
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

8-2023

Generative Neural Network-Based Defense Methods Against Generative Neural Network-Based Defense Methods Against

Cyberattacks for Connected and Autonomous Vehicles Cyberattacks for Connected and Autonomous Vehicles

M Sabbir Salek
Clemson University, msalek@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Civil Engineering Commons, and the Transportation Engineering Commons

Recommended Citation Recommended Citation
Salek, M Sabbir, "Generative Neural Network-Based Defense Methods Against Cyberattacks for Connected
and Autonomous Vehicles" (2023). All Dissertations. 3373.
https://tigerprints.clemson.edu/all_dissertations/3373

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3373?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

 i

GENERATIVE NEURAL NETWORK-BASED DEFENSE METHODS AGAINST

CYBERATTACKS FOR CONNECTED AND AUTONOMOUS VEHICLES

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Civil Engineering

by

M Sabbir Salek

August, 2023

Accepted by:

Dr. Mashrur Chowdhury, Committee Chair

Dr. Yao Wang

Dr. Feng Luo

Dr. Long Cheng

Dr. Sakib Mahmud Khan

 ii

ABSTRACT

The rapid advancement of communication and artificial intelligence technologies

is propelling the development of connected and autonomous vehicles (CAVs),

revolutionizing the transportation landscape. However, increased connectivity and

automation also present heightened potential for cyber threats. Recently, the emergence of

generative neural networks (NNs) has unveiled a myriad of opportunities for

complementing CAV applications, including generative NN-based cybersecurity measures

to protect the CAVs in a transportation cyber-physical system (TCPS) from known and

unknown cyberattacks. The goal of this dissertation is to explore the utility of the

generative NNs for devising cyberattack detection and mitigation strategies for CAVs. To

this end, the author developed (i) a hybrid quantum-classical restricted Boltzmann machine

(RBM)-based framework for in-vehicle network intrusion detection for connected vehicles

and (ii) a generative adversarial network (GAN)-based defense method for the traffic sign

classification system within the perception module of autonomous vehicles. The author

evaluated the hybrid quantum-classical RBM-based intrusion detection framework on

three separate real-world Fuzzy attack datasets and compared its performance with a

similar but classical-only approach (i.e., a classical computer-based data preprocessing and

RBM training). The results showed that the hybrid quantum-classical RBM-based intrusion

detection framework achieved an average intrusion detection accuracy of 98%, whereas

the classical-only approach achieved an average accuracy of 90%. For the second study,

the author evaluated the GAN-based adversarial defense method for traffic sign

classification against different white-box adversarial attacks, such as the fast gradient sign

 iii

method, the DeepFool, the Carlini and Wagner, and the projected gradient descent attacks.

The author compared the performance of the GAN-based defense method with several

traditional benchmark defense methods, such as Gaussian augmentation, JPEG

compression, feature squeezing, and spatial smoothing. The findings indicated that the

GAN-based adversarial defense method for traffic sign classification outperformed all the

benchmark defense methods under all the white-box adversarial attacks the author

considered for evaluation. Thus, the contribution of this dissertation lies in utilizing the

generative ability of existing generative NNs to develop novel high-performing cyberattack

detection and mitigation strategies that are feasible to deploy in CAVs in a TCPS

environment.

Keywords: Artificial Intelligence, Generative neural network, Cybersecurity, Defense

method, Connected vehicle, Autonomous vehicle, Quantum AI, Controller area network,

and Traffic sign classification

 iv

DEDICATION

I wholeheartedly dedicate my Ph.D. dissertation to my beloved father, Md.

Shahidul Islam, my lovely mother, Shoheli Jahan, and my closest friend and life partner,

Rizwana Akter. Their unwavering love and support have been instrumental in guiding me

through the challenges of my Ph.D. journey. They are my constant source of inspiration,

aspiration, and happiness.

 v

ACKNOWLEDGMENTS

I seize this moment with profound gratitude, an opportunity to extend my heartfelt

appreciation to all whose influence, whether direct or indirect, has paved the path to this

remarkable achievement. My words are insufficient to express my indebtedness to the

exceptional mentorship and unwavering support of Dr. Mashrur Chowdhury. Gratitude

abounds as I acknowledge the invaluable contributions of my esteemed Ph.D. committee

members: Dr. Yao Wang, Dr. Feng Luo, Dr. Long Cheng, and Dr. Sakib Mahmud Khan.

Their scholarly insights and constructive feedback have propelled me throughout this

academic excellence. I have been fortunate to be surrounded by remarkable colleagues and

friends at Clemson University, whose encouragement and mental fortitude bolstered me

through every obstacle I encountered. This transformative odyssey toward my Ph.D. has

been nothing short of an extraordinary expedition.

This work is based upon the work partially supported by the National Center for

Transportation Cybersecurity and Resiliency (TraCR) (a U.S. Department of

Transportation National University Transportation Center) headquartered at Clemson

University, Clemson, South Carolina, USA. Any opinions, findings, conclusions, and

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of TraCR, and the U.S. Government assumes no liability for the contents

or use thereof.

 vi

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

 I. INTRODUCTION ... 1

 Background and Motivation .. 1

 Research Hypotheses ... 3

 Research Objectives ... 4

 II. HYBRID QUANTUM-CLASSICAL RESTRICTED

 BOLTZMANN MACHINE-BASED IN-VEHICLE

 CONTROLLER AREA NETWORK INTRUSION

 DETECTION FOR CONNECTED VEHICLES 5

 Background and Motivation .. 5

 Contribution ... 7

 Related Work ... 8

 Hybrid Quantum-Classical Framework for CAN

 Intrusion Detection... 10

 Evaluation .. 19

 Discussion .. 27

 III. AR-GAN: GENERATIVE ADVERSARIAL NETWORK-BASED

DEFENSE METHOD AGAINST ADVERSARIAL ATTACKS

ON THE TRAFFIC SIGN CLASSIFICATION SYSTEM

OF AUTONOMOUS VEHICLES ... 29

 Background and Motivation .. 29

 vii

 Contribution ... 33

 Related Work ... 34

 Attack Models .. 39

 AR-GAN for Adversarial Attack Resilience in

 Traffic Sign Classification ... 42

 Evaluation Method ... 53

 Analysis and Results .. 58

 Discussion .. 66

 IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS............... 69

 Summary .. 69

 Conclusions .. 69

 Recommendations .. 72

APPENDICES ... 75

 A: Python Codes Related to Chapter Two .. 76

 B: Python Codes Related to Chapter Three .. 88

REFERENCES .. 112

 viii

LIST OF TABLES

Table Page

 2.1 Details of the CAN Datasets .. 21

 3.1 Model Architecture of the Classifier.. 46

 3.2 Model Architecture of the Generator ... 51

 3.3 Model Architecture of the Discriminator ... 52

 3.4 Comparison of Defense Methods on Unperturbed Images 62

 3.5 Comparison of Defense Methods under the FGSM Attack 62

 3.6 Comparison of Defense Methods under the DeepFool Attack 63

 3.7 Comparison of Defense Methods under the C&W Attack 64

 3.8 Comparison of Defense Methods under the PGD Attack 65

 ix

LIST OF FIGURES

Figure Page

 2.1 A Hybrid Quantum-Classical CAN Intrusion Detection Framework 11

 2.2 Steps in Classical Computer-based Data Preprocessing 12

 2.3 Schematic of an RBM Architecture ... 17

 2.4 CAN Fuzzy Attack Dataset .. 20

 2.5 Examples of Processed Binary CAN Images with Embedded Labels 23

 2.6 Comparison of CAN Intrusion Detection Performance 25

 3.1 AR-GAN Training Framework .. 43

 3.2 AR-GAN Traffic Sign Classification System .. 53

 3.3 Image Samples from the LISA Traffic Sign Dataset 55

 3.4 Examples of Preprocessed Images using Different Defense Methods 56

 3.5 Results of Sensitivity Analysis .. 59

 3.6 Performance under the FGSM Attack with Varied Perturbations 66

 3.7 Performance under the DeepFool Attack with Varied Perturbations 67

 3.8 Performance under the PGD Attack with Varied Perturbations 68

 1

CHAPTER ONE

INTRODUCTION

1.1 Background and Motivation

The global transportation sector is undergoing a swift and remarkable

transformation, driven by groundbreaking advancements in information and

communication technologies (“ICT for Transport,” n.d.). Yesterday's traditional

transportation systems are now being complemented by the evolving realm of

transportation cyber-physical systems (TCPS). These systems seamlessly connect diverse

modes of physical transportation systems with cutting-edge cyber systems to leverage

accelerated and highly efficient computational processes, as well as robust and fortified

data storage capabilities (McGregor et al., 2018). This paradigm shift has been facilitated

by recent breakthroughs in the field of artificial intelligence (AI), which have empowered

TCPS to seamlessly integrate automation into a myriad of applications that were previously

deemed arduous or perilous for human involvement. Among these remarkable

advancements, the rapid progress in connected and autonomous vehicles (CAVs) stands

out prominently.

As the name suggests, CAVs encompass two aspects, i.e., connectivity and

autonomy (“Connected/Automated Vehicles,” n.d.). If a vehicle is equipped with an

onboard communication device that enables the vehicle to communicate with the other

neighboring vehicles via vehicle-to-vehicle (V2V) communication, or with infrastructures

via vehicle-to-infrastructure (V2I) communication, or with a diverse range of other entities

 2

(e.g., pedestrians, bicyclists or other vulnerable road users) via vehicle-to-everything

(V2X) communication, then it is referred to as a connected vehicle (CV). Conversely, an

autonomous vehicle (AV) is characterized by a suite of sensors (e.g., cameras, ultrasonic

sensors, radio detection and ranging or Radar sensors, and light detection and ranging or

LiDAR sensors), sophisticated software, and supporting hardware that collectively enables

the vehicle to undertake driving tasks autonomously, without the involvement of a human

driver. When a vehicle combines both these capabilities—connectivity and automation—

it is regarded as a CAV, signifying a remarkable convergence of technological

advancements.

However, as the reliance on connectivity and autonomy intensifies, so does the

vulnerability to potential cyber threats (Sun et al., 2022). Attackers now have

unprecedented opportunities to exploit these systems, jeopardizing the confidentiality,

integrity, and availability of the TCPS. The consequences range from the theft of sensitive

information and invasion of privacy to the creation and dissemination of false/altered

information and the injection of malicious data and software into the TCPS, such as CAVs,

thereby posing significant risks to human safety, property, security, and privacy. As a

result, there is a growing imperative to develop attack detection and defense strategies to

enhance the security of the evolving TCPS, including CAVs, against both known and

unknown cyberattacks. The focus lies on detecting cyberattacks as well as fortifying these

systems to be inherently resilient against attacks, ensuring their robustness and ability to

withstand potential breaches.

 3

The current surge in AI, particularly in the realm of generative neural networks

(NNs), has opened new windows for data-driven approaches to attack detection and

mitigation (Sarker, 2021). Today, generative NNs possess the remarkable capacity to

generate diverse forms of content, ranging from textual compositions to intricate images,

captivating music, and even compelling artworks. Harnessing the immense generative

potential of these NNs, researchers have begun developing strategies for detecting and

mitigating cyberattacks that were inconceivable merely a decade ago. By training

generative NNs on authentic, non-attack datasets, they can be effectively employed to

identify and counteract cyber threats with remarkable ease and accuracy. This represents a

significant leap forward in the field of cybersecurity, leveraging the creative abilities of

generative NNs to safeguard against existing and emerging threats.

In this dissertation, the focus is to utilize such generative NNs to develop innovative

attack detection and mitigation strategies for CAVs operating in a TCPS environment. In

particular, the research endeavors presented in this dissertation are directed to (i) develop

a generative NN-based cyberattack detection strategy for CV’s in-vehicle network that

connects multiple in-vehicle sensors and systems, and (ii) develop a generative NN-based

defense method to protect the perception module of an AV from cyberattacks that is

responsible for perceiving and comprehending the surrounding environment of an AV to

facilitate precise navigate through roadways.

1.2 Research Hypotheses

The hypotheses of the research endeavors of this dissertation are as follows,

 4

1. A hybrid quantum-classical generative NN-based intrusion detection system

(IDS) performs better in detecting intrusions in the in-vehicle network of a CV

compared to a classical-only IDS in a TCPS environment, and

2. A generative NN-based attack-resilient AV traffic sign classification system

performs better in mitigating the effects of cyberattacks compared to other deep

NN-based defense methods.

1.3 Research Objectives

The objectives of the research endeavors of this dissertation are as follows,

1. To explore how the generative ability of generative NNs can be utilized to

devise an in-vehicle network intrusion detection framework for CVs in a TCPS

environment, and

2. To explore how the generative ability of generative NNs can be utilized to

develop an attack-resilient traffic sign classification system that requires no

prior knowledge about adversarial attack models and samples.

 5

CHAPTER TWO

HYBRID QUANTUM-CLASSICAL RESTRICTED BOLTZMANN MACHINE-

BASED IN-VEHICLE CONTROLLER AREA NETWORK INTRUSION DETECTION

FOR CONNECTED VEHICLES

2.1 Background and Motivation

Controller area network (CAN) is a de facto standard for the broadcast-based in-

vehicle message communication system to provide a dedicated, reliable, and efficient

communication channel for all in-vehicle connected electronic control units or ECUs.

Although CAN is widely popular among in-vehicle networks, it lacks common security

features, such as authentication. Attackers can easily inject false messages into a vehicle’s

CAN via the on-board diagnostic (OBD-II) port, the infotainment system, or wireless

communication. Thus, intrusion detection system (IDS) has been widely studied in recent

years due to the inherent vulnerabilities of CAN communication to cyberattacks (Lokman

et al., 2019; Wu et al., 2020; Young et al., 2019a). Researchers presented various IDSs

based on different machine learning and deep learning techniques (Lo et al., 2022; Moulahi

et al., 2021; Song et al., 2020; Minawi et al., 2020; Hossain et al., 2020). Besides the

variation in machine learning or deep learning techniques, different features and their

combinations have been attempted by researchers to improve CAN intrusion detection

accuracy. Some common features used in the existing studies include message timing (e.g.,

message frequency/rate and interval) (Moore et al., 2017), signatures (e.g., ID, time

interval, and correlation) (Jin et al., 2021), and anomaly (Lo et al., 2022).

 6

Beyond the classical computer-based machine learning and deep learning

algorithms, quantum computing can be used for CAN intrusion detection to detect the

increasing number of cyberattacks. Dong et al., 2022 presented a quantum beetle swarm

optimization-based extreme learning machine or ELM (i.e., a neural network (NN) where

randomly selected input weights and hidden layer biases are utilized for faster learning) for

network intrusion detection. The ELM in (Dong et al., 2022) provided higher detection

accuracy and faster convergence than several other classical intrusion detection systems,

such as backpropagation, support vector machine, improved rough ELM, particle swarm

optimization, and genetic algorithm optimization-based ELMs. Chen et al., 2020 applied

quantum computing for k-means clustering combined with a quantum-inspired ant lion

optimization algorithm for intrusion detection. Their approach improved the convergence

of k-means clustering to the global optimal solution. Caivano et al., 2022 presented a

quantum annealing or QA-based IDS for CAN that achieved similar detection accuracy for

denial of service and fuzzy attacks as of a classical classification technique with

significantly shorter training and prediction time than the classical technique.

This study presents a hybrid quantum-classical CAN intrusion detection framework

that utilizes a classical computer for data preprocessing to generate CAN images with

embedded labels and a quantum computer for restricted Boltzmann machine or RBM-based

CAN image reconstruction and classification to detect CAN intrusions. A restricted

Boltzmann machine or RBM is a widely used energy-based generative stochastic NN

model. The training process of an RBM can be done using different algorithms, such as

contrastive divergence (CD) (Hinton, 2012) and quantum annealing (QA) (Adachi and

 7

Henderson, 2015). QA provides more accurate gradient estimates for training RBMs

compared to CD-based training for problems with high energy gaps between modes, as

shown by Korenkevych et al., 2016. Dixit et al., 2021 trained an RBM model using D-

Wave 2000Q QA with 64 visible and 64 hidden units, a task difficult to achieve using a

gate-based approach. Such QA-based training can also be utilized for training RBM models

to detect intrusions in an in-vehicle CAN, which is the motivation for this study.

2.2 Contribution

In a transportation cyber-physical system or TCPS environment, classical and

quantum computers can be used together in a hybrid fashion for CAN intrusion detection.

For example, Islam et al., 2022 presented a hybrid quantum-classical NN-based framework

for CAN intrusion detection that outperformed both the classical-only and quantum-only

approaches by overcoming the limitations of each of them. However, to the best of the

author’s knowledge, a hybrid approach of a classical NN and a quantum RBM has not been

undertaken for CAN intrusion detection yet. Besides, existing studies on NN-based CAN

IDS do not consider embedding labels directly into the corresponding CAN images to

leverage the image generation capability of generative NNs for an image classification-

based CAN IDS. Utilizing the QA-based training of an RBM, which enables sampling from

the original probability distribution of the model, the CAN image (embedded with

dedicated labeling pixels) reconstruction-based CAN intrusion detection framework offers

more efficient learning (i.e., faster convergence with high detection accuracy) compared to

the existing generative NN-based CAN IDSs. Thus, this study contributes to the existing

body of CAN IDS literature by presenting a hybrid quantum-classical framework for CAN

 8

intrusion detection leveraging the image generation capability of generative NNs to

reconstruct the embedded labels in CAN images, which can then be used for image

classification-based CAN intrusion detection.

2.3 Related Work

CAN intrusion detection has been widely studied by researchers in recent years

because of the inherent vulnerabilities of CAN communication due to its broadcast-based

nature. As a result, the existing body of literature is quite vast, and there are also several

survey studies on CAN intrusion detection systems (Buscemi et al., 2023; Jo and Choi,

2022; Lampe and Meng, 2023; Lokman et al., 2019; Rajapaksha et al., 2023; Young et al.,

2019b). Since the author developed a hybrid quantum-classical framework that utilizes a

generative NN, in this section, the author explicitly focuses on reviewing studies that used

generative NN models for CAN intrusion detection. The studies reviewed here are

presented in chronological order.

Seo et al., 2018 developed a generative adversarial network (GAN)-based IDS for

in-vehicle networks that is able to detect unknown attacks while using only normal data

(i.e., non-attack data) for training. The generator in their GAN-based IDS generates fake

CAN images to train the discriminator to distinguish between normal and fake CAN

images. The authors in (Seo et al., 2018) evaluated their GAN-based IDS for denial of

service (DoS), FUZZY, RPM, and GEAR attack datasets and obtained 97.9%, 98%, 98%,

and 96.2% accuracies, respectively.

Xie et al., 2021 developed a GAN-based CAN IDS utilizing an enhanced GAN

model to overcome the limitation of generating rough CAN message blocks in other GAN-

 9

based IDSs. The authors in (Xie et al., 2021) tested their CAN IDS against DoS, injection,

masquerade, and data tampering attacks and achieved approximately 99% precision, recall,

and F1 score for the tested attack types.

Nam et al., 2021 developed a generative pretrained transformer (GPT)-based CAN

IDS that can learn normal CAN ID sequences to detect any small changes in the sequence

due to an attack. The authors used two GPT NNs arranged in a bi-directional manner to

learn both past and future CAN ID sequences. The authors in (Nam et al., 2021) evaluated

their CAN IDS for flooding, spoofing, replay, and fuzzing attacks, which showed a

minimum 95% attack detection F-measure.

Zhang et al., 2021 developed a CAN fuzz testing method to filter fuzzy messages

using a GAN to generate fuzzy messages and an Adaptive Boosting-based detection system

to detect anomalies in CAN communication due to the fuzzy message injection. The

Adaptive Boosting-based anomaly monitor in (Zhang et al., 2021) was shown to be able to

detect even slight anomalies in CAN communication.

Q. Zhao et al., 2022 developed a CAN IDS based on Auxiliary Classifier GAN

(ACGAN) and out-of-distribution detection. Their proposed IDS consists of two stages of

classifiers. In the first stage, an ACGAN-based multi-class classifier is responsible for

classifying normal and known attacks and filtering out-of-distribution samples. In the

second stage, a binary classifier is responsible for detecting unknown attacks from the out-

of-distribution samples found in the first-stage classifier. The authors in (Q. Zhao et al.,

2022) achieved an average of 99% recall, 99% precision, and 99% F1 score for DoS, fuzzy,

GEAR spoofing, and RPM attack detections.

 10

Y. Zhao et al., 2022 developed a novel CAN intrusion attack method called the

same origin method execution (SOME) attack and a GAN-based CAN IDS. Their proposed

CAN IDS utilizes one-hot encoding with an adopted GAN network known as GANomaly

(Akcay et al., 2019). The authors in (Y. Zhao et al., 2022) tested their CAN IDS against

spoofing, bus-off, masquerade, and SOME attacks and achieved a minimum of 91% and

93% detection accuracy for two test vehicles under all four types of attacks mentioned

above.

Although the studies listed in this section utilize one or more generative NN models

for either training their IDS or detecting in-vehicle CAN intrusions, or doing both, none of

the studies have considered embedding the label as a set of pixels directly into the

corresponding CAN image, and then reconstructing the CAN image using a quantum RBM

for CAN intrusion detection. This study developed a hybrid quantum-classical CAN

intrusion detection framework leveraging RBM’s generative ability to reconstruct the

embedded labeling pixels in a CAN image and then utilize the reconstructed CAN image

for CAN intrusion detection.

2.4 Hybrid Quantum-Classical Framework for CAN Intrusion Detection

In this section, the author presents the hybrid quantum-classical framework for

CAN intrusion detection using a classical computer for data preprocessing and a quantum

computer for image reconstruction and classification. The steps involved in the hybrid

quantum-classical framework for CAN intrusion detection are presented in Figure 2.1.

 11

2.4.1 Classical Computer-based Data Preprocessing

CAN messages can include different data fields, such as timestamp, CAN

arbitration ID (i.e., an ID allocated to an in-vehicle system based on its CAN message

broadcasting priority), data length code (i.e., a code that represents the length of the data

contained in a CAN message), data (i.e., a string that contains various information in an

encoded format related to the system that is broadcasting the CAN message), cyclic

redundancy check or CRC sequence (i.e., an error-detecting code), and acknowledgment.

In the hybrid quantum-classical CAN intrusion detection framework, the author converts a

set of CAN messages into a CAN image that not only contains the information included in

the CAN messages but also contains a label representing whether the CAN messages are

normal messages or attack messages (i.e., injected false messages by an attacker). The steps

to convert the CAN messages into label-embedded CAN images are as follows, 1) primary

CAN image construction, 2) feature extraction using a classical NN, and 3) binary encoding

and label embedding. Figure 2.2 presents the details of data preprocessing based on a

classical computer.

FIGURE 2.1 A Hybrid Quantum-Classical CAN Intrusion Detection Framework.

 12

2.4.1.1 Primary CAN Image Construction

The data contained in a CAN message is typically encoded (e.g., HEX-encoded).

Thus, the first step for primary CAN image construction is to decode the encoded data

using the corresponding database CAN (DBC); a DBC contains relevant information to

decode CAN messages that may vary based on a vehicle’s make, model, and year. Once

decoded, a set of features containing data from different in-vehicle sensors is obtained.

Then, the author constructs an N × N primary CAN image using a set of N consecutive

CAN messages with the same CAN ID, where N is the number of decoded features present

in a CAN message with that CAN ID. Thus, in a primary CAN image, a row represents a

single CAN message, whereas a column represents a feature.

FIGURE 2.2 Steps in Classical Computer-based Data Preprocessing.

 13

2.4.1.2 Feature Extraction using a Classical NN

The author uses a classical NN to extract features from an N × N primary CAN

image to create an 8 × 8 secondary CAN image following the feature extraction procedure

presented in (Islam et al., 2022). In a later stage, when the author utilizes a QA-based RBM,

the author considers 64 neurons in each layer. Thus, the motivation to create 8 × 8 CAN

images from N × N primary CAN images is to be able to map each pixel of an image to a

neuron of the visible layer of an RBM, which the author will discuss in section 2.4.2. The

feature extraction using a classical NN can be described as follows,

𝐿8×8 = 𝐿𝑝−1◯ 𝐿𝑝−2 ◯ 𝐿𝑝−3◯ … . . ◯𝐿1 ◯ 𝐿0 (1)

𝐿𝑛 ∶ 𝑥𝑛−1

→ 𝑥𝑛 = 𝜙 (𝑊𝑛𝑥𝑛−1 + 𝑣𝑛) (2)

Here, 𝐿8×8 denotes the output of a classical NN, p denotes the number of layers, 𝐿𝑛 denotes

the 𝑛𝑡ℎ layer of the classical NN, 𝑥𝑛−1 denotes the input vector of 𝐿𝑛, 𝑥𝑛 denotes the output

vector of 𝐿𝑛, 𝑊𝑛 denotes the weight, 𝑣𝑛 denotes a bias vector, and 𝜙 denotes a nonlinear

function. The model parameters (𝑊𝑛, 𝑑, 𝑣𝑛) are to be optimized while training the classical

NN.

2.4.1.3 Binary Encoding and Label Embedding

The author resize the 8 × 8 secondary CAN images into 8 × 6 reduced-size

secondary CAN images to allocate two rightmost columns, i.e., a total of 16 bits of each

image, for embedding the corresponding label to indicate whether the image is a normal

image or an attack image. Then, binary encoding is performed on each 8 × 6 image. In a

binary CAN image, each row represents a six-bit binary string: 𝑥𝑚 = (𝑏1, 𝑏2, … , 𝑏6), where

𝑏𝑖 ∈ {0,1} ∀ 𝑖 = 1, 2, … , 6, and 𝑚 represents the row number. Each bit is a binary

 14

representation of a pixel in an 8 × 6 reduced-size secondary CAN image, e.g., 𝑏1 = 1 in

𝑥𝑚 indicates the first feature is present in the 𝑚-th row, whereas 𝑏1 = 0 indicates the first

feature is absent in the 𝑚-th row. Binary image thresholding with a fixed threshold value

of 0.5 is used to generate a binary CAN image 𝑥𝑚 from an 8 × 6 reduced-size secondary

CAN image (Islam et al., 2022). After performing binary encoding, each binary CAN

image of 8 × 6 size is embedded with the corresponding image label, i.e., whether the

image represents an attack image or a normal image. This embedding is either an 8 × 2

matrix of all ones when an image represents an attack image, or an 8 × 2 matrix of all

zeroes when an image represents a normal image. Then, this 8 × 2 matrix is concatenated

horizontally with the corresponding 8 × 6 binary CAN image giving each final processed

binary CAN image with the embedded label an overall size of 8 × 8.

2.4.2 Quantum RBM for CAN Image Reconstruction and Binary Classification

The final processed binary CAN images with embedded labels are reconstructed by

a quantum RBM and then used for binary classification based on the reconstructed

dedicated bits in the images for labeling. In this framework, the author considers an

adiabatic quantum computer offered by D-Wave, which is based on superconducting

electronics and allows QA-based sampling (“What is Quantum Annealing? — D-Wave

System Documentation documentation,” n.d.) for image reconstruction and classification.

In this subsection, the author starts with the motivation for using quantum computers for

training RBM models and presents the details of RBM-based CAN image reconstruction.

Quantum computing utilizes the principles of quantum mechanics to process

information. As opposed to classical computers that use classical bits (i.e., 0 and 1),

 15

quantum computers use quantum bits (qubits) represented by photons, atoms, ions, etc., to

process information. Besides, due to quantum phenomena, such as superposition and

entanglement, quantum computing has the potential to process information at a much

higher rate compared to classical computers. Unlike a classical bit that can only take a

value of 0 or 1, a qubit can be in a state of 0, 1, or any combination of 0 and 1, known as

superposition. A classical system with four bits can be used to represent only one out of 24

or 16 combinations at once, whereas a quantum computer with four qubits can represent

all 16 combinations simultaneously using superposition. On the other hand, the

entanglement of two qubits refers to a quantum phenomenon that enables a quantum

computer to instantaneously determine the state of an entangled qubit by only measuring

the state of the other entangled qubit. Because of such uniqueness, it has been theorized

over the last few decades by researchers that quantum computers could potentially solve

complex problems exponentially faster than classical computers. Indeed, in 1994, Daniel

Simon came up with an algorithm known as Simon’s algorithm, which was among the first

of its kind to prove that a quantum algorithm is capable of exponentially speeding up the

computations compared to a classical computer. Peter Shor discovered Shor’s algorithm

the same year, which is considered one of the most famous and influential quantum

algorithms so far, to factorize a given integer in polynomial time.

Quantum computing has also shown tremendous potential in speeding up complex

optimization problems; for example, Stokes et al., 2020 presented a generalized

optimization framework using quantum natural gradient descent, which was proved to

significantly speed up an optimization problem compared to its classical counterpart. The

 16

gradient descent-based model parameter update rule is among the most fundamental

algorithms for developing most ML and DL models nowadays. However, for a complex

non-linear optimization problem, gradient descent-based ML or DL model training often

suffers from non-convergence issues due to getting stuck at a local minimum. Thus,

reaching the global minimum for such problems is sometimes challenging and

computationally expensive for classical computers, which can be eased down by using a

quantum approach.

In this study, the author is particularly interested in developing RBM models using

a quantum computer. RBM is an energy-based stochastic generative NN model, which can

be represented by a bipartite graph (i.e., only nodes from alternate layers between two

layers can be connected) consisting of two layers of nodes known as visible layer and

hidden layer nodes (as shown in Figure 2.3). Each connection is associated with a weight,

while the corresponding nodes are associated with biases. The energy function of an RBM

is given by,

𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑣𝑖

𝑖

− ∑ 𝑏𝑗ℎ𝑗

𝑗

− ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗

𝑖,𝑗

 (3)

where, 𝑣𝑖 and ℎ𝑗 are two visible and hidden layer nodes, and 𝑎𝑖 and 𝑏𝑗 are their associated

biases, respectively; and 𝑤𝑖𝑗 is the weight of the connection between 𝑣𝑖 and ℎ𝑗 . Here, the

probability of a given state (𝑣, ℎ) is given by,

𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) (4)

where, 𝑍 is a partition function used for normalization and is given by,

 17

𝑍 = ∑ 𝑒−𝐸(𝑣,ℎ)

(𝑣,ℎ)

 (5)

As it is difficult to compute all the possible combinations of 𝑣 and ℎ, computing 𝑍

is a computationally expensive process. In CD-based training, this problem is simplified

by assuming that the variables are independent. The readers are referred to (Hinton, 2012)

for CD-based training.

Alternatively, an RBM model can be mapped to a binary quadratic model (BQM),

in which the variables are essentially binary, and the model is a combination of linear and

quadratic terms. The objective function of a BQM is given by the Ising model, which is

shown in the following equation,

𝐸𝑖𝑠𝑖𝑛𝑔(𝒔) = ∑ ℎ𝑖𝑠𝑖 + ∑ ∑ 𝐽𝑖,𝑗𝑠𝑖𝑠𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

𝑁

𝑖=1

 (6)

where, 𝒔 is a vector of binary variables representing the spins, i.e., 𝑠𝑖 ∈ {−1, +1}, and ℎ

denotes the linear coefficients associated with the qubit biases, and 𝐽 denotes the quadratic

coefficients associated with the coupling strengths. A similar way to represent the BQM

FIGURE 2.3 Schematic of an RBM Architecture.

 18

models in computer science is the quadratic unconstrained binary optimization (QUBO)

model, where the objective function is given by the following equation,

𝑓(𝒙) = ∑ 𝑄𝑖𝑖𝑥𝑖

𝑖

+ ∑ 𝑄𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗

 (7)

where, 𝒙 is a vector of binary variables such that 𝑥𝑖 ∈ {0,1} 𝑸 is an N × N upper triangular

matrix consisting of weights, i.e., 𝑄𝑖𝑗 represents the element of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column

of 𝑸, and 𝑄𝑖𝑖 represents the diagonal element of the 𝑖𝑡ℎ row of 𝑸; and 𝑥𝑖 and 𝑥𝑗 are the 𝑖𝑡ℎ

and the 𝑗𝑡ℎ elements of 𝒙, which is a vector of binary variables. Note that, the conversion

between the functions presented in (6) and (7) is trivial as (7) simply performs a linear

transformation to change the spins (𝑠𝑖) to a binary variable 𝑥𝑖, i.e., 𝑥𝑖 =
1

2
(1 + 𝑠𝑖). Thus,

the energy function of an RBM in (3) can also be mapped to the objective function of a

QUBO problem in (7).

As presented in (Lucas, 2014), a QUBO problem as in (7) can be expressed as a

Hamiltonian given by the following equation,

𝐻(𝒙) = − ∑ 𝑄𝑖𝑖𝜎𝑖
𝑧

𝑖

− ∑ 𝑄𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

𝑖<𝑗

 (8)

where, 𝜎𝑖
𝑧 denotes a Pauli-Z gate applied on the 𝑖-th qubit. In (Kadowaki and Nishimori,

1998), the authors presented how to solve such problems using QA by extending the

Hamiltonian in (8) with a transverse field. QA is an optimization technique to find the

global optimum of an objective function from a given set of candidates (Nonnenmann and

Bogomolec, 2021). The Hamiltonian with a transverse field can be written as follows,

 19

𝐻(𝒙) = −𝐴(𝒙) ∑ 𝜎𝑖
𝑥

𝑖

− 𝐵(𝒙) [∑ 𝑄𝑖𝑖𝜎𝑖
𝑧

𝑖

+ ∑ 𝑄𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

𝑖<𝑗

] (9)

where, 𝐴 and 𝐵 are two weighting functions, and 𝜎𝑖
𝑥 denotes a Pauli-X gate applied on the

𝑖-th qubit. In (Kadowaki and Nishimori, 1998), the authors proved that using the

Hamiltonian in (9), QA could lead to fast convergence (i.e., reaching the ground state with

the lowest energy in (9)) with much higher probability than its classical counterpart.

D-Wave is a commercially available QA system that can be utilized to solve such

QUBO problems using the Hamiltonian given in (9) (D-Wave Systems Inc., n.d.). Thus,

the author chose to utilize a D-Wave QA system (i.e., D-Wave Advantage 4.1 system with

over 5,000 qubits) for training the quantum RBM models in this study. Besides, using D-

wave’s quantum sampler, the author can obtain accurate samples from the original

probability distribution of the model given in (4) (Kurowski et al., 2021). Obtaining

accurate samples from the original probability distribution is a computationally expensive

task for classical computers. However, unlike CD-based training, assuming that the

variables are independent is unnecessary while using QA-based training. The author refers

the readers to (Kurowski et al., 2021) for the details of an RBM implementation using

QUBO and QA-based training, which the author adopted in this framework.

2.5 Evaluation

In this section, the author presents an evaluation of the hybrid quantum-classical

CAN intrusion detection framework based on data collected from a real-world vehicle. To

evaluate the efficacy of the framework, the author compares the intrusion detection

performance of the framework developed in this study with a similar but classical-only

 20

framework, i.e., all the steps of the classical-only framework are accomplished in a

classical computer, including the RBM-based image reconstruction. In this section, first,

the author will discuss the datasets the author used for this evaluation. Next, the author will

explain the details of CAN intrusion detection based on the framework presented in section

2.4. Finally, the author will present the results obtained from the evaluation.

2.5.1 Dataset

For evaluation, the author used a CAN intrusion dataset created by the Hacking and

Countermeasure Research Lab (HCRL) (Han et al., 2018). The datasets in (Han et al.,

2018) include different CAN intrusion datasets, such as fuzzy, malfunction, and replay

attack datasets. For this study, the author used a fuzzy attack dataset created by injecting

randomly generated CAN messages into the CAN bus of a KIA Soul vehicle. Thus, the

dataset includes both the injected CAN messages as well as the normal CAN messages. As

shown in Figure 2.4, the dataset contains the following fields: (i) timestamp, (ii) CAN ID

(in Hex), (iii) data length code (DLC), (iv) data (encoded as a Hex string), and (v) flag (‘R’

represents a normal message, and ‘T’ represents an injected message). The author divided

the messages into different datasets based on the associated CAN IDs and selected three

datasets based on randomly chosen CAN IDs, i.e., dataset 1 (with CAN ID: 0x220), dataset

FIGURE 2.4 CAN Fuzzy Attack Dataset.

 21

2 (with CAN ID: 0x316), and dataset 3 (with CAN ID: 0x329), that contain both the normal

and injected messages. Each CAN ID is dedicated to broadcasting a particular set of

information. Thus, the three datasets used here contain different sets of information

encoded as Hex strings. Details of the datasets are presented in Table 2.1.

TABLE 2.1 Details of the CAN Datasets

Dataset Size

No. of

normal

messages

No. of attack

(injected)

messages

No. of

features

Some example features

1 2,384 1,192 1,192 14

LAT_ACCEL,

LONG_ACCEL,

CYL_PRES,

YAW_RATE,

YAW_RATE_DIAG,

and ESP12_Checksum

2 2,684 1,324 1,324 13

SWI_IGK, F_N_ENG,

ACK_TCS,

PUC_STAT,

TQ_COR_STAT, and

TQFR

3 1,800 900 900 19

MUL_CODE,

TEMP_ENG, ACK_ES,

 22

Dataset Size

No. of

normal

messages

No. of attack

(injected)

messages

No. of

features

Some example features

TPS, ACC_ACT,

ENG_CHR, and

ENG_VOL

2.5.2 CAN Intrusion Detection

First, the author decoded the encoded data fields in each dataset using a generic

Database CAN (DBC) file for KIA vehicles from the OpenDBC repository (“OpenDBC,”

n.d.). After decoding, the author obtained several features containing data from different

in-vehicle sensors. Table 2.1 lists some example features for each dataset. Next, the author

constructed primary CAN images from the decoded CAN messages in each dataset. Each

primary CAN image is obtained by vertically stacking 𝑁 consecutive decoded CAN

messages from a dataset, where 𝑁 is the number of decoded features in that dataset. Then,

the author trained a classical NN to extract features from the primary CAN images in the

form of 8 × 8 secondary CAN images, as explained in section 2.4.1.2. The 8 × 8 secondary

CAN images were resized to 8 × 6 to allocate the two rightmost columns for the labeling

bits. After embedding the labels into the 8 × 6 CAN images, the author obtained the final

processed 8 × 8 CAN images with embedded labels, as explained in section 2.4.1.3. Figure

2.5 provides some examples of the binary encoded CAN images with embedded labels.

 23

The final processed CAN images in each dataset were divided into a training dataset

(including randomly shuffled 80% of the CAN images) and a test dataset (including the

remaining 20% of the CAN images). For each training dataset, the author trained a classical

RBM model using CD-based training and a quantum RBM model using QA-based training.

The QA-based training of QRBM models was performed using the D-Wave Advantage 4.1

System, whereas the CD-based training for the classical RBM models was performed on a

classical computer. The hyperparameters (i.e., learning rate, number of epochs, weights,

and biases) of each RBM model were optimized to yield the best CAN intrusion detection

performance. Both classical and quantum RBM models included 64 visible layer nodes and

64 hidden layer nodes that resulted in 64 visible layer biases, 64 hidden layer biases, and

64 × 64 weights to be trained. The same training and test datasets were used for training

FIGURE 2.5 Examples of Processed Binary CAN Images with Embedded Labels.

 24

both the classical and the quantum RBM models for comparison. The source code is

provided in Appendix A and GitHub (Salek, 2022).

For evaluation, the labeling bits of each CAN image in a test dataset are first

replaced by random binary bits. The trained RBM models are then used for reconstructing

the CAN images in the test datasets. A reconstructed image is classified as a normal image

if most of the bits among the 16 bits dedicated for labeling indicate a normal image;

otherwise, the reconstructed image is classified as an attack image.

2.5.3 Evaluation Metrics

The CAN intrusion detection task in this study (i.e., fuzzy attack detection) falls

under the category of binary classification (i.e., attack data or normal data). Therefore,

classification accuracy (i.e., CAN intrusion detection accuracy) is considered the primary

evaluation metric in this study. Recall is considered the secondary evaluation metric since

it provides a measure of correctly detected attack data among all the attack data. Binary

classification accuracy and recall are given by,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11)

where, TP, TN, FP, and FN denote the total number of true positives, the total number of

true negatives, the total number of false positives, and the total number of false negatives,

respectively.

 25

2.5.4 Evaluation Results

Figure 2.6 presents the accuracies and recalls of the classical RBM, and the

quantum RBM approaches for each dataset. As observed from Figure 2.6, the quantum

RBM approach outperformed the classical RBM approach for all three datasets used in this

study. Among the three datasets, the minimum and maximum CAN intrusion detection

accuracies while using the quantum RBM approach were 97% and 98.3%, respectively,

whereas the minimum and maximum CAN intrusion detection accuracies for the classical

RBM approach were 86.7% and 95%, respectively. On the other hand, the minimum and

maximum recall for the quantum RBM approach were 93.9% and 97.2%, respectively,

whereas the minimum and maximum recall for the classical RBM approach were 70.7%

and 89.8%. Thus, the hybrid quantum-classical framework was able to improve both the

accuracies and recalls for CAN intrusion detection on all three datasets used in this study

FIGURE 2.6 Comparison of CAN Intrusion Detection Performance.

 26

compared to the classical-only framework. This improvement in intrusion detection

performance while using the quantum RBM can be attributed to several factors. Quantum

DL models have been reported in the literature to achieve similar or better classification

performance while being trained on a much smaller dataset compared to their classical

counterparts (Caro et al., 2022). This implies that while being trained on the same dataset

and using the same DL model architecture with the same number of model parameters,

quantum DL models might achieve better classification performance compared to the

classical DL models, which aligns with the observations of this study. Training ML or DL

models heavily utilizes optimization-based approaches for updating the model parameters.

However, a classical computing-based optimization process might get stuck at some local

minima, which can be overcome by utilizing a quantum optimization approach as it

leverages quantum tunneling to bypass local minima and reach the global minimum

quickly. Quantum tunneling enables atoms, electrons, or photons to pass through potential

energy barriers, which helps in bypassing local minima to reach the global minimum. In

addition, the hybrid framework utilized D-Wave’s QA-based sampling for the RBM that

enables accurate sampling from the original probability distribution of the model, unlike

the CD-based RBM used in the classical-only framework that samples from the conditional

probability distribution, as discussed in section 2.4.2. Also, unlike other generative NNs

(e.g., generative adversarial network or GAN and generative pretrained transformer or

GPT) that would require rigorous training to obtain a well-performing CAN IDS, the

hybrid framework utilizes a simpler generative NN architecture of an RBM that can quickly

learn to detect attacks by learning the patterns of normal and attack CAN images embedded

 27

with labeling pixels. All of the quantum RBM models in this study converged within a

comparable number of epochs while yielding an overall higher attack detection accuracy

and recall than the classical RBM, which proves the efficacy of the hybrid quantum-

classical CAN intrusion detection framework.

2.6 Discussion

In this study, the author presented a hybrid quantum-classical CAN intrusion

detection framework utilizing a classical NN and a quantum RBM. In this framework, data

preprocessing is done in a classical computer to generate CAN images with embedded

labeling pixels from CAN messages. A quantum RBM is used in the framework to

reconstruct each CAN image along with its labeling pixels, which is then applied for image

classification-based CAN intrusion detection. The author evaluated the hybrid quantum-

classical CAN intrusion detection framework on three different real-world fuzzy attack

datasets and compared the CAN intrusion detection performance of the hybrid framework

with a similar but classical-only framework (i.e., classical computer-based data

preprocessing and RBM training). Based on the experiments conducted on the datasets, the

minimum accuracy and recall for the hybrid framework were 97% and 93.9%, respectively.

In contrast, for the similar but classical-only framework, the minimum CAN intrusion

detection accuracy and recall were 86.7% and 70.7%, respectively.

It should be noted that although the hybrid quantum-classical CAN intrusion

detection framework utilizes a quantum computer to train the RBM, once the RBM is

trained to yield a desired intrusion detection performance, the quantum computer is not

used anymore. The trained model can then be transferred to an in-vehicle computing unit

 28

where the entire process of CAN intrusion detection will take place. This will help

minimize the end-to-end latency in CAN intrusion detection to a point where it can perform

as a real-time cyberattack detection application.

 29

CHAPTER THREE

AR-GAN: GENERATIVE ADVERSARIAL NETWORK-BASED DEFENSE

METHOD AGAINST ADVERSARIAL ATTACKS ON THE TRAFFIC SIGN

CLASSIFICATION SYSTEM OF AUTONOMOUS VEHICLES

3.1 Background and Motivation

Autonomous vehicles (AVs) perform the autonomous driving task with the help of

a suite of sensors and software. Sensors, such as cameras, light detection and ranging

(LiDAR) sensors, radio detection and ranging (Radar) sensors, and ultrasonic sensors, help

AVs perceive their surrounding environment like humans do using their sensory systems

(Marti et al., 2019). These sensors feed their sensed data to the AV perception module,

where the necessary information for autonomous navigation is extracted. This information

includes recognizing traffic signs and signals and detecting lane markings, surrounding

vehicles, pedestrians, obstacles, etc. Any alteration to this information due to compromised

security may result in severe consequences, such as fatal crashes. In addition, if AVs are

connected with other vehicles via vehicle-to-vehicle (V2V) communication, with

infrastructures via vehicle-to-infrastructure (V2I) communication, and with other entities

via vehicle-to-everything (V2X) communication, then the potential attack surfaces increase

dramatically (Sharma and Gillanders, 2022; Sun et al., 2022).

Nowadays, even many human-driven vehicles have dashboard camera-based built-

in traffic sign classification systems. These systems are typically highly dependent on

machine learning (ML) or deep learning (DL) models, especially deep NNs (DNNs) (Wali

et al., 2019). However, since AVs rely on such systems to realize roadway regulations and

 30

act accordingly, such as performing a braking or acceleration maneuver, compromised

information regarding roadway traffic signs can be more hazardous for AVs compared to

any human-driven vehicles. For example, if an AV's traffic sign classification system

misclassifies a STOP sign as a SPEED LIMIT sign and fails to stop at a stop-controlled

intersection, it may crash on other vehicles or run over a vulnerable road user like a

pedestrian. Thus, researchers have emphasized developing DNN-based accurate traffic

sign classification systems over the past few years. Some of these classification systems

were reported to perform exceptionally well under uncompromised security situations.

However, DNN-based classification systems have some cybersecurity

vulnerabilities. For example, an adversarial attack can introduce slight perturbations to the

input images or video frames fed to a traffic sign classification system and cause the

underlying DNN models to misclassify the signs on the roadway with very high

confidence. These perturbations can be so minimal that they are almost imperceptible to

regular human eyes. However, they can be very effective in fooling the DNN models used

in AVs’ traffic sign classification systems. In this study, the author aims to develop an AV

traffic sign classification system resilient to such adversarial attacks.

Adversarial attacks can be targeted or untargeted. In a targeted attack, the attack

model aims to make a classification system predict a specific target label. For example, a

targeted attack can be crafted to force an AV traffic sign classification system to misclassify

the STOP signs on the roadway as YIELD signs. In contrast, an untargeted attack aims to

force a classification system to misclassify without any specific target label. Another way

to categorize adversarial attacks is based on the knowledge the attack model or the attacker

 31

has about the DNN models responsible for classification. If the attacker has no knowledge

about the DNN models, e.g., its architecture, parameters, or its defense methods, then it is

called a black-box attack. If the attacker has knowledge about the DNN models, e.g., its

architecture and parameters, but does not have any information about the defense methods,

then it is known as a gray-box attack. On the other hand, if the attacker has complete

knowledge of the DNN models and its defense methods, then the attack is called a white-

box attack. Without a doubt, the victim, in this case, the DNN-based classification system,

is at a maximum disadvantage during a white-box attack because the attacker might craft

an adversarial attack in a way so that the DNN-based classification system and its defense

methods remain utterly unaware of the fact that there was an attack. In this study, the goal

is to develop an AV traffic sign classification system that is resilient to such white-box

attacks because, in a connected and AV environment, it is only reasonable to assume that

an attacker might get access to this information even without physically accessing the AV.

Different defense methods have been proposed by researchers over the past few

years to protect image classification systems from adversarial attacks (Khamaiseh et al.,

2022), such as modification of the DNNs (Papernot et al., 2016; Ross and Doshi-Velez,

2018), adversarial training (Bai et al., 2021), input transformation (Liu et al., 2019; Xu et

al., 2018), and input reconstruction (Jin et al., 2019; Laykaviriyakul and Phaisangittisagul,

2023; Samangouei et al., 2018). The recent breakthroughs in generative adversarial

networks (GANs) have opened opportunities to utilize GANs for defense against

adversarial attacks. For example, Samangouei et al., 2018 introduced a Wasserstein GAN

(WGAN)-based defense method, known as the Defense-GAN, that can protect image

 32

classification systems against known and unknown adversarial attacks by reconstructing

the input images before feeding them to a classifier. The generator model in the Defense-

GAN method was trained on to generate samples similar to the unperturbed (legitimate)

images given a random input latent vector. The random input latent vector is determined

by solving an optimization problem to minimize the reconstruction error of the generator.

However, WGAN is known for suffering from issues associated with the weight clipping

method it uses, such as vanishing gradient and non-convergence of the discriminator,

which makes it training an appropriate WGAN model very difficult (Gulrajani et al., 2017).

In (Jin et al., 2019), Jin et al. developed a defense method for image classification systems

against adversarial attacks called the Adversarial Perturbation Elimination with GAN

(APE-GAN). The generator of the APE-GAN was trained with adversarial examples to

eliminate adversarial perturbations by making changes to the input images. However, the

authors in (Jin et al., 2019) also utilized the loss function of WGAN, which has the same

issues as mentioned above. Besides, adversarial training-based defense methods work well

for known attacks only. Laykaviriyakul and Phaisangittisagul, 2023 proposed an

adversarial defense framework for image classification systems based on the DiscoGAN

architecture (Kim et al., 2017), where the authors utilized an attacker model to create

adversarial examples from the training data and a defender model to reconstruct

unperturbed images from the adversarial images. These two models were trained in tandem

to play a competing game with each other. However, the authors in (Laykaviriyakul and

Phaisangittisagul, 2023) also used an adversarial training-based defense approach, which

may not perform well under unknown attacks on which the models were not trained.

 33

Besides, all these studies considered benchmark datasets like CIFAR-10, MNIST, and

Fashion MNIST. Thus, their performance on real-world datasets, such as a real-world

traffic sign dataset, is not explored yet.

In this study, the author developed an attack-resilient GAN-based defense method

for an AV traffic sign classification system, which the author refers to as the AR-GAN in

this study, that can protect the perception module of an AV from unknown attacks. The

author used a WGAN-based loss function with gradient penalty (WGAN-GP) to train the

GAN models, which was shown to overcome common issues with GAN/WGAN training,

such as mode collapse and vanishing gradient. The author trained the GAN models and

classifiers on the unperturbed traffic sign images only so that all types of adversarial attacks

are unknown to the models. For evaluation, the author only considered white-box attacks

with full knowledge of the AR-GAN models to put the AR-GAN method in a situation

with maximum disadvantage.

3.2 Contribution

Much work has been done on DNN-based traffic sign classification systems in the

literature (Gudigar et al., 2016; Saadna and Behloul, 2017; Wali et al., 2019; Lim et al.,

2023). However, to the best of the author’s knowledge, none of the existing studies utilized

a GAN-based adversarial defense method for traffic sign classification. In this study, the

author developed an adversarial attack-resilient traffic sign classification system based on

GAN (AR-GAN) for AVs, which does not require any prior knowledge about adversarial

attacks. The AR-GAN method utilizes a WGAN-GP-based loss function to overcome

typical convergence issues with GANs, such as mode collapse and vanishing gradient. The

 34

generator in the AR-GAN method is based on the DCGAN architecture (Radford et al.,

2016) and trained to generate unperturbed samples from adversarial samples before feeding

them to the classifier. The classifier in the AR-GAN method is based on the ResNet9

architecture (He et al., 2016) and trained on traffic sign images reconstructed by the

generator. Besides, AR-GAN uses a particular training framework (discussed in section

3.5 in detail) to obtain the models to ensure that the models used in the final traffic sign

classification system perform the best. Thus, the generator and the classifier in the AR-

GAN traffic sign classification system can achieve high traffic sign classification

accuracies under no-attack scenario as well as under different types of white-box

adversarial attacks, which the author evaluated with a real-world traffic sign dataset in this

study. Also, the AR-GAN traffic sign classification system can provide very consistent

classification performance under different perturbation magnitudes, unlike the traditional

defense methods.

3.3 Related Work

Significant progress has been made in traffic sign classification in recent years, with

a growing focus on using DNN-based techniques. In this section, the author describes some

notable contributions in this area.

Among the earlier studies on traffic sign classification, Zhang et al., 2017 presented

a shallow Convolutional Neural Network (CNN) for traffic sign recognition consisting of

feature extraction stages, fully connected layers, and a Softmax-loss layer. The authors

performed subsampling using a combination of max pooling and average pooling, which

allowed the network to learn discriminative features automatically. The proposed network

 35

in (Zhang et al., 2017) achieved an accuracy of 99.84% on the German Traffic Sign

Recognition Benchmark (GTSRB) dataset (Houben et al., 2013). However, a limitation of

this network indicated by the authors was its dependency on a fixed input image size. Li

and Wang, 2019 conducted a study on traffic sign recognition using the MobileNet

(Howard et al., 2017) CNN architecture. The authors incorporated batch normalization,

ReLU activation, and a Softmax layer to calculate confidence probabilities for traffic sign

classification. The experiments were performed on the GTSRB dataset, and the model

achieved a classification accuracy of 99.66%.

Among the more recent studies in this area, Kerim and Efe, 2021 developed a

hybrid NN to classify traffic signs using various features, including Histograms of Oriented

Gradients (HOG) and a combination of color, HOG, and Local Binary Patterns (LBP). The

authors employed the GTSRB and Chinese Traffic Sign Recognition Dataset (TSRD) for

training and evaluation. The hybrid NN consisted of nine individual NNs, each analyzing

traffic signs based on specific image attributes. In addition, the authors employed data

augmentation to improve their model performance. The method, including color, HOG,

and LBP features, demonstrated an accuracy of 95%, which outperformed the approach

that solely employed HOG features. Kheder and Mohammed, 2023 improved the

traditional LeNet-5 CNN model architecture (Lecun et al., 1998) by increasing the number

of layers and incorporating various common image preprocessing algorithms to enhance

performance. The authors in (Kheder and Mohammed, 2023) trained the model using the

GTSRB and extended GTSRB (EGTSRB) (i.e., GTSRB combined with Belgium Traffic

Sign dataset) datasets. Compared to the other state-of-the-art approaches, such as Viola-

 36

Jones and Inception-V3 CNN architecture (Jose et al., 2019) and improved LeNet-5 CNN

architectures (RADU et al., 2020; Zaibi et al., 2021), the results demonstrated high

classification accuracy, with 99.12% achieved on the GTSRB dataset and 99.78% on the

EGTSRB dataset.

Shanmugavel et al., 2023 developed a model called Ensemble-based LeNet,

VGGNet, and DropoutNet (ELVD) for real-time traffic sign classification, object tracking,

and recognition. The authors used a combination of CNN architectures, including LeNet,

VGGNet (Simonyan and Zisserman, 2015), and DropoutNet (Volkovs et al., 2017), and

trained and tested the models on the GTSRB and the TSRD datasets. The proposed ELVD

model demonstrated fast detection time compared to traditional models, such as MCDNN

(Han et al., 2016), Mask R-CNN (Bharati and Pramanik, 2020), Support Vector Machine

or SVM (Creusen et al., 2010), HOG (Yang et al., 2016), and Single Shot multi-box

Detector or SSD (Liu et al., 2016), with over 99% classification accuracy. Pandurangan et

al., 2023 introduced a traffic signal recognition model by using preprocessing techniques,

such as median filtering and histogram equalization, and employing ML and DL

algorithms, including SVM, Extreme Learning Machine (ELM), Linear Discriminant

Analysis (LDA), Principal Component Analysis (PCA), and CNN-General Regression

Neural Network (GRNN). The proposed model achieved a high accuracy of 99.41% on the

GTSRB dataset compared to other traditional methods.

In addition to the studies mentioned above, many others developed DNN

architectures to classify traffic signs using various datasets (Dilek and Dener, 2023; Lim et

al., 2023). However, only a few studies have developed DNN-based defense methods to

 37

improve the resilience and robustness of traffic sign classification systems against

adversarial attacks. Among them, Li et al., 2021 proposed a defense method based on an

attention mechanism to address the vulnerability of traditional NNs to adversarial attacks

for traffic sign recognition. The authors utilized a spatial transformation module that

extracts affine coordinate parameters of target objects, redraws them using a coordinate

mapping model, and applies an attention mechanism to filter pixels through interpolation.

The authors evaluated their proposed model against various attack methods on traffic sign

adversarial samples generated on the GTSRB dataset. The model demonstrated an average

accuracy of 73.95% when challenged with untargeted white-box Fast Gradient Sign

Method (FGSM) attacks. These adversarial samples were generated using a ResNet50

classifier trained on the GTSRB dataset. Hashemi et al., 2022 developed a novel cost

function, which the authors refer to as the Regularized Guided Complement Entropy

(RGCE), to increase the performance of CNNs used for traffic sign recognition. They

employed the information from the Softmax layer in addition to some of the extracted

features from convolutional layers in their optimization process. The authors evaluated the

RGCE on two datasets, the CIFAR-10 dataset and the GTSRB dataset, highlighting its

improved robustness against various adversarial attacks while maintaining or enhancing

performance on clean images. The RGCE in (Hashemi et al., 2022) was reported to achieve

an accuracy of 90.24% and 74.44% when targeted by the FGSM and the Projected Gradient

Descent (PGD) L-infinite norm attacks, respectively, with a perturbation magnitude of

0.04. The adversarial samples in (Hashemi et al., 2022) were generated using a ResNet18

classifier trained on the GTSRB dataset.

 38

Khan et al., 2022 proposed a DNN-based hybrid defense method for improving the

resilience of traffic sign classification against adversarial attacks. They developed the

hybrid defense method based on Inception-V3 and Resnet-152 DNN models and

incorporated random filtering, ensembling, and local feature mapping defense strategies.

The authors evaluated their proposed hybrid defense method on a modified subset version

of the extended LISA traffic sign database(Møgelmose et al., 2015), which showed 99%

classification accuracy on average in the absence of attacks and 88% classification

accuracy on average against various adversarial attacks, such as FGSM, Momentum

Iterative Method (MIM), PGD, and Carlini and Wagner (C&W) attacks. The hybrid

defense method in (Khan et al., 2022) was reported to perform better than some other

traditional defense methods, such as feature squeezing, JPEG filtering, binary filtering, and

random filtering. Majumder et al., 2021 combined classical and quantum neural layers to

develop hybrid classical-quantum DL models for increasing the resiliency of traffic sign

image classification models in AVs against adversarial attacks. The authors employed a

pre-trained ResNet18 CNN for the classical part and incorporated quantum gates to employ

mechanical features for the quantum layer. The authors in (Majumder et al., 2021)

proposed two hybrid models and evaluated them using a modified subset version of the

LISA traffic sign image dataset. The second hybrid model performed better under the PGD

attack than the classical model; however, under the FGSM attack, the classical model

outperformed the hybrid model.

Although the abovementioned studies proposed different DNN-based traffic sign

classification systems for defending against adversarial attacks, none considered a

 39

generative DNN-based method. With the recent breakthroughs in GANs and high-

performance in-vehicle computational units, GANs have introduced an unprecedented

window of opportunities to be deployed for AV applications, such as an AV traffic sign

classification application. However, to the best of the author’s knowledge, none of the

existing studies attempted to develop a GAN-based adversarial attack-resilient AV traffic

sign classification system, which is the focus of this study.

3.4 Attack Models

 Numerous adversarial attack models have been developed by researchers in the

past few years to target NN-based classifiers (Khamaiseh et al., 2022). In this study, the

author only considers white-box attacks, in which an attacker, having complete knowledge

about the classification system, aims to find a perturbation 𝛿 that will cause

misclassification by the classifier when added to legitimate input 𝑥 ∈ ℝ𝑛, i.e., 𝑥̃ = 𝑥 + 𝛿,

where 𝑥̃ is the modified input or the adversarial example that may cause misclassification.

In this section, the author discusses the different white-box attack models used in this study.

3.4.1 Fast Gradient Sign Method (FGSM) Attack

FGSM is a simple but effective attack proposed by Goodfellow et al., 2015. FGSM utilizes

the gradient of the loss (cost) function with respect to the input image to generate

adversarial examples. The "Fast" in the name refers to the efficiency and simplicity of the

attack. Despite its simplicity, FGSM has become one of the most popular adversarial

attacks due to its effectiveness in causing misclassification with high confidence

(Goodfellow et al., 2015). Given an input image 𝑥 and a target classifier with parameters

𝜃, FGSM attack aims to generate an adversarial example 𝑥̃ = 𝑥 + 𝛿, where the added

 40

perturbation 𝛿 is determined by computing the gradient of the loss function with respect to

the input 𝑥 as follows,

𝛿 = 𝜀. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)) (12)

where, 𝐽 denotes the loss function, 𝑦 denotes the output class, ∇𝑥 is a differential operator

with respect to 𝑥, and 𝜀 denotes the magnitude of perturbation chosen by the attacker.

3.4.2 DeepFool Attack

DeepFool is another simple yet effective optimization-based iterative white-box attack

model proposed by Moosavi-Dezfooli et al., 2016, which has been reported by the authors

to be more effective than the FGSM attack on MNIST and CIFAR-10 datasets. Given a

binary classifier model, this attack aims to find the minimum perturbation 𝛿∗ that would

cause misclassification by shifting the input 𝑥 to the other side of the classification

boundary. The minimum perturbation 𝛿∗ is determined through an optimization problem

as follows,

𝛿∗ = arg min
𝛿

 ‖𝛿‖2 (13)

subject to: 𝑠𝑖𝑔𝑛(𝑓(𝑥 + 𝛿)) ≠ 𝑠𝑖𝑔𝑛(𝑓(𝑥))

where, 𝑓 is an arbitrary binary classification model. At 𝑖𝑡ℎ iteration, DeepFool updates 𝛿

by linearizing the classification boundary around the current point 𝑥𝑖. In order to ensure

that the final perturbation 𝛿 yields misclassification, it is multiplied by a constant (1 + 𝜂),

where 𝜂 ≪ 1. The authors in (Moosavi-Dezfooli et al., 2016) extended this approach to

multi-class classifiers as well.

 41

3.4.3 Carlini and Wagner (C&W) Attack

Carlini and Wagner, 2017 introduced an optimization-based iterative adversarial

attack known as the C&W attack. The C&W attack is a powerful attack that has been

reported to cause very low classification accuracy on benchmark datasets, such as MNIST

and CIFAR datasets (Carlini and Wagner, 2017). In a C&W attack, given an input image

𝑥 ∈ ℝ𝑛, the goal of the attack is to determine an optimal perturbation 𝛿∗ so that the

adversarial example 𝑥̃ = 𝑥 + 𝛿∗ is misclassified by a target classifier. In an ℓ2-norm C&W

attack, the optimal perturbation 𝛿∗ is determined through the following optimization

problem,

𝛿∗ = arg min
𝛿

 ‖𝛿‖2 + 𝑐. 𝑓(𝑥 + 𝛿) (14)

subject to: 𝑥 + 𝛿 ∈ [0, 1]𝑛

Here, ‖. ‖2 denotes the ℓ2-norm, 𝑐 > 0 is an arbitrary constant, and 𝑓 is an objective

function that helps the input image 𝑥 to be misclassified, which is chosen based on the

knowledge of the target classifier model. Apart from the ℓ2-norm attack explained above,

C&W attacks can also be performed using ℓ0 and ℓ∞ norms.

3.4.4 Projected Gradient Descent (PGD) Attack

PGD is a powerful white-box attack model that also utilizes an optimization-based

iterative approach to determine the optimal perturbation 𝛿 that can cause misclassification

when added to an input image 𝑥. The authors in (Madry et al., 2017) showed the

effectiveness of PGD attacks on MNIST and CIFAR-10 datasets, in which PGD was able

to yield lower classification accuracy on the datasets compared to FGSM and C&W

 42

attacks. Given an input image 𝑥 and a perturbation 𝛿 to be optimized for a PGD attack, the

optimization problem can be written as,

𝛿∗ = arg min
𝛿

 ‖𝛿‖2 (15)

subject to: 𝑥 + 𝛿 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]

Here, ‖. ‖2 denotes the ℓ2-norm, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values

of each pixel. The perturbation 𝛿 is updated in each iteration as follows,

𝛿𝑡+1 = 𝛿𝑡 + 𝜀. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥 + 𝛿, 𝑦)) (16)

where, 𝐽 denotes the loss function, 𝑦 denotes the output class, ∇𝑥 is a differential operator

with respect to 𝑥, and 𝜀 denotes the magnitude of perturbation.

3.5 AR-GAN for Adversarial Attack Resilience in Traffic Sign Classification

In this section, the author formally introduces a GAN-based adversarial attack

resilience method for traffic sign classification, which the author refers to as the attack-

resilient GAN (AR-GAN). The final traffic sign classification system of the AR-GAN

includes a generator model and a classifier model obtained from the AR-GAN training.

The generator is used to reconstruct any input images of traffic signs, which, in the process

of reconstruction, helps denoise the traffic sign images from adversarial noise, and the

classifier, trained on reconstructed traffic sign images by the generator, helps classify the

denoised traffic sign images. The author will discuss the details of training the GAN and

the classifier models in this section, but before that, the author presents an overview of the

AR-GAN training framework that helps obtain the models in the traffic sign classification

system of the AR-GAN.

 43

The training framework to obtain the models in the final traffic sign classification

system of AR-GAN is depicted in Figure 3.1. First, the author trains a classifier model to

classify unperturbed (i.e., legitimate or without attack) images in a traffic sign image

dataset. In this study, the author used a 9-layer deep residual learning architecture known

as ResNet9 (He et al., 2016). Once the classifier is trained to classify unperturbed traffic

sign images with acceptable accuracy, the author calls it Classifier #1, which will later be

FIGURE 3.1 AR-GAN Training Framework.

 44

used to select the best generator model. Next, the author trains a set of GANs based on the

Wasserstein GAN architecture with a gradient penalty (WGAN-GP) using the same

unperturbed traffic sign images from the dataset. Once the GANs are trained, the author

utilizes Classifier #1 to select the best generator model from the set of trained GANs that

would yield the highest classification accuracy on the reconstructed traffic sign images of

the test dataset. Then, the author uses the selected generator model to reconstruct all the

unperturbed traffic sign images in the dataset. In an ideal case, if the GANs are trained to

a point when the reconstructed traffic sign images look identical to the unperturbed traffic

sign images, Classifier # 1 should be able to classify the reconstructed traffic sign images

with similar accuracy to that of the unperturbed traffic sign images. However, if that is not

the case, then the author retrains Classifier #1 on the reconstructed traffic sign images to

achieve better accuracy. The author calls this retrained classifier model Classifier #2.

Finally, the AR-GAN traffic sign classification system is built with the best generator

model (to reconstruct and denoise any input traffic sign images) and Classifier #2 (to

classify the reconstructed traffic sign images).

3.5.1 Classifier Model

 The classifiers in the AR-GAN method are based on the ResNet9 architecture.

ResNet9 is a 9-layer deep NN, including eight convolutional layers and one linear layer.

Table 3.1 presents the model architecture of ResNet9 used in the AR-GAN method,

assuming that the input traffic sign images have three color channels, i.e., red, green, and

blue, each with 32 × 32 pixels. The output dimension of each layer is presented as

𝐶 × 𝐻 × 𝑊 in Table 3.1, where 𝐶, 𝐻, and 𝑊 represent the number of channels, the height

 45

(i.e., the number of pixels vertically), and the width (i.e., the number of pixels horizontally)

of the output feature map of that layer, respectively. The column representing the

operations in Table 3.1 is formatted as (𝑘 × 𝑘), 𝑠, 𝑝, where (𝑘 × 𝑘) is the kernel size, 𝑠 is

the number of strides, and 𝑝 is the amount of zero-padding in horizontal and vertical

directions. The different types of layers utilized in the architecture are explained below.

Conv2D: Conv2D refers to a 2D convolution operation applied to an input 2D

matrix. A convolutional layer in Conv2D consists of a kernel or filter with a specified

height and width. These kernels are typically set to be smaller than the input images and

are moved across the images to extract features.

BatchNorm2D: BatchNorm2D refers to 2D batch normalization operation applied

to an input 2D matrix. Batch normalization is a popular technique used in deep learning to

normalize a batch of inputs. It can be applied to the activations of a previous layer or to the

inputs directly. Batch normalization accelerates the training process and provides

regularizations.

MaxPool2D: MaxPool2D refers to a 2D pooling operation that selects the

maximum element from a region of a 2D feature map covered by a kernel. The output of a

max-pooling layer consists of a feature map that includes the most prominent features from

the previous feature map.

ReLU: Rectified Linear Unit or ReLU refers to a non-linear activation function

used in DNNs. The function simply returns zero for any negative input and the input value

itself for any positive input. ReLU introduces non-linearity to the data, enabling the DNN

to learn complex patterns and representations.

 46

TABLE 3.1 Model Architecture of the Classifier
 Layer Type

Output Dimension

No. of channels × Height

×Width

Operation

(Kernel size), No. of

strides, Padding size

L
ay

er
 1

Conv2D 64 × 32 × 32 (3 × 3), 1, 1

BatchNorm2D 64 × 32 × 32 Not applicable

ReLU 64 × 32 × 32 Not applicable

L
ay

er
 2

Conv2D 128 × 32 × 32 (3 × 3), 1, 1

BatchNorm2D 128 × 32 × 32 Not applicable

ReLU 128 × 32 × 32 Not applicable

MaxPool2D 128 × 16 × 16 (2 × 2), 2, 0

L
ay

er
 3

Conv2D 128 × 16 × 16 (3 × 3), 1, 1

BatchNorm2D 128 × 16 × 16 Not applicable

ReLU 128 × 16 × 16 Not applicable

L
ay

er
 4

Conv2D 128 × 16 × 16 (3 × 3), 1, 1

BatchNorm2D 128 × 16 × 16 Not applicable

ReLU 128 × 16 × 16 Not applicable

L
ay

er
 5

Conv2D 256 × 16 × 16 (3 × 3), 1, 1

BatchNorm2D 256 × 16 × 16 Not applicable

ReLU 256 × 16 × 16 Not applicable

MaxPool2D 256 × 8 × 8 (2 × 2), 2, 0

 47

 Layer Type

Output Dimension

No. of channels × Height

×Width

Operation

(Kernel size), No. of

strides, Padding size

L
ay

er
 6

Conv2D 512 × 8 × 8 (3 × 3), 1, 1

BatchNorm2D 512 × 8 × 8 Not applicable

ReLU 512 × 8 × 8 Not applicable

MaxPool2D 512 × 4 × 4 (2 × 2), 2, 0

L
ay

er
 7

Conv2D 512 × 4 × 4 (3 × 3), 1, 1

BatchNorm2D 512 × 4 × 4 Not applicable

ReLU 512 × 4 × 4 Not applicable

L
ay

er
 8

Conv2D 512 × 4 × 4 (3 × 3), 1, 1

BatchNorm2D 512 × 4 × 4 Not applicable

ReLU 512 × 4 × 4 Not applicable

L
ay

er
 9

MaxPool2D 512 × 1 × 1 (4 × 4), 4, 0

Flatten 512 Not applicable

Dropout 512 Not applicable

Linear 2 Not applicable

3.5.2 Generator Model

To obtain the generator model for the final traffic sign classification system in the

AR-GAN method, the author utilizes a WGAN-GP-based training method and extends it

 48

to reconstruct an input image 𝑥 at inference time. In this subsection, the author starts by

explaining the loss function used in traditional GANs. Then, the author discusses how

WGAN-GP modified it, and finally, the author discusses the extension adopted from the

Defense-GAN method (proposed by Samangouei et al., 2018) to reconstruct a given image

at inference time.

GANs, first introduced by Goodfellow et al., 2014, consist of two NNs, known as

the generator (𝐺) and the discriminator (𝐷). 𝐺: ℝ𝑘 → ℝ𝑛 takes a low-dimensional latent

vector 𝑧 ∈ ℝ𝑘 as the input and maps it to high-dimensional sample space of 𝑥 ∈ ℝ𝑛. The

discriminator, 𝐷 is a binary classifier that distinguishes between real samples and fake (i.e.,

generated) samples. 𝐺 and 𝐷 are trained in tandem to simultaneously optimize both NNs.

While 𝐺 aims to generate images that are identical to the real images, 𝐷 helps 𝐺 by

discriminating between real samples 𝑥 and fake samples 𝐺(𝑧). 𝐺 and 𝐷 are trained

alternatively to optimize the following min-max loss function defined by Goodfellow et

al., 2014,

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = E𝑥~𝑃𝑟(𝑥)[log 𝐷(𝑥)] + E𝑧~𝑃𝑔(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] (17)

where, 𝑃𝑟(𝑥) and 𝑃𝑔(𝑧) denote the real sample distribution and the generated sample

distribution, respectively, and E denotes the expected value. The optimal GAN is obtained

when these two distributions become the same. However, in reality, it turned out to be very

difficult to train GANs to achieve this optimality due to issues such as mode collapses and

vanishing gradients.

To resolve these issues, Arjovsky et al., 2017 proposed a variant of the GAN,

known as the Wasserstein GAN (WGAN), that utilizes the concepts of Wasserstein

 49

distance and Kantorovich-Rubinstein duality (Rachev, 1990), resulting in an alternative

loss function given by,

min
𝐺

max
𝐷

𝑉𝑊(𝐷, 𝐺) = E𝑥~𝑃𝑟(𝑥)[log 𝐷(𝑥)] − E𝑧~𝑃𝑔(𝑧) [log (𝐷(𝐺(𝑧)))] (18)

WGAN also removed the sigmoid function from the discriminator of the original

GAN proposed in (Goodfellow et al., 2014) to interpret the output of 𝐷 in terms of

probability to indicate how “real” the generated images are. The authors in (Arjovsky et

al., 2017) renamed the modified discriminator as “critic”. However, WGAN still suffered

from some convergence issues due to the hard constraints set by the weight clipping

method used by the authors to enforce the Lipschitz condition. This resulted in an improved

version of the WGAN, proposed by Gulrajani et al., 2017, known as WGAN with gradient

penalty (WGAN-GP). WGAN-GP utilizes a soft version of the constraints by penalizing

the model if the norm of the gradient deviates from its target norm value of 1 to meet the

Lipschitz condition as follows,

min
𝐺

max
𝐷

𝑉𝑊(𝐷, 𝐺) = E𝑥~𝑃𝑟(𝑥)[log 𝐷(𝑥)] − E𝑧~𝑃𝑔(𝑧) [log (𝐷(𝐺(𝑧)))]

+ 𝜆E𝑥̂~𝑃𝑥̂
[‖∇𝑥̂𝐷(𝑥̂)‖2 − 1]2

(19)

Here, 𝜆 is set to 10, ∇𝑥̂ is a differential operator with respect to 𝑥̂, and 𝑥̂ is sampled from 𝑥

and 𝐺(𝑥) using the following linear equation,

𝑥̂ = 𝑡𝐺(𝑥) + (1 − 𝑡)𝑥 (20)

where, 𝑡 is uniformly sampled between 0 and 1, i.e., 0 ≤ 𝑡 ≤ 1. The WGAN-GP, proposed

by Gulrajani et al., 2017 also removed the batch normalization steps from the critic as it

was reported to affect the effectiveness of the gradient penalty.

 50

Thus, WGAN-GP provides us with a modified loss function from that of the

traditional GAN that is able to resolve traditional GAN training issues, such as mode

collapse and vanishing gradient, as well as the tractability issues with WGAN. However,

to be able to reconstruct an input image with minimum reconstruction error, the author

requires a further extension. The authors in (Samangouei et al., 2018) proposed a simple

extension to achieve this by optimizing the input latent vector 𝑧 that will be fed to the

generator to reconstruct an input image 𝑥, which the author adopts in the AR-GAN method.

The optimal latent vector 𝑧∗ for reconstructing an input image 𝑥 is obtained by solving the

following optimization problem (Samangouei et al., 2018),

𝑧∗ = arg min
𝑧

‖𝐺(𝑧) − 𝑥‖2
2 (21)

The optimization problem in (21) is solved in a gradient descent-based iterative

approach. Because (21) is highly non-convex, the authors in (Samangouei et al., 2018)

utilized a fixed number of gradient descent steps along with a given number of random

initializations of the latent vector 𝑧.

Tables 3.2 and 3.3 presents the architectures of the generator and the discriminator

used in the AR-GAN method. The generator architecture is based on the deep

convolutional GAN (DCGAN) architecture (Radford et al., 2016), whereas the critic or

discriminator architecture is kept the same as the WGAN architecture. The different types

of layers used in these architectures are similar to that discussed in section 2.5.1, except

the ConvTranspose2D layers used in the generator architecture and the LeakyReLU layers

used in the discriminator architecture, which are explained below.

 51

ConvTranspose2D: The ConvTranspose2D layer is an extension of the traditional

convolutional layer but with a reversed operation. While a regular convolutional layer

performs a sliding window operation on the input to produce a feature map, the

ConvTranspose2d layer performs an inverse operation.

LeakyReLU: LeakyReLU refers to an extension of the ReLU. Instead of returning

zero for a negative input, LeakyReLU utilizes a small non-zero negative gradient for

negative inputs. This solves the “dying ReLU” issue of the original ReLU that occurs when

ReLUs get stuck in a negative state during training and fail to update their weights.

TABLE 3.2 Model Architecture of the Generator

Layer Type Output Dimension

No. of channels × Height

×Width

Operation

(Kernel size), No. of

strides, Padding size

L
ay

er
 1

ConvTranspose2D 512 × 4 × 4 (4 × 4), 1, 0

BatchNorm2D 512 × 4 × 4 Not applicable

ReLU 512 × 4 × 4 Not applicable

L
ay

er
 2

ConvTranspose2D 256 × 8 × 8 (4 × 4), 2, 1

BatchNorm2D 256 × 8 × 8 Not applicable

ReLU 256 × 8 × 8 Not applicable

L
ay

er
 3

ConvTranspose2D 128 × 16 × 16 (4 × 4), 2, 1

BatchNorm2D 128 × 16 × 16 Not applicable

ReLU 128 × 16 × 16 Not applicable

 52

Layer Type Output Dimension

No. of channels × Height

×Width

Operation

(Kernel size), No. of

strides, Padding size

L
ay

er
 4

 ConvTranspose2D 3 × 32 × 32 (4 × 4), 2, 1

Tanh 3 × 32 × 32 Not applicable

TABLE 3.3 Model Architecture of the Discriminator

Layer Type Output Dimension

No. of channels × Height

×Width

Operation

(Kernel size), No. of

strides, Padding size

L
ay

er
 1

 Conv2D 32 × 16 × 16 (4 × 4), 2,1

LeakyReLU 32 × 16 × 16 Not applicable

L
ay

er
 2

 Conv2D 64 × 8 × 8 (4 × 4), 2, 1

LeakyReLU 64 × 8 × 8 Not applicable

L
ay

er
 3

 Conv2D 128 × 4 × 4 (4 × 4), 2, 1

LeakyReLU 128 × 4 × 4 Not applicable

L
ay

er
 4

 Conv2D 256 × 1 × 1 (4 × 4), 1, 0

LeakyReLU 256 × 1 × 1 Not applicable

L
ay

er
 5

 Flatten 256 Not applicable

Linear 1 Not applicable

 53

Finally, the AR-GAN traffic sign classification system consists of the trained

generator, the classifier, and the optimizer that optimizes the input latent vector applied to

the generator to reconstruct an input traffic sign image. Figure 3.2 presents the AR-GAN

traffic sign classification system with a flow diagram.

3.6 Evaluation Method

This section discusses the evaluation method, specifically the traffic sign dataset,

and the traditional preprocessing-based defense strategies the author used in this study for

comparison.

3.6.1 Traffic Sign Dataset

The author reviewed the existing literature to select a comprehensive traffic sign

dataset for the US traffic signs and found the LISA traffic sign dataset (created by

Mogelmose et al., 2012) the most appropriate since it contains data collected from the real

world. The LISA dataset covers 49 types of US traffic signs with 7,855 annotations on

6,610 frames. The traffic sign images in the LISA dataset were extracted from video frames

captured by multiple vehicles’ dashboard cameras while the vehicles were driven around

FIGURE 3.2 AR-GAN Traffic Sign Classification System.

 54

San Diego, California. The original video frames exhibit varying resolutions, ranging from

640×480 pixels to 1024×522 pixels. The annotations of the traffic signs within these frames

have dimensions spanning from 6×6 pixels to 167×168 pixels and include both color and

grayscale images.

However, the LISA dataset does not contain enough images for each type of traffic

sign to train GAN models. Also, some of the images have resolutions that are too small to

be used for training purposes. Therefore, the author created a subset of the LISA dataset

containing only STOP signs and SPEED LIMIT signs. The original LISA dataset contains

different types of SPEED LIMIT signs, such as 15, 25, 30, 35, 40, 45, 50, and 65 miles per

hour (mph) signs. The author combined all these SPEED LIMIT signs into one class to

create a balanced dataset. Thus, the subset of the LISA dataset used in this study for

evaluation of the AR-GAN method contains a total of 1,562 traffic sign images and

includes two classes of traffic signs, i.e., 805 images under the STOP sign class and 757

images under the SPEED LIMIT sign class. The author applied cropping and resizing to

ensure that all the images in the dataset have the same dimension, i.e., each image has three

channels for red, green, and blue colors, and each channel contains 32×32 pixels. Figure

3.3 presents some sample images from the dataset used in this study. As observed from the

figure, the images are not very clean and contain some noise, which makes them even

harder to classify under adversarial perturbations.

3.6.2 Traditional Preprocessing-based Defense Strategies

The AR-GAN method utilizes a generator model (i.e., trained on unperturbed

legitimate images only) to denoise traffic sign images through reconstruction before

 55

feeding them to the classifier, which can be considered as a GAN-based image

preprocessing step. Figure 3.4 shows a set of sample traffic sign images taken from the

dataset used in this study before and after the AR-GAN generator-based preprocessing (i.e.,

reconstruction). Therefore, the author chose several traditional preprocessing-based

defense strategies that can be used as benchmarks to compare with the classification

performance of the AR-GAN traffic sign classification system. In this subsection, the

author discusses these traditional defense strategies.

3.6.2.1 Gaussian Augmentation

Gaussian augmentation is a simple yet very effective preprocessing technique for

improving the robustness of image classification systems against adversarial attacks.

Gaussian augmentation applies random noise to every pixel of an input image (Grandvalet

and Canu, 1997). By training a classifier on these images with added noise, the classifier

grows robustness against Gaussian noise. The author applied independent and identically

distributed Gaussian noise sampled from a zero-mean normal distribution, 𝒩(0, 𝜎2), to

each pixel of the input images, where the standard deviation of the distribution 𝒩 is set to

FIGURE 3.3 Image Samples from the LISA Traffic Sign Dataset.

 56

𝜎 = 1 (Grandvalet and Canu, 1997). Figure 3.4 shows the effect of Gaussian augmentation

on a set of sample traffic sign images taken from the dataset used in this study.

3.6.2.2 JPEG Compression

JPEG compression is another popular preprocessing-based adversarial defense

method, which was reported to effectively reduce the effects of several powerful

adversarial attacks, such as FGSM and DeepFool (Das et al., 2017; Dziugaite et al., 2016).

Adversarial attacks typically aim to introduce perturbations to images resulting in high-

FIGURE 3.4 Examples of Preprocessed Images using Different Defense Methods.

 57

frequency components that are imperceptible to human eyes. However, these high-

frequency components are picked up by NN-based classifiers and result in

misclassification. JPEG compression eliminates these high-frequency components from

the images before feeding them to the classifier, which is similar to a selective blurring of

the images to help remove the additive noise due to an adversarial attack. In this study, the

author sets the JPEG-compressed image quality to 50% because earlier studies reported

that this setting provides an effective defense against adversarial attacks (Liu et al., 2019).

Figure 3.4 shows the effect of JPEG compression on a set of sample traffic sign images

taken from the dataset used in this study.

3.6.2.3 Feature Squeezing

Feature squeezing, first introduced by Xu et al., 2018, is a process of reducing the

color bit depth of each pixel of an input image, which is alternatively referred to as “bit

squeezing” since it involves reducing the number of bits necessary to represent the color

value of a pixel. This reduction of the feature space is particularly beneficial in defending

against adversarial attacks since it transforms diverse feature vectors from the original

space into more similar samples. The author sets the bit depth value to 4 since it provided

the highest image classification accuracy for the dataset under the different types of

adversarial attacks considered in this study. Figure 3.4 shows the effect of feature

squeezing on a set of sample traffic sign images taken from the dataset used in this study.

3.6.2.4 Spatial Smoothing

 Spatial smoothing, alternatively known as blurring, is another variant of the feature

squeezing technique, also proposed by Xu et al., 2018, that reduces differences at the pixel

 58

level. In image processing, spatial smoothing is a popular technique for reducing image

noise. In this study, the author utilized a median smoothing technique that was reported in

(Xu et al., 2018) to be effective in mitigating adversarial attacks. In median smoothing, a

sliding window is moved across an image while the center pixel of the window is replaced

by the median value of its neighboring pixels. Thus, the additive noise due to adversarial

attacks gets reduced in spatial smoothing, which helps in achieving better classification

accuracy with a classifier. Figure 3.4 shows the effect of spatial smoothing on a set of

sample traffic sign images taken from the dataset used in this study.

For all four traditional preprocessing-based adversarial defense methods used in

this study, separate classifier models were trained based on the same ResNet9 architecture

presented in Table 3.1. The author presents an evaluation of these models on the

unperturbed (legitimate) images in the dataset used in this study in section 3.7.1.1.

3.7 Analysis and Results

This section presents the analysis and results based on the AR-GAN method and

compares them with several traditional preprocessing-based defense methods discussed in

section 3.6.2. The author divides the evaluation scenarios into two categories, i.e., (i)

evaluation on unperturbed (legitimate) traffic sign images and adversarial images and (ii)

evaluation under different perturbation magnitudes. The dataset discussed in section 3.6.1

was split into three groups, i.e., train set (containing 60% of the images), validation set

(containing 20% of the images), and test set (containing the remaining 20% of the images),

after applying random shuffling on all the images on the dataset. The same train, validation,

 59

and test sets were used for all the evaluation scenarios to present a fair comparison among

the different defense methods used in this study.

As mentioned in section 3.5.2, the AR-GAN traffic sign classification system

utilizes a gradient descent-based optimization with a fixed number of gradient descent steps

and random initializations to determine the input latent vector that would minimize the

reconstruction error for an input image. The author conducted a sensitivity analysis of the

AR-GAN traffic sign classification system’s classification accuracy and end-to-end delay

(i.e., the time required to perform all the steps shown in Figure 3.2) for an input unperturbed

image with respect to the number of gradient descent steps and the number of random

initializations (as shown in Figure 3.5). Based on this analysis, the author selected 2,250

as the fixed number of gradient descent steps and 20 as the fixed number of random

initializations because these parameters yielded the highest traffic sign classification

accuracy with an end-to-end delay of 0.6 seconds per image. As reported by Liu and Deng,

2021, the average delay for human drivers in recognizing traffic signs ranges from 0.5

FIGURE 3.5 Results of Sensitivity Analysis.

 60

seconds to 2.0 seconds. Therefore, the author considered the 0.6-second end-to-end delay

of the AR-GAN traffic sign classification system feasible for real-world implementations.

In this study, the author used Pytorch packages (“PyTorch,” n.d.) to implement the

GAN and classifier models, and the Adversarial Robustness Toolbox (“Adversarial

Robustness Toolbox (ART) v1.15,” n.d.) to implement the attack models and traditional

preprocessing-based adversarial defense methods. The source codes are provided in

Appendix B and GitHub (Salek, 2023). All the NN models in this study were trained using

Nvidia Tesla A100 GPUs available in the Palmetto Cluster nodes at Clemson University

(“About the Palmetto Cluster | RCD Documentation,” 2023). These GPUs have a capacity

of 312 trillion floating point operations per second (TFLOPS) (“NVIDIA A100 TENSOR

CORE GPU,” n.d.). However, these models should be implementable in real-world AVs

using in-vehicle computational units. One of the recent in-vehicle computational units

developed by NVIDIA is the NVIDIA Drive Thor, offering a GPU-based computational

capacity of 2,000 TFLOPS (“NVIDIA Unveils DRIVE Thor — Centralized Car Computer

Unifying Cluster, Infotainment, Automated Driving, and Parking in a Single, Cost-Saving

System,” n.d.), which is well above the capacity of the A100 GPUs utilized in this study.

Besides, the in-vehicle computational units should only be responsible for running

pretrained models for traffic sign image classification, whereas the training task can take

place separately beforehand. Thus, the models developed under the AR-GAN method are

considered feasible to be implemented in real-world AVs in terms of in-vehicle

computational capacity.

 61

3.7.1 Performance Evaluation on Unperturbed and Adversarial Traffic Sign Images

In this subsection, the author presents the evaluation results obtained using

unperturbed and adversarial traffic sign images generated. The adversarial images were

generated under FGSM, DeepFool, C&W, and PGD attacks. The author used precision,

recall, F1-score, and accuracy for performance comparison among the different types of

adversarial defense methods along with the AR-GAN method. Among the performance

metrics, accuracy was calculated globally for all the images in the test set, whereas the

other metrics were calculated for each class, and then a weighted average was taken to

present a global value.

3.7.1.1 Evaluation on Unperturbed Traffic Sign Images

The author evaluated all the adversarial defense methods used in this study on the

unperturbed test images. As observed from Table 3.4, all the defense methods achieved

high precision, recall, F1-score, and accuracy on the unperturbed images. This proves that

the classifier models used in all the defense methods in this study are well-trained to

accurately classify the traffic sign images of the dataset. Although the AR-GAN method

achieved about 94% classification accuracy on the unperturbed images, it was lower than

the other methods because, unlike the other preprocessing-based defense methods that

transform or modify an input image, the AR-GAN completely reconstructs any input

images. Gaussian augmentation achieved the second-lowest classification performance

compared to the other defense methods, which is also expected because this defense

method itself adds some Gaussian noise to the images as part of its adversarial defense

strategy.

 62

TABLE 3.4 Comparison of Defense Methods on Unperturbed Images

Defense Method Precision Recall F1-score Accuracy

Gaussian Augmentation 95.1% 94.9% 94.9% 94.9%

JPEG Compression 99.7% 99.7% 99.7% 99.7%

Feature Squeezing 99.4% 99.4% 99.4% 99.4%

Spatial Smoothing 98.8% 98.7% 98.7% 98.7%

AR-GAN 93.7% 93.6% 93.6% 93.6%

3.7.1.2 Evaluation on Traffic Sign Images under the FGSM Attack

The FGSM attack was implemented with an 𝜀 = 0.1 perturbation magnitude, as

recommended by Ye and Zhu, 2018. The results are presented in Table 3.5. As observed

from the table, the FGSM was able to reduce the classification performance of all the

defense methods to some extent. However, the FGSM attack is not as powerful as the other

attacks used in this study. Therefore, the performance metrics of the traditional

preprocessing-based defense methods ranged from approximately 68% to 81%. However,

the AR-GAN method was able to improve all the performance metrics by about 9-10%

compared to the second-best defense method, i.e., the Gaussian augmentation.

TABLE 3.5 Comparison of Defense Methods under the FGSM Attack

Defense Method Precision Recall F1-score Accuracy

Gaussian Augmentation 81.1% 80.5% 80.4% 80.5%

JPEG Compression 75.4% 75.4% 75.4% 75.4%

 63

Defense Method Precision Recall F1-score Accuracy

Feature Squeezing 68.7% 68.7% 68.7% 68.7%

Spatial Smoothing 68.5% 68.4% 68.3% 68.4%

AR-GAN 90.2% 90.1% 90.1% 90.1%

3.7.1.3 Evaluation on Traffic Sign Images under the DeepFool Attack

The ℓ2-norm DeepFool attack was performed with a perturbation magnitude of 𝜀 =

0.1 for this evaluation scenario. The results obtained from the defense methods are

presented in Table 3.6. As observed, the DeepFool attack was more effective than the

FGSM attack in terms of degrading the classification performance of the traditional

preprocessing-based defense methods. Feature squeezing and spatial smoothing performed

the worst among all the defense methods. Gaussian augmentation was able to achieve about

74% classification accuracy, which was outperformed by the AR-GAN method with a

classification accuracy of about 90% under the DeepFool attack.

TABLE 3.6 Comparison of Defense Methods under the DeepFool Attack

Defense Method Precision Recall F1-score Accuracy

Gaussian Augmentation 74.0% 73.8% 73.8% 73.8%

JPEG Compression 62.0% 61.3% 60.8% 61.3%

Feature Squeezing 32.3% 32.3% 32.3% 32.3%

Spatial Smoothing 42.1% 42.8% 41.6% 42.8%

AR-GAN 90.7% 90.4% 90.4% 90.4%

 64

3.7.1.4 Evaluation on Traffic Sign Images under the C&W Attack

The ℓ2-norm C&W attack was performed using a learning rate of 0.01 with a

maximum of 10 iterations. The results are presented in Table 3.7. Feature squeezing and

spatial smoothing provided the worst traffic sign classification accuracies among all the

defense methods. Gaussian augmentation performed well compared to traditional

preprocessing-based defense methods, with a 78.6% classification accuracy. However, it

was outperformed by the AR-GAN method, which achieved approximately 90%

classification accuracy under the C&W attack.

TABLE 3.7 Comparison of Defense Methods under the C&W Attack

Defense Method Precision Recall F1-score Accuracy

Gaussian Augmentation 79.0% 78.6% 78.5% 78.6%

JPEG Compression 62.9% 61.7% 60.8% 61.7%

Feature Squeezing 26.2% 26.2% 26.2% 26.2%

Spatial Smoothing 38.1% 38.7% 37.9% 38.7%

AR-GAN 90.3% 89.8% 89.7% 89.8%

3.7.1.5 Evaluation on Traffic Sign Images under the PGD Attack

The ℓ2-norm PGD attack was performed using a maximum iteration number of 100

and a perturbation magnitude of 𝜀 = 0.1. The results are presented in Table 3.8. Under the

PGD attack, the traffic sign classification accuracies of almost all the traditional

preprocessing-based defense methods dropped below 60%, except for the Gaussian

augmentation preprocessing, which achieved about 75% accuracy. The AR-GAN method

 65

outperformed all the traditional preprocessing-based defense methods with a classification

accuracy of approximately 91%.

TABLE 3.8 Comparison of Defense Methods under the PGD Attack

Defense Method Precision Recall F1-score Accuracy

Gaussian Augmentation 75.6% 75.4% 75.4% 75.4%

JPEG Compression 57.1% 56.9% 56.6% 56.9%

Feature Squeezing 43.1% 43.1% 43.0% 43.1%

Spatial Smoothing 49.2% 49.2% 49.2% 49.2%

AR-GAN 90.8% 90.7% 90.7% 90.7%

3.7.2 Performance Evaluation under Different Perturbation Magnitudes

To evaluate how well the AR-GAN method performs under different perturbation

magnitudes, the author varied 𝜀 from 0.05 to 0.2 with a 0.05 step size for the FGSM,

DeepFool, and PGD attacks following the previous studies (Khan et al., 2022; Gao and

Oates, 2019; Pan et al., 2019).

Figures 3.6 to 3.8 present the results of this evaluation under different perturbation

magnitudes. As observed from Figures 3.6 and 3.8, the accuracies of the traditional

preprocessing-based defense methods dropped abruptly as the author increased the

perturbation magnitudes of FGSM and PGD attacks. In Figure 3.7, it is observed that these

drops in traffic sign classification performance happen gradually for the traditional

preprocessing-based defense methods under the DeepFool attack. However, the AR-GAN

method achieved above 88% classification accuracy in all these cases, except under the

 66

PGD attacks with 𝜀 = 0.15 and 0.2, where its accuracy dropped to about 85%. This

consistency in traffic sign classification performance is achievable with the AR-GAN

method because the generator in the AR-GAN method was trained to generate samples

close to the distribution of the unperturbed traffic sign images. Thus, the AR-GAN method

developed in this study is capable of effectively denoising the traffic sign images by

reconstructing them with a generator trained on the unperturbed traffic sign images. This

shows the potential of the AR-GAN method as an adversarial attack-resilient AV traffic

sign classification system.

3.8 Discussion

The AR-GAN method developed in this study is a GAN-based adversarial attack-

resilient traffic sign classification system. The GAN models in the AR-GAN method are

trained based on the WGAN-GP loss function, where the generator model is based on the

FIGURE 3.6 Performance under the FGSM Attack with Varied Perturbations.

 67

DCGAN architecture, and the discriminator or critic model is based on the WGAN

architecture. The generator of the AR-GAN method is trained to reconstruct any input

traffic sign images close to a sample distribution of unperturbed traffic sign images, while

a ResNet9-based classifier is trained to classify the traffic sign images reconstructed by the

generator model. Thus, in the AR-GAN method, the generator serves the purpose of

denoising the traffic sign images with adversarial perturbations through reconstruction.

 The author evaluated the AR-GAN method with a real-world traffic sign dataset

under no-attack and under white-box attack scenarios and compared its performance with

several benchmark preprocessing-based adversarial defense methods. The results indicate

that the AR-GAN method can consistently achieve high traffic sign classification

performance under both no-attack and white-box attack scenarios. The AR-GAN method

FIGURE 3.7 Performance under the DeepFool Attack with Varied Perturbations.

 68

outperformed all the benchmark preprocessing-based adversarial defense methods used in

this study under different white-box adversarial attacks, such as FGSM. DeepFool, C&W,

and PGD attacks. Under varied magnitudes of adversarial perturbations for the FGSM, the

DeepFool, and the PGD attacks, the AR-GAN method showed consistent traffic sign

classification accuracies, unlike the other preprocessing-based adversarial defense

methods. This proves the efficacy of the AR-GAN method as an adversarial attack-resilient

traffic sign classification system for AVs.

FIGURE 3.8 Performance under the PGD Attack with Varied Perturbations.

 69

CHAPTER FOUR

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

4.1 Summary

The rapid development of AI, particularly generative AI, unveils an unprecedented

array of opportunities for both malicious attackers as well as for vigilant defenders. In this

dissertation, the aim was to delve into different generative AI-based methods for

formulating effective cyberattack detection and mitigation strategies for CAVs operating

in a TCPS environment. To this end, the author developed and evaluated a generative AI-

based CAN IDS for the in-vehicle CAN of a CV in Chapter 2 and a generative AI-based

adversarial defense method for the perception module of an AV in Chapter 3. In both

studies, the results indicated that generative AI holds a tremendous potential to safeguard

CAVs from known and unknown cyberattacks. In this chapter, the author concludes based

on the methods and findings of the research endeavors presented in Chapters 2 and 3 and

provides recommendations for future studies focusing on generative AI-based cyberattack

detection mitigation strategies.

4.2 Conclusions

4.2.1 A Hybrid Quantum-Classical RBM-based Framework for in-vehicle CAN IDS

In this study, the author developed a hybrid quantum-classical RBM-based CAN

IDS for the in-vehicle CAN of CVs. First, the author utilized a classical computer to

develop CAN images from the CAN messages in a dataset. A classical NN was then used

to extract features from the CAN images. Then, the author embedded the labels of the CAN

 70

images (i.e., a CAN image represents an attack image or a normal image) directly into the

images using the two rightmost columns of the images- this concludes the classical

computer-based CAN image preprocessing. Next, the author trained a quantum RBM using

the D-wave’s Advantage 4.1 system (i.e., a semi-conductor-based quantum annealing

machine) to reconstruct any CAN images with the embedded labeling pixels. After the

quantum RBM is trained properly, the author replaced the labeling pixels of the test CAN

image dataset with random binary bits (i.e., 0 or 1) and fed them to the quantum RBM for

CAN image reconstruction. Then, the reconstructed labeling pixels were used to classify

the CAN images in the test dataset as attack and normal CAN images. The author compared

the hybrid quantum-classical CAN IDS with a similar but classical-only approach. The

findings showed that the hybrid quantum-classical RBM-based CAN IDS outperformed

the classical-only CAN IDS across all the performance metrics used for evaluating the

image classification-based CAN IDSs. This proves the potential of the hybrid quantum-

classical RBM-based approach to be used as the CAN IDS of a CV in a TCPS environment.

Besides, as quantum computers are still in the development stage, the author found such

hybrid quantum-classical cyberattack detection approaches the optimal way to leverage the

efficacies of both classical and quantum computers while exceeding the detection

performance of traditional classical-only attack detection approaches for CAN intrusions.

A limitation of this study is that the author only considered a specific type of

intrusion attack in this study, known as the Fuzzy attack, due to some resource access

limitations related to the D-wave’s Advantage 4.1 system. In the future, the author aims to

 71

explore other types of CAN intrusion attacks, such as denial-of-service and spoofing

attacks, and evaluate the detection performance of the hybrid CAN IDS against them.

4.2.2 AR-GAN

In this study, the author developed a GAN-based adversarial defense method for

AV’s perception module. In particular, the focus of this study was to protect the traffic sign

classification system within an AV perception module from unknown adversarial attacks.

The author provided a training framework for training a generator model and a classifier

model that comprise the attack-resilient traffic sign classification system of the AR-GAN

method. The generator model used in this study was trained using a WGAN-GP-based loss

function with a NN architecture similar to a DCGAN. The discriminator or critic used to

support the training of the generator was based on the WGAN architecture. On the other

hand, the classifier was trained based on the ResNet9 architecture. All these models were

trained on unperturbed (i.e., legitimate) traffic sign images only to ensure that all types of

adversarial attacks are unknown to the models.

The traffic sign classification system of the AR-GAN defense method utilizes

generator-based image reconstruction, which helps remove adversarial perturbations from

the input traffic sign images. Once the traffic sign image is reconstructed by the generator,

it is fed to the classifier to identify what type of traffic sign it is. The author evaluated the

AR-GAN traffic sign classification system against widely used white-box adversarial

attacks, such as FGSM, DeepFool, C&W, and PGD attacks, and compared its performance

with benchmark traditional adversarial defense methods, such as Gaussian augmentation,

JPEG compression, feature squeezing, and spatial smoothing. The AR-GAN method

 72

outperformed all the traditional defense methods under all attack categories considered in

this study. Besides, the AR-GAN method was able to consistently achieve high traffic sign

classification performance under a range of adversarial perturbation magnitudes, whereas

the performance for the other traditional defense methods dropped abruptly at increased

perturbation levels. This shows the potential of the AR-GAN method to be deployed as a

robust attack-resilient traffic sign classification system for AVs.

A limitation of this study is that the author focused on only two classes of traffic

signs, i.e., STOP signs and SPEED LIMIT signs, due to a limitation of sufficient real-world

training data for the other types of US traffic signs. In the future, the author will extend this

work to include all types of traffic signs by collecting traffic sign image data from the real

world.

4.3 Recommendations

4.3.1 A Hybrid Quantum-Classical RBM-based Framework for in-vehicle CAN IDS

In this subsection, the author presents some recommendations for future research

endeavors related to quantum RBM-based CAN intrusion detection strategies.

1. The hybrid quantum-classical RBM-based CAN IDS was reported to

outperform the classical-only RBM-based CAN IDS in this study. However,

the CAN intrusion detection performance of a similar but quantum-only CAN

IDS was not explored in this study. Future studies can focus on developing a

CAN IDS based on quantum computers entirely, including the data

preprocessing, the RBM-based CAN image reconstruction, and the

classification steps.

 73

2. Although the dataset used in this study was obtained from a real-world vehicle’s

CAN, the hybrid quantum-classical CAN IDS was not tested for real-time

intrusion detection with a real-world CV. Further studies are necessary to test

this IDS for real-time CAN intrusion detection and to explore novel strategies

to ensure that the IDS is capable of detecting intrusions within the latency

requirement of CV mobility and safety applications.

3. This study used quantum annealing (QA)-based training for developing the

RBM model in the hybrid quantum-classical CAN IDS. Future studies should

also focus on developing gate-based RBMs for CAN IDS and compare them

with the QA-based RBMs.

4.3.2 AR-GAN

In this subsection, the author presents some recommendations for future research

endeavors related to GAN-based defense methods for protecting the traffic sign

classification system of an AV perception module.

1. The AR-GAN method developed in this study utilized a subset of the extended

LISA traffic sign dataset that contains only US traffic signs. The focus of future

studies can include improving the models in the AR-GAN method by training

them with other benchmark traffic sign datasets, such as the German Traffic

Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset

(BEL-TSD), the Traffic Sign Recognition Multi-Task Dataset (TSR), and the

Brazilian Traffic Sign Recognition Benchmark (BR-TSD).

 74

2. Although the AR-GAN method outperformed all the other traditional

preprocessing-based adversarial defense methods used in this study, the author

observed a 10-14% drop in classification accuracy under the adversarial attacks

compared to that of the unperturbed images. This drop in performance is not

unexpected because the author did not train the models on any adversarial

examples. Thus, future work can aim to include adversarial training of the AR-

GAN models to develop more robust attack-resilient defense models that can

achieve similar traffic sign classification performance to no-attack scenarios

under adversarial attacks.

3. The AR-GAN method was not evaluated in real-world driving scenarios yet.

Thus, future studies should focus on rigorous field testing and further

modification of the AR-GAN method to obtain a deployment-ready AV traffic

sign classification system that is computationally lightweight yet capable of

achieving state-of-the-art traffic sign classification performance under different

known and unknown adversarial attacks.

 75

APPENDICES

 76

Appendix A

Python Codes Related to Chapter Two

Sample Python Code (in IPYNB Format) for Decoding CAN Messages

import numpy as np

import pandas as pd

from IPython.display import display

import cantools

import can

from pprint import pprint

#Load dataset from .txt file

Attack_ds = pd.read_csv('Fuzzy_dataset_KIA_SOUL.csv',

names=['Timestamp','ID','DLC','allData','Flag'],

 sep=',', low_memory=False)

#No. of rows in the dataset

rowCount = Attack_ds.count()[0]

print('No. of rows in dataset: ', rowCount)

Attack_ds_filtered = Attack_ds[Attack_ds['ID'] == '220']

Attack_ds_filtered.loc[Attack_ds_filtered['Flag'] == 'R', 'Flag'] = 0

Attack_ds_filtered.loc[Attack_ds_filtered['Flag'] == 'T', 'Flag'] = 1

Attack_ds_filtered.reset_index(drop=True, inplace=True)

#No. of rows in the dataset

rowCount = Attack_ds_filtered.count()[0]

print('No. of rows in dataset: ', rowCount)

for idx in range(rowCount):

 for j in range(Attack_ds_filtered['DLC'][idx]+1):

 if j == 0:

 allData = Attack_ds_filtered['allData'][idx][3*j:2+3*j]

 elif j == Attack_ds_filtered['DLC'][idx]:

 Attack_ds_filtered.loc[idx,'allData'] = allData

 else:

 allData = allData +

Attack_ds_filtered['allData'][idx][3*j:2+3*j]

#Display Flag options

print('###')

print('Flags listed in the dataset: ')

display(Attack_ds_filtered.groupby(['Flag'])['Flag'].count())

 77

def merge_dicts(dict1, dict2):

 return(dict1.update(dict2))

def create_atk_ds(atk_ds, ID):

 global msg_count, nonAtk_msg, Atk_msg, error

 msg_count = 0

 nonAtk_msg = 0

 Atk_msg = 0

 error = 0

 LOG_EVERY_N = 1000

 dbc =

cantools.database.load_file(r'C:\Users\sabbi\Desktop\QCProject\opendbc\

hyundai_kia_generic.dbc')

 for idx, row in atk_ds.iterrows():

 if row['ID'] == ID:

 try:

 temp_dict =

{'Attack':row['Flag'],'Timestamp':row['Timestamp']

 #'ID':row['ID'], #'RTR':row['RTR'],

 #'DLC':row['DLC']

 }

 raw_data = row['allData']

 decoded_data = dbc.decode_message(0x220,

bytes.fromhex(raw_data))

 merge_dicts(temp_dict,decoded_data)

 #print('Row {} contains data:

{}'.format(idx,temp_dict))

 #print('Timestamp: {}, Raw data:

{}'.format(row['Timestamp'], raw_data))

 if msg_count == 0:

 Processed_ds = pd.DataFrame(temp_dict, index = [0])

 else:

 ds_row = pd.DataFrame(temp_dict, index = [0])

 Processed_ds = pd.concat([Processed_ds, ds_row],

ignore_index=True)

 if row['Flag'] == 1:

 Atk_msg += 1

 else:

 nonAtk_msg += 1

 msg_count += 1

 '''

 78

 if msg_count == 10:

 break

 '''

 except:

 error += 1

 if msg_count and msg_count % LOG_EVERY_N == 0:

 print(f"logging : {msg_count}")

 print('{} CAN messages decoded successfully!'.format(msg_count))

 print('{} CAN messages were injected and {} CAN messages were

authentic!'.format(Atk_msg, nonAtk_msg))

 print('{} CAN messages could not be decoded!'.format(error))

 return Processed_ds

Processed_ds = create_atk_ds(Attack_ds_filtered, ID = '###')

with pd.ExcelWriter(/data/KiaSoulFuzzy_ID_220.xlsx') as writer:

 Processed_ds.to_excel(writer, index = False)

Sample Python Code (in IPYNB Format) for NN-based Feature Extraction

import tensorflow as tf

import cirq

import sympy

import numpy as np

import seaborn as sns

import collections

import random as random

import pandas as pd

from sklearn.preprocessing import MinMaxScaler,StandardScaler

from tensorflow.keras.models import Model

from sklearn.preprocessing import minmax_scale

visualization tools

%matplotlib inline

import matplotlib.pyplot as plt

#Data Preprocessing

 79

df = pd.read_excel('Data.xlsx')

df_noAtk_all = df[df['Attack']==0]

df_Atk = df[df['Attack']==1]

df_noAtk_all = df_noAtk_all.reset_index(drop=True)

df_Atk = df_Atk.reset_index(drop=True)

col_names = list(df_noAtk_all.columns)

row_noAtk_all = df_noAtk_all.count()[0]

row_Atk = df_Atk.count()[0]

row_smaller = min(row_noAtk_all,row_Atk)

num_CAN_img = int(row_smaller/(len(col_names)-2))

df_noAtk = df_noAtk_all[:][-row_Atk:].reset_index(drop=True)

init_image_size = len(col_names) - 2

train_noAtk_size = int(row_Atk*0.8)

train_noAtk = df_noAtk[:][0:train_noAtk_size]

test_noAtk = df_noAtk[:][train_noAtk_size:]

train_Atk = df_Atk[:][0:train_noAtk_size]

test_Atk = df_noAtk[:][train_noAtk_size:]

train_noAtk = train_noAtk.reset_index(drop=True)

test_noAtk = test_noAtk.reset_index(drop=True)

train_Atk = train_Atk.reset_index(drop=True)

test_Atk = test_Atk.reset_index(drop=True)

train_df = pd.concat([train_noAtk,train_Atk],

ignore_index=True).reset_index(drop=True)

test_df = pd.concat([test_noAtk,test_Atk],

ignore_index=True).reset_index(drop=True)

col_names = list(df_noAtk_all.columns)

col_names.remove('Attack')

col_names.remove('Timestamp')

df_x = train_df.drop(columns = ['Attack','Timestamp'])

df_y = train_df.drop(columns = col_names)

df_x_test = test_df.drop(columns = ['Attack','Timestamp'])

df_y_test = train_df.drop(columns = col_names)

min_max_scaler = MinMaxScaler()

 80

scaler = StandardScaler()

df_x = pd.DataFrame(scaler.fit_transform(df_x), columns=df_x.columns)

df_x = pd.DataFrame(min_max_scaler.fit_transform(df_x),

columns=df_x.columns)

df_x_test = pd.DataFrame(scaler.fit_transform(df_x_test),

columns=df_x.columns)

df_x_test = pd.DataFrame(min_max_scaler.fit_transform(df_x_test),

columns=df_x.columns)

#Build CAN Image Dataset

x = []

y = []

np_x = df_x.to_numpy()

np_y = df_y.to_numpy()

for i in range(len(np_x)-init_image_size):

 if(i%init_image_size==0):

 img =

np_x[i:i+init_image_size,:].reshape(init_image_size,init_image_size,1)

 label = 1 if 1 in np_y[i:i+13,:] else 0

 x.append(img)

 y.append(label)

x_train = np.array(x)

y_train = np.array(y)

x = np.array(x_train)

y = np.array(y_train)

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y,

test_size=0.3, random_state=42)

#Train a NN

def create_full_classical_model(init_image_size):

 # A simple model based off LeNet

 model = tf.keras.Sequential()

model.add(tf.keras.layers.Flatten(input_shape=(init_image_size,init_ima

ge_size,1)))

 model.add(tf.keras.layers.Dense(100, activation='relu'))

 model.add(tf.keras.layers.Dense(64))

 model.add(tf.keras.layers.Dense(16))

 model.add(tf.keras.layers.Dense(1))

 return model

 81

model = create_full_classical_model(init_image_size)

model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True)

,

 optimizer=tf.keras.optimizers.Adam(),

 metrics=['accuracy'])

model.summary()

EPOCHS = 100

BATCH_SIZE = 8

fair_history = model.fit(x_train,

 y_train,

 batch_size=BATCH_SIZE,

 epochs=EPOCHS,

 verbose=1,

 validation_data=(x_test, y_test))

fair_nn_results = model.evaluate(x_test, y_test)

plt.plot(fair_history.history['accuracy'])

plt.plot(fair_history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='lower right')

plt.show()

summarize history for loss

plt.plot(fair_history.history['loss'])

plt.plot(fair_history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper right')

plt.show()

def extract_feat(model, x_in):

 layer_name = model.layers[-3].name

 intermediate_layer_model = Model(inputs=model.input,

outputs=model.get_layer(layer_name).output)

 intermediate_output =

intermediate_layer_model.predict(x_test[0][None, :, :, :])

 foo_norm = minmax_scale(intermediate_output, feature_range=(0,1),

axis=1)

 return foo_norm

x_trans = []

y_trans = []

 82

total = len(x_train)

for i in range(len(x_train)):

 x_trans.append(extract_feat(model,x_train[i]))

 y_trans.append(y_train[i])

print ('Done')

x_trans_test = []

y_trans_test = []

for i in range(len(x_test)):

 x_trans_test.append(extract_feat(model,x_test[i]))

 y_trans_test.append(y_test[i])

print ('Done')

x_trans = np.array(x_trans)

x_trans_test = np.array(x_trans_test)

x_trans = x_trans.reshape(len(x_trans),8,8)

x_trans_test = x_trans_test.reshape(len(x_trans_test),8,8)

#Perform Encoding

THRESHOLD = 0.5

x_train_bin = np.array(x_trans > THRESHOLD, dtype=np.float32)

x_test_bin = np.array(x_trans_test > THRESHOLD, dtype=np.float32)

print (x_train_bin.shape)

print (x_test_bin.shape)

import random as random

idx = random.randint(0,len(x_train_bin))

print('index:', idx , ' label : ', y_train[idx])

plt.imshow(x_train_bin[idx,:,:])

plt.colorbar()

#Save Training Data

count = 0

x_train_bin_squeezed = np.squeeze(x_train_bin)

for y in y_train:

 y_train_bin = np.expand_dims(y*np.ones([8,2]), axis=0)

 x_train_y_train = np.concatenate((x_train_bin_squeezed[count].T,

np.squeeze(y_train_bin).T), axis=0).T

 if count == 0:

 Train_all = x_train_y_train

 83

 else:

 Train_all = np.concatenate((Train_all, x_train_y_train),

axis=0)

 count += 1

comb_final = pd.DataFrame(Train_all)

with pd.ExcelWriter('Train.xlsx') as writer:

 comb_final.to_excel(writer)

#Save Test Data

count = 0

x_test_bin_squeezed = np.squeeze(x_test_bin)

for y in y_test:

 if y == 0:

 y = 1

 else:

 y=0

 y_test_bin = np.expand_dims(y*np.ones([8,2]), axis=0)

 x_test_y_test = np.concatenate((x_test_bin_squeezed[count].T,

np.squeeze(y_test_bin).T), axis=0).T

 if count == 0:

 Test_all = x_test_y_test

 else:

 Test_all = np.concatenate((Test_all, x_test_y_test), axis=0)

 count += 1

test_final = pd.DataFrame(Test_all)

with pd.ExcelWriter('Test.xlsx') as writer:

 test_final.to_excel(writer)

Sample Python Code (in IPYNB Format) for Quantum RBM Training and

Classification

import numpy as np

import timeit

import matplotlib.pyplot as plt

from tqdm import tqdm_notebook as tqdm

from qrbm.MSQRBM import MSQRBM

from qrbm.classicalRBM import classicalRBM

 84

import matplotlib.pyplot as plt

%matplotlib inline

plt.rcParams['image.cmap'] = 'gray'

import pandas as pd

from skimage import data, color

from skimage.transform import rescale, resize, downscale_local_mean

from skimage import img_as_bool

import cv2 as cv

import random

from numpy import genfromtxt

train_data_df = pd.read_excel('Train.xlsx',header=None)

train_data = np.array(train_data_df)

test_data_df = pd.read_excel('Test.xlsx',header=None)

test_data = np.array(test_data_df)

flat_train_data = []

for i in range(int(len(train_data)/8)):

 x = []

 for k in range(8):

 for j in range(8):

 x.append(train_data[8*i+j][k])

 flat_train_data.append(x)

flat_test_data = []

for i in range(int(len(test_data)/8)):

 x = []

 for k in range(8):

 for j in range(8):

 x.append(test_data[8*i+j][k])

 flat_test_data.append(x)

#Presets

image_height = 8

image_width = 8

len_x = image_height * image_width

len_y = 0

 85

n_visible = 64

n_hidden = 64

epochs = 50

lr = 0.1

lr_decay = 0

result_picture_tab = []

for i in range(int(len(test_data)/8)):

 x = []

 for k in range(8):

 for j in range(8):

 x.append(test_data[8*i+j][k])

 result_picture_tab.append(x)

bm = MSQRBM(n_visible=n_visible, n_hidden=n_hidden, qpu=True)

bm.image_height = image_height

bm.tqdm = tqdm

bm.result_picture_tab = result_picture_tab

bm.train(flat_train_data, len_x, len_y, epochs = epochs, lr = lr,

lr_decay = lr_decay)

weights_biases = bm.get_weights()

np.savetxt("vishid.csv", weights_biases[0], delimiter=",")

np.savetxt("visbiases.csv", weights_biases[1], delimiter=",")

np.savetxt("hidbiases.csv", weights_biases[2], delimiter=",")

def compute_metrics(bm):

 rand_label_test = []

 for i in range(len(test_data)):

 rand_mat = np.random.randint(2, size=[2,1])

 #rand_mat = random.choice([0, 1])

 x =

np.concatenate((test_data[i][0:6],np.squeeze(rand_mat)),axis =

0).tolist()

 rand_label_test.append(x)

 rand_label_test = np.array(rand_label_test)

 rand_label_picture_tab = []

 for i in range(int(len(rand_label_test)/8)):

 x = []

 for k in range(8):

 for j in range(8):

 86

 x.append(rand_label_test[8*i+j][k])

 rand_label_picture_tab.append(x)

 result_picture_tab = []

 for i in range(int(len(test_data)/8)):

 x = []

 for k in range(8):

 for j in range(8):

 x.append(test_data[8*i+j][k])

 result_picture_tab.append(x)

 result_picture_tab = result_picture_tab[0:80]

 rand_label_picture_tab = rand_label_picture_tab[0:80]

 TP = 0

 TN = 0

 FP = 0

 FN = 0

 for i in tqdm(range(len(result_picture_tab))):

 True_image = np.reshape(result_picture_tab[i], (image_width,

image_height))

 True_label = True_image[7][0]

 #print('True label: {}'.format(True_label))

 Recon_image = bm.generate(rand_label_picture_tab[i])

 Recon_image = np.reshape(Recon_image, (image_width,

image_height))

 Pred_label = int(sum(sum(Recon_image[6:8][:]))/16 > 0.5)

 #print('Predicted label: {}'.format(Pred_label))

 if True_label == Pred_label:

 if True_label == 1:

 TN += 1

 else:

 TP += 1

 else:

 if True_label == 1:

 FP += 1

 else:

 FN += 1

 print('TP (test): {}'.format(TP))

 print('TN (test): {}'.format(TN))

 print('FP (test): {}'.format(FP))

 print('FN (test): {}'.format(FN))

 Accuracy = (TP + TN)/(TP + TN + FP + FN)

 Precision = TP/(TP + FP)

 87

 Recall = TP/(TP + FN)

 F1 = 2*Precision*Recall/(Precision + Recall)

 print('Accuracy (test): {}'.format(Accuracy))

 print('Precision (test): {}'.format(Precision))

 print('Recall (test): {}'.format(Recall))

 print('F1 score (test): {}'.format(F1))

saved_weights = genfromtxt('vishid_.csv', delimiter=',')

saved_visbiases = genfromtxt('visbiases.csv', delimiter=',')

saved_hidbiases = genfromtxt('hidbiases.csv', delimiter=',')

bm = MSQRBM(n_visible=n_visible, n_hidden=n_hidden, qpu=False)

bm.image_height = image_height

bm.result_picture_tab = result_picture_tab

bm.set_weights(saved_weights,saved_visbiases,saved_hidbiases)

bm.tqdm = tqdm

compute_metrics(bm)

 88

Appendix B

Python Codes Related to Chapter Three

Sample Python Code (in IPYNB Format) for Training the Classifier

import os

import torch

import torchvision

import numpy as np

from torch.utils.data import DataLoader, ConcatDataset

from torchvision.utils import make_grid

import torchvision.transforms as T

import matplotlib

import matplotlib.pyplot as plt

%matplotlib inline

matplotlib.rcParams['figure.facecolor'] = '#ffffff'

random_seed = 42

torch.manual_seed(random_seed);

import pickle

from Split_data import random_split

data_directory = "./data"

filename = "stop_speed.pkl"

file_path = os.path.join(data_directory, filename)

Load the data from the file

with open(file_path, "rb") as file:

 data = pickle.load(file)

train_ds, val_ds, test_ds = random_split(data)

from collections import Counter

train_classes = [label for _, label in train_ds]

val_classes = [label for _, label in val_ds]

test_classes = [label for _, label in test_ds]

train_class_size = Counter(train_classes)

val_class_size = Counter(val_classes)

test_class_size = Counter(test_classes)

all_class_size = train_class_size + val_class_size + test_class_size

print(f'Size of train classes: {train_class_size}')

print(f'Size of validation classes: {val_class_size}')

 89

print(f'Size of test classes: {test_class_size}')

print(f'Size of all classes in train, val, and test sets:

{all_class_size}')

PyTorch data loaders

n_cores = os.cpu_count()

batch_size = 64

stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

num_classes = 2

train_dl = DataLoader(train_ds, batch_size, shuffle=True,

num_workers=int(n_cores/2), pin_memory=True)

val_dl = DataLoader(val_ds, batch_size*2, shuffle=True,

num_workers=int(n_cores/2), pin_memory=True)

def denorm(img_tensors):

 return img_tensors * stats[1][0] + stats[0][0]

def show_images(images, nmax=64):

 fig, ax = plt.subplots(figsize=(8, 8))

 ax.set_xticks([]); ax.set_yticks([])

 ax.imshow(make_grid(denorm(images.detach()[:nmax]),

nrow=8).permute(1, 2, 0))

 #ax.imshow(make_grid(images.detach()[:nmax], nrow=8).permute(1, 2,

0))

def show_batch(dl, nmax=64):

 for images, _ in dl:

 show_images(images, nmax)

 break

show_batch(train_dl)

Move data to GPU

from deviceSelector import DeviceDataLoader, to_device

torch.cuda.empty_cache()

train_dl = DeviceDataLoader(train_dl)

val_dl = DeviceDataLoader(val_dl)

print(f'train dataloader device: {train_dl.device}')

print(f'validation dataloader device: {val_dl.device}')

Instantiate ResNet9 Model

from ResNet9 import ResNet9

model = to_device(ResNet9(3,num_classes),device='cuda')

Define training parameters

epochs = 8

 90

max_lr = 0.01

grad_clip = 0.1

weight_decay = 1e-4

opt_func = torch.optim.Adam

from ResNet9 import *

history = [evaluate(model, val_dl)]

%%time

history += fit_one_cycle(epochs, max_lr, model, train_dl, val_dl,

 grad_clip=grad_clip,

 weight_decay=weight_decay,

 opt_func=opt_func)

from plot_history import *

plot_accuracies(history)

plot_losses(history)

plot_lrs(history)

Save the model

torch.save(model.state_dict(),

'./trained_models/ResNet9/resnet9_m20.pth')

def predict_image(img, model, device='cuda'):

 xb = to_device(img.unsqueeze(0), device)

 yb = model(xb)

 _, preds = torch.max(yb, dim=1)

 return preds[0].item()

from sklearn.metrics import classification_report

def eval_test(test_ds, model, device='cuda'):

 with torch.no_grad():

 correct = 0

 total = 0

 y_true = []

 y_pred = []

 for img, label in test_ds:

 xb = to_device(img.unsqueeze(0), device)

 yb = model(xb)

 _, preds = torch.max(yb, dim=1)

 total += 1

 correct += (preds[0] == label).sum().item()

 predicted=preds[0].to('cpu')

 y_true.append(label)

 y_pred.append(predicted)

 91

 print('Test Accuracy: {}%'.format(100 * correct / total))

 # Generate a classification report

 print(classification_report(y_true, y_pred))

Evaluate the model on the test dataset

eval_test(test_ds, model_m)

Supporting Python Scripts for Training the Classifier

Script 1: Split_data.py

import random

import torch

from torchvision import transforms

random.seed(42)

def random_split(data):

 random.seed(42)

 # Define the mean and standard deviation for normalization

 stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

 # Create the transformation for normalization

 transform = transforms.Compose([

 transforms.Normalize(*stats)

])

 # Apply normalization to the data

 normalized_data = [(transform(tensor), label) for tensor, label in

data]

 random.shuffle(normalized_data)

 # Calculate the lengths of train, validation, and test sets based on

the ratios

 train_ratio = 0.6

 val_ratio = 0.2

 test_ratio = 0.2

 total_samples = len(normalized_data)

 train_samples = int(train_ratio * total_samples)

 val_samples = int(val_ratio * total_samples)

 test_samples = total_samples - train_samples - val_samples

 # Split the normalized data into train, validation, and test sets

 train_data = normalized_data[:train_samples]

 92

 val_data = normalized_data[train_samples : train_samples +

val_samples]

 test_data = normalized_data[train_samples + val_samples:]

 return train_data, val_data, test_data

Script 2: ResNet9.py

import torch

import torchvision

import torch.nn as nn

import torch.nn.functional as F

def accuracy(outputs, labels):

 _, preds = torch.max(outputs, dim=1)

 return torch.tensor(torch.sum(preds == labels).item() / len(preds))

class ImageClassificationBase(nn.Module):

 def training_step(self, batch):

 images, labels = batch

 out = self(images) # Generate predictions

 loss = F.cross_entropy(out, labels) # Calculate loss

 return loss

 def validation_step(self, batch):

 images, labels = batch

 out = self(images) # Generate predictions

 loss = F.cross_entropy(out, labels) # Calculate loss

 acc = accuracy(out, labels) # Calculate accuracy

 return {'val_loss': loss.detach(), 'val_acc': acc}

 def validation_epoch_end(self, outputs):

 batch_losses = [x['val_loss'] for x in outputs]

 epoch_loss = torch.stack(batch_losses).mean() # Combine losses

 batch_accs = [x['val_acc'] for x in outputs]

 epoch_acc = torch.stack(batch_accs).mean() # Combine

accuracies

 return {'val_loss': epoch_loss.item(), 'val_acc':

epoch_acc.item()}

 def epoch_end(self, epoch, result):

 print("Epoch [{}], last_lr: {:.5f}, train_loss: {:.4f}, val_loss:

{:.4f}, val_acc: {:.4f}".format(

 epoch, result['lrs'][-1], result['train_loss'],

result['val_loss'], result['val_acc']))

def conv_block(in_channels, out_channels, pool=False):

 93

 layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3,

padding=1),

 nn.BatchNorm2d(out_channels),

 nn.ReLU(inplace=True)]

 if pool: layers.append(nn.MaxPool2d(2))

 return nn.Sequential(*layers)

class ResNet9(ImageClassificationBase):

 def __init__(self, in_channels, num_classes):

 super().__init__()

 self.conv1 = conv_block(in_channels, 64)

 self.conv2 = conv_block(64, 128, pool=True)

 self.res1 = nn.Sequential(conv_block(128, 128), conv_block(128,

128))

 self.conv3 = conv_block(128, 256, pool=True)

 self.conv4 = conv_block(256, 512, pool=True)

 self.res2 = nn.Sequential(conv_block(512, 512), conv_block(512,

512))

 self.classifier = nn.Sequential(nn.MaxPool2d(4),

 nn.Flatten(),

 nn.Dropout(0.2),

 nn.Linear(512, num_classes))

 def forward(self, xb):

 out = self.conv1(xb)

 out = self.conv2(out)

 out = self.res1(out) + out

 out = self.conv3(out)

 out = self.conv4(out)

 out = self.res2(out) + out

 out = self.classifier(out)

 return out

@torch.no_grad()

def evaluate(model, val_loader):

 model.eval()

 outputs = [model.validation_step(batch) for batch in val_loader]

 return model.validation_epoch_end(outputs)

def get_lr(optimizer):

 for param_group in optimizer.param_groups:

 return param_group['lr']

def fit_one_cycle(epochs, max_lr, model, train_loader, val_loader,

 weight_decay=0, grad_clip=None,

opt_func=torch.optim.SGD):

 torch.cuda.empty_cache()

 history = []

 94

 # Set up cutom optimizer with weight decay

 optimizer = opt_func(model.parameters(), max_lr,

weight_decay=weight_decay)

 # Set up one-cycle learning rate scheduler

 sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr,

epochs=epochs,

steps_per_epoch=len(train_loader))

 for epoch in range(epochs):

 # Training Phase

 model.train()

 train_losses = []

 lrs = []

 for batch in train_loader:

 loss = model.training_step(batch)

 train_losses.append(loss)

 loss.backward()

 # Gradient clipping

 if grad_clip:

 nn.utils.clip_grad_value_(model.parameters(), grad_clip)

 optimizer.step()

 optimizer.zero_grad()

 # Record & update learning rate

 lrs.append(get_lr(optimizer))

 sched.step()

 # Validation phase

 result = evaluate(model, val_loader)

 result['train_loss'] = torch.stack(train_losses).mean().item()

 result['lrs'] = lrs

 model.epoch_end(epoch, result)

 history.append(result)

 return history

Script 3: deviceSelector.py

import torch

def get_default_device():

 """Pick GPU if available, else CPU"""

 if torch.cuda.is_available():

 return torch.device('cuda')

 else:

 return torch.device('cpu')

def to_device(data, device):

 """Move tensor(s) to chosen device"""

 95

 if isinstance(data, (list,tuple)):

 return [to_device(x, device) for x in data]

 return data.to(device, non_blocking=True)

class DeviceDataLoader():

 """Wrap a dataloader to move data to a device"""

 def __init__(self, dl, device=get_default_device()):

 self.dl = dl

 self.device = device

 def __iter__(self):

 """Yield a batch of data after moving it to device"""

 for b in self.dl:

 yield to_device(b, self.device)

 def __len__(self):

 """Number of batches"""

 return len(self.dl)

Script 4: plot_history.py

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

matplotlib.rcParams['figure.facecolor'] = '#ffffff'

def plot_accuracies(history):

 accuracies = [x['val_acc'] for x in history]

 plt.plot(accuracies, '-x')

 plt.xlabel('epoch')

 plt.ylabel('accuracy')

 plt.title('Accuracy vs. No. of epochs');

def plot_losses(history):

 train_losses = [x.get('train_loss') for x in history]

 val_losses = [x['val_loss'] for x in history]

 plt.plot(train_losses, '-bx')

 plt.plot(val_losses, '-rx')

 plt.xlabel('epoch')

 plt.ylabel('loss')

 plt.legend(['Training', 'Validation'])

 plt.title('Loss vs. No. of epochs');

def plot_lrs(history):

 lrs = np.concatenate([x.get('lrs', []) for x in history])

 plt.plot(lrs)

 plt.xlabel('Batch no.')

 plt.ylabel('Learning rate')

 plt.title('Learning Rate vs. Batch no.');

 96

Sample Python Code (in IPYNB Format) for Training the Generator

import os

import torch

import torchvision

from torch.utils.data import DataLoader

from torchsummary import summary

import pickle

from Split_data import random_split

from WGAN_GP import Generator, Discriminator

from Train_WGAN_GP import train_WGANGP

random_seed = 42

torch.manual_seed(random_seed);

Parameters

INPUT_LATENT = 128

batch_size = 128

N_CORES = os.cpu_count()

load dataset

data_file_path = os.path.join("./data", "stop_speed.pkl")

Load the data from the file

with open(data_file_path, "rb") as data_file:

 reduced_data = pickle.load(data_file)

train_ds, val_ds, test_ds = random_split(reduced_data)

train_loader = DataLoader(

 train_ds,

 batch_size,

 shuffle=True,

 num_workers=int(N_CORES/2),

 pin_memory=True

)

val_loader = DataLoader(

 test_ds,

 batch_size*2,

 num_workers=int(N_CORES/2),

 pin_memory=True

)

Set compute devices

device_D = torch.device('cuda')

 97

device_G = torch.device('cuda')

load generator model

netG = Generator()

summary(netG, input_size = (INPUT_LATENT, 1, 1), device = 'cpu')

load discriminator model

netD = Discriminator()

summary(netD, input_size = (3, 32, 32), device = 'cpu')

set folder to save model checkpoints

model_folder = os.path.abspath('./trained_models/WGAN_GP')

if not os.path.exists(model_folder):

 os.mkdir(model_folder)

set folder to save generated images

img_folder = os.path.abspath('./Generated_imgs')

if not os.path.exists(img_folder):

 os.mkdir(img_folder)

Load last saved models (if any)

check_point_path = './trained_models/WGAN_GP/model_snapshots.pth'

if os.path.exists(check_point_path):

 checkpoint = torch.load(check_point_path)

 inital_epoch = checkpoint['epoch']

 netG.load_state_dict(checkpoint['netG_state_dict'])

 netD.load_state_dict(checkpoint['netD_state_dict'])

Move models to GPU

netG = netG.to(device_G)

netD = netD.to(device_D)

Train WGAN-GP

inital_epoch = 0

train_WGANGP(train_loader, val_loader, netD, netG, inital_epoch)

 98

Supporting Python Scripts for Training the Generator

Script 1: Train_WGAN_GP.py

import os

import copy

import time

import pickle

import numpy as np

import torch

import torch.optim as optim

import torch.autograd as autograd

from torchvision.utils import save_image

import torchvision

import torchvision.transforms as T

from tqdm.notebook import tqdm

from WGAN_GP import Generator, Discriminator

from utils_WGAN_GP import adjust_lr, compute_gradient_penalty, denorm

random_seed = 42

torch.manual_seed(random_seed);

def train_WGANGP(train_loader, val_loader, netD, netG, inital_epoch):

 # Parameters

 ITERS = 400000

 INPUT_LATENT = 128

 LAMBDA = 10 # Gradient penalty lambda hyperparameter

 CRITIC_ITERS = 5 # Critic iterations per generator iteration

 device_D = 'cuda'

 device_G = 'cuda'

 batch_size = 128

 in_channel = 3

 height = 32

 width = 32

 learning_rate = 1e-4

 display_steps = 500

 check_point_path = './trained_models/WGAN_GP/model_snapshots.pth'

 # set optimizer for generator and discriminator

 optimizerD = optim.Adam(netD.parameters(), lr=learning_rate,

betas=(0.5, 0.9))

 optimizerG = optim.Adam(netG.parameters(), lr=learning_rate,

betas=(0.5, 0.9))

 99

 print('Number of training batches: {}, Number of validation batches:

{}'.format(len(train_loader), len(val_loader)))

 save_losses = []

 dev_disc_costs = []

 if os.path.exists('./trained_models/WGAN_GP/lisa_losses_gp.pickle'):

 with open ('./trained_models/WGAN_GP/lisa_losses_gp.pickle',

'rb') as fp:

 save_losses = pickle.load(fp)

 if os.path.exists('./trained_models/WGAN_GP/dev_disc_costs.pickle'):

 with open ('./trained_models/WGAN_GP/dev_disc_costs.pickle',

'rb') as fp:

 dev_disc_costs = pickle.load(fp)

 one = torch.tensor(1, dtype=torch.float)

 mone = one * -1

 one = one.to(device_D)

 mone = mone.to(device_D)

 # Training

 print('Training starts ...')

 for iteration in range(inital_epoch, ITERS, 1):

 start_time = time.time()

 adjust_lr(optimizerD, iteration, init_lr = learning_rate,

total_iteration = ITERS)

 adjust_lr(optimizerG, iteration, init_lr = learning_rate,

total_iteration = ITERS)

 d_loss_real = 0

 d_loss_fake = 0

 #for iter_d in range(CRITIC_ITERS):

 for i, (imgs, _) in enumerate(tqdm(train_loader)):

 ############################

 # (1) Update D network

 ###########################

 for p in netD.parameters():

 p.requires_grad = True

 real_imgs = autograd.Variable(imgs.to(device_D))

 optimizerD.zero_grad()

 # Sample noise as generator input

 z = autograd.Variable(torch.randn(imgs.size(0),

INPUT_LATENT,1,1))

 100

 z = z.to(device_G)

 # Generate a batch of images

 fake_imgs = netG(z).cpu()

 fake_imgs = fake_imgs.to(device_D)

 # Real images

 real_validity = netD(real_imgs)

 d_loss_real = real_validity.mean()

 d_loss_real.backward(mone)

 # Fake images

 fake_validity = netD(fake_imgs)

 d_loss_fake = fake_validity.mean()

 d_loss_fake.backward(one)

 # Gradient penalty

 gradient_penalty = compute_gradient_penalty(netD,

real_imgs.data, fake_imgs.data, device_D)

 gradient_penalty.backward()

 # Adversarial loss

 loss_D = d_loss_fake - d_loss_real + LAMBDA *

gradient_penalty

 #loss_D.backward()

 optimizerD.step()

 optimizerG.zero_grad()

 del real_validity, fake_validity, fake_imgs,

gradient_penalty, real_imgs

 # Train the generator every n_critic iterations

 if (i + 1)% CRITIC_ITERS == 0 or (i + 1) == len(train_loader):

 ############################

 # (2) Update G network

 ###########################

 for p in netD.parameters():

 p.requires_grad = False # to avoid computation

 # Generate a batch of images

 fake_imgs = netG(z).cpu()

 fake_imgs = fake_imgs.to(device_D)

 # Loss measures generator's ability to fool the

discriminator

 # Train on fake images

 fake_validity = netD(fake_imgs)

 g_loss = fake_validity.mean()

 g_loss.backward(mone)

 loss_G = -g_loss

 101

 #loss_G.backward()

 optimizerG.step()

 del fake_validity

 save_losses.append([loss_D.item(), loss_G.item()])

 if (iteration + 1) % display_steps == 0 or (iteration + 1) ==

ITERS:

 print('batch {:>3}/{:>3}, D_cost {:.4f}, G_cost

{:.4f}\r'.format(iteration + 1, ITERS,loss_D.item(), loss_G.item()))

 with open('./trained_models/WGAN_GP/lisa_losses_gp.pickle',

'wb') as fp:

 pickle.dump(save_losses, fp)

 # snapshots for model

 modelG_copy = copy.deepcopy(netG)

 modelG_copy = modelG_copy.cpu()

 modelG_state_dict = modelG_copy.state_dict()

 modelD_copy = copy.deepcopy(netD)

 modelD_copy = modelD_copy.cpu()

 modelD_state_dict = modelD_copy.state_dict()

 torch.save({

 'netG_state_dict': modelG_state_dict,

 'netD_state_dict': modelD_state_dict,

 'epoch': iteration

 }, check_point_path)

 del modelG_copy, modelG_state_dict, modelD_copy,

modelD_state_dict

 # save generator model after certain iteration

 if (iteration + 1) % display_steps == 0 :

 g_path = './trained_models/WGAN_GP/G_lisa_gp_' +

str(iteration) + '.pth'

 model_copy = copy.deepcopy(netG)

 model_copy = model_copy.cpu()

 model_state_dict = model_copy.state_dict()

 torch.save(model_state_dict, g_path)

 del model_copy

 # save LISA generated images by generator model every 1000 time

 if (iteration + 1) % display_steps == 0 :

 102

 denorm_fake_imgs = denorm(fake_imgs)

 save_image(denorm_fake_imgs.data,

'./Generated_imgs/sample_{}.png'.format(iteration), nrow=8)

 costs_avg = 0.0

 disc_count = 0

 # validate GAN model

 with torch.no_grad():

 for images,_ in val_loader:

 imgs = images.to(device_D)

 D = netD(imgs)

 costs_avg += -D.mean().cpu().data.numpy()

 disc_count += 1

 del images, imgs

 costs_avg = costs_avg / disc_count

 dev_disc_costs.append(costs_avg)

 with open('./trained_models/WGAN_GP/dev_disc_costs.pickle',

'wb') as fp:

 pickle.dump(dev_disc_costs, fp)

 print('batch {:>3}/{:>3}, validation disc cost :

{:.4f}'.format(iteration, ITERS, costs_avg))

Script 2: utils_WGAN_GP.py

import torch

import torch.autograd as autograd

import torchvision

import numpy as np

Learning Rate Adjustment

def adjust_lr(optimizer, iteration, init_lr = 1e-4, total_iteration =

200000):

 gradient = (float(-init_lr) / total_iteration)

 lr = gradient * iteration + init_lr

 for param_group in optimizer.param_groups:

 param_group['lr'] = lr

 103

Calculate Gradient Penalty Loss for WGAN-GP

def compute_gradient_penalty(D, real_samples, fake_samples, device):

 # Random weight term for interpolation between real and fake samples

 alpha = torch.Tensor(np.random.random((real_samples.size(0), 1, 1,

1)))

 alpha = alpha.expand(real_samples.size(0), real_samples.size(1),

real_samples.size(2), real_samples.size(3))

 alpha = alpha.to(device)

 # Get random interpolation between real and fake samples

 interpolates = (alpha * real_samples + ((1 - alpha) *

fake_samples)).requires_grad_(True)

 d_interpolates = D(interpolates)

 fake = autograd.Variable(torch.Tensor(real_samples.shape[0],

1).fill_(1.0), requires_grad=False)

 fake = fake.to(device)

 # Get gradient w.r.t. interpolates

 gradients = autograd.grad(

 outputs=d_interpolates,

 inputs=interpolates,

 grad_outputs=fake,

 create_graph=True,

 retain_graph=True,

 only_inputs=True,

)[0]

 gradients = gradients.view(gradients.size(0), -1)

 gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()

 return gradient_penalty

Denormalize image tensors

def denorm(img_tensors):

 stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

 return img_tensors * stats[1][0] + stats[0][0]

Script 3: WGAN_GP.py

import torch

import torch.nn as nn

latent_size = 128

class Generator(nn.Module):

 def __init__(self):

 super(Generator, self).__init__()

 104

 convT1 = nn.Sequential(

 # in: latent_size x 1 x 1

 nn.ConvTranspose2d(latent_size, 512, kernel_size=4,

stride=1, padding=0, bias=False),

 nn.BatchNorm2d(512),

 nn.ReLU(True)

 # out: 512 x 4 x 4

)

 convT2 = nn.Sequential(

 nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2,

padding=1, bias=False),

 nn.BatchNorm2d(256),

 nn.ReLU(True)

 # out: 256 x 8 x 8

)

 convT3 = nn.Sequential(

 nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2,

padding=1, bias=False),

 nn.BatchNorm2d(128),

 nn.ReLU(True)

 # out: 128 x 16 x 16

)

 convT4 = nn.Sequential(

 nn.ConvTranspose2d(128, 3, kernel_size=4, stride=2,

padding=1, bias=False),

 nn.Tanh()

 # out: 3 x 32 x 32

)

 self.convT1 = convT1

 self.convT2 = convT2

 self.convT3 = convT3

 self.convT4 = convT4

 def forward(self, input):

 output = self.convT1(input)

 output = self.convT2(output)

 output = self.convT3(output)

 output = self.convT4(output)

 return output

class Discriminator(nn.Module):

 def __init__(self):

 super(Discriminator, self).__init__()

 conv1 = nn.Sequential(

 # in: 3 x 32 x 32

 105

 nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1,

bias=False),

 #nn.BatchNorm2d(32),

 nn.LeakyReLU(0.2, inplace=True)

 # out: 32 x 16 x 16

)

 conv2 = nn.Sequential(

 nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1,

bias=False),

 #nn.BatchNorm2d(64),

 nn.LeakyReLU(0.2, inplace=True),

 # out: 64 x 8 x 8

)

 conv3 = nn.Sequential(

 nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1,

bias=False),

 #nn.BatchNorm2d(128),

 nn.LeakyReLU(0.2, inplace=True)

 # out: 128 x 4 x 4

)

 conv4 = nn.Sequential(

 nn.Conv2d(128, 256, kernel_size=4, stride=1, padding=0,

bias=False),

 #nn.BatchNorm2d(256),

 nn.LeakyReLU(0.2, inplace=True),

 # out: 256 x 1 x 1

 nn.Flatten()

)

 self.conv1 = conv1

 self.conv2 = conv2

 self.conv3 = conv3

 self.conv4 = conv4

 self.linear = nn.Linear(256, 1)

 def forward(self, input):

 output = self.conv1(input)

 output = self.conv2(output)

 output = self.conv3(output)

 output = self.conv4(output)

 output = self.linear(output)

 return output

 106

Sample Python Code (in IPYNB Format) for Evaluating the AR-GAN

import os

import numpy as np

import pickle

import torch

import torch.nn as nn

import torchvision

import torchvision.transforms as transforms

import torchvision.transforms as T

from torch.utils.data import DataLoader

from utils_AR_GAN import adjust_lr, get_z_sets, get_z_star,

Resize_Image

from Split_data import random_split

from WGAN_GP import Generator

from torchsummary import summary

import copy

batch_size = 128

in_channel = 3

height = 32

width = 32

num_classes = 2

display_steps = 20

load dataset

data_file_path = os.path.join("./data", "stop_speed.pkl")

Load the data from the file

with open(data_file_path, "rb") as data_file:

 reduced_data = pickle.load(data_file)

train_ds, val_ds, test_ds = random_split(reduced_data)

Move data to GPU

from deviceSelector import DeviceDataLoader, to_device

torch.cuda.empty_cache()

n_cores = os.cpu_count()

test_loader = DataLoader(test_ds,

 batch_size,

 shuffle = False,

 num_workers = int(n_cores/2),

 pin_memory = True)

test_loader = DeviceDataLoader(test_loader)

 107

from torchvision.utils import make_grid

import matplotlib

import matplotlib.pyplot as plt

%matplotlib inline

matplotlib.rcParams['figure.facecolor'] = '#ffffff'

stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)

def denorm(img_tensors):

 return img_tensors * stats[1][0] + stats[0][0]

def show_images(images, nmax=64):

 fig, ax = plt.subplots(figsize=(8, 8))

 ax.set_xticks([]); ax.set_yticks([])

 ax.imshow(make_grid(denorm(images.cpu().detach()[:nmax]),

nrow=8).permute(1, 2, 0))

 #ax.imshow(make_grid(images.detach()[:nmax], nrow=8).permute(1, 2,

0))

def show_batch(dl, nmax=64):

 for images, _ in dl:

 show_images(images, nmax)

 break

show_batch(test_loader)

from deviceSelector import DeviceDataLoader, to_device

from ResNet9 import ResNet9

device_model = 'cuda'

model = to_device(ResNet9(3,num_classes), device='cuda')

model.load_state_dict(torch.load('./trained_models/ResNet9/resnet9_m19_

retrained.pth'))

learning_rate = 10.0

rec_iters = [1000]

rec_rrs = [20]

decay_rate = 0.1

global_step = 3.0

generator_input_size = 32

INPUT_LATENT = 128

device_generator = torch.device('cuda')

ModelG = Generator()

generator_path = './trained_models/WGAN_GP/G_lisa_gp_4519.pth'

ModelG.load_state_dict(torch.load(generator_path))

 108

summary(ModelG, input_size = (INPUT_LATENT,1,1), device = 'cpu')

ModelG = ModelG.to(device_generator)

loss = nn.MSELoss()

model.eval()

running_corrects = 0

epoch_size = 0

is_input_size_diff = False

save_test_results = []

for rec_iter in rec_iters:

 for rec_rr in rec_rrs:

 for batch_idx, (inputs, labels) in enumerate(test_loader):

 # size change

 if inputs.size(2) != generator_input_size :

 target_shape = (inputs.size(0), inputs.size(1),

generator_input_size, generator_input_size)

 data = Resize_Image(target_shape, inputs)

 data = data.to(device_generator)

 is_input_size_diff = True

 else :

 data = inputs.to(device_generator)

 # find z*

 _, z_sets = get_z_sets2(ModelG, data, learning_rate, \

 loss, device_generator,

rec_iter = rec_iter, \

 rec_rr = rec_rr, input_latent =

INPUT_LATENT, global_step = global_step)

 z_star = get_z_star(ModelG, data, z_sets, loss,

device_generator)

 # generate data

 data_hat =

ModelG(z_star.to(device_generator)).cpu().detach()

 109

 # size back

 if is_input_size_diff:

 target_shape = (inputs.size(0), inputs.size(1), height,

width)

 data_hat = Resize_Image(target_shape, data_hat)

 # classifier

 data_hat = data_hat.to(device_model)

 labels = labels.to(device_model)

 # evaluate

 outputs = model(data_hat)

 _, preds = torch.max(outputs, 1)

 # statistics

 running_corrects += torch.sum(preds == labels.data)

 epoch_size += inputs.size(0)

 if batch_idx % display_steps == 0:

 print('{:>3}/{:>3} average acc {:.4f}\r'\

 .format(batch_idx+1, len(test_loader),

running_corrects.double() / epoch_size))

 del labels, outputs, preds, data, data_hat,z_star

 test_acc = running_corrects.double() / epoch_size

 print('rec_iter : {}, rec_rr : {}, Test Acc:

{:.4f}'.format(rec_iter, rec_rr, test_acc))

 save_test_results.append(test_acc)

del test_loader

Supporting Python Script for Evaluating the AR-GAN

Script 1: utils_AR_GAN.py

import torch

import torch.optim as optim

import numpy as np

from torchvision import transforms

 110

import math

def adjust_lr(optimizer, cur_lr, decay_rate = 0.1, global_step = 1,

rec_iter = 200):

 lr = cur_lr * decay_rate ** (global_step / int(math.ceil(rec_iter *

0.8)))

 for param_group in optimizer.param_groups:

 param_group['lr'] = lr

 return lr

"""

To get R random different initializations of z from L steps of Gradient

Descent.

rec_iter : the number of L of Gradient Descent steps

tec_rr : the number of different random initialization of z

"""

def get_z_sets(model, data, lr, loss, device, rec_iter = 1000, rec_rr =

20, input_latent = 128, global_step = 1):

 display_steps = 100

 # the output of R random different initializations of z from L steps

of GD

 z_hats_recs = torch.Tensor(rec_rr, data.size(0), input_latent,1,1)

 # the R random differernt initializations of z before L steps of GD

 z_hats_orig = torch.Tensor(rec_rr, data.size(0), input_latent,1,1)

 for idx in range(len(z_hats_recs)):

 z_hat = torch.randn(data.size(0), input_latent,1,1).to(device)

 z_hat = z_hat.detach().requires_grad_()

 cur_lr = lr

 optimizer = optim.SGD([z_hat], lr = cur_lr, momentum = 0.7)

 z_hats_orig[idx] = z_hat.cpu().detach().clone()

 for iteration in range(rec_iter):

 optimizer.zero_grad()

 fake_image = model(z_hat)

 fake_image = fake_image.view(-1, data.size(1), data.size(2),

data.size(3))

 reconstruct_loss = loss(fake_image, data)

 111

 reconstruct_loss.backward()

 optimizer.step()

 cur_lr = adjust_lr(optimizer, cur_lr, global_step =

global_step, rec_iter= rec_iter)

 z_hats_recs[idx] = z_hat.cpu().detach().clone()

 return z_hats_orig, z_hats_recs

"""

To get z* so as to minimize reconstruction error between generator G and

an image x

"""

def get_z_star(model, data, z_hats_recs, loss, device):

 reconstructions = torch.Tensor(len(z_hats_recs))

 for i in range(len(z_hats_recs)):

 z = model(z_hats_recs[i].to(device))

 z = z.view(-1, data.size(1), data.size(2), data.size(3))

 reconstructions[i] = loss(z, data).cpu().item()

 min_idx = torch.argmin(reconstructions)

 return z_hats_recs[min_idx]

def Resize_Image(target_shape, images):

 batch_size, channel, width, height = target_shape

 Resize = transforms.Compose([

 transforms.ToPILImage(),

 transforms.Resize((width,height)),

 transforms.ToTensor(),

])

 result = torch.zeros((batch_size, channel, width, height),

dtype=torch.float)

 for idx in range(len(result)):

 result[idx] = Resize(images.data[idx])

 return result

 112

REFERENCES

About the Palmetto Cluster | RCD Documentation [WWW Document], 2023. URL

https://docs.rcd.clemson.edu/palmetto/about (accessed 7.8.23).

Adachi, S.H., Henderson, M.P., 2015. Application of quantum annealing to training of deep

neural networks. arXiv preprint arXiv:1510.06356.

Adversarial Robustness Toolbox (ART) v1.15 [WWW Document], n.d. URL

https://github.com/Trusted-AI/adversarial-robustness-toolbox/tree/main (accessed

7.8.23).

Akcay, S., Atapour-Abarghouei, A., Breckon, T.P., 2019. GANomaly: Semi-supervised

Anomaly Detection via Adversarial Training, in: Jawahar, C.V., Li, H., Mori, G.,

Schindler, K. (Eds.), Computer Vision – ACCV 2018, Lecture Notes in Computer

Science. Springer International Publishing, Cham, pp. 622–637.

https://doi.org/10.1007/978-3-030-20893-6_39

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein Generative Adversarial

Networks, in: Proceedings of the 34th International Conference on Machine

Learning. Presented at the International Conference on Machine Learning, PMLR,

pp. 214–223.

Bai, T., Luo, J., Zhao, J., Wen, B., Wang, Q., 2021. Recent Advances in Adversarial

Training for Adversarial Robustness. https://doi.org/10.48550/arXiv.2102.01356

Bharati, P., Pramanik, A., 2020. Deep Learning Techniques—R-CNN to Mask R-CNN: A

Survey, in: Das, A.K., Nayak, J., Naik, B., Pati, S.K., Pelusi, D. (Eds.),

Computational Intelligence in Pattern Recognition, Advances in Intelligent

 113

Systems and Computing. Springer, Singapore, pp. 657–668.

https://doi.org/10.1007/978-981-13-9042-5_56

Buscemi, A., Turcanu, I., Castignani, G., Panchenko, A., Engel, T., Shin, K.G., 2023. A

Survey on Controller Area Network Reverse Engineering. IEEE Communications

Surveys & Tutorials 1–1. https://doi.org/10.1109/COMST.2023.3264928

Caivano, D., De Vincentiis, M., Nitti, F., Pal, A., 2022. Quantum optimization for fast

CAN bus intrusion detection, in: Proceedings of the 1st International Workshop on

Quantum Programming for Software Engineering, QP4SE 2022. Association for

Computing Machinery, New York, NY, USA, pp. 15–18.

https://doi.org/10.1145/3549036.3562058

Carlini, N., Wagner, D., 2017. Towards Evaluating the Robustness of Neural Networks,

in: 2017 IEEE Symposium on Security and Privacy (SP). Presented at the 2017

IEEE Symposium on Security and Privacy (SP), pp. 39–57.

https://doi.org/10.1109/SP.2017.49

Caro, M.C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., Coles, P.J.,

2022. Generalization in quantum machine learning from few training data. Nat

Commun 13, 4919. https://doi.org/10.1038/s41467-022-32550-3

Chen, J., Qi, X., Chen, L., Chen, F., Cheng, G., 2020. Quantum-inspired ant lion optimized

hybrid k-means for cluster analysis and intrusion detection. Knowledge-Based

Systems 203, 106167. https://doi.org/10.1016/j.knosys.2020.106167

 114

Connected/Automated Vehicles [WWW Document], n.d. . Institute of Transportation

Engineers. URL https://www.ite.org/technical-resources/topics/connected-

automated-vehicles/ (accessed 7.10.23).

Creusen, I.M., Wijnhoven, R.G.J., Herbschleb, E., de With, P.H.N., 2010. Color

exploitation in hog-based traffic sign detection, in: 2010 IEEE International

Conference on Image Processing. Presented at the 2010 IEEE International

Conference on Image Processing, pp. 2669–2672.

https://doi.org/10.1109/ICIP.2010.5651637

Das, N., Shanbhogue, M., Chen, S.-T., Hohman, F., Chen, L., Kounavis, M.E., Chau, D.H.,

2017. Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with

JPEG Compression. https://doi.org/10.48550/arXiv.1705.02900

Dilek, E., Dener, M., 2023. Computer Vision Applications in Intelligent Transportation

Systems: A Survey. Sensors 23, 2938. https://doi.org/10.3390/s23062938

Dixit, V., Selvarajan, R., Alam, M.A., Humble, T.S., Kais, S., 2021. Training restricted

boltzmann machines with a d-wave quantum annealer. Front. Phys. 9: 589626. doi:

10.3389/fphy.

Dong, Y., Hu, W., Zhang, J., Chen, M., Liao, W., Chen, Z., 2022. Quantum beetle swarm

algorithm optimized extreme learning machine for intrusion detection. Quantum

Inf Process 21, 9. https://doi.org/10.1007/s11128-021-03311-w

D-Wave Systems Inc., n.d. Solving Problems with Quantum Samplers — D-Wave System

Documentation [WWW Document]. URL

https://docs.dwavesys.com/docs/latest/c_gs_3.html#qubo (accessed 12.28.22).

 115

Dziugaite, G.K., Ghahramani, Z., Roy, D.M., 2016. A study of the effect of JPG

compression on adversarial images. https://doi.org/10.48550/arXiv.1608.00853

Gao, H., Oates, T., 2019. Universal Adversarial Perturbation for Text Classification.

https://doi.org/10.48550/arXiv.1910.04618

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., Bengio, Y., 2014. Generative adversarial nets. Advances in neural

information processing systems 27.

Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and Harnessing Adversarial

Examples. https://doi.org/10.48550/arXiv.1412.6572

Grandvalet, Y., Canu, S., 1997. Noise injection for inputs relevance determination, in:

Advances in Intelligent Systems. IOS Press, NLD, pp. 378–382.

Gudigar, A., Chokkadi, S., U, R., 2016. A review on automatic detection and recognition

of traffic sign. Multimed Tools Appl 75, 333–364. https://doi.org/10.1007/s11042-

014-2293-7

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improved

Training of Wasserstein GANs, in: Advances in Neural Information Processing

Systems. Curran Associates, Inc.

Han, M.L., Kwak, B.I., Kim, H.K., 2018. Anomaly intrusion detection method for

vehicular networks based on survival analysis. Vehicular communications 14, 52–

63.

Han, S., Shen, H., Philipose, M., Agarwal, S., Wolman, A., Krishnamurthy, A., 2016.

MCDNN: An Approximation-Based Execution Framework for Deep Stream

 116

Processing Under Resource Constraints, in: Proceedings of the 14th Annual

International Conference on Mobile Systems, Applications, and Services, MobiSys

’16. Association for Computing Machinery, New York, NY, USA, pp. 123–136.

https://doi.org/10.1145/2906388.2906396

Hashemi, A.S., Mozaffari, S., Alirezaee, S., 2022. Improving adversarial robustness of

traffic sign image recognition networks. Displays 74, 102277.

https://doi.org/10.1016/j.displa.2022.102277

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition.

Presented at the Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 770–778.

Hinton, G.E., 2012. A practical guide to training restricted Boltzmann machines, in: Neural

Networks: Tricks of the Trade. Springer, pp. 599–619.

Hossain, M.D., Inoue, H., Ochiai, H., Fall, D., Kadobayashi, Y., 2020. Long Short-Term

Memory-Based Intrusion Detection System for In-Vehicle Controller Area

Network Bus, in: 2020 IEEE 44th Annual Computers, Software, and Applications

Conference (COMPSAC). Presented at the 2020 IEEE 44th Annual Computers,

Software, and Applications Conference (COMPSAC), pp. 10–17.

https://doi.org/10.1109/COMPSAC48688.2020.00011

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C., 2013. Detection of traffic

signs in real-world images: The German traffic sign detection benchmark, in: The

2013 International Joint Conference on Neural Networks (IJCNN). Presented at the

 117

The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8.

https://doi.org/10.1109/IJCNN.2013.6706807

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,

M., Adam, H., 2017. MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications. https://doi.org/10.48550/arXiv.1704.04861

ICT for Transport [WWW Document], n.d. URL https://www.e-elgar.com/shop/gbp/ict-

for-transport-9781783471287.html (accessed 7.10.23).

Islam, M., Chowdhury, M., Khan, Z., Khan, S.M., 2022. Hybrid Quantum-Classical Neural

Network for Cloud-Supported In-Vehicle Cyberattack Detection. IEEE Sensors

Letters 6, 1–4. https://doi.org/10.1109/LSENS.2022.3153931

Jin, G., Shen, S., Zhang, D., Dai, F., Zhang, Y., 2019. APE-GAN: Adversarial Perturbation

Elimination with GAN, in: ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). Presented at the ICASSP 2019

- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 3842–3846. https://doi.org/10.1109/ICASSP.2019.8683044

Jin, S., Chung, J.-G., Xu, Y., 2021. Signature-Based Intrusion Detection System (IDS) for

In-Vehicle CAN Bus Network, in: 2021 IEEE International Symposium on Circuits

and Systems (ISCAS). Presented at the 2021 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1–5.

https://doi.org/10.1109/ISCAS51556.2021.9401087

 118

Jo, H.J., Choi, W., 2022. A Survey of Attacks on Controller Area Networks and

Corresponding Countermeasures. IEEE Transactions on Intelligent Transportation

Systems 23, 6123–6141. https://doi.org/10.1109/TITS.2021.3078740

Jose, A., Thodupunoori, H., Nair, B.B., 2019. A Novel Traffic Sign Recognition System

Combining Viola–Jones Framework and Deep Learning, in: Wang, J., Reddy,

G.R.M., Prasad, V.K., Reddy, V.S. (Eds.), Soft Computing and Signal Processing,

Advances in Intelligent Systems and Computing. Springer, Singapore, pp. 507–

517. https://doi.org/10.1007/978-981-13-3600-3_48

Kadowaki, T., Nishimori, H., 1998. Quantum annealing in the transverse Ising model.

Phys. Rev. E 58, 5355–5363. https://doi.org/10.1103/PhysRevE.58.5355

Kerim, A., Efe, M.Ö., 2021. Recognition of Traffic Signs with Artificial Neural Networks:

A Novel Dataset and Algorithm, in: 2021 International Conference on Artificial

Intelligence in Information and Communication (ICAIIC). Presented at the 2021

International Conference on Artificial Intelligence in Information and

Communication (ICAIIC), pp. 171–176.

https://doi.org/10.1109/ICAIIC51459.2021.9415238

Khamaiseh, S.Y., Bagagem, D., Al-Alaj, A., Mancino, M., Alomari, H.W., 2022.

Adversarial Deep Learning: A Survey on Adversarial Attacks and Defense

Mechanisms on Image Classification. IEEE Access 10, 102266–102291.

https://doi.org/10.1109/ACCESS.2022.3208131

 119

Khan, Z., Chowdhury, M., Khan, S.M., 2022. A hybrid defense method against adversarial

attacks on traffic sign classifiers in autonomous vehicles. arXiv preprint

arXiv:2205.01225.

Kheder, M.Q., Mohammed, A.A., 2023. Improved traffic sign recognition system (itsrs)

for autonomous vehicle based on deep convolutional neural network. Multimed

Tools Appl. https://doi.org/10.1007/s11042-023-15898-6

Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J., 2017. Learning to Discover Cross-Domain

Relations with Generative Adversarial Networks, in: Proceedings of the 34th

International Conference on Machine Learning. Presented at the International

Conference on Machine Learning, PMLR, pp. 1857–1865.

Korenkevych, D., Xue, Y., Bian, Z., Chudak, F., Macready, W.G., Rolfe, J., Andriyash, E.,

2016. Benchmarking quantum hardware for training of fully visible Boltzmann

machines. arXiv preprint arXiv:1611.04528.

Kurowski, K., Slysz, M., Subocz, M., Różycki, R., 2021. Applying a Quantum Annealing

Based Restricted Boltzmann Machine for MNIST Handwritten Digit Classification.

Computational Methods in Science and Technology 27.

https://doi.org/10.12921/cmst.2021.0000011

Lampe, B., Meng, W., 2023. A survey of deep learning-based intrusion detection in

automotive applications. Expert Systems with Applications 221, 119771.

https://doi.org/10.1016/j.eswa.2023.119771

 120

Laykaviriyakul, P., Phaisangittisagul, E., 2023. Collaborative Defense-GAN for protecting

adversarial attacks on classification system. Expert Systems with Applications 214,

118957. https://doi.org/10.1016/j.eswa.2022.118957

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86, 2278–2324.

https://doi.org/10.1109/5.726791

Li, H., Zhang, B., Zhang, Y., Dang, X., Han, Y., Wei, L., Mao, Y., Weng, J., 2021. A

defense method based on attention mechanism against traffic sign adversarial

samples. Information Fusion 76, 55–65.

https://doi.org/10.1016/j.inffus.2021.05.005

Li, J., Wang, Z., 2019. Real-Time Traffic Sign Recognition Based on Efficient CNNs in

the Wild. IEEE Transactions on Intelligent Transportation Systems 20, 975–984.

https://doi.org/10.1109/TITS.2018.2843815

Lim, X.R., Lee, C.P., Lim, K.M., Ong, T.S., Alqahtani, A., Ali, M., 2023. Recent Advances

in Traffic Sign Recognition: Approaches and Datasets. Sensors 23, 4674.

https://doi.org/10.3390/s23104674

Liu, K., Deng, H., 2021. The Analysis of Driver’s Recognition Time of Different Traffic

Sign Combinations on Urban Roads via Driving Simulation. Journal of Advanced

Transportation 2021, e8157293. https://doi.org/10.1155/2021/8157293

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. SSD:

Single Shot MultiBox Detector, in: Leibe, B., Matas, J., Sebe, N., Welling, M.

(Eds.), Computer Vision – ECCV 2016, Lecture Notes in Computer Science.

 121

Springer International Publishing, Cham, pp. 21–37. https://doi.org/10.1007/978-

3-319-46448-0_2

Liu, Z., Liu, Q., Liu, T., Xu, N., Lin, X., Wang, Y., Wen, W., 2019. Feature Distillation:

DNN-Oriented JPEG Compression Against Adversarial Examples, in: 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Presented at the 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 860–868. https://doi.org/10.1109/CVPR.2019.00095

Lo, W., Alqahtani, H., Thakur, K., Almadhor, A., Chander, S., Kumar, G., 2022. A hybrid

deep learning based intrusion detection system using spatial-temporal

representation of in-vehicle network traffic. Vehicular Communications 35,

100471. https://doi.org/10.1016/j.vehcom.2022.100471

Lokman, S.-F., Othman, A.T., Abu-Bakar, M.-H., 2019. Intrusion detection system for

automotive Controller Area Network (CAN) bus system: a review. J Wireless Com

Network 2019, 184. https://doi.org/10.1186/s13638-019-1484-3

Lucas, A., 2014. Ising formulations of many NP problems. Frontiers in Physics 2.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2017. Towards Deep

Learning Models Resistant to Adversarial Attacks [WWW Document]. arXiv.org.

URL https://arxiv.org/abs/1706.06083v4 (accessed 7.6.23).

Majumder, R., Khan, S.M., Ahmed, F., Khan, Z., Ngeni, F., Comert, G., Mwakalonge, J.,

Michalaka, D., Chowdhury, M., 2021. Hybrid Classical-Quantum Deep Learning

Models for Autonomous Vehicle Traffic Image Classification Under Adversarial

Attack. https://doi.org/10.48550/arXiv.2108.01125

 122

Marti, E., de Miguel, M.A., Garcia, F., Perez, J., 2019. A Review of Sensor Technologies

for Perception in Automated Driving. IEEE Intelligent Transportation Systems

Magazine 11, 94–108. https://doi.org/10.1109/MITS.2019.2907630

McGregor, J.D., Silva, R.S., Almeida, E.S., 2018. 2 - Architectures of Transportation

Cyber-Physical Systems, in: Deka, L., Chowdhury, M. (Eds.), Transportation

Cyber-Physical Systems. Elsevier, pp. 21–49. https://doi.org/10.1016/B978-0-12-

814295-0.00002-2

Minawi, O., Whelan, J., Almehmadi, A., El-Khatib, K., 2020. Machine Learning-Based

Intrusion Detection System for Controller Area Networks, in: Proceedings of the

10th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks

and Applications, DIVANet ’20. Association for Computing Machinery, New

York, NY, USA, pp. 41–47. https://doi.org/10.1145/3416014.3424581

Møgelmose, A., Liu, D., Trivedi, M.M., 2015. Detection of U.S. Traffic Signs. IEEE

Transactions on Intelligent Transportation Systems 16, 3116–3125.

https://doi.org/10.1109/TITS.2015.2433019

Mogelmose, A., Trivedi, M.M., Moeslund, T.B., 2012. Vision-based traffic sign detection

and analysis for intelligent driver assistance systems: Perspectives and survey.

IEEE transactions on intelligent transportation systems 13, 1484–1497.

Moore, M.R., Bridges, R.A., Combs, F.L., Starr, M.S., Prowell, S.J., 2017. Modeling inter-

signal arrival times for accurate detection of CAN bus signal injection attacks: a

data-driven approach to in-vehicle intrusion detection, in: Proceedings of the 12th

Annual Conference on Cyber and Information Security Research, CISRC ’17.

 123

Association for Computing Machinery, New York, NY, USA, pp. 1–4.

https://doi.org/10.1145/3064814.3064816

Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P., 2016. Deepfool: a simple and accurate

method to fool deep neural networks. Presented at the Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2574–2582.

Moulahi, T., Zidi, S., Alabdulatif, A., Atiquzzaman, M., 2021. Comparative Performance

Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle

Controller Area Network Bus. IEEE Access 9, 99595–99605.

https://doi.org/10.1109/ACCESS.2021.3095962

Nam, M., Park, S., Kim, D.S., 2021. Intrusion Detection Method Using Bi-Directional GPT

for in-Vehicle Controller Area Networks. IEEE Access 9, 124931–124944.

https://doi.org/10.1109/ACCESS.2021.3110524

Nonnenmann, P., Bogomolec, X., 2021. Quantum Technologies, in: Liermann, V.,

Stegmann, C. (Eds.), The Digital Journey of Banking and Insurance, Volume II:

Digitalization and Machine Learning. Springer International Publishing, Cham, pp.

201–219. https://doi.org/10.1007/978-3-030-78829-2_12

NVIDIA A100 TENSOR CORE GPU [WWW Document], n.d. .

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/a100/pdf/nvidia-a100-datasheet.pdf. URL

http://nvidianews.nvidia.com/news/nvidia-unveils-drive-thor-centralized-car-

computer-unifying-cluster-infotainment-automated-driving-and-parking-in-a-

single-cost-saving-system (accessed 7.8.23).

 124

NVIDIA Unveils DRIVE Thor — Centralized Car Computer Unifying Cluster,

Infotainment, Automated Driving, and Parking in a Single, Cost-Saving System

[WWW Document], n.d. . NVIDIA Newsroom. URL

http://nvidianews.nvidia.com/news/nvidia-unveils-drive-thor-centralized-car-

computer-unifying-cluster-infotainment-automated-driving-and-parking-in-a-

single-cost-saving-system (accessed 7.8.23).

OpenDBC, n.d.

Pan, R., Islam, M.J., Ahmed, S., Rajan, H., 2019. Identifying Classes Susceptible to

Adversarial Attacks. https://doi.org/10.48550/arXiv.1905.13284

Pandurangan, R., Jayaseelan, S.M., Rajalingam, S., Angelo, K.M., 2023. A novel hybrid

machine learning approach for traffic sign detection using CNN-GRNN. Journal of

Intelligent & Fuzzy Systems 44, 1283–1303. https://doi.org/10.3233/JIFS-221720

Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A., 2016. Distillation as a Defense to

Adversarial Perturbations Against Deep Neural Networks, in: 2016 IEEE

Symposium on Security and Privacy (SP). Presented at the 2016 IEEE Symposium

on Security and Privacy (SP), pp. 582–597. https://doi.org/10.1109/SP.2016.41

PyTorch [WWW Document], n.d. URL https://www.pytorch.org (accessed 7.8.23).

Rachev, S.T., 1990. Duality theorems for Kantorovich-Rubinstein and Wasserstein

functionals.

Radford, A., Metz, L., Chintala, S., 2016. Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks.

https://doi.org/10.48550/arXiv.1511.06434

 125

RADU, M.D., COSTEA, I.M., STAN, V.A., 2020. Automatic Traffic Sign Recognition

Artificial Inteligence - Deep Learning Algorithm, in: 2020 12th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI).

Presented at the 2020 12th International Conference on Electronics, Computers and

Artificial Intelligence (ECAI), pp. 1–4.

https://doi.org/10.1109/ECAI50035.2020.9223186

Rajapaksha, S., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Madzudzo, G., Cheah, M.,

2023. AI-Based Intrusion Detection Systems for In-Vehicle Networks: A Survey.

ACM Comput. Surv. 55, 237:1-237:40. https://doi.org/10.1145/3570954

Ross, A., Doshi-Velez, F., 2018. Improving the Adversarial Robustness and

Interpretability of Deep Neural Networks by Regularizing Their Input Gradients.

Proceedings of the AAAI Conference on Artificial Intelligence 32.

https://doi.org/10.1609/aaai.v32i1.11504

Saadna, Y., Behloul, A., 2017. An overview of traffic sign detection and classification

methods. Int J Multimed Info Retr 6, 193–210. https://doi.org/10.1007/s13735-017-

0129-8

Salek, M.S., 2023. msabbirsalek/AR-GAN [WWW Document]. URL

https://github.com/msabbirsalek/AR-GAN (accessed 7.12.23).

Salek, M.S., 2022. msabbirsalek/Restricted-Boltzmann-Machine-for-CAN-IDS.

Samangouei, P., Kabkab, M., Chellappa, R., 2018. Defense-GAN: Protecting Classifiers

Against Adversarial Attacks Using Generative Models.

https://doi.org/10.48550/arXiv.1805.06605

 126

Sarker, I.H., 2021. Deep Cybersecurity: A Comprehensive Overview from Neural Network

and Deep Learning Perspective. SN COMPUT. SCI. 2, 154.

https://doi.org/10.1007/s42979-021-00535-6

Seo, E., Song, H.M., Kim, H.K., 2018. GIDS: GAN based Intrusion Detection System for

In-Vehicle Network, in: 2018 16th Annual Conference on Privacy, Security and

Trust (PST). Presented at the 2018 16th Annual Conference on Privacy, Security

and Trust (PST), pp. 1–6. https://doi.org/10.1109/PST.2018.8514157

Shanmugavel, A.B., Ellappan, V., Mahendran, A., Subramanian, M., Lakshmanan, R.,

Mazzara, M., 2023. A Novel Ensemble Based Reduced Overfitting Model with

Convolutional Neural Network for Traffic Sign Recognition System. Electronics

12, 926. https://doi.org/10.3390/electronics12040926

Sharma, P., Gillanders, J., 2022. Cybersecurity and Forensics in Connected Autonomous

Vehicles: A Review of the State-of-the-Art. IEEE Access 10, 108979–108996.

https://doi.org/10.1109/ACCESS.2022.3213843

Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale

Image Recognition. https://doi.org/10.48550/arXiv.1409.1556

Song, H.M., Woo, J., Kim, H.K., 2020. In-vehicle network intrusion detection using deep

convolutional neural network. Vehicular Communications 21, 100198.

https://doi.org/10.1016/j.vehcom.2019.100198

Stokes, J., Izaac, J., Killoran, N., Carleo, G., 2020. Quantum Natural Gradient. Quantum

4, 269. https://doi.org/10.22331/q-2020-05-25-269

 127

Sun, X., Yu, F.R., Zhang, P., 2022. A Survey on Cyber-Security of Connected and

Autonomous Vehicles (CAVs). IEEE Transactions on Intelligent Transportation

Systems 23, 6240–6259. https://doi.org/10.1109/TITS.2021.3085297

Volkovs, M., Yu, G., Poutanen, T., 2017. DropoutNet: Addressing Cold Start in

Recommender Systems, in: Advances in Neural Information Processing Systems.

Curran Associates, Inc.

Wali, S.B., Abdullah, M.A., Hannan, M.A., Hussain, A., Samad, S.A., Ker, P.J., Mansor,

M.B., 2019. Vision-Based Traffic Sign Detection and Recognition Systems:

Current Trends and Challenges. Sensors 19, 2093.

https://doi.org/10.3390/s19092093

What is Quantum Annealing? — D-Wave System Documentation documentation [WWW

Document], n.d. URL https://docs.dwavesys.com/docs/latest/c_gs_2.html

(accessed 6.29.22).

Wu, W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., Li, K., 2020. A Survey of Intrusion

Detection for In-Vehicle Networks. IEEE Transactions on Intelligent

Transportation Systems 21, 919–933. https://doi.org/10.1109/TITS.2019.2908074

Xie, G., Yang, L.T., Yang, Y., Luo, H., Li, R., Alazab, M., 2021. Threat Analysis for

Automotive CAN Networks: A GAN Model-Based Intrusion Detection Technique.

IEEE Transactions on Intelligent Transportation Systems 22, 4467–4477.

https://doi.org/10.1109/TITS.2021.3055351

 128

Xu, W., Evans, D., Qi, Y., 2018. Feature Squeezing: Detecting Adversarial Examples in

Deep Neural Networks, in: Proceedings 2018 Network and Distributed System

Security Symposium. https://doi.org/10.14722/ndss.2018.23198

Yang, Y., Luo, H., Xu, H., Wu, F., 2016. Towards Real-Time Traffic Sign Detection and

Classification. IEEE Transactions on Intelligent Transportation Systems 17, 2022–

2031. https://doi.org/10.1109/TITS.2015.2482461

Ye, N., Zhu, Z., 2018. Bayesian Adversarial Learning, in: Advances in Neural Information

Processing Systems. Curran Associates, Inc.

Young, C., Zambreno, J., Olufowobi, H., Bloom, G., 2019a. Survey of Automotive

Controller Area Network Intrusion Detection Systems. IEEE Design & Test 36,

48–55. https://doi.org/10.1109/MDAT.2019.2899062

Young, C., Zambreno, J., Olufowobi, H., Bloom, G., 2019b. Survey of Automotive

Controller Area Network Intrusion Detection Systems. IEEE Design Test 36, 48–

55. https://doi.org/10.1109/MDAT.2019.2899062

Zaibi, A., Ladgham, A., Sakly, A., 2021. A Lightweight Model for Traffic Sign

Classification Based on Enhanced LeNet-5 Network. Journal of Sensors 2021,

e8870529. https://doi.org/10.1155/2021/8870529

Zhang, H., Huang, K., Wang, J., Liu, Z., 2021. CAN-FT: A Fuzz Testing Method for

Automotive Controller Area Network Bus, in: 2021 International Conference on

Computer Information Science and Artificial Intelligence (CISAI). Presented at the

2021 International Conference on Computer Information Science and Artificial

 129

Intelligence (CISAI), pp. 225–231.

https://doi.org/10.1109/CISAI54367.2021.00050

Zhang, J., Huang, Q., Wu, H., Liu, Y., 2017. A Shallow Network with Combined Pooling

for Fast Traffic Sign Recognition. Information 8, 45.

https://doi.org/10.3390/info8020045

Zhao, Q., Chen, M., Gu, Z., Luan, S., Zeng, H., Chakrabory, S., 2022. CAN Bus Intrusion

Detection Based on Auxiliary Classifier GAN and Out-of-distribution Detection.

ACM Trans. Embed. Comput. Syst. 21, 45:1-45:30.

https://doi.org/10.1145/3540198

Zhao, Y., Xun, Y., Liu, J., Ma, S., 2022. GVIDS: A Reliable Vehicle Intrusion Detection

System Based on Generative Adversarial Network, in: GLOBECOM 2022 - 2022

IEEE Global Communications Conference. Presented at the GLOBECOM 2022 -

2022 IEEE Global Communications Conference, pp. 4310–4315.

https://doi.org/10.1109/GLOBECOM48099.2022.10001410

	Generative Neural Network-Based Defense Methods Against Cyberattacks for Connected and Autonomous Vehicles
	Recommended Citation

	tmp.1690504158.pdf.5ov1V

