2,056 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    Generative Neural Network-Based Defense Methods Against Cyberattacks for Connected and Autonomous Vehicles

    Get PDF
    The rapid advancement of communication and artificial intelligence technologies is propelling the development of connected and autonomous vehicles (CAVs), revolutionizing the transportation landscape. However, increased connectivity and automation also present heightened potential for cyber threats. Recently, the emergence of generative neural networks (NNs) has unveiled a myriad of opportunities for complementing CAV applications, including generative NN-based cybersecurity measures to protect the CAVs in a transportation cyber-physical system (TCPS) from known and unknown cyberattacks. The goal of this dissertation is to explore the utility of the generative NNs for devising cyberattack detection and mitigation strategies for CAVs. To this end, the author developed (i) a hybrid quantum-classical restricted Boltzmann machine (RBM)-based framework for in-vehicle network intrusion detection for connected vehicles and (ii) a generative adversarial network (GAN)-based defense method for the traffic sign classification system within the perception module of autonomous vehicles. The author evaluated the hybrid quantum-classical RBM-based intrusion detection framework on three separate real-world Fuzzy attack datasets and compared its performance with a similar but classical-only approach (i.e., a classical computer-based data preprocessing and RBM training). The results showed that the hybrid quantum-classical RBM-based intrusion detection framework achieved an average intrusion detection accuracy of 98%, whereas the classical-only approach achieved an average accuracy of 90%. For the second study, the author evaluated the GAN-based adversarial defense method for traffic sign classification against different white-box adversarial attacks, such as the fast gradient sign method, the DeepFool, the Carlini and Wagner, and the projected gradient descent attacks. The author compared the performance of the GAN-based defense method with several traditional benchmark defense methods, such as Gaussian augmentation, JPEG compression, feature squeezing, and spatial smoothing. The findings indicated that the GAN-based adversarial defense method for traffic sign classification outperformed all the benchmark defense methods under all the white-box adversarial attacks the author considered for evaluation. Thus, the contribution of this dissertation lies in utilizing the generative ability of existing generative NNs to develop novel high-performing cyberattack detection and mitigation strategies that are feasible to deploy in CAVs in a TCPS environment
    corecore