in the final circuit as shown in Figure 4-12. A current gain transistor (Q38) is

added to supply the base currents, thereby allowing for more accurate measurement of

oscillator current consumption. The reference source pin (EXTBIAS) is a low impedance

node with a significant amount of capacitance attached, hence stability is not anticipated

to be a concern. For ease of testing, the bias resistor has been sized to allow the nominal

oscillator bias current of 2mA per side to be realized by externally shorting EXTBIAS to the

VCO supply pin (vccv). However, the physical distinction has been maintained so that

flexibility in experimenting with reduced power levels is not sacrificed.

The output of the VCO is followed by on-chip common-collector buffers driving

50 Q coplanar waveguide RF probe pads from which the 1.8 GHz signal will be sensed. It

was mentioned in the previous section that VCCv needs to be at least 1.8 V to support these

buffers and the subsequent frequency divider, placing a constraint on the ability to operate

the VCO at low supply voltages. Although different buffer/divider techniques should be

explored in future revisions, a solution which allows evaluation of this work is to raise the

lower supply rail (i.e. the emitters of the current source transistors) to a level above chip

ground. While oscillation with supplies down to 2 VCEsar most likely cannot be achieved

since the RF performance of bipolar transistors tends to suffer as saturation is approached,

numbers around 1 V for VCCv - NEGv should be reachable.

With this in mind, the BASE bias reference is set to divide the supply voltage across

the transistors. For the common-base devices, VCE = VCCv- (BASE- VBE), leaving a poten-

tial of VCE = (BASE- VBE) -NEGv impressed across the current sources. Maintaining at least

0.5V across each transistor with 1.8V for VCCv and a VBE of 0.8 V requires the BASE refer-

ence to fulfill the condition: 1.3V<BASE-NEGv<2.1V-NEGv. A BASE bias voltage in the

lower portion of this range will maximize the available room for RF signal swing,

although some margin at the input side of gain element is needed because the amplitude of



UTP

00

Gcoo UBTRT
wN

Figure 4-12. Schematic of differential, common-base Colpitts VCO.

GND -> SUBSTRATE
GND

Global



the signal there is not insignificant ( Vn = Vt/n). For the purposes of design work, 1.5V

was chosen as the nominal value of the reference for the common-base transistors, but this

node has been routed to a pad in the circuit layout so that experimentation may take place.

A final explanatory note is owed to capacitor c2 , which is shown in the schematic

as two parallel devices. The layout of this capacitor is split to balance the parasitics on

either side, and the LVS tool was unable to recognize the end product as a single device.

This technique is a good general rule to follow-particularly with the poly-n+ capacitors

in ADRF, and helps to ensure that differential circuits remain balanced.

4.3 VCO Simulation Results

Verifying that the VCO circuit reliably builds up and sustains a stable oscillation at

a single frequency over a varied operating environment is an integral piece of a robust

design. For added pragmatism, all of the simulations presented herein have been con-

ducted with adjacent circuitry in place on both the input and output sides of the VCO: the

input level shifting stage drives the varactors, and the emitter-follower buffers and fre-

quency divider are loading the RF output port. The signals plotted in the figures below are

taken directly from the VCO output rather than after the buffers, but the primary differ-

ence is in the amplitude of the measured signal. Indications of start-up, frequency of

oscillation, harmonic content, and relative comparisons are all unaffected by this choice.

The circuit simulation output depicted in Figure 4-13 demonstrates the start-up of

the VCO under nominal conditions with typical device models, room temperature oper-

ation, a supply of 1.8V, and 2mA of collector current biasing each side of the oscillator.

Both output signals are plotted individually in the upper graph, showing the transition to a

phase split of 1800 as well as oscillation about a common-mode voltage equal to that of

the supply. The balanced RF output is traced in the lower plot, reaching steady-state in

about 12ns from an initial condition of 1 mV. A 4096 point DFT has been used to com-

pute the power spectrum of this signal, is graphed in the figure below the time-domain

signals. As shown, the even harmonics are suppressed in the differential signal, while the

third and fifth harmonics are -42dBc and -60dBc (decibels relative to the carrier power),

respectively. The intent here is to illustrate the relative power in each harmonic; noise in

the VCO is not being simulated-the skirts around the carrier and the "floor" of the indi-

cated spectrum are entirely due to the resolution of the FFT.
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Figure 4-13. Nominal operation of VCO showing build-up of oscillations.
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Of course, this is a VCO circuit, so the spectrum should be tunable. For the same

nominal conditions used previously, the input voltage to the LMVCO chip is varied, and

the frequency of the output is plotted in Figure 4-15. Data was collected from simulations

run using the scalable ADICE models for the poly-n+ feedback capacitors. Both single-

ended and differential input versions are shown, both of which are tuned to achieve a VCO

gain of 20MHz/V for a 1.5V input. Relying upon a smaller varactor, the VCO with a dif-

ferential input has a greater disparity in gain over the tuning range, and a slightly wider

band of operation (44MHz versus 40MHz) for inputs between 0.5V and 2.5V. Both ver-

sions, however, fall within the specifications set forth in Table 4-1.

Figure 4-15. Tuning range and gain of VCO.

While this verifies the VCO aspect, of primary importance for this low power

oscillator is operation at reduced bias levels. In addition, simulation of the circuit over a

range of bias points helps to identify potential circuit problems as suggested in Chapter 2.

Using the nominal conditions applied thus far as a baseline, the balanced RF output signal

is plotted in Figure 4-16 for successive increments in NEGv (corresponding to reductions

in the VCO supply voltage). Although the start-up transient is noticeably shortened for

larger values of NEGv, the amplitude of the steady-state oscillation is relatively unaffected

until the supply is reduced below 1 V; this observation is quantified in Table 4-3. The

numbers listed in the amplitude column are for the time-domain signal and not just the

fundamental component, but the total harmonic content is low so the two values should be
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similar. Since the noise figure of bipolar transistors is generally only weakly dependent

upon the voltage across them, the consistency in oscillation amplitude should lead to a sit-

uation where the degradation occurring in the phase noise spectrum as the supply is low-

ered is outpaced by the power savings. However, given an available resonator quality

factor, overall system noise requirements will still dictate the lower bound on power.
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Figure 4-16. Operation of VCO over a range of supply voltages with vccv = 1.8 v.
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1.; V 1.WUUiHz 1.11 V
1.5V 1.797GHz 1.10V
1.2V 1.791 GHz 1.05V
0.9V 1.763GHz 0.75 V

The simulations detailed on the previous page were conducted with a constant

voltage applied to BASE, referenced to the lower supply rail (NEGv), set to 1.3V so that

operation could be sustained with having just 0.9V across the oscillator. Since VCCv

remained at 1.8 V (with respect to chip ground) throughout the exercise, the potential seen
by the base-collector junctions of the common-base transistors changed as the supply was

lowered. This mechanism is responsible for the frequency shifts recorded in the previous

table.

As just observed, the oscillator is not strongly affected by the supply voltage.

However, the bias current through the circuit yields a different story, as told in Figure
4-17. The large-signal negative conductance characteristic is enhanced by increased cur-
rent such that it does not degrade as quickly while the RF signal builds in amplitude. This

trait is reflected by the magnitude of oscillation for a given level of bias current. Upon
start-up, the amount of negative conductance produced by the active element initially

"begins" at some small-signal level, and then decreases as the effective transconductance

wanes due to large-signal conditions. Increased bias levels simply push out the point at
which large-signal effects become noticeable, allowing for larger amplitudes of oscillation
before the negative conductance has been reduced to the point where it matches the loss in
the resonator. The circuit simulations of varying the collector current are summarized in
Table 4-4, with 2mA per side of the oscillator as the baseline. Frequency deviations are
again owed to the gain transistors of the VCO, but this time it is the diffusion capacitances

that are responsible. These capacitors represent base charge storage, and thus have a
value proportional to collector bias current.

The operation of the VCO has proven to be robust with nominal devices over a
space of operating points, but it is also important to have a circuit that is tolerant of pro-
cessing variations. To help deal with this line of inquiry, statistical process corner models

Table 4-3: Simulation Data for VCO Output Over Supply Voltage

m
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Figure 4-17. Operation of VCO over a range of bias currents.
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are available for use in ADICE. In addition to the typical devices (TYP), element param-

eters are skewed to represent the extremes of acceptable wafer fabrication. A best-case

speed process (BCS) involves low values for resistors and capacitors, along with fast tran-

sistors comprised of reduced junction capacitances and forward transit time, plus

increased p3 and current handling capabilities. The worst-case speed (WCS) device set is

selected from the opposite end of the spectrum, while the two remaining model libraries

consist of all relevant parameters being on the low edge, and on the high edge, of their sta-

tistical ranges, respectively. Although it may be argued that such statistical "corners" are

not physically realizable within a process flow, they nonetheless provide a good test for

the oscillator.

Figure 4-18. Operation of VCO over process.
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A 5ns window of the steady-state condition with each model set is plotted for

comparison in Figure 4-18 on the previous page. While the frequency and amplitude do

vary with process, the results are again evident that a single, stable oscillation is produced

over the range of tolerances experienced by ADRF. Holding the tuning range data pre-

sented in Figure 4-15 up against Table 4-5, it is apparent that either a greater VCO gain or

another tuning mechanism will be required in a production part. With the varactor

employed in this design, the oscillation is tunable by perhaps ±30MHz around a center

frequency, which is not enough to compensate for process variations-even given an

inductor non-varying in value as assumed in these simulations. Increasing the oscillator

gain may prove difficult within the system context because it places stricter requirements

on the phase comparator and loop filter. Other possibilities include a "course-tune" con-

trol-perhaps another, larger, varactor-driven by a DC signal apart from the phase-

locked loop, capacitor trimming, or the method of fitting bond wire inductor lengths to

wafer capacitance suggested in the previous chapter.

Table 4-5: Simulation Data for VCO Output Over Process

WCS 1.679GHz 0.89V

HIGH 1.700GHz 0.95V

TYP 1.800GHz 1.11V

LOW 1.915GHz 1.23V

BCS 1.950GHz 1.33 V

It is plainly seen that the available precision of component values in integrated

processes presents a problem for lumped LC oscillators such as this one. For many other

monolithic circuits, another measure of accuracy is also critical: the ability to match

devices. However, matching is not a significant issue for this circuit because the coupling

of the emitters forces the sides to be 1800 out of phase, at a common frequency deter-

mined by the entire resonant structure. Imbalances on one side of the oscillator can lead to

an amplitude error between the halves of the differential signal, but not a phase error, so

the balanced signal remains strong and contains just one fundamental frequency

component. Mismatches among the feedback capacitors will affect the noise match to the



active element, but holding a capacitance ratio within a few percent is easily accomplished

by modem processes. An error of this magnitude will hardly be palpable in the phase

noise, causing a degradation of perhaps a few tenths of dB (at most) across the spectrum.

Now that the circuit has been repeatedly shown to oscillate, the other aspect of its

performance which needs to be quantified is the phase noise spectrum. The information

needed to compute the spectrum using Lindenmeier's derivation has now been resolved

for this design. With a center frequency of 1.8GHz, a resonator Q of 8.2 as calculated in

Section 4.2.5, and a noise figure of 2dB (Section 4.2.4), the noise spectral density relative

to three different carrier power levels is shown below in Figure 4-19. Given the RF volt-

age signals from the circuit simulations presented throughout this section, an output power

of 1 mW (0dBm) into a 5002 load seems feasible. At an offset of 1IMHz from the carrier,

these factors result in a noise spectral density of -125 dBc/Hz.

Figure 4-19. Calculated phase noise spectral density using Lindenmeier.

4.4 Frequency Drift

Once achievable specifications for a circuit element can be penned, ideas regarding

its use can take form. Consideration of other possible architectures for extremely low

power transmitters has led to the thought of operating the VCO open loop, or perhaps
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having it controlled by some remote feedback mechanism. Such a conceptual path leads

to the question of frequency drift: left to its own devices, what will happen with the VCO

output frequency over time? The time scale generally considered as "drift" is an interme-

diate one: effects included in drift have a longer time constant than would be captured in

phase noise analyses and measurements, but long term product degradation (e.g., hot car-

rier effects, metal migration) is explicitly excluded.

For the purposes of this discussion, the VCO is assumed to have been packaged

and nominally tuned so that the frequency is centered. This leaves three run-time vari-

ables that can potentially influence the operation of the VCO: supply voltage, bias current,

and temperature. As previously demonstrated, the primary result of changes in the bias

current is to moderate the signal amplitude along with the noise spectrum, but not the fre-

quency of oscillation which is only weakly affected. From the simulation results printed

in Table 4-4, the sensitivity of the oscillator frequency to the bias level is calculated to be

83ppm for a 1% change in current. If large swings in the bias current were present, this

effect could be significant, but for typical deviations, this sensitivity term will often be

outweighed by other factors. If the fluctuations in current are happening at a faster (than

drift) rate, AM noise will result and will augment the phase noise spectrum.

Through the collector inductor, the supply voltage (VCCv) appears as the DC level

on one side of the varactor, with the control voltage on the other. Since the capacitance of

a varactor is sensitive to the potential impressed across it, a change in VCCv will tune the

VCO in the same manner as modulating the input. This is an issue that needs to be

addressed through proper system design in the transmitter: the control voltage generated

by the phase-locked loop must be referenced to supply. Changes in this voltage then will

not appear across the varactor, and thus the oscillator frequency will not be affected. Sim-

ilarly, if the reference voltage for the common-base transistors in the oscillator moves in

step with VCCv, the frequency shifts noted earlier in Table 4-3 can be avoided.

The issue of temperature is more complex. In order to think about this, it is helpful

to return to the theory of determining the rate of oscillation: the frequency for which all of

the reactances at the negative resistance port sum to zero. Each element that is incorpo-

rated as a part of the resonant circuit needs to be examined over temperature. The most

prevalent components are the bond wire inductors; these may droop as they warm, but



their reactance is (to the first-order) dependent only upon the bond pads and the length of

wire-the wires must be really close to substrate for their height to have an effect. Thus,

once in place, the inductors should not contribute to frequency drift.

The first capacitance that inevitably comes to mind is the varactor. Earlier work in

deriving VCO gain expressions began with a junction capacitance formulation in terms of

c10 that made the applied voltage dependence explicit. This is tedious as a starting point

for a drift discussion because c10 has an implicit temperature dependence. It is more for-

tuitous to return to the parallel plate definition of areal capacitance, from which Sze writes

for a linearly graded junction [8]:

F 2 1/3
Esi qaesi

CJ - = 12 (Vbi + VA)

As before, VA is the applied reverse bias potential, a is the slope of the doping profile (in

cm-4), and esi is the permittivity of silicon. Taking the partial derivative with respect to

temperature and generalizing yields:

-1 bi= -mCJ (Vbi + V A ) -  i
aT T '

where m again represents the junction grading exponent. The built-in potential has a

complex relationship with temperature through both the thermal voltage (kT/q) and the

intrinsic carrier concentration of silicon; evaluating its differential as contained in the

prior expression gives:

aVbi _ 2kT( I ni -14- 7VbT>
aT q n i aT bi '

which involves the sensitivity of the intrinsic carrier concentration (n;) to temperature.

Using a numerical differentiation technique to assess this term at T = 300K provides:

-[(1 ]n = 89800ppm/(oC)
ni) T IT= 300K



These expressions may then be solved for the desired temperature sensitivity of

the varactor capacitance, which is also a function of the applied potential. Using the

parameters in Table 4-2 for the "emitter-less PNP" varactor unit cell, with a mid-range

input of 1.5V (i.e. VA = 2V),

= 97ppm/(
°C) ,

C i T T = 300K

although this number will increase for lower control voltages (274 ppm/4°C) with VA = 0v),

and decrease for those higher than 1.5 V. This analysis applies not only to the varactor, but

also to c. and Cjs (the collector-to-substrate junction capacitance) of the oscillator gain

transistors, and to c. of the buffering devices. All of these capacitances are effectively

paralleled with the varactor (although each has a different voltage impressed across it), the

sum of which contributes to drift. Of the total capacitance in the resonator, 30% arises

from p-n junctions, and is subject to this sensitivity.

The diffusion capacitances within the resonator are also temperature sensitive.

From [8], these capacitances resulting from base charge may be expressed (using 3 to

denote the imaginary part) as:

q9c 1l
CD k T_ co3 +jo0

where TF is the forward transit time, which adds a temperature dependence (through the

minority carrier diffusivity in the base) to the T• term in the diode conductance. The fre-

quency dependence indicated in the previous expression is not significant for operation

well below the transistor fT, and may safely be neglected. Remaining, however, is a tem-

perature sensitivity of the diffusion capacitance that is not insignificant when compared

with that of the junctions, but the overall effect it has on the oscillator frequency will be

smaller, since C, terms contribute only 10% of the total resonator capacitance. Hence,

the junction temperature sensitivity may be used to obtain "ball park" numbers for temper-

ature drift, which then may be backed up with simulation results.

The remaining capacitors in the oscillator, the poly-n+ feedback elements and the

metal to substrate parasitics, typically have smaller variations with temperature. Although



this aspect of these devices is not characterized for ADRF, nor modeled in ADICE, sensi-

tivity values are usually below 50ppm/4oC) for MOS capacitor structures, and even less

than this for metallization capacitances. Again, this suggests that the p-n junction capaci-

tance sensitivity and circuit simulations should respectively yield reasonable zeroth-order

and first-order predictions of VCO response over temperature. Results from simulations

at several input voltages are listed in the following table.

Table 4-6: Simulation Results of VCO Frequency over Temperature

0.5V -400C +0.8% +13.8MHz

30oC - -

125oC -1.1% -18.8MHz
1.5V -400 C +0.6% +10.4MHz

30C - -

125oC -0.7% -12.7MHz

2.5 V -400 C +0.5% +9.6MHz

300C -

125 oC -0.6% -10.0MHz

The amount of drift evidenced by the numbers above suggests that an integrated

oscillator, such as the one presented in this chapter, is incapable of being used as an open

loop transmitter for most applications. However, the oscillator should not drift so far that

intermittent (i.e. when transmitting) or remote feedback mechanisms are out of the

question. Caution should be exercised when building systems around VCOs with higher

gain, since the drift experienced in the oscillation frequency will also be appreciably

higher. Short of employing alternate tuning mechanisms, no methods of significantly

reducing drift have been unearthed by this investigation. It has been surmised that the

inductance value should not be very susceptible to temperature, thus increasing its pro-

portion of the required LC product may yield some improvement. However, this would

come at the expense of gain and possibly resonator Q-neither of which are desirable

consequences.
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V. LMVCO Design Recapitulation and Conclusions

A low power, wireless transmitter has been introduced as a backdrop which

requires an integrated, low noise, voltage-controlled oscillator (VCO). Toward achieving

operation at low power levels while minimizing the output spectrum due to phase noise,

resonator based oscillator architectures offer the best performance at microwave frequen-

cies along with minimal active element requirements; the challenge, however, proves to be

implementing a monolithic resonator of sufficient quality. With present manufacturing

technologies, lumped element LC resonant tanks remain the most viable option for low

power oscillation in the desired 1.8 GHz band.

Insight into the importance of the resonant element is gained by investigating

oscillator models and performance dependencies. The negative resistance port model of

an oscillator is generally the least cumbersome design approach to use at microwave fre-

quencies, for which an important distinction is drawn between "voltage-controlled nega-

tive resistance" elements (VCNRs) and those which are "current-controlled" (ICNRs).

Although this is an important issue, available literature is often unclear about how to make

a determination in practical circuit design situations. Intuitive methods are valuable, but a

numerical analysis may be performed by using a source of the desired oscillation fre-

quency to drive the negative resistance port. Looking into this port, if the magnitude of

the real part of the conductance (IGI) about the oscillation frequency is seen to decrease

monotonically with signal amplitude, a VCNR element is indicated. Reciprocally, a

monotonic decrease in the magnitude of the impedance (IRg) is consistent with the ICNR

definition. There are, however, cases where both RI and IGI can decrease; the key here is

monotonicity over the range of signal amplitudes, the significance of which lies in the sta-

bility of the oscillator.

In the condition of steady-state oscillation, a pair of complex conjugate circuit

poles will have moved to the jow-axis at the frequency where the imaginary parts of the

impedances at the negative resistance port sum to zero. However, for this to be a stable

operating point, the slope of the phase response of the resonator must be chosen in accor-



dance with the configuration of the negative resistance element. To satisfy this require-

ment, a series resonance must be used when a device exhibits a monotonic decrease in

negative resistance as the signal builds, while an element which monotonically degrades

in its negative conductance needs to be mated with a parallel resonator.

While this strategy helps to ensure the desired oscillation, minimizing its noise is

another issue. The spectrum produced by an oscillator is dominated by phase noise for all

frequency offsets from the carrier of interest. Originally through the work of Leeson [1],

it is seen that the quality factor ( Q ) of the resonator plays a large role in determining noise

performance, since the phase noise spectrum is reduced by 02 . Power, however, is also a

contributor, entering the spectrum both through the noise figure of the oscillator gain

stage, and also through the output power in the carrier (Po) and its association to the DC

power consumed in the VCO circuit. Although harmonic oscillators are bound by this

inherent coupling between noise and power, the relationship is subject to a number of

device and circuit design issues.

One such issue was recognized by Lindenmeier [2], that of providing an optimum

noise match to the oscillator gain stage. Similar to the design of RF/microwave low noise

amplifiers where a matching network is used to transform the given source impedance to

that which minimizes the noise figure, the (positive) feedback ratio (i.e. Vo,/Vi,,) imposed

about the gain stage may be modified to obtain the optimum source impedance (Fo,). The

ability to minimize phase noise in this fashion is consistent with the concepts of noise

matching, and is a valuable tool for improving oscillator performance.

Carrier power and oscillator noise figure have significant effects on the phase noise

spectrum, but for low noise, low power applications, it is vital that the relationship of the

spectrum to 0 2 be exploited. To help achieve the desired inductor and circuit perfor-

mance, a set of monolithic structures was designed and fabricated at Microsystems Tech-

nology Laboratories using a top-level metal in a typical silicon process flow. Various

planar spirals were fabricated and characterized, as were some bond wire inductors con-

structed from wires which jump from one bond pad to another on the same integrated cir-

cuit die. A number of observations from this experiment have proven useful in the design

of monolithic inductors.

For the planar spirals, the inductance was seen to be fairly constant for a given

number of turns in the spiral and pitch of the turns, but the quality factor is improved as



the conductor width increases and the metal spacing decreases. Another useful detail

highlighted experimentally is that an octagonal structure exhibited an improved Q when

compared to its square brethren of the same number of turns. The inductance was also

diminished (by about 15%), but the increase in Q (20% to 30%) overshadowed this

drop. In general, the more circular the structure, the greater the quality factor will be for a

given inductance, as resistive corners are alleviated and finally eliminated as a circle is

approached. For the same reason, the middle area of the spirals should be left open, since

tight turns introduce many corners without adding much inductance. Similar conclusions

were drawn regarding the inductor self-resonant frequency (fSR), which tracks Q in many

regards. Additionally, it was noticed that fSR for the spirals was more closely linked to the

number of turns in the spiral, rather than the total area of metallization occupied by it.

Again, this suggests that spiral inductors may be improved by increasing the metal width

to spacing ratio.

Overall, the bond wire inductors performed better, yielding quality factors about

three times that of the spirals (-13 versus -4). This improvement is owed to the bond

wires, which are both less resistive and farther from the lossy silicon substrate than the

metal comprising the spirals. With these advantages, the bond wire structures produced

self-resonant frequencies above 20GHz until the longest wire lengths (3mm) were

reached. Gold wires offered no discernible advantage over aluminum, suggesting that the

primary loss mechanism in the bond wire inductors is through capacitive coupling into the

substrate. Both ends of each aluminum wire were attached via wedge bonds, while one

bond for each of the gold wires was a ball bond. Thus the results seem to indicate that the

smaller footprint area of the wedge overcomes any disadvantages which may accrue due

to the non-perpendicular fashion in which this bond attaches the wire to the die. In this

study of inductance elements constructed with a manual bonding machine, a sample of 28

inductors with 1.5mm, 2mm, and 2.5mm wires yielded 3a tolerances on the inductance of

+12%. This is comparable to the absolute accuracy achievable for monolithic capacitors,

and these numbers could potentially improve with automated equipment adapted for this

operation.

Other possibilities include thicker dielectrics to place the inductive elements fur-

ther above the substrate, reducing the coupling of RF energy into it and thereby increasing

100



Q. Again, this benefit is provided to any metal structure built upon the deeper insulator,

but the designer is limited in this regard by the available process. Thicker metal helps the

spiral inductors, but moving to larger diameters will not likely improve the bond wire ele-

ments because the skin depth (about 1 pm in aluminum at 2GHz) is a small fraction of

even the narrowest wires. Moving to a more conductive medium for the bond wire induc-

tors also brings with it the issue of skin depth, which is inversely proportional to the

square root of conductivity (8 6 1/,F ). Hence, in exchanging aluminum wire for gold, the

reduction in the series resistance term will be at most 10%. As long as most of the loss

remains in the substrate, improvement through better wires will not be significant.

A bond wire inductor was selected as the cornerstone, and then a VCO circuit was

designed around it. The key to reducing power in the circuit is by reducing the supply

voltage since the bias current levels are constrained as a result of noise and speed con-

cerns. Using an inductor to furnish the collector current to an NPN transistor helps to cre-

ate an amplifier stage for the oscillator that accommodates a large output signal with a

meager supply voltage. A differential oscillator topology was constructed using common-

base transistors, which offer the benefits of not being hindered by the Miller effect at high

frequencies and providing low impedances at each oscillator node for low frequency sub-

strate noise. Positive feedback around the gain stages is implemented by a capacitive volt-

age divider which forms a part of the resonator (along with the collector inductors). The

ratio of the capacitors is set to provide a noise figure optimizing input match to the gain

stage. Analyzing the noise match for the oscillator is a linear problem, and may be han-

dled apart from other noise concerns.

The transistors for the VCO gain stages must be sized in conjunction with the lin-

ear circuit noise analysis. When the noise figure of a device is dominated by base resis-

tance (as is generally the case for silicon bipolar transistors), lower noise results when the

emitter perimeter-to-area ratio and the surrounding base contact area are maximized.

Although a long emitter stripe of minimum allowable width is often used, better perfor-

mance can be achieved by dividing the long stripe into numerous smaller emitters, and

then interspersing them with base contacts. This helps to reduce the series resistance and

alleviate current crowding effects, and thereby the noise figure that may be obtained with

an optimal match. Larger devices are less noisy, but also function more slowly at a given



bias. To ensure proper operation, active devices must be designed with an adequate mar-

gin in both fT and fMAX (above the desired oscillation frequency) at an acceptable level of

power consumption. This requirement sets an upper limit on transistor sizes, and ulti-

mately on the VCO noise performance.

Before these limits on noise become relevant, the oscillation must be stable. For

the differential, common-base, Colpitts oscillator circuit developed for this work, non-

linear analyses indicate that both the negative resistance and the negative conductance

degenerate monotonically as the signal builds. In this instance, Kurokawa's stability crite-

rion [3] will be satisfied with either a parallel or a series resonance. This does not imply,

however, that both will work equally well. Since the chosen low voltage topology with

the collector inductors is constrained to the use of a parallel resonant circuit, it is impor-

tant to adjust the active element for increased negative conductance (as opposed to nega-

tive resistance). An effective mechanism for this adjustment has been shown to be the

total amount of capacitance in the feedback structure. Increasing this capacitance yields a

greater negative conductivity, which should provide for a larger oscillation amplitude.

Of course, the feedback capacitors are included in the resonator, so they also play

in setting the center frequency of the oscillation. For a VCO, this frequency must be tun-

able, and on-chip varactors have been incorporated for this purpose. More steeply doped

p-n junctions provide for a greater VCO gain, as do more lightly-doped varactors because

of their smaller built-in potentials. Within the circuit design, both the varactor size (to

change the amount of capacitance which is voltage-controlled) and the nominal reverse

bias voltage may be used as variables to help meet tuning range requirements. Other

important factors for consideration include the physical limitations of the junction (reverse

breakdown voltage), and also the Ohmic resistances in the device, which contribute to

overall quality factor degradation.

A total of four versions of the VCO designed in this work have been implemented

in a silicon bipolar technology. This oscillator is being used to explore issues for low

power wireless transmitters on a number of levels. To allow for experimentation in mini-

mizing power consumption, each circuit has been designed with the flexibility of individu-

ally setting bias levels by an external source. One of the circuit configurations employs a

differential control voltage input which offers possibilities of increased common-mode



noise rejection and external trimming of the VCO transfer characteristic, both of which

may prove useful in a system context. This version also incorporates voltage gain prior to

the oscillator, allowing VCO gain targets to be hit with smaller varactors. The remaining

variants are being used to evaluate the performance of different varactor structures against

the goals of reduced loss and increased tuning range.

Simulations indicate that the amplitude of the steady-state oscillation is relatively

unaffected until the supply is reduced to below 1 V from a nominal 1.8 V; this observation

is supported by preliminary measurements. Since the noise figure of bipolar transistors is

generally only weakly dependent upon the voltage across them, the consistency in oscil-

lation amplitude should lead to a situation where the degradation occurring in the phase

noise spectrum as the supply is lowered is outpaced by the power savings. However,

given an available resonator quality factor, overall system noise requirements will still

dictate the lower bound on power. The oscillator noise spectral density has been gauged

to be -118dBc/Hz at a 1MHz offset from a 1.7GHz carrier for the nominal design condi-

tions of 1.8V, 5mA. Oscillation is supported down to power consumption levels of

3.2mW from a 0.91 V supply, achieving -96dBc/Hz at the same carrier offset.
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