8 research outputs found

    無線センサネットワークのための超低消費電力と高感度CMOS RF受信機に関する研究

    Get PDF
    Wireless sensor networks (WSN) have been applied in wide range of applications and proved the more and more important contribution in the modern life. In order to evaluate a WSN, many metrics are considered such as cost, latency, power or quality of service. However, since the sensor nodes are usually deployed in large physical areas and inaccessible locations, the battery change becomes impossible. In this scenario, the power consumption is the most important metric. In a sensor node, the RF receiver is one of the communication devices, which consume a vast majority of power. Therefore, this thesis studies ultra low power RF receivers for the long lifetime of the sensor nodes. Currently, the WSNs use various frequency bands. However, for low power target, the sub-GHz frequency bands are preferred. In this study, ultra-low power 315 MHz and 920 MHz receivers will be proposed for short-range applications and long-range applications of the WSNs respectively. To achieve ultra-low power target, the thesis considers some issues in architecture, circuit design and fabrication technology for suitable choices. After considering different receiver architectures, the RF detection receiver with the On-Off-Keying (OOK) modulation is chosen. Then the thesis proposes solutions to reduce power consumption and concurrently guarantee high sensitivity for the receivers so that they can communicate at adequate distances for both short and long-range applications. First, a 920 MHz OOK receiver is designed for the long-range WSN applications. Typically, the RF amplifiers and local oscillators consume the most of power of RF receivers. In the RF detection receivers, the local oscillators are eliminated, however, the power consumption of the RF amplifiers is still dominant. By reducing the RF gain or removing the RF amplifier, the power consumption of the receivers can be reduced drastically. However, in this case the sensitivity is very limited. In order to overcome the trade-off between power consumption and sensitivity, the switched bias is applied to the RF amplifiers to reduce their power consumption substantially while guaranteeing high RF gain before RF detection. As a result, the receiver consumes only 53 W at 0.6 V supply with -82 dBm sensitivity at 10 kbps data rate. Next, an OOK receiver operating at 315 MHz for the short-range WSN applications with low complexity is proposed. In this receiver, the RF amplifier is controlled to operate intermittently for power reduction. Furthermore, taking advantage of the low carrier frequency, a comparator is used to convert the RF signal to a rail-to-rail stream and then data is demodulated in the digital domain. Therefore, no envelope detector or baseband amplifiers is required. The architecture of the receiver is verified by using discrete RF modules and FPGAs before it is designed on CMOS technology. By simulation with the physical layout, the 315 MHz OOK receiver consumes 27.6 W at 200 kbps and achieves -76.4 dBm sensitivity. Finally, the Synchronized-OOK (S-OOK) modulation scheme is proposed and then an S-OOK receiver operating in the 315 MHz frequency is developed to reduce power consumption more deeply. The S-OOK signal contains not only data but also clock information. By generating a narrow window, the RF front-end is enabled to receive signal only in a short period, therefore, power consumption of the receiver is reduced further. In addition, thank to the clock information contained in the input signal, the data and corresponding clock are demodulated simultaneously without a clock and data recovery circuit. The architecture of the S-OOK receiver is also verified by using discrete RF modules and FPGAs, then VLSI design is carried out. Physical layout simulation shows that the receiver can achieve -76.4 dBm sensitivity, consumes 8.39 W, 4.49 W, 1.36 W at 100 kbps, 50 kbps and 10 kbps respectively. In conclusion, with the objective is to look for solutions to minimize power consumption of receivers for extending the lifetime of sensor nodes while guaranteeing high sensitivity, this study proposed novel receiver architectures, which help reduce power consumption significantly. If using the coin battery CR2032 for power supply, the 920 MHz OOK receiver can work continuously in 1.45 years with communication distance of 259 meters; the 315 MHz OOK receivers can work continuously in 2.8 years with approximately 19 meters communication distance in free space. Whereas, the 315 MHz S-OOK receiver with the minimum power consumption of 1.36 W is suitable for batteryless sensor nodes.電気通信大学201

    Learning-Based Hardware Design for Data Acquisition Systems

    Get PDF
    This multidisciplinary research work aims to investigate the optimized information extraction from signals or data volumes and to develop tailored hardware implementations that trade-off the complexity of data acquisition with that of data processing, conceptually allowing radically new device designs. The mathematical results in classical Compressive Sampling (CS) support the paradigm of Analog-to-Information Conversion (AIC) as a replacement for conventional ADC technologies. The AICs simultaneously perform data acquisition and compression, seeking to directly sample signals for achieving specific tasks as opposed to acquiring a full signal only at the Nyquist rate to throw most of it away via compression. Our contention is that in order for CS to live up its name, both theory and practice must leverage concepts from learning. This work demonstrates our contention in hardware prototypes, with key trade-offs, for two different fields of application as edge and big-data computing. In the framework of edge-data computing, such as wearable and implantable ecosystems, the power budget is defined by the battery capacity, which generally limits the device performance and usability. This is more evident in very challenging field, such as medical monitoring, where high performance requirements are necessary for the device to process the information with high accuracy. Furthermore, in applications like implantable medical monitoring, the system performances have to merge the small area as well as the low-power requirements, in order to facilitate the implant bio-compatibility, avoiding the rejection from the human body. Based on our new mathematical foundations, we built different prototypes to get a neural signal acquisition chip that not only rigorously trades off its area, energy consumption, and the quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects. In the framework of big-data and high-performance computation, such as in high-end servers application, the RF circuits meant to transmit data from chip-to-chip or chip-to-memory are defined by low power requirements, since the heat generated by the integrated circuits is partially distributed by the chip package. Hence, the overall system power budget is defined by its affordable cooling capacity. For this reason, application specific architectures and innovative techniques are used for low-power implementation. In this work, we have developed a single-ended multi-lane receiver for high speed I/O link in servers application. The receiver operates at 7 Gbps by learning inter-symbol interference and electromagnetic coupling noise in chip-to-chip communication systems. A learning-based approach allows a versatile receiver circuit which not only copes with large channel attenuation but also implements novel crosstalk reduction techniques, to allow single-ended multiple lines transmission, without sacrificing its overall bandwidth for a given area within the interconnect's data-path

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    A Long-range Fine-scale RF Positioning System Using Tunneling Tags

    Get PDF
    Fine-scale positioning systems using inexpensive, low-power, and reliable smart tags enables numerous commercial and scientific applications. Internet of Things (IoT) applications, such as asset tracking, contact tracing, and autonomous driving, require wireless technologies with both the long ranges of conventional wireless links and the low power consumption of passive and semi-passive Radio Frequency Identification (RFID) tags. This dissertation proves that using the Received Signal Phase (RSP)-based positioning method and Tunneling tags at 5.8 GHz breaks the range limit of fine-scale RFID positioning systems. A frequency hopping reader operating in the 5.8 GHz Industrial, Scientific and Medical (ISM) band is designed and implemented in this work. Experimental results yield a one-dimensional distance estimation error of less than 1% at ranges of 100 m when a clear Line-of-Sight (LoS) is available in indoor and outdoor environments. Compared to Received Signal Strength (RSS)-based positioning techniques, the average positioning accuracy is improved by a factor of 51 at ranges of tens of meters. In Non-Line-of-Sight (NLoS) scenarios, the proposed system achieves an estimation error of less than 1.9%. Experimental results also demonstrate that the RSP-based positioning technique allows estimating a mobile reader's two-dimensional position with an average error of 0.17 m in an outdoor environment. Also, a channel sounder implementation using the same hardware configuration further increases the accuracy in multipath environments. Calculation based on the system specifications projects a sub-meter level accuracy at ranges of more than 1 km is feasible using the proposed method.Ph.D

    The conceptual design of a small solar probe /Sunblazer/

    Get PDF
    Conceptual design of Sunblazer space probe for determining electron density of solar coron

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g
    corecore