
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

8-2023 

Generative Neural Network-Based Defense Methods Against Generative Neural Network-Based Defense Methods Against 

Cyberattacks for Connected and Autonomous Vehicles Cyberattacks for Connected and Autonomous Vehicles 

M Sabbir Salek 
Clemson University, msalek@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the Civil Engineering Commons, and the Transportation Engineering Commons 

Recommended Citation Recommended Citation 
Salek, M Sabbir, "Generative Neural Network-Based Defense Methods Against Cyberattacks for Connected 
and Autonomous Vehicles" (2023). All Dissertations. 3373. 
https://tigerprints.clemson.edu/all_dissertations/3373 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3373?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 i 

GENERATIVE NEURAL NETWORK-BASED DEFENSE METHODS AGAINST 

CYBERATTACKS FOR CONNECTED AND AUTONOMOUS VEHICLES 

A Dissertation 

Presented to 

the Graduate School of 

Clemson University 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

Civil Engineering 

by 

M Sabbir Salek

August, 2023

Accepted by: 

Dr. Mashrur Chowdhury, Committee Chair 

Dr. Yao Wang  

Dr. Feng Luo 

Dr. Long Cheng 

Dr. Sakib Mahmud Khan 



 

 ii 

ABSTRACT 

 

 

The rapid advancement of communication and artificial intelligence technologies 

is propelling the development of connected and autonomous vehicles (CAVs), 

revolutionizing the transportation landscape. However, increased connectivity and 

automation also present heightened potential for cyber threats. Recently, the emergence of 

generative neural networks (NNs) has unveiled a myriad of opportunities for 

complementing CAV applications, including generative NN-based cybersecurity measures 

to protect the CAVs in a transportation cyber-physical system (TCPS) from known and 

unknown cyberattacks. The goal of this dissertation is to explore the utility of the 

generative NNs for devising cyberattack detection and mitigation strategies for CAVs. To 

this end, the author developed (i) a hybrid quantum-classical restricted Boltzmann machine 

(RBM)-based framework for in-vehicle network intrusion detection for connected vehicles 

and (ii) a generative adversarial network (GAN)-based defense method for the traffic sign 

classification system within the perception module of autonomous vehicles. The author 

evaluated the hybrid quantum-classical RBM-based intrusion detection framework on 

three separate real-world Fuzzy attack datasets and compared its performance with a 

similar but classical-only approach (i.e., a classical computer-based data preprocessing and 

RBM training). The results showed that the hybrid quantum-classical RBM-based intrusion 

detection framework achieved an average intrusion detection accuracy of 98%, whereas 

the classical-only approach achieved an average accuracy of 90%. For the second study, 

the author evaluated the GAN-based adversarial defense method for traffic sign 

classification against different white-box adversarial attacks, such as the fast gradient sign 
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method, the DeepFool, the Carlini and Wagner, and the projected gradient descent attacks. 

The author compared the performance of the GAN-based defense method with several 

traditional benchmark defense methods, such as Gaussian augmentation, JPEG 

compression, feature squeezing, and spatial smoothing. The findings indicated that the 

GAN-based adversarial defense method for traffic sign classification outperformed all the 

benchmark defense methods under all the white-box adversarial attacks the author 

considered for evaluation. Thus, the contribution of this dissertation lies in utilizing the 

generative ability of existing generative NNs to develop novel high-performing cyberattack 

detection and mitigation strategies that are feasible to deploy in CAVs in a TCPS 

environment.  

 

Keywords: Artificial Intelligence, Generative neural network, Cybersecurity, Defense 

method, Connected vehicle, Autonomous vehicle, Quantum AI, Controller area network, 

and Traffic sign classification 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

1.1 Background and Motivation 

The global transportation sector is undergoing a swift and remarkable 

transformation, driven by groundbreaking advancements in information and 

communication technologies (“ICT for Transport,” n.d.). Yesterday's traditional 

transportation systems are now being complemented by the evolving realm of 

transportation cyber-physical systems (TCPS). These systems seamlessly connect diverse 

modes of physical transportation systems with cutting-edge cyber systems to leverage 

accelerated and highly efficient computational processes, as well as robust and fortified 

data storage capabilities (McGregor et al., 2018). This paradigm shift has been facilitated 

by recent breakthroughs in the field of artificial intelligence (AI), which have empowered 

TCPS to seamlessly integrate automation into a myriad of applications that were previously 

deemed arduous or perilous for human involvement. Among these remarkable 

advancements, the rapid progress in connected and autonomous vehicles (CAVs) stands 

out prominently. 

As the name suggests, CAVs encompass two aspects, i.e., connectivity and 

autonomy (“Connected/Automated Vehicles,” n.d.). If a vehicle is equipped with an 

onboard communication device that enables the vehicle to communicate with the other 

neighboring vehicles via vehicle-to-vehicle (V2V) communication, or with infrastructures 

via vehicle-to-infrastructure (V2I) communication, or with a diverse range of other entities 
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(e.g., pedestrians, bicyclists or other vulnerable road users) via vehicle-to-everything 

(V2X) communication, then it is referred to as a connected vehicle (CV). Conversely, an 

autonomous vehicle (AV) is characterized by a suite of sensors (e.g., cameras, ultrasonic 

sensors, radio detection and ranging or Radar sensors, and light detection and ranging or 

LiDAR sensors), sophisticated software, and supporting hardware that collectively enables 

the vehicle to undertake driving tasks autonomously, without the involvement of a human 

driver. When a vehicle combines both these capabilities—connectivity and automation—

it is regarded as a CAV, signifying a remarkable convergence of technological 

advancements. 

However, as the reliance on connectivity and autonomy intensifies, so does the 

vulnerability to potential cyber threats (Sun et al., 2022). Attackers now have 

unprecedented opportunities to exploit these systems, jeopardizing the confidentiality, 

integrity, and availability of the TCPS. The consequences range from the theft of sensitive 

information and invasion of privacy to the creation and dissemination of false/altered 

information and the injection of malicious data and software into the TCPS, such as CAVs, 

thereby posing significant risks to human safety, property, security, and privacy. As a 

result, there is a growing imperative to develop attack detection and defense strategies to 

enhance the security of the evolving TCPS, including CAVs, against both known and 

unknown cyberattacks. The focus lies on detecting cyberattacks as well as fortifying these 

systems to be inherently resilient against attacks, ensuring their robustness and ability to 

withstand potential breaches. 
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The current surge in AI, particularly in the realm of generative neural networks 

(NNs), has opened new windows for data-driven approaches to attack detection and 

mitigation (Sarker, 2021). Today, generative NNs possess the remarkable capacity to 

generate diverse forms of content, ranging from textual compositions to intricate images, 

captivating music, and even compelling artworks. Harnessing the immense generative 

potential of these NNs, researchers have begun developing strategies for detecting and 

mitigating cyberattacks that were inconceivable merely a decade ago. By training 

generative NNs on authentic, non-attack datasets, they can be effectively employed to 

identify and counteract cyber threats with remarkable ease and accuracy. This represents a 

significant leap forward in the field of cybersecurity, leveraging the creative abilities of 

generative NNs to safeguard against existing and emerging threats.  

In this dissertation, the focus is to utilize such generative NNs to develop innovative 

attack detection and mitigation strategies for CAVs operating in a TCPS environment. In 

particular, the research endeavors presented in this dissertation are directed to (i) develop 

a generative NN-based cyberattack detection strategy for CV’s in-vehicle network that 

connects multiple in-vehicle sensors and systems, and (ii) develop a generative NN-based 

defense method to protect the perception module of an AV from cyberattacks that is 

responsible for perceiving and comprehending the surrounding environment of an AV to 

facilitate precise navigate through roadways. 

1.2 Research Hypotheses 

The hypotheses of the research endeavors of this dissertation are as follows, 
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1. A hybrid quantum-classical generative NN-based intrusion detection system 

(IDS) performs better in detecting intrusions in the in-vehicle network of a CV 

compared to a classical-only IDS in a TCPS environment, and  

2. A generative NN-based attack-resilient AV traffic sign classification system 

performs better in mitigating the effects of cyberattacks compared to other deep 

NN-based defense methods.  

1.3 Research Objectives 

The objectives of the research endeavors of this dissertation are as follows, 

1. To explore how the generative ability of generative NNs can be utilized to 

devise an in-vehicle network intrusion detection framework for CVs in a TCPS 

environment, and 

2. To explore how the generative ability of generative NNs can be utilized to 

develop an attack-resilient traffic sign classification system that requires no 

prior knowledge about adversarial attack models and samples. 
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CHAPTER TWO 

 

HYBRID QUANTUM-CLASSICAL RESTRICTED BOLTZMANN MACHINE-

BASED IN-VEHICLE CONTROLLER AREA NETWORK INTRUSION DETECTION 

FOR CONNECTED VEHICLES 

 

 

2.1 Background and Motivation 

Controller area network (CAN) is a de facto standard for the broadcast-based in-

vehicle message communication system to provide a dedicated, reliable, and efficient 

communication channel for all in-vehicle connected electronic control units or ECUs. 

Although CAN is widely popular among in-vehicle networks, it lacks common security 

features, such as authentication. Attackers can easily inject false messages into a vehicle’s 

CAN via the on-board diagnostic (OBD-II) port, the infotainment system, or wireless 

communication. Thus, intrusion detection system (IDS) has been widely studied in recent 

years due to the inherent vulnerabilities of CAN communication to cyberattacks (Lokman 

et al., 2019; Wu et al., 2020; Young et al., 2019a). Researchers presented various IDSs 

based on different machine learning and deep learning techniques (Lo et al., 2022; Moulahi 

et al., 2021; Song et al., 2020; Minawi et al., 2020; Hossain et al., 2020). Besides the 

variation in machine learning or deep learning techniques, different features and their 

combinations have been attempted by researchers to improve CAN intrusion detection 

accuracy. Some common features used in the existing studies include message timing (e.g., 

message frequency/rate and interval) (Moore et al., 2017), signatures (e.g., ID, time 

interval, and correlation) (Jin et al., 2021), and anomaly (Lo et al., 2022).  
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Beyond the classical computer-based machine learning and deep learning 

algorithms, quantum computing can be used for CAN intrusion detection to detect the 

increasing number of cyberattacks. Dong et al., 2022 presented a quantum beetle swarm 

optimization-based extreme learning machine or ELM (i.e., a neural network (NN) where 

randomly selected input weights and hidden layer biases are utilized for faster learning) for 

network intrusion detection. The ELM in (Dong et al., 2022) provided higher detection 

accuracy and faster convergence than several other classical intrusion detection systems, 

such as backpropagation, support vector machine, improved rough ELM, particle swarm 

optimization, and genetic algorithm optimization-based ELMs. Chen et al., 2020 applied 

quantum computing for k-means clustering combined with a quantum-inspired ant lion 

optimization algorithm for intrusion detection. Their approach improved the convergence 

of k-means clustering to the global optimal solution. Caivano et al., 2022 presented a 

quantum annealing or QA-based IDS for CAN that achieved similar detection accuracy for 

denial of service and fuzzy attacks as of a classical classification technique with 

significantly shorter training and prediction time than the classical technique. 

This study presents a hybrid quantum-classical CAN intrusion detection framework 

that utilizes a classical computer for data preprocessing to generate CAN images with 

embedded labels and a quantum computer for restricted Boltzmann machine or RBM-based 

CAN image reconstruction and classification to detect CAN intrusions. A restricted 

Boltzmann machine or RBM is a widely used energy-based generative stochastic NN 

model. The training process of an RBM can be done using different algorithms, such as 

contrastive divergence (CD) (Hinton, 2012) and quantum annealing (QA) (Adachi and 
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Henderson, 2015). QA provides more accurate gradient estimates for training RBMs 

compared to CD-based training for problems with high energy gaps between modes, as 

shown by Korenkevych et al., 2016. Dixit et al., 2021 trained an RBM model using D-

Wave 2000Q QA with 64 visible and 64 hidden units, a task difficult to achieve using a 

gate-based approach. Such QA-based training can also be utilized for training RBM models 

to detect intrusions in an in-vehicle CAN, which is the motivation for this study. 

2.2 Contribution 

In a transportation cyber-physical system or TCPS environment, classical and 

quantum computers can be used together in a hybrid fashion for CAN intrusion detection. 

For example, Islam et al., 2022 presented a hybrid quantum-classical NN-based framework 

for CAN intrusion detection that outperformed both the classical-only and quantum-only 

approaches by overcoming the limitations of each of them. However, to the best of the 

author’s knowledge, a hybrid approach of a classical NN and a quantum RBM has not been 

undertaken for CAN intrusion detection yet. Besides, existing studies on NN-based CAN 

IDS do not consider embedding labels directly into the corresponding CAN images to 

leverage the image generation capability of generative NNs for an image classification-

based CAN IDS. Utilizing the QA-based training of an RBM, which enables sampling from 

the original probability distribution of the model, the CAN image (embedded with 

dedicated labeling pixels) reconstruction-based CAN intrusion detection framework offers 

more efficient learning (i.e., faster convergence with high detection accuracy) compared to 

the existing generative NN-based CAN IDSs. Thus, this study contributes to the existing 

body of CAN IDS literature by presenting a hybrid quantum-classical framework for CAN 
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intrusion detection leveraging the image generation capability of generative NNs to 

reconstruct the embedded labels in CAN images, which can then be used for image 

classification-based CAN intrusion detection.  

2.3 Related Work 

CAN intrusion detection has been widely studied by researchers in recent years 

because of the inherent vulnerabilities of CAN communication due to its broadcast-based 

nature. As a result, the existing body of literature is quite vast, and there are also several 

survey studies on CAN intrusion detection systems (Buscemi et al., 2023; Jo and Choi, 

2022; Lampe and Meng, 2023; Lokman et al., 2019; Rajapaksha et al., 2023; Young et al., 

2019b). Since the author developed a hybrid quantum-classical framework that utilizes a 

generative NN, in this section, the author explicitly focuses on reviewing studies that used 

generative NN models for CAN intrusion detection. The studies reviewed here are 

presented in chronological order. 

Seo et al., 2018 developed a generative adversarial network (GAN)-based IDS for 

in-vehicle networks that is able to detect unknown attacks while using only normal data 

(i.e., non-attack data) for training. The generator in their GAN-based IDS generates fake 

CAN images to train the discriminator to distinguish between normal and fake CAN 

images. The authors in (Seo et al., 2018) evaluated their GAN-based IDS for denial of 

service (DoS), FUZZY, RPM, and GEAR attack datasets and obtained 97.9%, 98%, 98%, 

and 96.2% accuracies, respectively. 

Xie et al., 2021 developed a GAN-based CAN IDS utilizing an enhanced GAN 

model to overcome the limitation of generating rough CAN message blocks in other GAN-
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based IDSs. The authors in (Xie et al., 2021) tested their CAN IDS against DoS, injection, 

masquerade, and data tampering attacks and achieved approximately 99% precision, recall, 

and F1 score for the tested attack types. 

Nam et al., 2021 developed a generative pretrained transformer (GPT)-based CAN 

IDS that can learn normal CAN ID sequences to detect any small changes in the sequence 

due to an attack. The authors used two GPT NNs arranged in a bi-directional manner to 

learn both past and future CAN ID sequences. The authors in (Nam et al., 2021) evaluated 

their CAN IDS for flooding, spoofing, replay, and fuzzing attacks, which showed a 

minimum 95% attack detection F-measure. 

Zhang et al., 2021 developed a CAN fuzz testing method to filter fuzzy messages 

using a GAN to generate fuzzy messages and an Adaptive Boosting-based detection system 

to detect anomalies in CAN communication due to the fuzzy message injection. The 

Adaptive Boosting-based anomaly monitor in (Zhang et al., 2021) was shown to be able to 

detect even slight anomalies in CAN communication. 

Q. Zhao et al., 2022 developed a CAN IDS based on Auxiliary Classifier GAN 

(ACGAN) and out-of-distribution detection. Their proposed IDS consists of two stages of 

classifiers. In the first stage, an ACGAN-based multi-class classifier is responsible for 

classifying normal and known attacks and filtering out-of-distribution samples. In the 

second stage, a binary classifier is responsible for detecting unknown attacks from the out-

of-distribution samples found in the first-stage classifier. The authors in (Q. Zhao et al., 

2022) achieved an average of 99% recall, 99% precision, and 99% F1 score for DoS, fuzzy, 

GEAR spoofing, and RPM attack detections. 
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Y. Zhao et al., 2022 developed a novel CAN intrusion attack method called the 

same origin method execution (SOME) attack and a GAN-based CAN IDS. Their proposed 

CAN IDS utilizes one-hot encoding with an adopted GAN network known as GANomaly 

(Akcay et al., 2019). The authors in (Y. Zhao et al., 2022) tested their CAN IDS against 

spoofing, bus-off, masquerade, and SOME attacks and achieved a minimum of 91% and 

93% detection accuracy for two test vehicles under all four types of attacks mentioned 

above. 

Although the studies listed in this section utilize one or more generative NN models 

for either training their IDS or detecting in-vehicle CAN intrusions, or doing both, none of 

the studies have considered embedding the label as a set of pixels directly into the 

corresponding CAN image, and then reconstructing the CAN image using a quantum RBM 

for CAN intrusion detection. This study developed a hybrid quantum-classical CAN 

intrusion detection framework leveraging RBM’s generative ability to reconstruct the 

embedded labeling pixels in a CAN image and then utilize the reconstructed CAN image 

for CAN intrusion detection. 

2.4 Hybrid Quantum-Classical Framework for CAN Intrusion Detection 

In this section, the author presents the hybrid quantum-classical framework for 

CAN intrusion detection using a classical computer for data preprocessing and a quantum 

computer for image reconstruction and classification. The steps involved in the hybrid 

quantum-classical framework for CAN intrusion detection are presented in Figure 2.1. 
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2.4.1 Classical Computer-based Data Preprocessing 

CAN messages can include different data fields, such as timestamp, CAN 

arbitration ID (i.e., an ID allocated to an in-vehicle system based on its CAN message 

broadcasting priority), data length code (i.e., a code that represents the length of the data 

contained in a CAN message), data (i.e., a string that contains various information in an 

encoded format related to the system that is broadcasting the CAN message), cyclic 

redundancy check or CRC sequence (i.e., an error-detecting code), and acknowledgment. 

In the hybrid quantum-classical CAN intrusion detection framework, the author converts a 

set of CAN messages into a CAN image that not only contains the information included in 

the CAN messages but also contains a label representing whether the CAN messages are 

normal messages or attack messages (i.e., injected false messages by an attacker). The steps 

to convert the CAN messages into label-embedded CAN images are as follows, 1) primary 

CAN image construction, 2) feature extraction using a classical NN, and 3) binary encoding 

and label embedding. Figure 2.2 presents the details of data preprocessing based on a 

classical computer. 

 

 

FIGURE 2.1 A Hybrid Quantum-Classical CAN Intrusion Detection Framework. 
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2.4.1.1 Primary CAN Image Construction 

The data contained in a CAN message is typically encoded (e.g., HEX-encoded). 

Thus, the first step for primary CAN image construction is to decode the encoded data 

using the corresponding database CAN (DBC); a DBC contains relevant information to 

decode CAN messages that may vary based on a vehicle’s make, model, and year. Once 

decoded, a set of features containing data from different in-vehicle sensors is obtained. 

Then, the author constructs an N × N primary CAN image using a set of N consecutive 

CAN messages with the same CAN ID, where N is the number of decoded features present 

in a CAN message with that CAN ID. Thus, in a primary CAN image, a row represents a 

single CAN message, whereas a column represents a feature. 

 

 

FIGURE 2.2 Steps in Classical Computer-based Data Preprocessing. 
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2.4.1.2 Feature Extraction using a Classical NN 

The author uses a classical NN to extract features from an N × N primary CAN 

image to create an 8 × 8 secondary CAN image following the feature extraction procedure 

presented in (Islam et al., 2022). In a later stage, when the author utilizes a QA-based RBM, 

the author considers 64 neurons in each layer. Thus, the motivation to create 8 × 8 CAN 

images from N × N primary CAN images is to be able to map each pixel of an image to a 

neuron of the visible layer of an RBM, which the author will discuss in section 2.4.2. The 

feature extraction using a classical NN can be described as follows, 

𝐿8×8 = 𝐿𝑝−1◯ 𝐿𝑝−2 ◯  𝐿𝑝−3◯ … . . ◯𝐿1 ◯  𝐿0 (1) 

𝐿𝑛 ∶ 𝑥𝑛−1

 
→ 𝑥𝑛 = 𝜙 (𝑊𝑛𝑥𝑛−1 + 𝑣𝑛) (2) 

Here, 𝐿8×8 denotes the output of a classical NN, p denotes the number of layers, 𝐿𝑛 denotes 

the 𝑛𝑡ℎ layer of the classical NN, 𝑥𝑛−1 denotes the input vector of 𝐿𝑛, 𝑥𝑛 denotes the output 

vector of 𝐿𝑛, 𝑊𝑛 denotes the weight, 𝑣𝑛 denotes a bias vector, and 𝜙 denotes a nonlinear 

function. The model parameters (𝑊𝑛, 𝑑, 𝑣𝑛) are to be optimized while training the classical 

NN. 

2.4.1.3 Binary Encoding and Label Embedding 

The author resize the 8 × 8 secondary CAN images into 8 × 6 reduced-size 

secondary CAN images to allocate two rightmost columns, i.e., a total of 16 bits of each 

image, for embedding the corresponding label to indicate whether the image is a normal 

image or an attack image. Then, binary encoding is performed on each 8 × 6 image. In a 

binary CAN image, each row represents a six-bit binary string: 𝑥𝑚 = (𝑏1, 𝑏2, … , 𝑏6), where 

𝑏𝑖 ∈ {0,1} ∀ 𝑖 = 1, 2, … , 6, and 𝑚 represents the row number. Each bit is a binary 
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representation of a pixel in an 8 × 6 reduced-size secondary CAN image, e.g., 𝑏1 = 1 in 

𝑥𝑚 indicates the first feature is present in the 𝑚-th row, whereas 𝑏1 = 0 indicates the first 

feature is absent in the 𝑚-th row. Binary image thresholding with a fixed threshold value 

of 0.5 is used to generate a binary CAN image 𝑥𝑚 from an 8 × 6 reduced-size secondary 

CAN image (Islam et al., 2022). After performing binary encoding, each binary CAN 

image of 8 × 6 size is embedded with the corresponding image label, i.e., whether the 

image represents an attack image or a normal image. This embedding is either an 8 × 2 

matrix of all ones when an image represents an attack image, or an 8 × 2 matrix of all 

zeroes when an image represents a normal image. Then, this 8 × 2 matrix is concatenated 

horizontally with the corresponding 8 × 6 binary CAN image giving each final processed 

binary CAN image with the embedded label an overall size of 8 × 8. 

2.4.2 Quantum RBM for CAN Image Reconstruction and Binary Classification 

The final processed binary CAN images with embedded labels are reconstructed by 

a quantum RBM and then used for binary classification based on the reconstructed 

dedicated bits in the images for labeling. In this framework, the author considers an 

adiabatic quantum computer offered by D-Wave, which is based on superconducting 

electronics and allows QA-based sampling (“What is Quantum Annealing? — D-Wave 

System Documentation documentation,” n.d.) for image reconstruction and classification. 

In this subsection, the author starts with the motivation for using quantum computers for 

training RBM models and presents the details of RBM-based CAN image reconstruction. 

Quantum computing utilizes the principles of quantum mechanics to process 

information. As opposed to classical computers that use classical bits (i.e., 0 and 1), 
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quantum computers use quantum bits (qubits) represented by photons, atoms, ions, etc., to 

process information. Besides, due to quantum phenomena, such as superposition and 

entanglement, quantum computing has the potential to process information at a much 

higher rate compared to classical computers. Unlike a classical bit that can only take a 

value of 0 or 1, a qubit can be in a state of 0, 1, or any combination of 0 and 1, known as 

superposition. A classical system with four bits can be used to represent only one out of 24 

or 16 combinations at once, whereas a quantum computer with four qubits can represent 

all 16 combinations simultaneously using superposition. On the other hand, the 

entanglement of two qubits refers to a quantum phenomenon that enables a quantum 

computer to instantaneously determine the state of an entangled qubit by only measuring 

the state of the other entangled qubit. Because of such uniqueness, it has been theorized 

over the last few decades by researchers that quantum computers could potentially solve 

complex problems exponentially faster than classical computers. Indeed, in 1994, Daniel 

Simon came up with an algorithm known as Simon’s algorithm, which was among the first 

of its kind to prove that a quantum algorithm is capable of exponentially speeding up the 

computations compared to a classical computer. Peter Shor discovered Shor’s algorithm 

the same year, which is considered one of the most famous and influential quantum 

algorithms so far, to factorize a given integer in polynomial time.   

Quantum computing has also shown tremendous potential in speeding up complex 

optimization problems; for example, Stokes et al., 2020 presented a generalized 

optimization framework using quantum natural gradient descent, which was proved to 

significantly speed up an optimization problem compared to its classical counterpart. The 
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gradient descent-based model parameter update rule is among the most fundamental 

algorithms for developing most ML and DL models nowadays. However, for a complex 

non-linear optimization problem, gradient descent-based ML or DL model training often 

suffers from non-convergence issues due to getting stuck at a local minimum. Thus, 

reaching the global minimum for such problems is sometimes challenging and 

computationally expensive for classical computers, which can be eased down by using a 

quantum approach.  

In this study, the author is particularly interested in developing RBM models using 

a quantum computer. RBM is an energy-based stochastic generative NN model, which can 

be represented by a bipartite graph (i.e., only nodes from alternate layers between two 

layers can be connected) consisting of two layers of nodes known as visible layer and 

hidden layer nodes (as shown in Figure 2.3). Each connection is associated with a weight, 

while the corresponding nodes are associated with biases. The energy function of an RBM 

is given by,  

𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑣𝑖

𝑖

− ∑ 𝑏𝑗ℎ𝑗

𝑗

− ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗

𝑖,𝑗

 (3) 

where, 𝑣𝑖 and ℎ𝑗  are two visible and hidden layer nodes, and 𝑎𝑖 and 𝑏𝑗 are their associated 

biases, respectively; and 𝑤𝑖𝑗 is the weight of the connection between 𝑣𝑖 and ℎ𝑗 . Here, the 

probability of a given state (𝑣, ℎ) is given by, 

𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) (4) 

where, 𝑍 is a partition function used for normalization and is given by, 
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𝑍 = ∑ 𝑒−𝐸(𝑣,ℎ)

(𝑣,ℎ)

 (5) 

As it is difficult to compute all the possible combinations of 𝑣 and ℎ, computing 𝑍 

is a computationally expensive process. In CD-based training, this problem is simplified 

by assuming that the variables are independent. The readers are referred to (Hinton, 2012) 

for CD-based training. 

Alternatively, an RBM model can be mapped to a binary quadratic model (BQM), 

in which the variables are essentially binary, and the model is a combination of linear and 

quadratic terms. The objective function of a BQM is given by the Ising model, which is 

shown in the following equation,  

𝐸𝑖𝑠𝑖𝑛𝑔(𝒔) = ∑ ℎ𝑖𝑠𝑖 + ∑ ∑ 𝐽𝑖,𝑗𝑠𝑖𝑠𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

𝑁

𝑖=1

 (6) 

where, 𝒔 is a vector of binary variables representing the spins, i.e., 𝑠𝑖 ∈ {−1, +1}, and ℎ 

denotes the linear coefficients associated with the qubit biases, and 𝐽 denotes the quadratic 

coefficients associated with the coupling strengths. A similar way to represent the BQM 

 

 

FIGURE 2.3 Schematic of an RBM Architecture. 
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models in computer science is the quadratic unconstrained binary optimization (QUBO) 

model, where the objective function is given by the following equation, 

𝑓(𝒙) = ∑ 𝑄𝑖𝑖𝑥𝑖

𝑖

+ ∑ 𝑄𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗

 (7) 

where, 𝒙 is a vector of binary variables such that 𝑥𝑖 ∈ {0,1} 𝑸 is an N × N upper triangular 

matrix consisting of weights, i.e., 𝑄𝑖𝑗 represents the element of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column 

of 𝑸, and 𝑄𝑖𝑖 represents the diagonal element of the 𝑖𝑡ℎ row of 𝑸; and 𝑥𝑖 and 𝑥𝑗 are the 𝑖𝑡ℎ 

and the 𝑗𝑡ℎ elements of 𝒙, which is a vector of binary variables. Note that, the conversion 

between the functions presented in (6) and (7) is trivial as (7) simply performs a linear 

transformation to change the spins (𝑠𝑖) to a binary variable 𝑥𝑖, i.e., 𝑥𝑖 =
1

2
(1 + 𝑠𝑖). Thus, 

the energy function of an RBM in (3) can also be mapped to the objective function of a 

QUBO problem in (7). 

As presented in (Lucas, 2014), a QUBO problem as in (7) can be expressed as a 

Hamiltonian given by the following equation, 

𝐻(𝒙) = − ∑ 𝑄𝑖𝑖𝜎𝑖
𝑧

𝑖

− ∑ 𝑄𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

𝑖<𝑗

 (8) 

where, 𝜎𝑖
𝑧 denotes a Pauli-Z gate applied on the 𝑖-th qubit. In (Kadowaki and Nishimori, 

1998), the authors presented how to solve such problems using QA by extending the 

Hamiltonian in (8) with a transverse field. QA is an optimization technique to find the 

global optimum of an objective function from a given set of candidates (Nonnenmann and 

Bogomolec, 2021). The Hamiltonian with a transverse field can be written as follows, 
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𝐻(𝒙) = −𝐴(𝒙) ∑ 𝜎𝑖
𝑥

𝑖

− 𝐵(𝒙) [∑ 𝑄𝑖𝑖𝜎𝑖
𝑧

𝑖

+ ∑ 𝑄𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

𝑖<𝑗

] (9) 

where, 𝐴 and 𝐵 are two weighting functions, and 𝜎𝑖
𝑥  denotes a Pauli-X gate applied on the 

𝑖-th qubit. In (Kadowaki and Nishimori, 1998), the authors proved that using the 

Hamiltonian in (9), QA could lead to fast convergence (i.e., reaching the ground state with 

the lowest energy in (9)) with much higher probability than its classical counterpart. 

D-Wave is a commercially available QA system that can be utilized to solve such 

QUBO problems using the Hamiltonian given in (9) (D-Wave Systems Inc., n.d.). Thus, 

the author chose to utilize a D-Wave QA system (i.e., D-Wave Advantage 4.1 system with 

over 5,000 qubits) for training the quantum RBM models in this study. Besides, using D-

wave’s quantum sampler, the author can obtain accurate samples from the original 

probability distribution of the model given in (4) (Kurowski et al., 2021). Obtaining 

accurate samples from the original probability distribution is a computationally expensive 

task for classical computers. However, unlike CD-based training, assuming that the 

variables are independent is unnecessary while using QA-based training. The author refers 

the readers to (Kurowski et al., 2021) for the details of an RBM implementation using 

QUBO and QA-based training, which the author adopted in this framework. 

2.5 Evaluation 

In this section, the author presents an evaluation of the hybrid quantum-classical 

CAN intrusion detection framework based on data collected from a real-world vehicle. To 

evaluate the efficacy of the framework, the author compares the intrusion detection 

performance of the framework developed in this study with a similar but classical-only 
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framework, i.e., all the steps of the classical-only framework are accomplished in a 

classical computer, including the RBM-based image reconstruction. In this section, first, 

the author will discuss the datasets the author used for this evaluation. Next, the author will 

explain the details of CAN intrusion detection based on the framework presented in section 

2.4. Finally, the author will present the results obtained from the evaluation. 

2.5.1 Dataset 

For evaluation, the author used a CAN intrusion dataset created by the Hacking and 

Countermeasure Research Lab (HCRL) (Han et al., 2018). The datasets in (Han et al., 

2018) include different CAN intrusion datasets, such as fuzzy, malfunction, and replay 

attack datasets. For this study, the author used a fuzzy attack dataset created by injecting 

randomly generated CAN messages into the CAN bus of a KIA Soul vehicle. Thus, the 

dataset includes both the injected CAN messages as well as the normal CAN messages. As 

shown in Figure 2.4, the dataset contains the following fields: (i) timestamp, (ii) CAN ID 

(in Hex), (iii) data length code (DLC), (iv) data (encoded as a Hex string), and (v) flag (‘R’ 

represents a normal message, and ‘T’ represents an injected message). The author divided 

the messages into different datasets based on the associated CAN IDs and selected three 

datasets based on randomly chosen CAN IDs, i.e., dataset 1 (with CAN ID: 0x220), dataset 

 

 

FIGURE 2.4 CAN Fuzzy Attack Dataset. 
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2 (with CAN ID: 0x316), and dataset 3 (with CAN ID: 0x329), that contain both the normal 

and injected messages. Each CAN ID is dedicated to broadcasting a particular set of 

information. Thus, the three datasets used here contain different sets of information 

encoded as Hex strings. Details of the datasets are presented in Table 2.1. 

TABLE 2.1 Details of the CAN Datasets 

Dataset Size 

No. of 

normal 

messages 

No. of attack 

(injected) 

messages 

No. of 

features 

Some example features 

1 2,384 1,192 1,192 14 

LAT_ACCEL, 

LONG_ACCEL, 

CYL_PRES, 

YAW_RATE, 

YAW_RATE_DIAG, 

and ESP12_Checksum 

2 2,684 1,324 1,324 13 

SWI_IGK, F_N_ENG, 

ACK_TCS, 

PUC_STAT, 

TQ_COR_STAT, and 

TQFR 

3 1,800 900 900 19 

MUL_CODE, 

TEMP_ENG, ACK_ES, 
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Dataset Size 

No. of 

normal 

messages 

No. of attack 

(injected) 

messages 

No. of 

features 

Some example features 

TPS, ACC_ACT, 

ENG_CHR, and 

ENG_VOL 

 

2.5.2 CAN Intrusion Detection 

First, the author decoded the encoded data fields in each dataset using a generic 

Database CAN (DBC) file for KIA vehicles from the OpenDBC repository (“OpenDBC,” 

n.d.). After decoding, the author obtained several features containing data from different 

in-vehicle sensors. Table 2.1 lists some example features for each dataset. Next, the author 

constructed primary CAN images from the decoded CAN messages in each dataset. Each 

primary CAN image is obtained by vertically stacking 𝑁 consecutive decoded CAN 

messages from a dataset, where 𝑁 is the number of decoded features in that dataset. Then, 

the author trained a classical NN to extract features from the primary CAN images in the 

form of 8 × 8 secondary CAN images, as explained in section 2.4.1.2. The 8 × 8 secondary 

CAN images were resized to 8 × 6 to allocate the two rightmost columns for the labeling 

bits. After embedding the labels into the 8 × 6 CAN images, the author obtained the final 

processed 8 × 8 CAN images with embedded labels, as explained in section 2.4.1.3. Figure 

2.5 provides some examples of the binary encoded CAN images with embedded labels. 



 

 23 

The final processed CAN images in each dataset were divided into a training dataset 

(including randomly shuffled 80% of the CAN images) and a test dataset (including the 

remaining 20% of the CAN images). For each training dataset, the author trained a classical 

RBM model using CD-based training and a quantum RBM model using QA-based training. 

The QA-based training of QRBM models was performed using the D-Wave Advantage 4.1 

System, whereas the CD-based training for the classical RBM models was performed on a 

classical computer. The hyperparameters (i.e., learning rate, number of epochs, weights, 

and biases) of each RBM model were optimized to yield the best CAN intrusion detection 

performance. Both classical and quantum RBM models included 64 visible layer nodes and 

64 hidden layer nodes that resulted in 64 visible layer biases, 64 hidden layer biases, and 

64 × 64 weights to be trained. The same training and test datasets were used for training 

 

 

FIGURE 2.5 Examples of Processed Binary CAN Images with Embedded Labels. 
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both the classical and the quantum RBM models for comparison. The source code is 

provided in Appendix A and GitHub (Salek, 2022). 

For evaluation, the labeling bits of each CAN image in a test dataset are first 

replaced by random binary bits. The trained RBM models are then used for reconstructing 

the CAN images in the test datasets. A reconstructed image is classified as a normal image 

if most of the bits among the 16 bits dedicated for labeling indicate a normal image; 

otherwise, the reconstructed image is classified as an attack image. 

2.5.3 Evaluation Metrics 

The CAN intrusion detection task in this study (i.e., fuzzy attack detection) falls 

under the category of binary classification (i.e., attack data or normal data). Therefore, 

classification accuracy (i.e., CAN intrusion detection accuracy) is considered the primary 

evaluation metric in this study. Recall is considered the secondary evaluation metric since 

it provides a measure of correctly detected attack data among all the attack data. Binary 

classification accuracy and recall are given by, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

where, TP, TN, FP, and FN denote the total number of true positives, the total number of 

true negatives, the total number of false positives, and the total number of false negatives, 

respectively. 
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2.5.4 Evaluation Results 

Figure 2.6 presents the accuracies and recalls of the classical RBM, and the 

quantum RBM approaches for each dataset. As observed from Figure 2.6, the quantum 

RBM approach outperformed the classical RBM approach for all three datasets used in this 

study. Among the three datasets, the minimum and maximum CAN intrusion detection 

accuracies while using the quantum RBM approach were 97% and 98.3%, respectively, 

whereas the minimum and maximum CAN intrusion detection accuracies for the classical 

RBM approach were 86.7% and 95%, respectively. On the other hand, the minimum and 

maximum recall for the quantum RBM approach were 93.9% and 97.2%, respectively, 

whereas the minimum and maximum recall for the classical RBM approach were 70.7% 

and 89.8%. Thus, the hybrid quantum-classical framework was able to improve both the 

accuracies and recalls for CAN intrusion detection on all three datasets used in this study 
 

 

FIGURE 2.6 Comparison of CAN Intrusion Detection Performance. 
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compared to the classical-only framework. This improvement in intrusion detection 

performance while using the quantum RBM can be attributed to several factors. Quantum 

DL models have been reported in the literature to achieve similar or better classification 

performance while being trained on a much smaller dataset compared to their classical 

counterparts (Caro et al., 2022). This implies that while being trained on the same dataset 

and using the same DL model architecture with the same number of model parameters, 

quantum DL models might achieve better classification performance compared to the 

classical DL models, which aligns with the observations of this study. Training ML or DL 

models heavily utilizes optimization-based approaches for updating the model parameters. 

However, a classical computing-based optimization process might get stuck at some local 

minima, which can be overcome by utilizing a quantum optimization approach as it 

leverages quantum tunneling to bypass local minima and reach the global minimum 

quickly. Quantum tunneling enables atoms, electrons, or photons to pass through potential 

energy barriers, which helps in bypassing local minima to reach the global minimum. In 

addition, the hybrid framework utilized D-Wave’s QA-based sampling for the RBM that 

enables accurate sampling from the original probability distribution of the model, unlike 

the CD-based RBM used in the classical-only framework that samples from the conditional 

probability distribution, as discussed in section 2.4.2. Also, unlike other generative NNs 

(e.g., generative adversarial network or GAN and generative pretrained transformer or 

GPT) that would require rigorous training to obtain a well-performing CAN IDS, the 

hybrid framework utilizes a simpler generative NN architecture of an RBM that can quickly 

learn to detect attacks by learning the patterns of normal and attack CAN images embedded 
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with labeling pixels. All of the quantum RBM models in this study converged within a 

comparable number of epochs while yielding an overall higher attack detection accuracy 

and recall than the classical RBM, which proves the efficacy of the hybrid quantum-

classical CAN intrusion detection framework. 

2.6 Discussion 

In this study, the author presented a hybrid quantum-classical CAN intrusion 

detection framework utilizing a classical NN and a quantum RBM. In this framework, data 

preprocessing is done in a classical computer to generate CAN images with embedded 

labeling pixels from CAN messages. A quantum RBM is used in the framework to 

reconstruct each CAN image along with its labeling pixels, which is then applied for image 

classification-based CAN intrusion detection. The author evaluated the hybrid quantum-

classical CAN intrusion detection framework on three different real-world fuzzy attack 

datasets and compared the CAN intrusion detection performance of the hybrid framework 

with a similar but classical-only framework (i.e., classical computer-based data 

preprocessing and RBM training). Based on the experiments conducted on the datasets, the 

minimum accuracy and recall for the hybrid framework were 97% and 93.9%, respectively. 

In contrast, for the similar but classical-only framework, the minimum CAN intrusion 

detection accuracy and recall were 86.7% and 70.7%, respectively. 

It should be noted that although the hybrid quantum-classical CAN intrusion 

detection framework utilizes a quantum computer to train the RBM, once the RBM is 

trained to yield a desired intrusion detection performance, the quantum computer is not 

used anymore. The trained model can then be transferred to an in-vehicle computing unit 
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where the entire process of CAN intrusion detection will take place. This will help 

minimize the end-to-end latency in CAN intrusion detection to a point where it can perform 

as a real-time cyberattack detection application. 
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CHAPTER THREE 

 

AR-GAN: GENERATIVE ADVERSARIAL NETWORK-BASED DEFENSE 

METHOD AGAINST ADVERSARIAL ATTACKS ON THE TRAFFIC SIGN 

CLASSIFICATION SYSTEM OF AUTONOMOUS VEHICLES 

 

 

3.1 Background and Motivation 

Autonomous vehicles (AVs) perform the autonomous driving task with the help of 

a suite of sensors and software. Sensors, such as cameras, light detection and ranging 

(LiDAR) sensors, radio detection and ranging (Radar) sensors, and ultrasonic sensors, help 

AVs perceive their surrounding environment like humans do using their sensory systems 

(Marti et al., 2019). These sensors feed their sensed data to the AV perception module, 

where the necessary information for autonomous navigation is extracted. This information 

includes recognizing traffic signs and signals and detecting lane markings, surrounding 

vehicles, pedestrians, obstacles, etc. Any alteration to this information due to compromised 

security may result in severe consequences, such as fatal crashes. In addition, if AVs are 

connected with other vehicles via vehicle-to-vehicle (V2V) communication, with 

infrastructures via vehicle-to-infrastructure (V2I) communication, and with other entities 

via vehicle-to-everything (V2X) communication, then the potential attack surfaces increase 

dramatically (Sharma and Gillanders, 2022; Sun et al., 2022).  

Nowadays, even many human-driven vehicles have dashboard camera-based built-

in traffic sign classification systems. These systems are typically highly dependent on 

machine learning (ML) or deep learning (DL) models, especially deep NNs (DNNs) (Wali 

et al., 2019). However, since AVs rely on such systems to realize roadway regulations and 
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act accordingly, such as performing a braking or acceleration maneuver, compromised 

information regarding roadway traffic signs can be more hazardous for AVs compared to 

any human-driven vehicles. For example, if an AV's traffic sign classification system 

misclassifies a STOP sign as a SPEED LIMIT sign and fails to stop at a stop-controlled 

intersection, it may crash on other vehicles or run over a vulnerable road user like a 

pedestrian. Thus, researchers have emphasized developing DNN-based accurate traffic 

sign classification systems over the past few years. Some of these classification systems 

were reported to perform exceptionally well under uncompromised security situations. 

However, DNN-based classification systems have some cybersecurity 

vulnerabilities. For example, an adversarial attack can introduce slight perturbations to the 

input images or video frames fed to a traffic sign classification system and cause the 

underlying DNN models to misclassify the signs on the roadway with very high 

confidence. These perturbations can be so minimal that they are almost imperceptible to 

regular human eyes. However, they can be very effective in fooling the DNN models used 

in AVs’ traffic sign classification systems. In this study, the author aims to develop an AV 

traffic sign classification system resilient to such adversarial attacks. 

Adversarial attacks can be targeted or untargeted. In a targeted attack, the attack 

model aims to make a classification system predict a specific target label. For example, a 

targeted attack can be crafted to force an AV traffic sign classification system to misclassify 

the STOP signs on the roadway as YIELD signs. In contrast, an untargeted attack aims to 

force a classification system to misclassify without any specific target label. Another way 

to categorize adversarial attacks is based on the knowledge the attack model or the attacker 
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has about the DNN models responsible for classification. If the attacker has no knowledge 

about the DNN models, e.g., its architecture, parameters, or its defense methods, then it is 

called a black-box attack. If the attacker has knowledge about the DNN models, e.g., its 

architecture and parameters, but does not have any information about the defense methods, 

then it is known as a gray-box attack. On the other hand, if the attacker has complete 

knowledge of the DNN models and its defense methods, then the attack is called a white-

box attack. Without a doubt, the victim, in this case, the DNN-based classification system, 

is at a maximum disadvantage during a white-box attack because the attacker might craft 

an adversarial attack in a way so that the DNN-based classification system and its defense 

methods remain utterly unaware of the fact that there was an attack. In this study, the goal 

is to develop an AV traffic sign classification system that is resilient to such white-box 

attacks because, in a connected and AV environment, it is only reasonable to assume that 

an attacker might get access to this information even without physically accessing the AV. 

Different defense methods have been proposed by researchers over the past few 

years to protect image classification systems from adversarial attacks (Khamaiseh et al., 

2022), such as modification of the DNNs (Papernot et al., 2016; Ross and Doshi-Velez, 

2018), adversarial training (Bai et al., 2021), input transformation (Liu et al., 2019; Xu et 

al., 2018), and input reconstruction (Jin et al., 2019; Laykaviriyakul and Phaisangittisagul, 

2023; Samangouei et al., 2018). The recent breakthroughs in generative adversarial 

networks (GANs) have opened opportunities to utilize GANs for defense against 

adversarial attacks. For example, Samangouei et al., 2018 introduced a Wasserstein GAN 

(WGAN)-based defense method, known as the Defense-GAN, that can protect image 
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classification systems against known and unknown adversarial attacks by reconstructing 

the input images before feeding them to a classifier. The generator model in the Defense-

GAN method was trained on to generate samples similar to the unperturbed (legitimate) 

images given a random input latent vector. The random input latent vector is determined 

by solving an optimization problem to minimize the reconstruction error of the generator. 

However, WGAN is known for suffering from issues associated with the weight clipping 

method it uses, such as vanishing gradient and non-convergence of the discriminator, 

which makes it training an appropriate WGAN model very difficult (Gulrajani et al., 2017). 

In (Jin et al., 2019), Jin et al. developed a defense method for image classification systems 

against adversarial attacks called the Adversarial Perturbation Elimination with GAN 

(APE-GAN). The generator of the APE-GAN was trained with adversarial examples to 

eliminate adversarial perturbations by making changes to the input images. However, the 

authors in (Jin et al., 2019) also utilized the loss function of WGAN, which has the same 

issues as mentioned above. Besides, adversarial training-based defense methods work well 

for known attacks only. Laykaviriyakul and Phaisangittisagul, 2023 proposed an 

adversarial defense framework for image classification systems based on the DiscoGAN 

architecture (Kim et al., 2017), where the authors utilized an attacker model to create 

adversarial examples from the training data and a defender model to reconstruct 

unperturbed images from the adversarial images. These two models were trained in tandem 

to play a competing game with each other. However, the authors in (Laykaviriyakul and 

Phaisangittisagul, 2023) also used an adversarial training-based defense approach, which 

may not perform well under unknown attacks on which the models were not trained. 
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Besides, all these studies considered benchmark datasets like CIFAR-10, MNIST, and 

Fashion MNIST. Thus, their performance on real-world datasets, such as a real-world 

traffic sign dataset, is not explored yet. 

In this study, the author developed an attack-resilient GAN-based defense method 

for an AV traffic sign classification system, which the author refers to as the AR-GAN in 

this study, that can protect the perception module of an AV from unknown attacks. The 

author used a WGAN-based loss function with gradient penalty (WGAN-GP) to train the 

GAN models, which was shown to overcome common issues with GAN/WGAN training, 

such as mode collapse and vanishing gradient. The author trained the GAN models and 

classifiers on the unperturbed traffic sign images only so that all types of adversarial attacks 

are unknown to the models. For evaluation, the author only considered white-box attacks 

with full knowledge of the AR-GAN models to put the AR-GAN method in a situation 

with maximum disadvantage. 

3.2 Contribution 

Much work has been done on DNN-based traffic sign classification systems in the 

literature (Gudigar et al., 2016; Saadna and Behloul, 2017; Wali et al., 2019; Lim et al., 

2023). However, to the best of the author’s knowledge, none of the existing studies utilized 

a GAN-based adversarial defense method for traffic sign classification. In this study, the 

author developed an adversarial attack-resilient traffic sign classification system based on 

GAN (AR-GAN) for AVs, which does not require any prior knowledge about adversarial 

attacks. The AR-GAN method utilizes a WGAN-GP-based loss function to overcome 

typical convergence issues with GANs, such as mode collapse and vanishing gradient. The 
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generator in the AR-GAN method is based on the DCGAN architecture (Radford et al., 

2016) and trained to generate unperturbed samples from adversarial samples before feeding 

them to the classifier. The classifier in the AR-GAN method is based on the ResNet9 

architecture (He et al., 2016) and trained on traffic sign images reconstructed by the 

generator. Besides, AR-GAN uses a particular training framework (discussed in section 

3.5 in detail) to obtain the models to ensure that the models used in the final traffic sign 

classification system perform the best. Thus, the generator and the classifier in the AR-

GAN traffic sign classification system can achieve high traffic sign classification 

accuracies under no-attack scenario as well as under different types of white-box 

adversarial attacks, which the author evaluated with a real-world traffic sign dataset in this 

study. Also, the AR-GAN traffic sign classification system can provide very consistent 

classification performance under different perturbation magnitudes, unlike the traditional 

defense methods. 

3.3 Related Work 

Significant progress has been made in traffic sign classification in recent years, with 

a growing focus on using DNN-based techniques. In this section, the author describes some 

notable contributions in this area.  

Among the earlier studies on traffic sign classification, Zhang et al., 2017 presented 

a shallow Convolutional Neural Network (CNN) for traffic sign recognition consisting of 

feature extraction stages, fully connected layers, and a Softmax-loss layer. The authors 

performed subsampling using a combination of max pooling and average pooling, which 

allowed the network to learn discriminative features automatically. The proposed network 
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in (Zhang et al., 2017) achieved an accuracy of 99.84% on the German Traffic Sign 

Recognition Benchmark (GTSRB) dataset (Houben et al., 2013). However, a limitation of 

this network indicated by the authors was its dependency on a fixed input image size. Li 

and Wang, 2019 conducted a study on traffic sign recognition using the MobileNet 

(Howard et al., 2017) CNN architecture. The authors incorporated batch normalization, 

ReLU activation, and a Softmax layer to calculate confidence probabilities for traffic sign 

classification. The experiments were performed on the GTSRB dataset, and the model 

achieved a classification accuracy of 99.66%.  

Among the more recent studies in this area, Kerim and Efe, 2021 developed a 

hybrid NN to classify traffic signs using various features, including Histograms of Oriented 

Gradients (HOG) and a combination of color, HOG, and Local Binary Patterns (LBP). The 

authors employed the GTSRB and Chinese Traffic Sign Recognition Dataset (TSRD) for 

training and evaluation. The hybrid NN consisted of nine individual NNs, each analyzing 

traffic signs based on specific image attributes. In addition, the authors employed data 

augmentation to improve their model performance. The method, including color, HOG, 

and LBP features, demonstrated an accuracy of 95%, which outperformed the approach 

that solely employed HOG features. Kheder and Mohammed, 2023 improved the 

traditional LeNet-5 CNN model architecture (Lecun et al., 1998) by increasing the number 

of layers and incorporating various common image preprocessing algorithms to enhance 

performance. The authors in (Kheder and Mohammed, 2023) trained the model using the 

GTSRB and extended GTSRB (EGTSRB) (i.e., GTSRB combined with Belgium Traffic 

Sign dataset) datasets. Compared to the other state-of-the-art approaches, such as Viola-
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Jones and Inception-V3 CNN architecture (Jose et al., 2019) and improved LeNet-5 CNN 

architectures (RADU et al., 2020; Zaibi et al., 2021), the results demonstrated high 

classification accuracy, with 99.12% achieved on the GTSRB dataset and 99.78% on the 

EGTSRB dataset.  

Shanmugavel et al., 2023 developed a model called Ensemble-based LeNet, 

VGGNet, and DropoutNet (ELVD) for real-time traffic sign classification, object tracking, 

and recognition. The authors used a combination of CNN architectures, including LeNet, 

VGGNet (Simonyan and Zisserman, 2015), and DropoutNet (Volkovs et al., 2017), and 

trained and tested the models on the GTSRB and the TSRD datasets. The proposed ELVD 

model demonstrated fast detection time compared to traditional models, such as MCDNN 

(Han et al., 2016), Mask R-CNN (Bharati and Pramanik, 2020), Support Vector Machine 

or SVM (Creusen et al., 2010), HOG (Yang et al., 2016), and Single Shot multi-box 

Detector or SSD (Liu et al., 2016), with over 99% classification accuracy. Pandurangan et 

al., 2023 introduced a traffic signal recognition model by using preprocessing techniques, 

such as median filtering and histogram equalization, and employing ML and DL 

algorithms, including SVM, Extreme Learning Machine (ELM), Linear Discriminant 

Analysis (LDA), Principal Component Analysis (PCA), and CNN-General Regression 

Neural Network (GRNN). The proposed model achieved a high accuracy of 99.41% on the 

GTSRB dataset compared to other traditional methods.  

In addition to the studies mentioned above, many others developed DNN 

architectures to classify traffic signs using various datasets (Dilek and Dener, 2023; Lim et 

al., 2023). However, only a few studies have developed DNN-based defense methods to 
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improve the resilience and robustness of traffic sign classification systems against 

adversarial attacks.  Among them, Li et al., 2021 proposed a defense method based on an 

attention mechanism to address the vulnerability of traditional NNs to adversarial attacks 

for traffic sign recognition. The authors utilized a spatial transformation module that 

extracts affine coordinate parameters of target objects, redraws them using a coordinate 

mapping model, and applies an attention mechanism to filter pixels through interpolation. 

The authors evaluated their proposed model against various attack methods on traffic sign 

adversarial samples generated on the GTSRB dataset. The model demonstrated an average 

accuracy of 73.95% when challenged with untargeted white-box Fast Gradient Sign 

Method (FGSM) attacks. These adversarial samples were generated using a ResNet50 

classifier trained on the GTSRB dataset. Hashemi et al., 2022 developed a novel cost 

function, which the authors refer to as the Regularized Guided Complement Entropy 

(RGCE), to increase the performance of CNNs used for traffic sign recognition. They 

employed the information from the Softmax layer in addition to some of the extracted 

features from convolutional layers in their optimization process. The authors evaluated the 

RGCE on two datasets, the CIFAR-10 dataset and the GTSRB dataset, highlighting its 

improved robustness against various adversarial attacks while maintaining or enhancing 

performance on clean images. The RGCE in (Hashemi et al., 2022) was reported to achieve 

an accuracy of 90.24% and 74.44% when targeted by the FGSM and the Projected Gradient 

Descent (PGD) L-infinite norm attacks, respectively, with a perturbation magnitude of 

0.04. The adversarial samples in (Hashemi et al., 2022) were generated using a ResNet18 

classifier trained on the GTSRB dataset.  
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Khan et al., 2022 proposed a DNN-based hybrid defense method for improving the 

resilience of traffic sign classification against adversarial attacks. They developed the 

hybrid defense method based on Inception-V3 and Resnet-152 DNN models and 

incorporated random filtering, ensembling, and local feature mapping defense strategies. 

The authors evaluated their proposed hybrid defense method on a modified subset version 

of the extended LISA traffic sign database(Møgelmose et al., 2015), which showed 99% 

classification accuracy on average in the absence of attacks and 88% classification 

accuracy on average against various adversarial attacks, such as FGSM, Momentum 

Iterative Method (MIM), PGD, and Carlini and Wagner (C&W) attacks. The hybrid 

defense method in (Khan et al., 2022) was reported to perform better than some other 

traditional defense methods, such as feature squeezing, JPEG filtering, binary filtering, and 

random filtering. Majumder et al., 2021 combined classical and quantum neural layers to 

develop hybrid classical-quantum DL models for increasing the resiliency of traffic sign 

image classification models in AVs against adversarial attacks. The authors employed a 

pre-trained ResNet18 CNN for the classical part and incorporated quantum gates to employ 

mechanical features for the quantum layer. The authors in (Majumder et al., 2021) 

proposed two hybrid models and evaluated them using a modified subset version of the 

LISA traffic sign image dataset. The second hybrid model performed better under the PGD 

attack than the classical model; however, under the FGSM attack, the classical model 

outperformed the hybrid model. 

Although the abovementioned studies proposed different DNN-based traffic sign 

classification systems for defending against adversarial attacks, none considered a 
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generative DNN-based method. With the recent breakthroughs in GANs and high-

performance in-vehicle computational units, GANs have introduced an unprecedented 

window of opportunities to be deployed for AV applications, such as an AV traffic sign 

classification application. However, to the best of the author’s knowledge, none of the 

existing studies attempted to develop a GAN-based adversarial attack-resilient AV traffic 

sign classification system, which is the focus of this study. 

3.4 Attack Models 

 Numerous adversarial attack models have been developed by researchers in the 

past few years to target NN-based classifiers (Khamaiseh et al., 2022). In this study, the 

author only considers white-box attacks, in which an attacker, having complete knowledge 

about the classification system, aims to find a perturbation 𝛿 that will cause 

misclassification by the classifier when added to legitimate input 𝑥 ∈ ℝ𝑛, i.e., 𝑥̃ = 𝑥 + 𝛿, 

where 𝑥̃ is the modified input or the adversarial example that may cause misclassification. 

In this section, the author discusses the different white-box attack models used in this study. 

3.4.1 Fast Gradient Sign Method (FGSM) Attack 

FGSM is a simple but effective attack proposed by Goodfellow et al., 2015. FGSM utilizes 

the gradient of the loss (cost) function with respect to the input image to generate 

adversarial examples. The "Fast" in the name refers to the efficiency and simplicity of the 

attack. Despite its simplicity, FGSM has become one of the most popular adversarial 

attacks due to its effectiveness in causing misclassification with high confidence 

(Goodfellow et al., 2015). Given an input image 𝑥 and a target classifier with parameters 

𝜃, FGSM attack aims to generate an adversarial example  𝑥̃ = 𝑥 + 𝛿, where the added 
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perturbation 𝛿 is determined by computing the gradient of the loss function with respect to 

the input 𝑥 as follows, 

𝛿 = 𝜀. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)) (12) 

where, 𝐽 denotes the loss function, 𝑦 denotes the output class, ∇𝑥 is a differential operator 

with respect to 𝑥, and 𝜀 denotes the magnitude of perturbation chosen by the attacker.  

3.4.2 DeepFool Attack 

DeepFool is another simple yet effective optimization-based iterative white-box attack 

model proposed by Moosavi-Dezfooli et al., 2016, which has been reported by the authors 

to be more effective than the FGSM attack on MNIST and CIFAR-10 datasets. Given a 

binary classifier model, this attack aims to find the minimum perturbation 𝛿∗ that would 

cause misclassification by shifting the input 𝑥 to the other side of the classification 

boundary. The minimum perturbation 𝛿∗ is determined through an optimization problem 

as follows, 

𝛿∗ = arg min
𝛿

 ‖𝛿‖2 (13) 

subject to: 𝑠𝑖𝑔𝑛(𝑓(𝑥 + 𝛿)) ≠ 𝑠𝑖𝑔𝑛(𝑓(𝑥))  

where, 𝑓 is an arbitrary binary classification model. At 𝑖𝑡ℎ iteration, DeepFool updates 𝛿 

by linearizing the classification boundary around the current point 𝑥𝑖. In order to ensure 

that the final perturbation 𝛿 yields misclassification, it is multiplied by a constant (1 + 𝜂), 

where 𝜂 ≪ 1. The authors in (Moosavi-Dezfooli et al., 2016) extended this approach to 

multi-class classifiers as well.  
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3.4.3 Carlini and Wagner (C&W) Attack 

Carlini and Wagner, 2017 introduced an optimization-based iterative adversarial 

attack known as the C&W attack. The C&W attack is a powerful attack that has been 

reported to cause very low classification accuracy on benchmark datasets, such as MNIST 

and CIFAR datasets (Carlini and Wagner, 2017). In a C&W attack, given an input image 

𝑥 ∈ ℝ𝑛, the goal of the attack is to determine an optimal perturbation 𝛿∗ so that the 

adversarial example 𝑥̃ = 𝑥 + 𝛿∗ is misclassified by a target classifier. In an ℓ2-norm C&W 

attack, the optimal perturbation 𝛿∗ is determined through the following optimization 

problem,  

𝛿∗ = arg min
𝛿

 ‖𝛿‖2 + 𝑐. 𝑓(𝑥 + 𝛿) (14) 

subject to: 𝑥 + 𝛿 ∈ [0, 1]𝑛  

Here, ‖. ‖2 denotes the ℓ2-norm, 𝑐 > 0 is an arbitrary constant, and 𝑓 is an objective 

function that helps the input image 𝑥 to be misclassified, which is chosen based on the 

knowledge of the target classifier model. Apart from the ℓ2-norm attack explained above, 

C&W attacks can also be performed using  ℓ0 and ℓ∞ norms.  

3.4.4 Projected Gradient Descent (PGD) Attack 

PGD is a powerful white-box attack model that also utilizes an optimization-based 

iterative approach to determine the optimal perturbation 𝛿 that can cause misclassification 

when added to an input image 𝑥. The authors in (Madry et al., 2017) showed the 

effectiveness of PGD attacks on MNIST and CIFAR-10 datasets, in which PGD was able 

to yield lower classification accuracy on the datasets compared to FGSM and C&W 
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attacks. Given an input image 𝑥 and a perturbation 𝛿 to be optimized for a PGD attack, the 

optimization problem can be written as, 

𝛿∗ = arg min
𝛿

 ‖𝛿‖2 (15) 

subject to: 𝑥 + 𝛿 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]  

Here, ‖. ‖2 denotes the ℓ2-norm, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values 

of each pixel. The perturbation 𝛿 is updated in each iteration as follows, 

𝛿𝑡+1 = 𝛿𝑡 + 𝜀. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥 + 𝛿, 𝑦)) (16) 

where, 𝐽 denotes the loss function, 𝑦 denotes the output class, ∇𝑥 is a differential operator 

with respect to 𝑥, and 𝜀 denotes the magnitude of perturbation.  

3.5 AR-GAN for Adversarial Attack Resilience in Traffic Sign Classification 

In this section, the author formally introduces a GAN-based adversarial attack 

resilience method for traffic sign classification, which the author refers to as the attack-

resilient GAN (AR-GAN). The final traffic sign classification system of the AR-GAN 

includes a generator model and a classifier model obtained from the AR-GAN training. 

The generator is used to reconstruct any input images of traffic signs, which, in the process 

of reconstruction, helps denoise the traffic sign images from adversarial noise, and the 

classifier, trained on reconstructed traffic sign images by the generator, helps classify the 

denoised traffic sign images. The author will discuss the details of training the GAN and 

the classifier models in this section, but before that, the author presents an overview of the 

AR-GAN training framework that helps obtain the models in the traffic sign classification 

system of the AR-GAN. 
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The training framework to obtain the models in the final traffic sign classification 

system of AR-GAN is depicted in Figure 3.1. First, the author trains a classifier model to 

classify unperturbed (i.e., legitimate or without attack) images in a traffic sign image 

dataset. In this study, the author used a 9-layer deep residual learning architecture known 

as ResNet9 (He et al., 2016). Once the classifier is trained to classify unperturbed traffic 

sign images with acceptable accuracy, the author calls it Classifier #1, which will later be 
 

 

FIGURE 3.1 AR-GAN Training Framework. 
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used to select the best generator model. Next, the author trains a set of GANs based on the 

Wasserstein GAN architecture with a gradient penalty (WGAN-GP) using the same 

unperturbed traffic sign images from the dataset. Once the GANs are trained, the author 

utilizes Classifier #1 to select the best generator model from the set of trained GANs that 

would yield the highest classification accuracy on the reconstructed traffic sign images of 

the test dataset. Then, the author uses the selected generator model to reconstruct all the 

unperturbed traffic sign images in the dataset. In an ideal case, if the GANs are trained to 

a point when the reconstructed traffic sign images look identical to the unperturbed traffic 

sign images, Classifier # 1 should be able to classify the reconstructed traffic sign images 

with similar accuracy to that of the unperturbed traffic sign images. However, if that is not 

the case, then the author retrains Classifier #1 on the reconstructed traffic sign images to 

achieve better accuracy. The author calls this retrained classifier model Classifier #2. 

Finally, the AR-GAN traffic sign classification system is built with the best generator 

model (to reconstruct and denoise any input traffic sign images) and Classifier #2 (to 

classify the reconstructed traffic sign images). 

3.5.1 Classifier Model 

 The classifiers in the AR-GAN method are based on the ResNet9 architecture. 

ResNet9 is a 9-layer deep NN, including eight convolutional layers and one linear layer. 

Table 3.1 presents the model architecture of ResNet9 used in the AR-GAN method, 

assuming that the input traffic sign images have three color channels, i.e., red, green, and 

blue, each with 32 × 32 pixels. The output dimension of each layer is presented as 

𝐶 × 𝐻 × 𝑊 in Table 3.1, where 𝐶, 𝐻, and 𝑊 represent the number of channels, the height 
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(i.e., the number of pixels vertically), and the width (i.e., the number of pixels horizontally) 

of the output feature map of that layer, respectively. The column representing the 

operations in Table 3.1 is formatted as (𝑘 × 𝑘), 𝑠, 𝑝, where (𝑘 × 𝑘) is the kernel size, 𝑠 is 

the number of strides, and 𝑝 is the amount of zero-padding in horizontal and vertical 

directions. The different types of layers utilized in the architecture are explained below. 

Conv2D: Conv2D refers to a 2D convolution operation applied to an input 2D 

matrix. A convolutional layer in Conv2D consists of a kernel or filter with a specified 

height and width. These kernels are typically set to be smaller than the input images and 

are moved across the images to extract features. 

BatchNorm2D: BatchNorm2D refers to 2D batch normalization operation applied 

to an input 2D matrix. Batch normalization is a popular technique used in deep learning to 

normalize a batch of inputs. It can be applied to the activations of a previous layer or to the 

inputs directly. Batch normalization accelerates the training process and provides 

regularizations. 

MaxPool2D: MaxPool2D refers to a 2D pooling operation that selects the 

maximum element from a region of a 2D feature map covered by a kernel. The output of a 

max-pooling layer consists of a feature map that includes the most prominent features from 

the previous feature map. 

ReLU: Rectified Linear Unit or ReLU refers to a non-linear activation function 

used in DNNs. The function simply returns zero for any negative input and the input value 

itself for any positive input. ReLU introduces non-linearity to the data, enabling the DNN 

to learn complex patterns and representations. 
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TABLE 3.1 Model Architecture of the Classifier 
 Layer Type 

Output Dimension 

No. of channels × Height 

×Width 

Operation 

(Kernel size), No. of 

strides, Padding size 

L
ay

er
 1

 

Conv2D 64 × 32 × 32 (3 × 3), 1, 1 

BatchNorm2D 64 × 32 × 32 Not applicable 

ReLU 64 × 32 × 32 Not applicable 

L
ay

er
 2

 

Conv2D 128 × 32 × 32 (3 × 3), 1, 1 

BatchNorm2D 128 × 32 × 32 Not applicable 

ReLU 128 × 32 × 32 Not applicable 

MaxPool2D 128 × 16 × 16 (2 × 2), 2, 0 

L
ay

er
 3

 

Conv2D 128 × 16 × 16 (3 × 3), 1, 1 

BatchNorm2D 128 × 16 × 16 Not applicable 

ReLU 128 × 16 × 16 Not applicable 

L
ay

er
 4

 

Conv2D 128 × 16 × 16 (3 × 3), 1, 1 

BatchNorm2D 128 × 16 × 16 Not applicable 

ReLU 128 × 16 × 16 Not applicable 

L
ay

er
 5

 

Conv2D 256 × 16 × 16 (3 × 3), 1, 1 

BatchNorm2D 256 × 16 × 16 Not applicable 

ReLU 256 × 16 × 16 Not applicable 

MaxPool2D 256 × 8 × 8 (2 × 2), 2, 0 
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 Layer Type 

Output Dimension 

No. of channels × Height 

×Width 

Operation 

(Kernel size), No. of 

strides, Padding size 

L
ay

er
 6

 

Conv2D 512 × 8 × 8 (3 × 3), 1, 1 

BatchNorm2D 512 × 8 × 8 Not applicable 

ReLU 512 × 8 × 8 Not applicable 

MaxPool2D 512 × 4 × 4 (2 × 2), 2, 0 

L
ay

er
 7

 

Conv2D 512 × 4 × 4 (3 × 3), 1, 1 

BatchNorm2D 512 × 4 × 4 Not applicable 

ReLU 512 × 4 × 4 Not applicable 

L
ay

er
 8

 

Conv2D 512 × 4 × 4 (3 × 3), 1, 1 

BatchNorm2D 512 × 4 × 4 Not applicable 

ReLU 512 × 4 × 4 Not applicable 

L
ay

er
 9

 

MaxPool2D 512 × 1 × 1 (4 × 4), 4, 0 

Flatten 512 Not applicable 

Dropout 512 Not applicable 

Linear 2 Not applicable 

 

3.5.2 Generator Model 

To obtain the generator model for the final traffic sign classification system in the 

AR-GAN method, the author utilizes a WGAN-GP-based training method and extends it 
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to reconstruct an input image 𝑥 at inference time. In this subsection, the author starts by 

explaining the loss function used in traditional GANs. Then, the author discusses how 

WGAN-GP modified it, and finally, the author discusses the extension adopted from the 

Defense-GAN method (proposed by Samangouei et al., 2018) to reconstruct a given image 

at inference time. 

GANs, first introduced by Goodfellow et al., 2014, consist of two NNs, known as 

the generator (𝐺) and the discriminator (𝐷). 𝐺: ℝ𝑘 → ℝ𝑛 takes a low-dimensional latent 

vector 𝑧 ∈ ℝ𝑘 as the input and maps it to high-dimensional sample space of 𝑥 ∈ ℝ𝑛. The 

discriminator, 𝐷 is a binary classifier that distinguishes between real samples and fake (i.e., 

generated) samples. 𝐺 and 𝐷 are trained in tandem to simultaneously optimize both NNs. 

While 𝐺 aims to generate images that are identical to the real images, 𝐷 helps 𝐺 by 

discriminating between real samples 𝑥 and fake samples 𝐺(𝑧). 𝐺 and 𝐷 are trained 

alternatively to optimize the following min-max loss function defined by Goodfellow et 

al., 2014, 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = E𝑥~𝑃𝑟(𝑥)[log 𝐷(𝑥)] + E𝑧~𝑃𝑔(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] (17) 

where, 𝑃𝑟(𝑥) and 𝑃𝑔(𝑧) denote the real sample distribution and the generated sample 

distribution, respectively, and E denotes the expected value. The optimal GAN is obtained 

when these two distributions become the same. However, in reality, it turned out to be very 

difficult to train GANs to achieve this optimality due to issues such as mode collapses and 

vanishing gradients.  

To resolve these issues, Arjovsky et al., 2017 proposed a variant of the GAN, 

known as the Wasserstein GAN (WGAN), that utilizes the concepts of Wasserstein 
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distance and Kantorovich-Rubinstein duality (Rachev, 1990), resulting in an alternative 

loss function given by, 

min
𝐺

max
𝐷

𝑉𝑊(𝐷, 𝐺) = E𝑥~𝑃𝑟(𝑥)[log 𝐷(𝑥)] − E𝑧~𝑃𝑔(𝑧) [log (𝐷(𝐺(𝑧)))] (18) 

WGAN also removed the sigmoid function from the discriminator of the original 

GAN proposed in (Goodfellow et al., 2014) to interpret the output of 𝐷 in terms of 

probability to indicate how “real” the generated images are. The authors in (Arjovsky et 

al., 2017) renamed the modified discriminator as “critic”. However, WGAN still suffered 

from some convergence issues due to the hard constraints set by the weight clipping 

method used by the authors to enforce the Lipschitz condition. This resulted in an improved 

version of the WGAN, proposed by Gulrajani et al., 2017, known as WGAN with gradient 

penalty (WGAN-GP). WGAN-GP utilizes a soft version of the constraints by penalizing 

the model if the norm of the gradient deviates from its target norm value of 1 to meet the 

Lipschitz condition as follows, 

min
𝐺

max
𝐷

𝑉𝑊(𝐷, 𝐺) = E𝑥~𝑃𝑟(𝑥)[log 𝐷(𝑥)] − E𝑧~𝑃𝑔(𝑧) [log (𝐷(𝐺(𝑧)))]

+ 𝜆E𝑥̂~𝑃𝑥̂
[‖∇𝑥̂𝐷(𝑥̂)‖2 − 1]2 

 

(19) 

Here, 𝜆 is set to 10, ∇𝑥̂ is a differential operator with respect to 𝑥̂, and 𝑥̂ is sampled from 𝑥 

and 𝐺(𝑥) using the following linear equation, 

𝑥̂ = 𝑡𝐺(𝑥) + (1 − 𝑡)𝑥 (20) 

where, 𝑡 is uniformly sampled between 0 and 1, i.e., 0 ≤ 𝑡 ≤ 1. The WGAN-GP, proposed 

by Gulrajani et al., 2017 also removed the batch normalization steps from the critic as it 

was reported to affect the effectiveness of the gradient penalty. 
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Thus, WGAN-GP provides us with a modified loss function from that of the 

traditional GAN that is able to resolve traditional GAN training issues, such as mode 

collapse and vanishing gradient, as well as the tractability issues with WGAN. However, 

to be able to reconstruct an input image with minimum reconstruction error, the author 

requires a further extension. The authors in (Samangouei et al., 2018) proposed a simple 

extension to achieve this by optimizing the input latent vector 𝑧 that will be fed to the 

generator to reconstruct an input image 𝑥, which the author adopts in the AR-GAN method. 

The optimal latent vector 𝑧∗ for reconstructing an input image 𝑥 is obtained by solving the 

following optimization problem (Samangouei et al., 2018), 

𝑧∗ = arg min
𝑧

‖𝐺(𝑧) − 𝑥‖2
2 (21) 

The optimization problem in (21) is solved in a gradient descent-based iterative 

approach. Because (21) is highly non-convex, the authors in (Samangouei et al., 2018) 

utilized a fixed number of gradient descent steps along with a given number of random 

initializations of the latent vector 𝑧. 

Tables 3.2 and 3.3 presents the architectures of the generator and the discriminator 

used in the AR-GAN method. The generator architecture is based on the deep 

convolutional GAN (DCGAN) architecture (Radford et al., 2016), whereas the critic or 

discriminator architecture is kept the same as the WGAN architecture. The different types 

of layers used in these architectures are similar to that discussed in section 2.5.1, except 

the ConvTranspose2D layers used in the generator architecture and the LeakyReLU layers 

used in the discriminator architecture, which are explained below.  
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ConvTranspose2D: The ConvTranspose2D layer is an extension of the traditional 

convolutional layer but with a reversed operation. While a regular convolutional layer 

performs a sliding window operation on the input to produce a feature map, the 

ConvTranspose2d layer performs an inverse operation. 

LeakyReLU: LeakyReLU refers to an extension of the ReLU. Instead of returning 

zero for a negative input, LeakyReLU utilizes a small non-zero negative gradient for 

negative inputs. This solves the “dying ReLU” issue of the original ReLU that occurs when 

ReLUs get stuck in a negative state during training and fail to update their weights. 

TABLE 3.2 Model Architecture of the Generator 

 

Layer Type Output Dimension 

No. of channels × Height 

×Width 

Operation 

(Kernel size), No. of 

strides, Padding size 

L
ay

er
 1

 

ConvTranspose2D 512 × 4 × 4 (4 × 4), 1, 0 

BatchNorm2D 512 × 4 × 4 Not applicable 

ReLU 512 × 4 × 4 Not applicable 

L
ay

er
 2

 

ConvTranspose2D 256 × 8 × 8 (4 × 4), 2, 1 

BatchNorm2D 256 × 8 × 8 Not applicable 

ReLU 256 × 8 × 8 Not applicable 

L
ay

er
 3

 

ConvTranspose2D 128 × 16 × 16 (4 × 4), 2, 1 

BatchNorm2D 128 × 16 × 16 Not applicable 

ReLU 128 × 16 × 16 Not applicable 
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Layer Type Output Dimension 

No. of channels × Height 

×Width 

Operation 

(Kernel size), No. of 

strides, Padding size 

L
ay

er
 4

 ConvTranspose2D 3 × 32 × 32 (4 × 4), 2, 1 

Tanh 3 × 32 × 32 Not applicable 

 

TABLE 3.3 Model Architecture of the Discriminator 

 

Layer Type Output Dimension 

No. of channels × Height 

×Width 

Operation 

(Kernel size), No. of 

strides, Padding size 

L
ay

er
 1

 Conv2D 32 × 16 × 16 (4 × 4), 2,1 

LeakyReLU 32 × 16 × 16 Not applicable 

L
ay

er
 2

 Conv2D 64 × 8 × 8 (4 × 4), 2, 1 

LeakyReLU 64 × 8 × 8 Not applicable 

L
ay

er
 3

 Conv2D 128 × 4 × 4 (4 × 4), 2, 1 

LeakyReLU 128 × 4 × 4 Not applicable 

L
ay

er
 4

 Conv2D 256 × 1 × 1 (4 × 4), 1, 0 

LeakyReLU 256 × 1 × 1 Not applicable 

L
ay

er
 5

 Flatten 256 Not applicable 

Linear 1 Not applicable 
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Finally, the AR-GAN traffic sign classification system consists of the trained 

generator, the classifier, and the optimizer that optimizes the input latent vector applied to 

the generator to reconstruct an input traffic sign image. Figure 3.2 presents the AR-GAN 

traffic sign classification system with a flow diagram.  

3.6 Evaluation Method 

This section discusses the evaluation method, specifically the traffic sign dataset, 

and the traditional preprocessing-based defense strategies the author used in this study for 

comparison. 

3.6.1 Traffic Sign Dataset 

The author reviewed the existing literature to select a comprehensive traffic sign 

dataset for the US traffic signs and found the LISA traffic sign dataset (created by 

Mogelmose et al., 2012) the most appropriate since it contains data collected from the real 

world. The LISA dataset covers 49 types of US traffic signs with 7,855 annotations on 

6,610 frames. The traffic sign images in the LISA dataset were extracted from video frames 

captured by multiple vehicles’ dashboard cameras while the vehicles were driven around 

 

 

FIGURE 3.2 AR-GAN Traffic Sign Classification System. 
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San Diego, California. The original video frames exhibit varying resolutions, ranging from 

640×480 pixels to 1024×522 pixels. The annotations of the traffic signs within these frames 

have dimensions spanning from 6×6 pixels to 167×168 pixels and include both color and 

grayscale images.  

However, the LISA dataset does not contain enough images for each type of traffic 

sign to train GAN models. Also, some of the images have resolutions that are too small to 

be used for training purposes. Therefore, the author created a subset of the LISA dataset 

containing only STOP signs and SPEED LIMIT signs. The original LISA dataset contains 

different types of SPEED LIMIT signs, such as 15, 25, 30, 35, 40, 45, 50, and 65 miles per 

hour (mph) signs. The author combined all these SPEED LIMIT signs into one class to 

create a balanced dataset. Thus, the subset of the LISA dataset used in this study for 

evaluation of the AR-GAN method contains a total of 1,562 traffic sign images and 

includes two classes of traffic signs, i.e., 805 images under the STOP sign class and 757 

images under the SPEED LIMIT sign class. The author applied cropping and resizing to 

ensure that all the images in the dataset have the same dimension, i.e., each image has three 

channels for red, green, and blue colors, and each channel contains 32×32 pixels. Figure 

3.3 presents some sample images from the dataset used in this study. As observed from the 

figure, the images are not very clean and contain some noise, which makes them even 

harder to classify under adversarial perturbations. 

3.6.2 Traditional Preprocessing-based Defense Strategies 

The AR-GAN method utilizes a generator model (i.e., trained on unperturbed 

legitimate images only) to denoise traffic sign images through reconstruction before 
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feeding them to the classifier, which can be considered as a GAN-based image 

preprocessing step. Figure 3.4 shows a set of sample traffic sign images taken from the 

dataset used in this study before and after the AR-GAN generator-based preprocessing (i.e., 

reconstruction). Therefore, the author chose several traditional preprocessing-based 

defense strategies that can be used as benchmarks to compare with the classification 

performance of the AR-GAN traffic sign classification system. In this subsection, the 

author discusses these traditional defense strategies. 

3.6.2.1 Gaussian Augmentation  

Gaussian augmentation is a simple yet very effective preprocessing technique for 

improving the robustness of image classification systems against adversarial attacks. 

Gaussian augmentation applies random noise to every pixel of an input image (Grandvalet 

and Canu, 1997). By training a classifier on these images with added noise, the classifier 

grows robustness against Gaussian noise. The author applied independent and identically 

distributed Gaussian noise sampled from a zero-mean normal distribution, 𝒩(0, 𝜎2), to 

each pixel of the input images, where the standard deviation of the distribution 𝒩 is set to 

 

 

FIGURE 3.3 Image Samples from the LISA Traffic Sign Dataset. 
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𝜎 = 1 (Grandvalet and Canu, 1997). Figure 3.4 shows the effect of Gaussian augmentation 

on a set of sample traffic sign images taken from the dataset used in this study. 

3.6.2.2 JPEG Compression 

JPEG compression is another popular preprocessing-based adversarial defense 

method, which was reported to effectively reduce the effects of several powerful 

adversarial attacks, such as  FGSM and DeepFool (Das et al., 2017; Dziugaite et al., 2016). 

Adversarial attacks typically aim to introduce perturbations to images resulting in high-
 

 

FIGURE 3.4 Examples of Preprocessed Images using Different Defense Methods. 
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frequency components that are imperceptible to human eyes. However, these high-

frequency components are picked up by NN-based classifiers and result in 

misclassification. JPEG compression eliminates these high-frequency components from 

the images before feeding them to the classifier, which is similar to a selective blurring of 

the images to help remove the additive noise due to an adversarial attack. In this study, the 

author sets the JPEG-compressed image quality to 50% because earlier studies reported 

that this setting provides an effective defense against adversarial attacks (Liu et al., 2019). 

Figure 3.4 shows the effect of JPEG compression on a set of sample traffic sign images 

taken from the dataset used in this study. 

3.6.2.3 Feature Squeezing 

Feature squeezing, first introduced by Xu et al., 2018, is a process of reducing the 

color bit depth of each pixel of an input image, which is alternatively referred to as “bit 

squeezing” since it involves reducing the number of bits necessary to represent the color 

value of a pixel. This reduction of the feature space is particularly beneficial in defending 

against adversarial attacks since it transforms diverse feature vectors from the original 

space into more similar samples. The author sets the bit depth value to 4 since it provided 

the highest image classification accuracy for the dataset under the different types of 

adversarial attacks considered in this study. Figure 3.4 shows the effect of feature 

squeezing on a set of sample traffic sign images taken from the dataset used in this study. 

3.6.2.4 Spatial Smoothing 

 Spatial smoothing, alternatively known as blurring, is another variant of the feature 

squeezing technique, also proposed by Xu et al., 2018, that reduces differences at the pixel 



 

 58 

level. In image processing, spatial smoothing is a popular technique for reducing image 

noise. In this study, the author utilized a median smoothing technique that was reported in 

(Xu et al., 2018) to be effective in mitigating adversarial attacks. In median smoothing, a 

sliding window is moved across an image while the center pixel of the window is replaced 

by the median value of its neighboring pixels. Thus, the additive noise due to adversarial 

attacks gets reduced in spatial smoothing, which helps in achieving better classification 

accuracy with a classifier. Figure 3.4 shows the effect of spatial smoothing on a set of 

sample traffic sign images taken from the dataset used in this study. 

For all four traditional preprocessing-based adversarial defense methods used in 

this study, separate classifier models were trained based on the same ResNet9 architecture 

presented in Table 3.1. The author presents an evaluation of these models on the 

unperturbed (legitimate) images in the dataset used in this study in section 3.7.1.1. 

3.7 Analysis and Results 

This section presents the analysis and results based on the AR-GAN method and 

compares them with several traditional preprocessing-based defense methods discussed in 

section 3.6.2. The author divides the evaluation scenarios into two categories, i.e., (i) 

evaluation on unperturbed (legitimate) traffic sign images and adversarial images and (ii) 

evaluation under different perturbation magnitudes. The dataset discussed in section 3.6.1 

was split into three groups, i.e., train set (containing 60% of the images), validation set 

(containing 20% of the images), and test set (containing the remaining 20% of the images), 

after applying random shuffling on all the images on the dataset. The same train, validation, 
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and test sets were used for all the evaluation scenarios to present a fair comparison among 

the different defense methods used in this study. 

As mentioned in section 3.5.2, the AR-GAN traffic sign classification system 

utilizes a gradient descent-based optimization with a fixed number of gradient descent steps 

and random initializations to determine the input latent vector that would minimize the 

reconstruction error for an input image. The author conducted a sensitivity analysis of the 

AR-GAN traffic sign classification system’s classification accuracy and end-to-end delay 

(i.e., the time required to perform all the steps shown in Figure 3.2) for an input unperturbed 

image with respect to the number of gradient descent steps and the number of random 

initializations (as shown in Figure 3.5). Based on this analysis, the author selected 2,250 

as the fixed number of gradient descent steps and 20 as the fixed number of random 

initializations because these parameters yielded the highest traffic sign classification 

accuracy with an end-to-end delay of 0.6 seconds per image. As reported by Liu and Deng, 

2021, the average delay for human drivers in recognizing traffic signs ranges from 0.5 

 

 

FIGURE 3.5 Results of Sensitivity Analysis. 
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seconds to 2.0 seconds. Therefore, the author considered the 0.6-second end-to-end delay 

of the AR-GAN traffic sign classification system feasible for real-world implementations.  

In this study, the author used Pytorch packages (“PyTorch,” n.d.) to implement the 

GAN and classifier models, and the Adversarial Robustness Toolbox (“Adversarial 

Robustness Toolbox (ART) v1.15,” n.d.) to implement the attack models and traditional 

preprocessing-based adversarial defense methods. The source codes are provided in 

Appendix B and GitHub (Salek, 2023). All the NN models in this study were trained using 

Nvidia Tesla A100 GPUs available in the Palmetto Cluster nodes at Clemson University 

(“About the Palmetto Cluster | RCD Documentation,” 2023). These GPUs have a capacity 

of 312 trillion floating point operations per second (TFLOPS) (“NVIDIA A100  TENSOR 

CORE GPU,” n.d.). However, these models should be implementable in real-world AVs 

using in-vehicle computational units. One of the recent in-vehicle computational units 

developed by NVIDIA is the NVIDIA Drive Thor, offering a GPU-based computational 

capacity of 2,000 TFLOPS (“NVIDIA Unveils DRIVE Thor — Centralized Car Computer 

Unifying Cluster, Infotainment, Automated Driving, and Parking in a Single, Cost-Saving 

System,” n.d.), which is well above the capacity of the A100 GPUs utilized in this study. 

Besides, the in-vehicle computational units should only be responsible for running 

pretrained models for traffic sign image classification, whereas the training task can take 

place separately beforehand. Thus, the models developed under the AR-GAN method are 

considered feasible to be implemented in real-world AVs in terms of in-vehicle 

computational capacity. 
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3.7.1 Performance Evaluation on Unperturbed and Adversarial Traffic Sign Images 

In this subsection, the author presents the evaluation results obtained using 

unperturbed and adversarial traffic sign images generated. The adversarial images were 

generated under FGSM, DeepFool, C&W, and PGD attacks. The author used precision, 

recall, F1-score, and accuracy for performance comparison among the different types of 

adversarial defense methods along with the AR-GAN method. Among the performance 

metrics, accuracy was calculated globally for all the images in the test set, whereas the 

other metrics were calculated for each class, and then a weighted average was taken to 

present a global value. 

3.7.1.1 Evaluation on Unperturbed Traffic Sign Images 

The author evaluated all the adversarial defense methods used in this study on the 

unperturbed test images. As observed from Table 3.4, all the defense methods achieved 

high precision, recall, F1-score, and accuracy on the unperturbed images. This proves that 

the classifier models used in all the defense methods in this study are well-trained to 

accurately classify the traffic sign images of the dataset. Although the AR-GAN method 

achieved about 94% classification accuracy on the unperturbed images, it was lower than 

the other methods because, unlike the other preprocessing-based defense methods that 

transform or modify an input image, the AR-GAN completely reconstructs any input 

images. Gaussian augmentation achieved the second-lowest classification performance 

compared to the other defense methods, which is also expected because this defense 

method itself adds some Gaussian noise to the images as part of its adversarial defense 

strategy.  
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TABLE 3.4 Comparison of Defense Methods on Unperturbed Images 

Defense Method Precision Recall F1-score Accuracy 

Gaussian Augmentation 95.1% 94.9% 94.9% 94.9% 

JPEG Compression 99.7% 99.7% 99.7% 99.7% 

Feature Squeezing 99.4% 99.4% 99.4% 99.4% 

Spatial Smoothing 98.8% 98.7% 98.7% 98.7% 

AR-GAN 93.7% 93.6% 93.6% 93.6% 

 

3.7.1.2 Evaluation on Traffic Sign Images under the FGSM Attack 

The FGSM attack was implemented with an 𝜀 = 0.1 perturbation magnitude, as 

recommended by Ye and Zhu, 2018. The results are presented in Table 3.5. As observed 

from the table, the FGSM was able to reduce the classification performance of all the 

defense methods to some extent. However, the FGSM attack is not as powerful as the other 

attacks used in this study. Therefore, the performance metrics of the traditional 

preprocessing-based defense methods ranged from approximately 68% to 81%. However, 

the AR-GAN method was able to improve all the performance metrics by about 9-10% 

compared to the second-best defense method, i.e., the Gaussian augmentation. 

TABLE 3.5 Comparison of Defense Methods under the FGSM Attack 

Defense Method Precision Recall F1-score Accuracy 

Gaussian Augmentation 81.1% 80.5% 80.4% 80.5% 

JPEG Compression 75.4% 75.4% 75.4% 75.4% 
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Defense Method Precision Recall F1-score Accuracy 

Feature Squeezing 68.7% 68.7% 68.7% 68.7% 

Spatial Smoothing 68.5% 68.4% 68.3% 68.4% 

AR-GAN 90.2% 90.1% 90.1% 90.1% 

 

3.7.1.3 Evaluation on Traffic Sign Images under the DeepFool Attack 

The ℓ2-norm DeepFool attack was performed with a perturbation magnitude of 𝜀 =

0.1 for this evaluation scenario. The results obtained from the defense methods are 

presented in Table 3.6. As observed, the DeepFool attack was more effective than the 

FGSM attack in terms of degrading the classification performance of the traditional 

preprocessing-based defense methods. Feature squeezing and spatial smoothing performed 

the worst among all the defense methods. Gaussian augmentation was able to achieve about 

74% classification accuracy, which was outperformed by the AR-GAN method with a 

classification accuracy of about 90% under the DeepFool attack.  

TABLE 3.6 Comparison of Defense Methods under the DeepFool Attack 

Defense Method Precision Recall F1-score Accuracy 

Gaussian Augmentation 74.0% 73.8% 73.8% 73.8% 

JPEG Compression 62.0% 61.3% 60.8% 61.3% 

Feature Squeezing 32.3% 32.3% 32.3% 32.3% 

Spatial Smoothing 42.1% 42.8% 41.6% 42.8% 

AR-GAN 90.7% 90.4% 90.4% 90.4% 

 



 

 64 

3.7.1.4 Evaluation on Traffic Sign Images under the C&W Attack 

The ℓ2-norm C&W attack was performed using a learning rate of 0.01 with a 

maximum of 10 iterations. The results are presented in Table 3.7. Feature squeezing and 

spatial smoothing provided the worst traffic sign classification accuracies among all the 

defense methods. Gaussian augmentation performed well compared to traditional 

preprocessing-based defense methods, with a 78.6% classification accuracy. However, it 

was outperformed by the AR-GAN method, which achieved approximately 90% 

classification accuracy under the C&W attack.  

TABLE 3.7 Comparison of Defense Methods under the C&W Attack 

Defense Method Precision Recall F1-score Accuracy 

Gaussian Augmentation 79.0% 78.6% 78.5% 78.6% 

JPEG Compression 62.9% 61.7% 60.8% 61.7% 

Feature Squeezing 26.2% 26.2% 26.2% 26.2% 

Spatial Smoothing 38.1% 38.7% 37.9% 38.7% 

AR-GAN 90.3% 89.8% 89.7% 89.8% 

 

3.7.1.5 Evaluation on Traffic Sign Images under the PGD Attack 

The ℓ2-norm PGD attack was performed using a maximum iteration number of 100 

and a perturbation magnitude of 𝜀 = 0.1. The results are presented in Table 3.8. Under the 

PGD attack, the traffic sign classification accuracies of almost all the traditional 

preprocessing-based defense methods dropped below 60%, except for the Gaussian 

augmentation preprocessing, which achieved about 75% accuracy. The AR-GAN method 
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outperformed all the traditional preprocessing-based defense methods with a classification 

accuracy of approximately 91%. 

TABLE 3.8 Comparison of Defense Methods under the PGD Attack 

Defense Method Precision Recall F1-score Accuracy 

Gaussian Augmentation 75.6% 75.4% 75.4% 75.4% 

JPEG Compression 57.1% 56.9% 56.6% 56.9% 

Feature Squeezing 43.1% 43.1% 43.0% 43.1% 

Spatial Smoothing 49.2% 49.2% 49.2% 49.2% 

AR-GAN 90.8% 90.7% 90.7% 90.7% 

 

3.7.2 Performance Evaluation under Different Perturbation Magnitudes 

To evaluate how well the AR-GAN method performs under different perturbation 

magnitudes, the author varied 𝜀 from 0.05 to 0.2 with a 0.05 step size for the FGSM, 

DeepFool, and PGD attacks following the previous studies (Khan et al., 2022; Gao and 

Oates, 2019; Pan et al., 2019).  

Figures 3.6 to 3.8 present the results of this evaluation under different perturbation 

magnitudes. As observed from Figures 3.6 and 3.8, the accuracies of the traditional 

preprocessing-based defense methods dropped abruptly as the author increased the 

perturbation magnitudes of FGSM and PGD attacks. In Figure 3.7, it is observed that these 

drops in traffic sign classification performance happen gradually for the traditional 

preprocessing-based defense methods under the DeepFool attack. However, the AR-GAN 

method achieved above 88% classification accuracy in all these cases, except under the 
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PGD attacks with 𝜀 = 0.15 and 0.2, where its accuracy dropped to about 85%. This 

consistency in traffic sign classification performance is achievable with the AR-GAN 

method because the generator in the AR-GAN method was trained to generate samples 

close to the distribution of the unperturbed traffic sign images. Thus, the AR-GAN method 

developed in this study is capable of effectively denoising the traffic sign images by 

reconstructing them with a generator trained on the unperturbed traffic sign images. This 

shows the potential of the AR-GAN method as an adversarial attack-resilient AV traffic 

sign classification system.  

3.8 Discussion 

The AR-GAN method developed in this study is a GAN-based adversarial attack-

resilient traffic sign classification system. The GAN models in the AR-GAN method are 

trained based on the WGAN-GP loss function, where the generator model is based on the 

 

FIGURE 3.6 Performance under the FGSM Attack with Varied Perturbations. 
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DCGAN architecture, and the discriminator or critic model is based on the WGAN 

architecture. The generator of the AR-GAN method is trained to reconstruct any input 

traffic sign images close to a sample distribution of unperturbed traffic sign images, while 

a ResNet9-based classifier is trained to classify the traffic sign images reconstructed by the 

generator model. Thus, in the AR-GAN method, the generator serves the purpose of 

denoising the traffic sign images with adversarial perturbations through reconstruction.  

 The author evaluated the AR-GAN method with a real-world traffic sign dataset 

under no-attack and under white-box attack scenarios and compared its performance with 

several benchmark preprocessing-based adversarial defense methods. The results indicate 

that the AR-GAN method can consistently achieve high traffic sign classification 

performance under both no-attack and white-box attack scenarios. The AR-GAN method 

 

 

FIGURE 3.7 Performance under the DeepFool Attack with Varied Perturbations. 
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outperformed all the benchmark preprocessing-based adversarial defense methods used in 

this study under different white-box adversarial attacks, such as FGSM. DeepFool, C&W, 

and PGD attacks. Under varied magnitudes of adversarial perturbations for the FGSM, the 

DeepFool, and the PGD attacks, the AR-GAN method showed consistent traffic sign 

classification accuracies, unlike the other preprocessing-based adversarial defense 

methods. This proves the efficacy of the AR-GAN method as an adversarial attack-resilient 

traffic sign classification system for AVs. 

  

 

 

FIGURE 3.8 Performance under the PGD Attack with Varied Perturbations. 
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CHAPTER FOUR 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

 

4.1 Summary 

The rapid development of AI, particularly generative AI, unveils an unprecedented 

array of opportunities for both malicious attackers as well as for vigilant defenders. In this 

dissertation, the aim was to delve into different generative AI-based methods for 

formulating effective cyberattack detection and mitigation strategies for CAVs operating 

in a TCPS environment. To this end, the author developed and evaluated a generative AI-

based CAN IDS for the in-vehicle CAN of a CV in Chapter 2 and a generative AI-based 

adversarial defense method for the perception module of an AV in Chapter 3. In both 

studies, the results indicated that generative AI holds a tremendous potential to safeguard 

CAVs from known and unknown cyberattacks. In this chapter, the author concludes based 

on the methods and findings of the research endeavors presented in Chapters 2 and 3 and 

provides recommendations for future studies focusing on generative AI-based cyberattack 

detection mitigation strategies. 

4.2 Conclusions 

4.2.1 A Hybrid Quantum-Classical RBM-based Framework for in-vehicle CAN IDS 

In this study, the author developed a hybrid quantum-classical RBM-based CAN 

IDS for the in-vehicle CAN of CVs. First, the author utilized a classical computer to 

develop CAN images from the CAN messages in a dataset. A classical NN was then used 

to extract features from the CAN images. Then, the author embedded the labels of the CAN 
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images (i.e., a CAN image represents an attack image or a normal image) directly into the 

images using the two rightmost columns of the images- this concludes the classical 

computer-based CAN image preprocessing. Next, the author trained a quantum RBM using 

the D-wave’s Advantage 4.1 system (i.e., a semi-conductor-based quantum annealing 

machine) to reconstruct any CAN images with the embedded labeling pixels. After the 

quantum RBM is trained properly, the author replaced the labeling pixels of the test CAN 

image dataset with random binary bits (i.e., 0 or 1) and fed them to the quantum RBM for 

CAN image reconstruction. Then, the reconstructed labeling pixels were used to classify 

the CAN images in the test dataset as attack and normal CAN images. The author compared 

the hybrid quantum-classical CAN IDS with a similar but classical-only approach. The 

findings showed that the hybrid quantum-classical RBM-based CAN IDS outperformed 

the classical-only CAN IDS across all the performance metrics used for evaluating the 

image classification-based CAN IDSs. This proves the potential of the hybrid quantum-

classical RBM-based approach to be used as the CAN IDS of a CV in a TCPS environment. 

Besides, as quantum computers are still in the development stage, the author found such 

hybrid quantum-classical cyberattack detection approaches the optimal way to leverage the 

efficacies of both classical and quantum computers while exceeding the detection 

performance of traditional classical-only attack detection approaches for CAN intrusions.  

A limitation of this study is that the author only considered a specific type of 

intrusion attack in this study, known as the Fuzzy attack, due to some resource access 

limitations related to the D-wave’s Advantage 4.1 system. In the future, the author aims to 
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explore other types of CAN intrusion attacks, such as denial-of-service and spoofing 

attacks, and evaluate the detection performance of the hybrid CAN IDS against them. 

4.2.2 AR-GAN 

In this study, the author developed a GAN-based adversarial defense method for 

AV’s perception module. In particular, the focus of this study was to protect the traffic sign 

classification system within an AV perception module from unknown adversarial attacks. 

The author provided a training framework for training a generator model and a classifier 

model that comprise the attack-resilient traffic sign classification system of the AR-GAN 

method. The generator model used in this study was trained using a WGAN-GP-based loss 

function with a NN architecture similar to a DCGAN. The discriminator or critic used to 

support the training of the generator was based on the WGAN architecture. On the other 

hand, the classifier was trained based on the ResNet9 architecture. All these models were 

trained on unperturbed (i.e., legitimate) traffic sign images only to ensure that all types of 

adversarial attacks are unknown to the models.  

The traffic sign classification system of the AR-GAN defense method utilizes 

generator-based image reconstruction, which helps remove adversarial perturbations from 

the input traffic sign images. Once the traffic sign image is reconstructed by the generator, 

it is fed to the classifier to identify what type of traffic sign it is. The author evaluated the 

AR-GAN traffic sign classification system against widely used white-box adversarial 

attacks, such as FGSM, DeepFool, C&W, and PGD attacks, and compared its performance 

with benchmark traditional adversarial defense methods, such as Gaussian augmentation, 

JPEG compression, feature squeezing, and spatial smoothing. The AR-GAN method 
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outperformed all the traditional defense methods under all attack categories considered in 

this study. Besides, the AR-GAN method was able to consistently achieve high traffic sign 

classification performance under a range of adversarial perturbation magnitudes, whereas 

the performance for the other traditional defense methods dropped abruptly at increased 

perturbation levels. This shows the potential of the AR-GAN method to be deployed as a 

robust attack-resilient traffic sign classification system for AVs. 

A limitation of this study is that the author focused on only two classes of traffic 

signs, i.e., STOP signs and SPEED LIMIT signs, due to a limitation of sufficient real-world 

training data for the other types of US traffic signs. In the future, the author will extend this 

work to include all types of traffic signs by collecting traffic sign image data from the real 

world. 

4.3 Recommendations  

4.3.1 A Hybrid Quantum-Classical RBM-based Framework for in-vehicle CAN IDS 

In this subsection, the author presents some recommendations for future research 

endeavors related to quantum RBM-based CAN intrusion detection strategies. 

1. The hybrid quantum-classical RBM-based CAN IDS was reported to 

outperform the classical-only RBM-based CAN IDS in this study. However, 

the CAN intrusion detection performance of a similar but quantum-only CAN 

IDS was not explored in this study. Future studies can focus on developing a 

CAN IDS based on quantum computers entirely, including the data 

preprocessing, the RBM-based CAN image reconstruction, and the 

classification steps. 
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2. Although the dataset used in this study was obtained from a real-world vehicle’s 

CAN, the hybrid quantum-classical CAN IDS was not tested for real-time 

intrusion detection with a real-world CV. Further studies are necessary to test 

this IDS for real-time CAN intrusion detection and to explore novel strategies 

to ensure that the IDS is capable of detecting intrusions within the latency 

requirement of CV mobility and safety applications. 

3. This study used quantum annealing (QA)-based training for developing the 

RBM model in the hybrid quantum-classical CAN IDS. Future studies should 

also focus on developing gate-based RBMs for CAN IDS and compare them 

with the QA-based RBMs. 

4.3.2 AR-GAN 

In this subsection, the author presents some recommendations for future research 

endeavors related to GAN-based defense methods for protecting the traffic sign 

classification system of an AV perception module. 

1. The AR-GAN method developed in this study utilized a subset of the extended 

LISA traffic sign dataset that contains only US traffic signs. The focus of future 

studies can include improving the models in the AR-GAN method by training 

them with other benchmark traffic sign datasets, such as the German Traffic 

Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset 

(BEL-TSD), the Traffic Sign Recognition Multi-Task Dataset (TSR), and the 

Brazilian Traffic Sign Recognition Benchmark (BR-TSD). 
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2. Although the AR-GAN method outperformed all the other traditional 

preprocessing-based adversarial defense methods used in this study, the author 

observed a 10-14% drop in classification accuracy under the adversarial attacks 

compared to that of the unperturbed images. This drop in performance is not 

unexpected because the author did not train the models on any adversarial 

examples. Thus, future work can aim to include adversarial training of the AR-

GAN models to develop more robust attack-resilient defense models that can 

achieve similar traffic sign classification performance to no-attack scenarios 

under adversarial attacks. 

3. The AR-GAN method was not evaluated in real-world driving scenarios yet. 

Thus, future studies should focus on rigorous field testing and further 

modification of the AR-GAN method to obtain a deployment-ready AV traffic 

sign classification system that is computationally lightweight yet capable of 

achieving state-of-the-art traffic sign classification performance under different 

known and unknown adversarial attacks. 
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Appendix A 

Python Codes Related to Chapter Two 

Sample Python Code (in IPYNB Format) for Decoding CAN Messages 

import numpy as np 

import pandas as pd 

from IPython.display import display 

 

import cantools 

import can 

from pprint import pprint 

 
#Load dataset from .txt file 

Attack_ds = pd.read_csv('Fuzzy_dataset_KIA_SOUL.csv', 

                          

names=['Timestamp','ID','DLC','allData','Flag'],  

                          sep=',', low_memory=False) 

 

#No. of rows in the dataset 

rowCount = Attack_ds.count()[0] 

print('No. of rows in dataset: ', rowCount) 

 
Attack_ds_filtered = Attack_ds[Attack_ds['ID'] == '220'] 

Attack_ds_filtered.loc[Attack_ds_filtered['Flag'] == 'R', 'Flag'] = 0 

Attack_ds_filtered.loc[Attack_ds_filtered['Flag'] == 'T', 'Flag'] = 1 

 

Attack_ds_filtered.reset_index(drop=True, inplace=True) 

 

#No. of rows in the dataset 

rowCount = Attack_ds_filtered.count()[0] 

print('No. of rows in dataset: ', rowCount) 

 

for idx in range(rowCount): 

    for j in range(Attack_ds_filtered['DLC'][idx]+1): 

        if j == 0: 

            allData = Attack_ds_filtered['allData'][idx][3*j:2+3*j] 

        elif j == Attack_ds_filtered['DLC'][idx]: 

            Attack_ds_filtered.loc[idx,'allData'] = allData 

        else: 

            allData = allData + 

Attack_ds_filtered['allData'][idx][3*j:2+3*j] 

 

#Display Flag options 

print('###############################################') 

print('Flags listed in the dataset: ') 

display(Attack_ds_filtered.groupby(['Flag'])['Flag'].count()) 



 

 77 

def merge_dicts(dict1, dict2): 

    return(dict1.update(dict2)) 

 

def create_atk_ds(atk_ds, ID): 

    global msg_count, nonAtk_msg, Atk_msg, error 

    msg_count = 0 

    nonAtk_msg = 0 

    Atk_msg = 0 

    error = 0 

    LOG_EVERY_N = 1000 

 

    dbc = 

cantools.database.load_file(r'C:\Users\sabbi\Desktop\QCProject\opendbc\

hyundai_kia_generic.dbc') 

     

    for idx, row in atk_ds.iterrows(): 

        if row['ID'] == ID: 

            try: 

                temp_dict = 

{'Attack':row['Flag'],'Timestamp':row['Timestamp'] 

                             #'ID':row['ID'], #'RTR':row['RTR'], 

                             #'DLC':row['DLC'] 

                            } 

             

                raw_data = row['allData'] 

                decoded_data = dbc.decode_message(0x220, 

bytes.fromhex(raw_data)) 

                merge_dicts(temp_dict,decoded_data) 

 

                #print('Row {} contains data: 

{}'.format(idx,temp_dict)) 

                #print('Timestamp: {}, Raw data: 

{}'.format(row['Timestamp'], raw_data)) 

                 

                if msg_count == 0: 

                    Processed_ds = pd.DataFrame(temp_dict, index = [0]) 

                else: 

                    ds_row = pd.DataFrame(temp_dict, index = [0]) 

                    Processed_ds = pd.concat([Processed_ds, ds_row], 

ignore_index=True) 

                 

                 

                if row['Flag'] == 1: 

                    Atk_msg += 1 

                else: 

                    nonAtk_msg += 1 

                 

                msg_count += 1 

                 

                ''' 
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                if msg_count == 10: 

                    break 

                ''' 

            except: 

                error += 1 

                 

            if msg_count and msg_count % LOG_EVERY_N == 0: 

                print(f"logging : {msg_count}") 

                 

                 

    print('{} CAN messages decoded successfully!'.format(msg_count)) 

    print('{} CAN messages were injected and {} CAN messages were 

authentic!'.format(Atk_msg, nonAtk_msg)) 

    print('{} CAN messages could not be decoded!'.format(error)) 

     

    return Processed_ds 

 

 

Processed_ds = create_atk_ds(Attack_ds_filtered, ID = '###') 

 
 

with pd.ExcelWriter(/data/KiaSoulFuzzy_ID_220.xlsx') as writer: 

    Processed_ds.to_excel(writer, index = False) 

 

 

 

 

Sample Python Code (in IPYNB Format) for NN-based Feature Extraction 

import tensorflow as tf 

 

import cirq 

import sympy 

import numpy as np 

import seaborn as sns 

import collections 

import random as random 

 

import pandas as pd 

from sklearn.preprocessing import MinMaxScaler,StandardScaler 

 

from tensorflow.keras.models import Model 

from sklearn.preprocessing import minmax_scale 

 

# visualization tools 

%matplotlib inline 

import matplotlib.pyplot as plt 

 
#Data Preprocessing 
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df = pd.read_excel('Data.xlsx') 

 

df_noAtk_all = df[df['Attack']==0] 

df_Atk = df[df['Attack']==1] 

 

df_noAtk_all = df_noAtk_all.reset_index(drop=True) 

df_Atk = df_Atk.reset_index(drop=True) 

 

col_names = list(df_noAtk_all.columns) 

 

row_noAtk_all = df_noAtk_all.count()[0] 

row_Atk = df_Atk.count()[0] 

 

row_smaller = min(row_noAtk_all,row_Atk) 

num_CAN_img = int(row_smaller/(len(col_names)-2)) 

 

df_noAtk = df_noAtk_all[:][-row_Atk:].reset_index(drop=True) 

 

init_image_size = len(col_names) - 2 

train_noAtk_size = int(row_Atk*0.8) 

 
train_noAtk = df_noAtk[:][0:train_noAtk_size] 

test_noAtk = df_noAtk[:][train_noAtk_size:] 

 

train_Atk = df_Atk[:][0:train_noAtk_size] 

test_Atk = df_noAtk[:][train_noAtk_size:] 

 

train_noAtk = train_noAtk.reset_index(drop=True) 

test_noAtk = test_noAtk.reset_index(drop=True) 

train_Atk = train_Atk.reset_index(drop=True) 

test_Atk = test_Atk.reset_index(drop=True) 

 

train_df = pd.concat([train_noAtk,train_Atk], 

ignore_index=True).reset_index(drop=True) 

test_df = pd.concat([test_noAtk,test_Atk], 

ignore_index=True).reset_index(drop=True) 

 
col_names = list(df_noAtk_all.columns) 

col_names.remove('Attack') 

col_names.remove('Timestamp') 

 
df_x = train_df.drop(columns = ['Attack','Timestamp']) 

df_y = train_df.drop(columns = col_names) 

 

df_x_test = test_df.drop(columns = ['Attack','Timestamp']) 

df_y_test = train_df.drop(columns = col_names) 

 

min_max_scaler = MinMaxScaler() 
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scaler = StandardScaler() 

df_x = pd.DataFrame(scaler.fit_transform(df_x), columns=df_x.columns) 

df_x = pd.DataFrame(min_max_scaler.fit_transform(df_x), 

columns=df_x.columns) 

 

df_x_test = pd.DataFrame(scaler.fit_transform(df_x_test), 

columns=df_x.columns) 

df_x_test = pd.DataFrame(min_max_scaler.fit_transform(df_x_test), 

columns=df_x.columns) 

 
#Build CAN Image Dataset 

 
x = [] 

y = [] 

 

np_x = df_x.to_numpy() 

np_y = df_y.to_numpy() 

 

for i in range(len(np_x)-init_image_size): 

    if(i%init_image_size==0): 

        img = 

np_x[i:i+init_image_size,:].reshape(init_image_size,init_image_size,1) 

        label = 1 if 1 in np_y[i:i+13,:] else 0 

        x.append(img) 

        y.append(label) 

 

x_train = np.array(x) 

y_train = np.array(y) 

 
x = np.array(x_train) 

y = np.array(y_train) 

 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(x, y, 

test_size=0.3, random_state=42) 

 

#Train a NN 

def create_full_classical_model(init_image_size): 

    # A simple model based off LeNet  

    model = tf.keras.Sequential() 

    

model.add(tf.keras.layers.Flatten(input_shape=(init_image_size,init_ima

ge_size,1))) 

    model.add(tf.keras.layers.Dense(100, activation='relu')) 

    model.add(tf.keras.layers.Dense(64)) 

    model.add(tf.keras.layers.Dense(16)) 

    model.add(tf.keras.layers.Dense(1)) 

    return model 
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model = create_full_classical_model(init_image_size) 

model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True)

, 

              optimizer=tf.keras.optimizers.Adam(), 

              metrics=['accuracy']) 

 

model.summary() 

 

EPOCHS = 100 

BATCH_SIZE = 8 

 

fair_history = model.fit(x_train, 

          y_train, 

          batch_size=BATCH_SIZE, 

          epochs=EPOCHS, 

          verbose=1, 

          validation_data=(x_test, y_test)) 

 

fair_nn_results = model.evaluate(x_test, y_test) 

 

plt.plot(fair_history.history['accuracy']) 

plt.plot(fair_history.history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='lower right') 

plt.show() 

# summarize history for loss 

plt.plot(fair_history.history['loss']) 

plt.plot(fair_history.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper right') 

plt.show() 

 

def extract_feat(model, x_in): 

    layer_name = model.layers[-3].name 

    intermediate_layer_model = Model(inputs=model.input, 

                                 

outputs=model.get_layer(layer_name).output) 

    intermediate_output = 

intermediate_layer_model.predict(x_test[0][None, :, :, :]) 

    foo_norm = minmax_scale(intermediate_output, feature_range=(0,1), 

axis=1) 

    return foo_norm 

 

x_trans = [] 

y_trans = [] 
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total = len(x_train) 

for i in range(len(x_train)): 

    x_trans.append(extract_feat(model,x_train[i])) 

    y_trans.append(y_train[i]) 

 

print ('Done') 

 

x_trans_test = [] 

y_trans_test = [] 

 

for i in range(len(x_test)): 

    x_trans_test.append(extract_feat(model,x_test[i])) 

    y_trans_test.append(y_test[i]) 

 

print ('Done') 

 

x_trans = np.array(x_trans) 

x_trans_test = np.array(x_trans_test) 

 

x_trans = x_trans.reshape(len(x_trans),8,8) 

x_trans_test = x_trans_test.reshape(len(x_trans_test),8,8) 

 

#Perform Encoding 

THRESHOLD = 0.5 

 

x_train_bin = np.array(x_trans > THRESHOLD, dtype=np.float32) 

x_test_bin = np.array(x_trans_test > THRESHOLD, dtype=np.float32) 

 

print (x_train_bin.shape) 

print (x_test_bin.shape) 

 

import random as random 

 

idx = random.randint(0,len(x_train_bin)) 

print('index:', idx , ' label : ', y_train[idx]) 

 

plt.imshow(x_train_bin[idx,:,:]) 

plt.colorbar() 

 

#Save Training Data 

count = 0 

x_train_bin_squeezed = np.squeeze(x_train_bin) 

 

for y in y_train:     

    y_train_bin = np.expand_dims(y*np.ones([8,2]), axis=0) 

    x_train_y_train = np.concatenate((x_train_bin_squeezed[count].T, 

np.squeeze(y_train_bin).T), axis=0).T 

     

    if count == 0: 

        Train_all = x_train_y_train 
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    else: 

        Train_all = np.concatenate((Train_all, x_train_y_train), 

axis=0) 

     

    count += 1 

 

comb_final = pd.DataFrame(Train_all) 

 

with pd.ExcelWriter('Train.xlsx') as writer: 

    comb_final.to_excel(writer)  

 

#Save Test Data 

count = 0 

x_test_bin_squeezed = np.squeeze(x_test_bin) 

 

for y in y_test: 

    if y == 0: 

        y = 1 

    else: 

        y=0 

         

    y_test_bin = np.expand_dims(y*np.ones([8,2]), axis=0) 

    x_test_y_test = np.concatenate((x_test_bin_squeezed[count].T, 

np.squeeze(y_test_bin).T), axis=0).T 

     

    if count == 0: 

        Test_all = x_test_y_test 

    else: 

        Test_all = np.concatenate((Test_all, x_test_y_test), axis=0) 

     

    count += 1 

 

test_final = pd.DataFrame(Test_all) 

 

with pd.ExcelWriter('Test.xlsx') as writer: 

    test_final.to_excel(writer)  

 

 

 

Sample Python Code (in IPYNB Format) for Quantum RBM Training and 

Classification 

import numpy as np 

import timeit 

import matplotlib.pyplot as plt 

from tqdm import tqdm_notebook as tqdm 

 

from qrbm.MSQRBM import MSQRBM 

from qrbm.classicalRBM import classicalRBM 
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import matplotlib.pyplot as plt 

%matplotlib inline    

plt.rcParams['image.cmap'] = 'gray' 

 

import pandas as pd 

 

from skimage import data, color 

from skimage.transform import rescale, resize, downscale_local_mean 

from skimage import img_as_bool 

 

import cv2 as cv 

import random 

from numpy import genfromtxt 

 

 
train_data_df = pd.read_excel('Train.xlsx',header=None) 

train_data = np.array(train_data_df) 

test_data_df = pd.read_excel('Test.xlsx',header=None) 

test_data = np.array(test_data_df) 

 

flat_train_data = [] 

 

for i in range(int(len(train_data)/8)): 

    x = [] 

    for k in range(8): 

        for j in range(8): 

            x.append(train_data[8*i+j][k]) 

    flat_train_data.append(x) 

     

flat_test_data = [] 

 

for i in range(int(len(test_data)/8)): 

    x = [] 

    for k in range(8): 

        for j in range(8): 

            x.append(test_data[8*i+j][k]) 

    flat_test_data.append(x) 

 

 
#Presets 

 

image_height = 8 

image_width = 8 

 

len_x = image_height * image_width 

len_y = 0 
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n_visible = 64 

n_hidden = 64 

 

epochs = 50 

lr = 0.1 

lr_decay = 0 

 
result_picture_tab = [] 

 

for i in range(int(len(test_data)/8)): 

    x = [] 

    for k in range(8): 

        for j in range(8): 

            x.append(test_data[8*i+j][k]) 

    result_picture_tab.append(x) 

 
bm = MSQRBM(n_visible=n_visible, n_hidden=n_hidden, qpu=True) 

bm.image_height = image_height 

bm.tqdm = tqdm 

bm.result_picture_tab = result_picture_tab 

 

bm.train(flat_train_data, len_x, len_y, epochs = epochs, lr = lr, 

lr_decay = lr_decay) 

 

weights_biases = bm.get_weights() 

 
np.savetxt("vishid.csv", weights_biases[0], delimiter=",") 

np.savetxt("visbiases.csv", weights_biases[1], delimiter=",") 

np.savetxt("hidbiases.csv", weights_biases[2], delimiter=",") 

 
def compute_metrics(bm): 

    rand_label_test = [] 

 

    for i in range(len(test_data)): 

        rand_mat = np.random.randint(2, size=[2,1]) 

        #rand_mat = random.choice([0, 1]) 

        x = 

np.concatenate((test_data[i][0:6],np.squeeze(rand_mat)),axis = 

0).tolist() 

        rand_label_test.append(x) 

 

    rand_label_test = np.array(rand_label_test) 

 

    rand_label_picture_tab = [] 

 

    for i in range(int(len(rand_label_test)/8)): 

        x = [] 

        for k in range(8): 

            for j in range(8): 
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                x.append(rand_label_test[8*i+j][k]) 

        rand_label_picture_tab.append(x) 

         

    result_picture_tab = [] 

 

    for i in range(int(len(test_data)/8)): 

        x = [] 

        for k in range(8): 

            for j in range(8): 

                x.append(test_data[8*i+j][k]) 

        result_picture_tab.append(x) 

 

    result_picture_tab = result_picture_tab[0:80] 

    rand_label_picture_tab = rand_label_picture_tab[0:80] 

 

    TP = 0 

    TN = 0 

    FP = 0 

    FN = 0 

 

    for i in tqdm(range(len(result_picture_tab))): 

        True_image = np.reshape(result_picture_tab[i], (image_width, 

image_height)) 

        True_label = True_image[7][0] 

        #print('True label: {}'.format(True_label)) 

 

        Recon_image = bm.generate(rand_label_picture_tab[i]) 

        Recon_image = np.reshape(Recon_image, (image_width, 

image_height)) 

        Pred_label = int(sum(sum(Recon_image[6:8][:]))/16 > 0.5) 

        #print('Predicted label: {}'.format(Pred_label)) 

 

        if True_label == Pred_label: 

            if True_label == 1: 

                TN += 1 

            else: 

                TP += 1 

        else: 

            if True_label == 1: 

                FP += 1 

            else: 

                FN += 1 

 

    print('TP (test): {}'.format(TP)) 

    print('TN (test): {}'.format(TN)) 

    print('FP (test): {}'.format(FP)) 

    print('FN (test): {}'.format(FN)) 

 

    Accuracy = (TP + TN)/(TP + TN + FP + FN) 

    Precision = TP/(TP + FP) 
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    Recall = TP/(TP + FN) 

    F1 = 2*Precision*Recall/(Precision + Recall) 

 

    print('Accuracy (test): {}'.format(Accuracy)) 

    print('Precision (test): {}'.format(Precision)) 

    print('Recall (test): {}'.format(Recall)) 

    print('F1 score (test): {}'.format(F1)) 

 

 
saved_weights = genfromtxt('vishid_.csv', delimiter=',') 

saved_visbiases = genfromtxt('visbiases.csv', delimiter=',') 

saved_hidbiases = genfromtxt('hidbiases.csv', delimiter=',') 

 

bm = MSQRBM(n_visible=n_visible, n_hidden=n_hidden, qpu=False) 

bm.image_height = image_height 

bm.result_picture_tab = result_picture_tab 

bm.set_weights(saved_weights,saved_visbiases,saved_hidbiases) 

bm.tqdm = tqdm 

 

compute_metrics(bm) 
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Appendix B 

Python Codes Related to Chapter Three 

Sample Python Code (in IPYNB Format) for Training the Classifier 

import os 

import torch 

import torchvision 

import numpy as np 

from torch.utils.data import DataLoader, ConcatDataset 

from torchvision.utils import make_grid 

import torchvision.transforms as T 

 

import matplotlib 

import matplotlib.pyplot as plt 

%matplotlib inline 

 

matplotlib.rcParams['figure.facecolor'] = '#ffffff' 

 

random_seed = 42 

torch.manual_seed(random_seed); 

 
import pickle 

from Split_data import random_split 

 

data_directory = "./data" 

filename = "stop_speed.pkl" 

file_path = os.path.join(data_directory, filename) 

 

# Load the data from the file 

with open(file_path, "rb") as file: 

    data = pickle.load(file) 

     

train_ds, val_ds, test_ds = random_split(data) 

 
from collections import Counter 

train_classes = [label for _, label in train_ds] 

val_classes = [label for _, label in val_ds] 

test_classes = [label for _, label in test_ds] 

 

train_class_size = Counter(train_classes) 

val_class_size = Counter(val_classes) 

test_class_size = Counter(test_classes) 

all_class_size = train_class_size + val_class_size + test_class_size 

 

print(f'Size of train classes: {train_class_size}') 

print(f'Size of validation classes: {val_class_size}') 
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print(f'Size of test classes: {test_class_size}') 

print(f'Size of all classes in train, val, and test sets: 

{all_class_size}') 

 
# PyTorch data loaders 

n_cores = os.cpu_count() 

batch_size = 64 

stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) 

num_classes = 2 

 

train_dl = DataLoader(train_ds, batch_size, shuffle=True, 

num_workers=int(n_cores/2), pin_memory=True) 

val_dl = DataLoader(val_ds, batch_size*2, shuffle=True, 

num_workers=int(n_cores/2), pin_memory=True) 

 
def denorm(img_tensors): 

    return img_tensors * stats[1][0] + stats[0][0] 

 

def show_images(images, nmax=64): 

    fig, ax = plt.subplots(figsize=(8, 8)) 

    ax.set_xticks([]); ax.set_yticks([]) 

    ax.imshow(make_grid(denorm(images.detach()[:nmax]), 

nrow=8).permute(1, 2, 0)) 

    #ax.imshow(make_grid(images.detach()[:nmax], nrow=8).permute(1, 2, 

0)) 

 

def show_batch(dl, nmax=64): 

    for images, _ in dl: 

        show_images(images, nmax) 

        break 

 
show_batch(train_dl) 

 
# Move data to GPU 

from deviceSelector import DeviceDataLoader, to_device 

 

torch.cuda.empty_cache() 

train_dl = DeviceDataLoader(train_dl) 

val_dl = DeviceDataLoader(val_dl) 

 

print(f'train dataloader device: {train_dl.device}') 

print(f'validation dataloader device: {val_dl.device}') 

 
# Instantiate ResNet9 Model 

from ResNet9 import ResNet9 

model = to_device(ResNet9(3,num_classes),device='cuda') 

 
# Define training parameters 

epochs = 8 
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max_lr = 0.01 

grad_clip = 0.1 

weight_decay = 1e-4 

opt_func = torch.optim.Adam 

 
from ResNet9 import * 

 

history = [evaluate(model, val_dl)] 

 

%%time 

history += fit_one_cycle(epochs, max_lr, model, train_dl, val_dl,  

                             grad_clip=grad_clip,  

                             weight_decay=weight_decay,  

                             opt_func=opt_func) 

 
from plot_history import * 

 

plot_accuracies(history) 

plot_losses(history) 

plot_lrs(history) 

 
# Save the model 

torch.save(model.state_dict(), 

'./trained_models/ResNet9/resnet9_m20.pth') 

 
def predict_image(img, model, device='cuda'): 

    xb = to_device(img.unsqueeze(0), device) 

    yb = model(xb) 

    _, preds  = torch.max(yb, dim=1) 

    return preds[0].item() 

 
from sklearn.metrics import classification_report 

 

def eval_test(test_ds, model, device='cuda'): 

    with torch.no_grad(): 

        correct = 0 

        total = 0 

        y_true = [] 

        y_pred = [] 

         

        for img, label in test_ds: 

            xb = to_device(img.unsqueeze(0), device) 

            yb = model(xb) 

            _, preds  = torch.max(yb, dim=1) 

            total += 1 

            correct += (preds[0] == label).sum().item() 

            predicted=preds[0].to('cpu') 

            y_true.append(label) 

            y_pred.append(predicted) 
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        print('Test Accuracy: {}%'.format(100 * correct / total)) 

 

        # Generate a classification report 

        print(classification_report(y_true, y_pred)) 

 
# Evaluate the model on the test dataset 

eval_test(test_ds, model_m) 

 

 

Supporting Python Scripts for Training the Classifier 

Script 1: Split_data.py 

import random 

import torch 

from torchvision import transforms 

 

random.seed(42) 

 

def random_split(data): 

    random.seed(42) 

 

    # Define the mean and standard deviation for normalization 

    stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) 

 

    # Create the transformation for normalization 

    transform = transforms.Compose([ 

        transforms.Normalize(*stats) 

    ]) 

 

    # Apply normalization to the data 

    normalized_data = [(transform(tensor), label) for tensor, label in 

data] 

 

    random.shuffle(normalized_data) 

 

    # Calculate the lengths of train, validation, and test sets based on 

the ratios 

    train_ratio = 0.6 

    val_ratio = 0.2 

    test_ratio = 0.2 

 

    total_samples = len(normalized_data) 

    train_samples = int(train_ratio * total_samples) 

    val_samples = int(val_ratio * total_samples) 

    test_samples = total_samples - train_samples - val_samples 

 

    # Split the normalized data into train, validation, and test sets 

    train_data = normalized_data[:train_samples] 
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    val_data = normalized_data[train_samples : train_samples + 

val_samples] 

    test_data = normalized_data[train_samples + val_samples:] 

     

    return train_data, val_data, test_data 

 

 

 

Script 2: ResNet9.py 

import torch 

import torchvision 

import torch.nn as nn 

import torch.nn.functional as F 

 

 

def accuracy(outputs, labels): 

    _, preds = torch.max(outputs, dim=1) 

    return torch.tensor(torch.sum(preds == labels).item() / len(preds)) 

 

class ImageClassificationBase(nn.Module): 

    def training_step(self, batch): 

        images, labels = batch  

        out = self(images)                  # Generate predictions 

        loss = F.cross_entropy(out, labels) # Calculate loss 

        return loss 

     

    def validation_step(self, batch): 

        images, labels = batch  

        out = self(images)                    # Generate predictions 

        loss = F.cross_entropy(out, labels)   # Calculate loss 

        acc = accuracy(out, labels)           # Calculate accuracy 

        return {'val_loss': loss.detach(), 'val_acc': acc} 

         

    def validation_epoch_end(self, outputs): 

        batch_losses = [x['val_loss'] for x in outputs] 

        epoch_loss = torch.stack(batch_losses).mean()   # Combine losses 

        batch_accs = [x['val_acc'] for x in outputs] 

        epoch_acc = torch.stack(batch_accs).mean()      # Combine 

accuracies 

        return {'val_loss': epoch_loss.item(), 'val_acc': 

epoch_acc.item()} 

     

    def epoch_end(self, epoch, result): 

        print("Epoch [{}], last_lr: {:.5f}, train_loss: {:.4f}, val_loss: 

{:.4f}, val_acc: {:.4f}".format( 

            epoch, result['lrs'][-1], result['train_loss'], 

result['val_loss'], result['val_acc'])) 

         

         

def conv_block(in_channels, out_channels, pool=False): 
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    layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3, 

padding=1),  

              nn.BatchNorm2d(out_channels),  

              nn.ReLU(inplace=True)] 

    if pool: layers.append(nn.MaxPool2d(2)) 

    return nn.Sequential(*layers) 

 

 

class ResNet9(ImageClassificationBase): 

    def __init__(self, in_channels, num_classes): 

        super().__init__() 

         

        self.conv1 = conv_block(in_channels, 64) 

        self.conv2 = conv_block(64, 128, pool=True) 

        self.res1 = nn.Sequential(conv_block(128, 128), conv_block(128, 

128)) 

         

        self.conv3 = conv_block(128, 256, pool=True) 

        self.conv4 = conv_block(256, 512, pool=True) 

        self.res2 = nn.Sequential(conv_block(512, 512), conv_block(512, 

512)) 

         

        self.classifier = nn.Sequential(nn.MaxPool2d(4),  

                                        nn.Flatten(),  

                                        nn.Dropout(0.2), 

                                        nn.Linear(512, num_classes)) 

         

    def forward(self, xb): 

        out = self.conv1(xb) 

        out = self.conv2(out) 

        out = self.res1(out) + out 

        out = self.conv3(out) 

        out = self.conv4(out) 

        out = self.res2(out) + out 

        out = self.classifier(out) 

        return out 

 

     

@torch.no_grad() 

def evaluate(model, val_loader): 

    model.eval() 

    outputs = [model.validation_step(batch) for batch in val_loader] 

    return model.validation_epoch_end(outputs) 

 

def get_lr(optimizer): 

    for param_group in optimizer.param_groups: 

        return param_group['lr'] 

 

def fit_one_cycle(epochs, max_lr, model, train_loader, val_loader,  

                  weight_decay=0, grad_clip=None, 

opt_func=torch.optim.SGD): 

    torch.cuda.empty_cache() 

    history = [] 
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    # Set up cutom optimizer with weight decay 

    optimizer = opt_func(model.parameters(), max_lr, 

weight_decay=weight_decay) 

    # Set up one-cycle learning rate scheduler 

    sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, 

epochs=epochs,  

                                                

steps_per_epoch=len(train_loader)) 

     

    for epoch in range(epochs): 

        # Training Phase  

        model.train() 

        train_losses = [] 

        lrs = [] 

        for batch in train_loader: 

            loss = model.training_step(batch) 

            train_losses.append(loss) 

            loss.backward() 

             

            # Gradient clipping 

            if grad_clip:  

                nn.utils.clip_grad_value_(model.parameters(), grad_clip) 

             

            optimizer.step() 

            optimizer.zero_grad() 

             

            # Record & update learning rate 

            lrs.append(get_lr(optimizer)) 

            sched.step() 

         

        # Validation phase 

        result = evaluate(model, val_loader) 

        result['train_loss'] = torch.stack(train_losses).mean().item() 

        result['lrs'] = lrs 

        model.epoch_end(epoch, result) 

        history.append(result) 

    return history 

 

 

Script 3: deviceSelector.py 

import torch 

 

def get_default_device(): 

    """Pick GPU if available, else CPU""" 

    if torch.cuda.is_available(): 

        return torch.device('cuda') 

    else: 

        return torch.device('cpu') 

     

def to_device(data, device): 

    """Move tensor(s) to chosen device""" 
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    if isinstance(data, (list,tuple)): 

        return [to_device(x, device) for x in data] 

    return data.to(device, non_blocking=True) 

 

class DeviceDataLoader(): 

    """Wrap a dataloader to move data to a device""" 

    def __init__(self, dl, device=get_default_device()): 

        self.dl = dl 

        self.device = device 

         

    def __iter__(self): 

        """Yield a batch of data after moving it to device""" 

        for b in self.dl:  

            yield to_device(b, self.device) 

 

    def __len__(self): 

        """Number of batches""" 

        return len(self.dl) 

 

 

Script 4: plot_history.py 

import numpy as np 

import matplotlib 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

 

matplotlib.rcParams['figure.facecolor'] = '#ffffff' 

 

def plot_accuracies(history): 

    accuracies = [x['val_acc'] for x in history] 

    plt.plot(accuracies, '-x') 

    plt.xlabel('epoch') 

    plt.ylabel('accuracy') 

    plt.title('Accuracy vs. No. of epochs'); 

     

def plot_losses(history): 

    train_losses = [x.get('train_loss') for x in history] 

    val_losses = [x['val_loss'] for x in history] 

    plt.plot(train_losses, '-bx') 

    plt.plot(val_losses, '-rx') 

    plt.xlabel('epoch') 

    plt.ylabel('loss') 

    plt.legend(['Training', 'Validation']) 

    plt.title('Loss vs. No. of epochs'); 

     

def plot_lrs(history): 

    lrs = np.concatenate([x.get('lrs', []) for x in history]) 

    plt.plot(lrs) 

    plt.xlabel('Batch no.') 

    plt.ylabel('Learning rate') 

    plt.title('Learning Rate vs. Batch no.'); 
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Sample Python Code (in IPYNB Format) for Training the Generator 

import os 

 

import torch 

import torchvision 

from torch.utils.data import DataLoader 

from torchsummary import summary 

 

import pickle 

from Split_data import random_split 

 

from WGAN_GP import Generator, Discriminator 

from Train_WGAN_GP import train_WGANGP 

 

random_seed = 42 

torch.manual_seed(random_seed); 

 

# Parameters 

INPUT_LATENT = 128 

batch_size = 128 

N_CORES = os.cpu_count() 

 

# load dataset 

data_file_path = os.path.join("./data", "stop_speed.pkl") 

 

# Load the data from the file 

with open(data_file_path, "rb") as data_file: 

    reduced_data = pickle.load(data_file) 

 

train_ds, val_ds, test_ds = random_split(reduced_data) 

 

train_loader = DataLoader( 

    train_ds,  

    batch_size,  

    shuffle=True,  

    num_workers=int(N_CORES/2),  

    pin_memory=True 

) 

 

val_loader = DataLoader( 

    test_ds,  

    batch_size*2,  

    num_workers=int(N_CORES/2),  

    pin_memory=True 

) 

 

# Set compute devices 

device_D = torch.device('cuda') 
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device_G = torch.device('cuda') 

 

# load generator model 

netG = Generator() 

summary(netG, input_size = (INPUT_LATENT, 1, 1), device = 'cpu') 

 

# load discriminator model 

netD = Discriminator() 

summary(netD, input_size = (3, 32, 32), device = 'cpu') 

 

# set folder to save model checkpoints  

model_folder = os.path.abspath('./trained_models/WGAN_GP') 

if not os.path.exists(model_folder): 

    os.mkdir(model_folder) 

     

# set folder to save generated images  

img_folder = os.path.abspath('./Generated_imgs') 

if not os.path.exists(img_folder): 

    os.mkdir(img_folder) 

 

# Load last saved models (if any) 

check_point_path =  './trained_models/WGAN_GP/model_snapshots.pth'  

 

if os.path.exists(check_point_path): 

    checkpoint = torch.load(check_point_path) 

 

    inital_epoch = checkpoint['epoch'] 

 

    netG.load_state_dict(checkpoint['netG_state_dict']) 

    netD.load_state_dict(checkpoint['netD_state_dict']) 

 

# Move models to GPU 

netG = netG.to(device_G) 

netD = netD.to(device_D) 

 
 

# Train WGAN-GP 

inital_epoch = 0 

 

train_WGANGP(train_loader, val_loader, netD, netG, inital_epoch) 
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Supporting Python Scripts for Training the Generator 

Script 1: Train_WGAN_GP.py 

import os 

 

import copy 

import time 

import pickle 

import numpy as np 

 

import torch 

import torch.optim as optim 

import torch.autograd as autograd 

from torchvision.utils import save_image 

import torchvision 

import torchvision.transforms as T 

from tqdm.notebook import tqdm 

 

from WGAN_GP import Generator, Discriminator 

from utils_WGAN_GP import adjust_lr, compute_gradient_penalty, denorm 

 

random_seed = 42 

torch.manual_seed(random_seed); 

 

 

def train_WGANGP(train_loader, val_loader, netD, netG, inital_epoch): 

 

    # Parameters 

    ITERS = 400000 

    INPUT_LATENT = 128  

    LAMBDA = 10 # Gradient penalty lambda hyperparameter 

    CRITIC_ITERS = 5 # Critic iterations per generator iteration 

     

    device_D = 'cuda' 

    device_G = 'cuda' 

     

    batch_size = 128  

    in_channel = 3 

    height = 32 

    width = 32 

     

    learning_rate = 1e-4 

    display_steps = 500 

     

    check_point_path = './trained_models/WGAN_GP/model_snapshots.pth' 

     

    # set optimizer for generator and discriminator 

    optimizerD = optim.Adam(netD.parameters(), lr=learning_rate, 

betas=(0.5, 0.9)) 

    optimizerG = optim.Adam(netG.parameters(), lr=learning_rate, 

betas=(0.5, 0.9)) 
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    print('Number of training batches: {}, Number of validation batches: 

{}'.format(len(train_loader), len(val_loader))) 

 

    save_losses = [] 

    dev_disc_costs = [] 

 

    if os.path.exists('./trained_models/WGAN_GP/lisa_losses_gp.pickle'): 

        with open ('./trained_models/WGAN_GP/lisa_losses_gp.pickle', 

'rb') as fp: 

            save_losses = pickle.load(fp) 

 

    if os.path.exists('./trained_models/WGAN_GP/dev_disc_costs.pickle'): 

        with open ('./trained_models/WGAN_GP/dev_disc_costs.pickle', 

'rb') as fp: 

            dev_disc_costs = pickle.load(fp) 

 

    one = torch.tensor(1, dtype=torch.float) 

    mone = one * -1 

 

    one = one.to(device_D) 

    mone = mone.to(device_D)        

 

 

    # Training 

    print('Training starts ...') 

 

    for iteration in range(inital_epoch, ITERS, 1): 

 

        start_time = time.time() 

 

        adjust_lr(optimizerD, iteration, init_lr = learning_rate, 

total_iteration = ITERS) 

        adjust_lr(optimizerG, iteration, init_lr = learning_rate, 

total_iteration = ITERS) 

 

        d_loss_real = 0 

        d_loss_fake = 0 

 

        #for iter_d in range(CRITIC_ITERS): 

        for i, (imgs, _) in enumerate(tqdm(train_loader)): 

 

            ############################ 

            # (1) Update D network 

            ########################### 

            for p in netD.parameters(): 

                p.requires_grad = True 

 

            real_imgs = autograd.Variable(imgs.to(device_D)) 

 

            optimizerD.zero_grad() 

 

            # Sample noise as generator input 

            z = autograd.Variable(torch.randn(imgs.size(0), 

INPUT_LATENT,1,1)) 
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            z = z.to(device_G) 

 

            # Generate a batch of images 

            fake_imgs = netG(z).cpu() 

            fake_imgs = fake_imgs.to(device_D) 

 

            # Real images 

            real_validity = netD(real_imgs) 

            d_loss_real = real_validity.mean() 

            d_loss_real.backward(mone) 

 

            # Fake images 

            fake_validity = netD(fake_imgs) 

            d_loss_fake = fake_validity.mean() 

            d_loss_fake.backward(one) 

 

            # Gradient penalty 

            gradient_penalty = compute_gradient_penalty(netD, 

real_imgs.data, fake_imgs.data, device_D) 

            gradient_penalty.backward() 

 

            # Adversarial loss 

            loss_D = d_loss_fake - d_loss_real + LAMBDA * 

gradient_penalty 

 

            #loss_D.backward() 

            optimizerD.step() 

            optimizerG.zero_grad() 

 

            del real_validity, fake_validity, fake_imgs, 

gradient_penalty, real_imgs 

 

            # Train the generator every n_critic iterations 

 

            if (i + 1)% CRITIC_ITERS == 0 or (i + 1) == len(train_loader): 

 

                ############################ 

                # (2) Update G network 

                ########################### 

                for p in netD.parameters(): 

                    p.requires_grad = False  # to avoid computation 

 

                # Generate a batch of images     

                fake_imgs = netG(z).cpu() 

                fake_imgs = fake_imgs.to(device_D) 

 

                # Loss measures generator's ability to fool the 

discriminator 

                # Train on fake images 

                fake_validity = netD(fake_imgs) 

                g_loss = fake_validity.mean() 

                g_loss.backward(mone) 

                loss_G = -g_loss 
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                #loss_G.backward() 

                optimizerG.step() 

 

                del fake_validity 

 

 

        save_losses.append([loss_D.item(), loss_G.item()]) 

 

        if (iteration + 1) % display_steps == 0 or (iteration + 1) == 

ITERS: 

 

            print('batch {:>3}/{:>3}, D_cost {:.4f}, G_cost 

{:.4f}\r'.format(iteration + 1, ITERS,loss_D.item(), loss_G.item())) 

 

            with open('./trained_models/WGAN_GP/lisa_losses_gp.pickle', 

'wb') as fp: 

                pickle.dump(save_losses, fp) 

 

            # snapshots for model 

            modelG_copy = copy.deepcopy(netG) 

            modelG_copy = modelG_copy.cpu() 

 

            modelG_state_dict = modelG_copy.state_dict()  

 

            modelD_copy = copy.deepcopy(netD) 

            modelD_copy = modelD_copy.cpu() 

 

            modelD_state_dict = modelD_copy.state_dict()  

 

            torch.save({ 

                'netG_state_dict': modelG_state_dict, 

                'netD_state_dict': modelD_state_dict, 

                'epoch': iteration 

                }, check_point_path) 

 

            del modelG_copy, modelG_state_dict, modelD_copy, 

modelD_state_dict 

 

        # save generator model after certain iteration 

        if (iteration + 1) % display_steps == 0 : 

 

            g_path = './trained_models/WGAN_GP/G_lisa_gp_' + 

str(iteration) + '.pth'  

 

            model_copy = copy.deepcopy(netG) 

            model_copy = model_copy.cpu() 

            model_state_dict = model_copy.state_dict() 

            torch.save(model_state_dict, g_path) 

 

            del model_copy 

 

        # save LISA generated images by generator model every 1000 time 

 

        if (iteration + 1) % display_steps == 0 : 
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            denorm_fake_imgs = denorm(fake_imgs) 

            save_image(denorm_fake_imgs.data, 

'./Generated_imgs/sample_{}.png'.format(iteration), nrow=8) 

 

            costs_avg = 0.0 

            disc_count = 0 

 

            # validate GAN model 

            with torch.no_grad(): 

                for images,_ in val_loader: 

 

                    imgs = images.to(device_D) 

 

                    D = netD(imgs) 

 

                    costs_avg += -D.mean().cpu().data.numpy() 

                    disc_count += 1 

 

                    del images, imgs 

 

            costs_avg = costs_avg / disc_count 

 

            dev_disc_costs.append(costs_avg) 

 

            with open('./trained_models/WGAN_GP/dev_disc_costs.pickle', 

'wb') as fp: 

                pickle.dump(dev_disc_costs, fp) 

 

            print('batch {:>3}/{:>3}, validation disc cost : 

{:.4f}'.format(iteration, ITERS, costs_avg)) 

 

 

Script 2: utils_WGAN_GP.py 

import torch 

import torch.autograd as autograd 

import torchvision 

import numpy as np 

 

 

# Learning Rate Adjustment 

 

def adjust_lr(optimizer, iteration, init_lr = 1e-4, total_iteration = 

200000): 

     

    gradient = (float(-init_lr) / total_iteration) 

    lr = gradient * iteration + init_lr  

 

    for param_group in optimizer.param_groups: 

        param_group['lr'] = lr 
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# Calculate Gradient Penalty Loss for WGAN-GP 

 

def compute_gradient_penalty(D, real_samples, fake_samples, device): 

     

    # Random weight term for interpolation between real and fake samples 

    alpha = torch.Tensor(np.random.random((real_samples.size(0), 1, 1, 

1))) 

    alpha = alpha.expand(real_samples.size(0), real_samples.size(1), 

real_samples.size(2), real_samples.size(3)) 

    alpha = alpha.to(device) 

     

    # Get random interpolation between real and fake samples 

    interpolates = (alpha * real_samples + ((1 - alpha) * 

fake_samples)).requires_grad_(True) 

    d_interpolates = D(interpolates) 

    fake = autograd.Variable(torch.Tensor(real_samples.shape[0], 

1).fill_(1.0), requires_grad=False) 

    fake = fake.to(device) 

     

    # Get gradient w.r.t. interpolates 

    gradients = autograd.grad( 

        outputs=d_interpolates, 

        inputs=interpolates, 

        grad_outputs=fake, 

        create_graph=True, 

        retain_graph=True, 

        only_inputs=True, 

    )[0] 

    gradients = gradients.view(gradients.size(0), -1) 

    gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() 

     

    return gradient_penalty 

 

 

# Denormalize image tensors 

 

def denorm(img_tensors): 

    stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) 

    return img_tensors * stats[1][0] + stats[0][0] 

 

 

Script 3: WGAN_GP.py 

import torch 

import torch.nn as nn 

 

latent_size = 128 

 

class Generator(nn.Module): 

    def __init__(self): 

        super(Generator, self).__init__() 
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        convT1 = nn.Sequential( 

            # in: latent_size x 1 x 1 

            nn.ConvTranspose2d(latent_size, 512, kernel_size=4, 

stride=1, padding=0, bias=False), 

            nn.BatchNorm2d(512), 

            nn.ReLU(True) 

            # out: 512 x 4 x 4 

        ) 

         

        convT2 = nn.Sequential( 

            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, 

padding=1, bias=False), 

            nn.BatchNorm2d(256), 

            nn.ReLU(True) 

            # out: 256 x 8 x 8 

        ) 

         

        convT3 = nn.Sequential( 

            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, 

padding=1, bias=False), 

            nn.BatchNorm2d(128), 

            nn.ReLU(True) 

            # out: 128 x 16 x 16 

        ) 

         

        convT4 = nn.Sequential( 

            nn.ConvTranspose2d(128, 3, kernel_size=4, stride=2, 

padding=1, bias=False), 

            nn.Tanh() 

            # out: 3 x 32 x 32 

        ) 

         

        self.convT1 = convT1 

        self.convT2 = convT2 

        self.convT3 = convT3 

        self.convT4 = convT4 

         

    def forward(self, input): 

        output = self.convT1(input) 

        output = self.convT2(output) 

        output = self.convT3(output) 

        output = self.convT4(output) 

         

        return output 

     

 

     

class Discriminator(nn.Module): 

    def __init__(self): 

        super(Discriminator, self).__init__() 

         

        conv1 = nn.Sequential( 

            # in: 3 x 32 x 32 
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            nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1, 

bias=False), 

            #nn.BatchNorm2d(32), 

            nn.LeakyReLU(0.2, inplace=True) 

            # out: 32 x 16 x 16 

        ) 

         

        conv2 = nn.Sequential( 

            nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1, 

bias=False), 

            #nn.BatchNorm2d(64), 

            nn.LeakyReLU(0.2, inplace=True), 

            # out: 64 x 8 x 8 

        ) 

         

        conv3 = nn.Sequential( 

            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, 

bias=False), 

            #nn.BatchNorm2d(128), 

            nn.LeakyReLU(0.2, inplace=True) 

            # out: 128 x 4 x 4 

        ) 

         

        conv4 = nn.Sequential( 

            nn.Conv2d(128, 256, kernel_size=4, stride=1, padding=0, 

bias=False), 

            #nn.BatchNorm2d(256), 

            nn.LeakyReLU(0.2, inplace=True), 

            # out: 256 x 1 x 1 

 

            nn.Flatten() 

        ) 

         

        self.conv1 = conv1 

        self.conv2 = conv2 

        self.conv3 = conv3 

        self.conv4 = conv4 

        self.linear = nn.Linear(256, 1) 

         

    def forward(self, input): 

        output = self.conv1(input) 

        output = self.conv2(output) 

        output = self.conv3(output) 

        output = self.conv4(output) 

        output = self.linear(output) 

        return output 
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Sample Python Code (in IPYNB Format) for Evaluating the AR-GAN 

import os 

import numpy as np 

import pickle 

import torch 

import torch.nn as nn 

import torchvision 

import torchvision.transforms as transforms 

import torchvision.transforms as T 

from torch.utils.data import DataLoader 

 

from utils_AR_GAN import adjust_lr, get_z_sets, get_z_star, 

Resize_Image 

from Split_data import random_split 

 

from WGAN_GP import Generator 

from torchsummary import summary 

import copy 

 
batch_size = 128 

in_channel = 3 

height = 32 

width = 32 

num_classes = 2 

 

display_steps = 20 

 
# load dataset 

data_file_path = os.path.join("./data", "stop_speed.pkl") 

 

# Load the data from the file 

with open(data_file_path, "rb") as data_file: 

    reduced_data = pickle.load(data_file) 

 

train_ds, val_ds, test_ds = random_split(reduced_data) 

 
# Move data to GPU 

from deviceSelector import DeviceDataLoader, to_device 

 

torch.cuda.empty_cache() 

 

n_cores = os.cpu_count() 

test_loader = DataLoader(test_ds,  

                      batch_size,  

                      shuffle = False,  

                      num_workers = int(n_cores/2),  

                      pin_memory = True) 

test_loader = DeviceDataLoader(test_loader) 
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from torchvision.utils import make_grid 

import matplotlib 

import matplotlib.pyplot as plt 

%matplotlib inline 

 

matplotlib.rcParams['figure.facecolor'] = '#ffffff' 

 

stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) 

 

def denorm(img_tensors): 

    return img_tensors * stats[1][0] + stats[0][0] 

 

def show_images(images, nmax=64): 

    fig, ax = plt.subplots(figsize=(8, 8)) 

    ax.set_xticks([]); ax.set_yticks([]) 

    ax.imshow(make_grid(denorm(images.cpu().detach()[:nmax]), 

nrow=8).permute(1, 2, 0)) 

    #ax.imshow(make_grid(images.detach()[:nmax], nrow=8).permute(1, 2, 

0)) 

 

def show_batch(dl, nmax=64): 

    for images, _ in dl: 

        show_images(images, nmax) 

        break 

 
show_batch(test_loader) 

 
from deviceSelector import DeviceDataLoader, to_device 

from ResNet9 import ResNet9 

 

device_model = 'cuda' 

model = to_device(ResNet9(3,num_classes), device='cuda') 

model.load_state_dict(torch.load('./trained_models/ResNet9/resnet9_m19_

retrained.pth')) 

 
learning_rate = 10.0 

rec_iters = [1000] 

rec_rrs = [20] 

decay_rate = 0.1 

global_step = 3.0 

generator_input_size = 32 

 

INPUT_LATENT = 128 

device_generator = torch.device('cuda') 

 
ModelG = Generator() 

generator_path = './trained_models/WGAN_GP/G_lisa_gp_4519.pth' 

ModelG.load_state_dict(torch.load(generator_path)) 
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summary(ModelG, input_size = (INPUT_LATENT,1,1), device = 'cpu') 

 
ModelG = ModelG.to(device_generator) 

loss = nn.MSELoss() 

 
model.eval() 

 

running_corrects = 0 

epoch_size = 0 

 

is_input_size_diff = False 

 

save_test_results = [] 

 

for rec_iter in rec_iters: 

    for rec_rr in rec_rrs: 

         

        for batch_idx, (inputs, labels) in enumerate(test_loader): 

 

            # size change 

 

            if inputs.size(2) != generator_input_size : 

 

                target_shape = (inputs.size(0), inputs.size(1), 

generator_input_size, generator_input_size) 

 

                data = Resize_Image(target_shape, inputs) 

                data = data.to(device_generator) 

 

                is_input_size_diff = True 

 

            else : 

                data = inputs.to(device_generator) 

 

            # find z* 

 

            _, z_sets = get_z_sets2(ModelG, data, learning_rate, \ 

                                        loss, device_generator, 

rec_iter = rec_iter, \ 

                                        rec_rr = rec_rr, input_latent = 

INPUT_LATENT, global_step = global_step) 

 

            z_star = get_z_star(ModelG, data, z_sets, loss, 

device_generator) 

 

            # generate data 

 

            data_hat = 

ModelG(z_star.to(device_generator)).cpu().detach() 
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            # size back 

 

            if is_input_size_diff: 

 

                target_shape = (inputs.size(0), inputs.size(1), height, 

width) 

                data_hat = Resize_Image(target_shape, data_hat) 

 

            # classifier  

            data_hat = data_hat.to(device_model) 

 

            labels = labels.to(device_model) 

 

            # evaluate  

 

            outputs = model(data_hat) 

 

            _, preds = torch.max(outputs, 1) 

 

            # statistics 

            running_corrects += torch.sum(preds == labels.data) 

            epoch_size += inputs.size(0) 

 

            if batch_idx % display_steps == 0: 

                print('{:>3}/{:>3} average acc {:.4f}\r'\ 

                      .format(batch_idx+1, len(test_loader), 

running_corrects.double() / epoch_size)) 

 

            del labels, outputs, preds, data, data_hat,z_star 

 

        test_acc = running_corrects.double() / epoch_size 

 

        print('rec_iter : {}, rec_rr : {}, Test Acc: 

{:.4f}'.format(rec_iter, rec_rr, test_acc)) 

         

        save_test_results.append(test_acc) 

 
del test_loader 

 

 

Supporting Python Script for Evaluating the AR-GAN 

Script 1: utils_AR_GAN.py 

import torch 

import torch.optim as optim 

import numpy as np 

from torchvision import transforms 
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import math 

 

def adjust_lr(optimizer, cur_lr, decay_rate = 0.1, global_step = 1, 

rec_iter = 200): 

     

    lr = cur_lr * decay_rate ** (global_step / int(math.ceil(rec_iter * 

0.8))) 

     

    for param_group in optimizer.param_groups: 

        param_group['lr'] = lr 

         

    return lr 

 

""" 

To get R random different initializations of z from L steps of Gradient 

Descent. 

rec_iter : the number of L of Gradient Descent steps  

tec_rr : the number of different random initialization of z 

""" 

 

def get_z_sets(model, data, lr, loss, device, rec_iter = 1000, rec_rr = 

20, input_latent = 128, global_step = 1): 

     

    display_steps = 100 

     

    # the output of R random different initializations of z from L steps 

of GD 

    z_hats_recs = torch.Tensor(rec_rr, data.size(0), input_latent,1,1) 

     

    # the R random differernt initializations of z before L steps of GD 

    z_hats_orig = torch.Tensor(rec_rr, data.size(0), input_latent,1,1) 

     

    for idx in range(len(z_hats_recs)): 

         

        z_hat = torch.randn(data.size(0), input_latent,1,1).to(device) 

        z_hat = z_hat.detach().requires_grad_() 

         

        cur_lr = lr 

 

        optimizer = optim.SGD([z_hat], lr = cur_lr, momentum = 0.7) 

         

        z_hats_orig[idx] = z_hat.cpu().detach().clone() 

         

        for iteration in range(rec_iter): 

             

            optimizer.zero_grad() 

             

            fake_image = model(z_hat) 

             

            fake_image = fake_image.view(-1, data.size(1), data.size(2), 

data.size(3)) 

             

            reconstruct_loss = loss(fake_image, data) 
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            reconstruct_loss.backward() 

             

            optimizer.step() 

             

            cur_lr = adjust_lr(optimizer, cur_lr, global_step = 

global_step, rec_iter= rec_iter) 

            

        z_hats_recs[idx] = z_hat.cpu().detach().clone() 

         

    return z_hats_orig, z_hats_recs 

 

""" 

To get z* so as to minimize reconstruction error between generator G and 

an image x 

""" 

 

def get_z_star(model, data, z_hats_recs, loss, device): 

     

    reconstructions = torch.Tensor(len(z_hats_recs)) 

     

    for i in range(len(z_hats_recs)): 

         

        z = model(z_hats_recs[i].to(device)) 

         

        z = z.view(-1, data.size(1), data.size(2), data.size(3)) 

         

        reconstructions[i] = loss(z, data).cpu().item() 

         

    min_idx = torch.argmin(reconstructions) 

     

    return z_hats_recs[min_idx] 

 

 

def Resize_Image(target_shape, images): 

     

    batch_size, channel, width, height = target_shape 

     

    Resize = transforms.Compose([ 

        transforms.ToPILImage(), 

        transforms.Resize((width,height)), 

        transforms.ToTensor(), 

    ]) 

     

    result = torch.zeros((batch_size, channel, width, height), 

dtype=torch.float) 

     

    for idx in range(len(result)): 

        result[idx] = Resize(images.data[idx]) 

 

    return result  
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