9 research outputs found

    WiSync: an architecture for fast synchronization through on-chip wireless communication

    Get PDF
    In shared-memory multiprocessing, fine-grain synchronization is challenging because it requires frequent communication. As technology scaling delivers larger manycore chips, such pattern is expected to remain costly to support.; In this paper, we propose to address this challenge by using on-chip wireless communication. Each core has a transceiver and an antenna to communicate with all the other cores. This environment supports very low latency global communication. Our architecture, called WiSync, uses a per-core Broadcast Memory (BM). When a core writes to its BM, all the other 100+ BMs get updated in less than 10 processor cycles. We also use a second wireless channel with cheaper transfers to execute barriers efficiently. WiSync supports multiprogramming, virtual memory, and context switching. Our evaluation with simulations of 128-threaded kernels and 64-threaded applications shows that WiSync speeds-up synchronization substantially. Compared to using advanced conventional synchronization, WiSync attains an average speedup of nearly one order of magnitude for the kernels, and 1.12 for PARSEC and SPLASH-2.Peer ReviewedPostprint (author's final draft

    0.42 THz Transmitter with Dielectric Resonator Array Antenna

    Get PDF
    Off chip antennas do not occupy the expensive die area, as there is no limitation on their building material, and can be built in any size and shape to match the system requirements, which are all in contrast to on-chip antenna solutions. However, integration of off-chip antennas with Monolithic-Microwave-Integrated Chips (MMIC) and designing a low loss signal transmission from the signal source inside the MMIC to the antenna module is a major challenge and trade off. High resistivity silicon (HRS), is a low cost and extremely low loss material at sub-THz. It has become a prevailing material in fabrication of passive components for THz applications. This work makes use of HRS to build an off-chip Dielectric Resonator Antenna Array Module (DRAAM) to realize a highly efficient transmitter at 420 GHz. This work proposes novel techniques and solutions for design and integration of DRRAM with MMIC as the signal source. A proposed scalable 4×4 antenna structure aligns DRRAM on top of MMIC within 2 μm accuracy through an effortless assembly procedure. DRAAM shows 15.8 dB broadside gain and 0.85 efficiency. DRAs in the DRAAM are differentially excited through aperture coupling. Differential excitation not only inherently provides a mechanism to deliver more power to the antenna, it also removes the additional loss of extra balluns when outputs are differential inside MMIC. In addition, this work proposes a technique to double the radiation power from each DRA. Same radiating mode at 0.42 THz inside every DRA is excited through two separate differential sources. This approach provides an almost loss-less power combining mechanism inside DRA. Two 140_GHz oscillators followed by triplers drive each DRA in the demonstrated 4×4 antenna array. Each oscillator generates 7.2 dBm output power at 140 GHz with -83 dBc/Hz phase noise at 100 KHz and consumes 25 mW of power. An oscillator is followed by a tripler that generates -8 dBm output power at 420 GHz. Oscillator and tripler circuits use a smart layer stack up arrangement for their passive elements where the top metal layer of the die is grounded to comply with the planned integration arrangement. This work shows a novel circuit topology for exciting the antenna element which creates the feed element part of the tuned load for the tripler circuit, therefore eliminates the loss of the transition component, and maximizes the output power delivered to the antenna. The final structure is composed of 32 injection locked oscillators and drives a 4×4 DRAAM achieves 22.8 dBm EIRP

    Design exploration and measurement benchmark of integrated-circuits based on graphene field-effect-transistors : towards wireless nanotransceivers

    Get PDF
    This doctoral thesis approaches the design requirements for future high / ultra-high data rate (from 100 Mbps to 100 Gbps) nanotransceivers (nanoTRx) applied to wireless nanonetworks which imply short/ultra-short distance ranges (3 cm ¿ 3 m). It explores graphene field-effect-transistors (GFET), by simulation against measurement benchmarks, as a potential solution for implementing large-signal high-frequency circuits, by virtue of graphene¿s one-atom thickness and high carrier-mobility extraordinary properties. Finally, the thesis discusses the challenges faced by GFETs, such as zero-bandgap and high metal-graphene contact-resistance, to be able to propose improvements for achieving the initial proposed goals. Chemical-Vapour-Deposition (CVD) GFET fabrication is considered, which is very promising for large-scale manufacturing (CMOS process compatible), and for that fast-computing large-signal compact modeling for complex circuit design is analysed in depth and optimized, and consequently a set of diverse large-signal static and dynamic GFET circuits are simulated and benchmarked against available measurements assessing the accuracy of the proposed models and deriving scaling prospects. An optimization of the current-to-voltage (I-V) characteristic of a GFET compact model, based upon drift-diffusion carrier transport, is presented. The improved accuracy at the Dirac point extends the model usability for GFETs when scaling parameters such as voltage supply (Vdd), gate length (L), dielectric thickness (tox) and carrier mobility (¿) for large-signal design exploration in circuits. The model accuracy is demonstrated through parameters fitting to measurements taken from CVD GFETs fabricated in the University of Siegen and Technical University of Milan. The script has been written in a standard behavioural language (Verilog-A), and extensively run in a commercial analog circuit simulator (Cadence environment) demonstrating its robustness. Besides a simple capacitance-to-voltage model (C-V), a small-signal parasitic capacitance model fitted to dynamic measurements for self-aligned CVD GFETs available in the literature is added, enabling to forecast maximum-frequency-of-oscillation (fmax) trends for future scaling. A design-oriented characterization of complementary inverter circuits (INV) based on GFETs is presented as well. Our proposed compact model is benchmarked at the circuit level against another compact model based on a virtual-source approach. Furthermore, a benchmark between simulations and measurements of already fabricated CVD GFET INVs is performed, and performance trends when scaling are derived. The same process is repeated for a more complex circuit, namely GFET ring-oscillators (RO). The transient regime simulations yield performance metrics in terms of oscillation frequency (fosc) and dynamic voltage range (¿Vosc), and consequently, against these metrics, a comprehensive design space exploration covering as input design variables parameters as tox, L, and Vdd is carried out. Being aware of the lack of voltage amplification shown by existing GFETs, the design exploration of a cascode amplifier (CAS) targeted to increase voltage gain (Av) by decreasing its output conductance (go) is presented. GFET CAS are simulated to provide design guidelines, they are accordingly fabricated and consequently measured. Performance metrics are provided in terms of go, transconductance (gm) and hence Av. Against these metrics, a quantitative comparison between CAS and GFETs is performed and conclusions are derived. Finally, conclusions on GFETs suitability for future nanoTRX are elaborated. The derived publications come from international collaborations with the Royal Institute of Technology (KTH) in Sweden from 2012 to 2014, and the University of Siegen in Germany from 2014 to 2016.Esta tesis doctoral trata de identificar los requisitos de diseño para nano-ransceptores (nanoTRx) con datos de alta velocidad (de 100 Mbps a 100 Gbps) aplicados a nano-redes inal ámbricas que implican rangos de alcance cortos u ultra-cortos (3 cm - 3 m ); explora FETs de grafeno (GFET), mediante simulaciones y mediciones, como una solución potencial para la implementación de circuitos de alta frecuencia de gran señal, gracias a las extraordinarias propiedades del grafeno como su espesor de un solo átomo y sus portadores de alta movilidad; y finalmente, se discuten los desafíos a los que se enfrentan los GFETs, como la falta de banda prohibida y la alta resistencia de contacto, para lograr proponer alternativas y poder alcanzar los objetivos iniciales propuestos. Las publicaciones derivadas provienen de Colaboraciones internacionales con el KTH en Suecia de 2012 a 2014, y la UniSiegen en Alemania de 2014 a 2016. Se introducen la técnica CVD como un proceso de fabricación de GFETs a gran escala, compatible con tecnología CMOS, muy prometedor; y el modelado compacto de gran señal y computación veloz para el diseño de circuitos complejos es optimizados y analizado en profundidad, Consecuentemente circuitos de gran señal (estáticos y dinámicos) basados en GFET son simulados y comparados con las mediciones disponibles para evaluar la precisi ón de los modelos propuestos y derivar prospecciones de escalado. Se propone una optimización de la característica corriente-voltaje (I-V) de un modelo compacto GFET, basado en el transporte de portadores difusi ón-deriva. La precisión mejorada en el punto de Dirac extiende la usabilidad del modelo para GFETs cuando se dimensionan parámetros para la exploración en diseños de circuitos de gran señal, tales como el voltaje de alimentación (Vdd), la longitud de puerta (L), el espesor diel éctrico (tOX) y la movilidad de portadores (U). La precisión del modelo se demuestra a través de parámetros que se ajustan a mediciones tomadas a partir de CVD GFETs fabricados en la UniSiegen y en el PoliMi. El programa se ha escrito en Verilog-A y se ejecuta extensivamente en un simulador de circuitos anal ógico comercial donde se demuestra su robustez. Además, se lleva a cabo la parametrización de un modelo capacidad-voltaje (C-V) que se ajusta a las mediciones de alta frecuencia de CVD GFETs disponibles en la literatura científica, lo que permite la predicción de la fMAX para el escalado de futuros GFETs. También se presenta una caracterización orientada al diseño de circuitos inversores complementarios (INV) basados en GFETs. Nuestro modelo compacto propuesto se compara a nivel de circuito con otro modelo compacto basado en fuentevirtual. A continuación, se lleva a cabo una comparación a nivel circuito entre las simulaciones y las medidas de INVs ya fabricados basados en CVD GFET, y se obtienen las tendencias de comportamiento al escalarlos. Se repite el mismo proceso para un circuito más complejo, los llamados osciladores-en-anillo GFET (RO). Las simulaciones basadas en transitorios producen métricas de rendimiento en términos de frecuencia de oscilación (fosc) y rango dinámico de voltaje (Vosc), por lo tanto, contra estas métricas, se lleva a cabo una exploración exhaustiva de diseño que abarca Parámetros de variables de diseño como tOX, L y Vdd. Al ser conscientes de la falta de amplificación de voltaje mostrada por los GFETs existentes, se presenta la exploración de diseño de un amplificador cascodo (CAS) diseñado para incrementar la amplificación de voltaje (Av) disminuyendo su conductancia de salida (go). Los GFET CAS son simulados para proporcionar guías de diseño, luego fabricadas y finalmente medidas. Se proporcionan métricas de rendimiento en términos de go, gm, y consecuentemente Av. Frente a estas métricas, se realiza una comparación cuantitativa entre CAS y GFETs y se derivan las conclusiones. Finalmente, se elaboran las conclusiones sobre la idoneidad de los GFET para futuros nanoTR

    Caractérisation et modélisation d'interconnexions. Développement de nouvelles solutions pour la transmission d'informations au sein des cartes et puces électroniques.

    Get PDF
    Since the first IC in 1959 the performances and computing capacity of electronic devices have always grown, following thus the well-known empirical Moore’s law which says that the number of transistors in a dense integrated circuit doubles approximately every 18 months. This prevision is still verified even if some limitations appears like for example the limitation of the clock frequency which grow less than the projection that the ITRS (International Technology Roadmap for Semiconductors) has made in 2000. One of the stumbling point comes from interconnects which ensure the transmission of information inside electronic chips or cards. The interconnects imply delay, signal distortion, crosstalk and power dissipation and they now must be taken into account during electronic device design. So the researches depicted in this manuscript deal with the modelling of interconnect and study of new solutions to overcome problems due to classical interconnects. These works have been realized in Lab-STICC laboratory with the help of colleagues, post-doc, PhDs and Master Students. The manuscript include three chapters, the first one concerns researches on modelling aspects, the second is about alternative solutions to classical wired interconnects and to conclude the research projects for the next years are presented.The first chapter concern researches about modelling which aim to develop reliable models in view to simulate more quickly the electrical behavior of interconnects. Firstly the collaborations concerning the development of model-order reduction are presented. Then with the aim to evaluate the impact of inductive behavior, the current return patch problem and so the extraction of loop inductance is treated. The 3D discontinuities and 3D environment effects are presented in the third part of this chapter. For example the parallel grid influences on propagation are explored as well as the case of coupling between microvias and parallel-plates cavities inside multilayer PCB.The second chapter is about research of new solutions to overcome the limitation due to classical wired interconnects. A review of envisaged alternative solutions like for example optical interconnects and CNT (carbon Nano Tube) is first presented. Then a focus on RF guided interconnect is made and constraints in term of bandwidth are explained and some coupling techniques are explored. These studies naturally lead to exploration of the paradigm of wireless interconnects and the preliminary researches on radio transmission between two circuits placed on a PCB are shown. All these approaches of RF wireless interconnect are prelude to the research projects which are developed in a third chapter of the manuscript.The development of the draft over 4 years is based on the BBC project (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) funded by the Labex COMINLABS and which will begin in October 2016. The aims of this project are outlined as well as the aims of another project entitled “BROADWAYS” (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) which is currently in the second step of review by the ANR. To conclude this research part other embryonic researches are presented as well as long term researches envisaged like terahertz applications of the use of graphene for microwave applications.Depuis les premiers circuits intégrés en 1959 les composants et les systèmes électroniques n’ont cessé de voir leurs performances augmenter suivant ainsi la loi empirique de Gordon Moore qui prévoit un doublement de la complexité des circuits tous les 18 mois. Cette prévision reste aujourd’hui toujours vérifiée même si nous constatons depuis une dizaine d’années que les fréquences d’horloges stagnent autour de 4-5 GHz alors que l’ITRS (International Technology Roadmap for Semiconductors) prévoyait dans les années 2000 des fréquences de travail pouvant atteindre 40 GHz pour 2016. L’un des facteurs limitant la progression des performances vient des interconnexions métalliques servant au transport de l’information au sein des systèmes électroniques. Les travaux de recherche présentés dans le cadre de l’obtention de l‘habilitation à diriger des recherches concernent d’une part les travaux réalisés sur la modélisation des interconnexions et d’autre part ceux sur l’étude de solutions alternatives à ces interconnexions classiques. Ces travaux ont été réalisés au sein du Lab-STICC en collaboration avec plusieurs collègues et lors de l’encadrement de plusieurs post-doctorants, doctorants et stagiaires de master recherche. Le mémoire comporte trois chapitres principaux, le premier concerne les travaux sur la modélisation des interconnexions, le second porte sur l’étude de solutions alternatives à ces interconnexions classiques et le dernier permet la présentation des projets de recherches pour les prochaines années.L’objectif de nos travaux sur la modélisation des interconnexions consiste au développement de modèles fiables permettant d’appréhender leurs effets sur les signaux. Dans un premier temps, les travaux portant sur l’obtention de modèles à complexité réduite sont présentés. Puis, afin d’évaluer l’impact des effets inductifs des interconnexions, nous présentons les travaux sur l’identification des chemins de retours du courant dans un réseau comprenant plusieurs lignes et qui sont nécessaires pour déterminer les inductances de boucles. La prise en compte de l’environnement 3D des interconnexions fait l’objet de la troisième partie de ce chapitre. Nous traitons ainsi de l’influence de différentes discontinuités et nous présentons des règles de design permettant la limitation des risques de conversion de mode de propagation. Dans le cadre de structures multicouches, nous abordons l’influence de grilles métalliques placées au voisinage d’une ligne sur la propagation des signaux. Enfin nous traitons des risques de couplage entre des vias et les modes de cavités au sein des structures PCB multicouches.La seconde thématique développée dans ce mémoire porte sur le développement de solutions alternatives aux interconnexions classiques. Après avoir listé certaines de ces solutions telle que les interconnexions optiques ou les nanotubes de carbone, nous présentons plus particulièrement les interconnexions RF qui véhiculent l’information numérique sur porteuse à haute fréquence. Dans un premier temps nous analysons les interconnexions RF guidées qui utilisent une ligne de transmission comme support pour transporter l’information. A partir de l’étude des modes d’accès multiples nous montrons que les canaux doivent être large bande et nous explorons diverses façons de transmettre l’énergie à la ligne de transmission. Enfin nous présentons quelques exemples de performances obtenues à l’aide de démonstrateurs numériques. Ces études des interconnexions RF guidées nous ont naturellement amené à considérer les possibilités de transmission par voie hertzienne des informations au sein des cartes et puces électroniques. Nous avons ainsi analysé à l’aide de démonstrateurs très simples les niveaux de transmission entre deux circuits placés sur une même carte PCB (Printed Circuit Board).Ces études initiales sur les interconnexions radios ou sans fils servent de point d’appui aux projets de recherche présentés à la fin de ce manuscrit. La philosophie du projet BBC (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) financé par le Labex COMINLABS à partir d’octobre est présenté de même que celle du projet ANR Broadways (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) en seconde phase d’étude auprès de l’ANR

    Modulation, Coding, and Receiver Design for Gigabit mmWave Communication

    Get PDF
    While wireless communication has become an ubiquitous part of our daily life and the world around us, it has not been able yet to deliver the multi-gigabit throughput required for applications like high-definition video transmission or cellular backhaul communication. The throughput limitation of current wireless systems is mainly the result of a shortage of spectrum and the problem of congestion. Recent advancements in circuit design allow the realization of analog frontends for mmWave frequencies between 30GHz and 300GHz, making abundant unused spectrum accessible. However, the transition to mmWave carrier frequencies and GHz bandwidths comes with new challenges for wireless receiver design. Large variations of the channel conditions and high symbol rates require flexible but power-efficient receiver designs. This thesis investigates receiver algorithms and architectures that enable multi-gigabit mmWave communication. Using a system-level approach, the design options between low-power time-domain and power-hungry frequency-domain signal processing are explored. The system discussion is started with an analysis of the problem of parameter synchronization in mmWave systems and its impact on system design. The proposed synchronization architecture extends known synchronization techniques to provide greater flexibility regarding the operating environments and for system efficiency optimization. For frequency-selective environments, versatile single-carrier frequency domain equalization (SC-FDE) offers not only excellent channel equalization, but also the possibility to integrate additional baseband tasks without overhead. Hence, the high initial complexity of SC-FDE needs to be put in perspective to the complexity savings in the other parts of the baseband. Furthermore, an extension to the SC-FDE architecture is proposed that allows an adaptation of the equalization complexity by switching between a cyclic-prefix mode and a reduced block length overlap-save mode based on the delay spread. Approaching the problem of complexity adaptation from time-domain, a high-speed hardware architecture for the delayed decision feedback sequence estimation (DDFSE) algorithm is presented. DDFSE uses decision feedback to reduce the complexity of the sequence estimation and allows to set the system performance between the performance of full maximum-likelihood detection and pure decision feedback equalization. An implementation of the DDFSE architecture is demonstrated as part of an all-digital IEEE802.11ad baseband ASIC manufactured in 40nm CMOS. A flexible architecture for wideband mmWave receivers based on complex sub-sampling is presented. Complex sub-sampling combines the design advantages of sub-sampling receivers with the flexibility of direct-conversion receivers using a single passive component and a digital compensation scheme. Feasibility of the architecture is proven with a 16Gb/s hardware demonstrator. The demonstrator is used to explore the potential gain of non-equidistant constellations for high-throughput mmWave links. Specifically crafted amplitude phase-shift keying (APSK) modulation achieve 1dB average mutual information (AMI) advantage over quadrature amplitude modulation (QAM) in simulation and on the testbed hardware. The AMI advantage of APSK can be leveraged for a practical transmission using Polar codes which are trained specifically for the constellation
    corecore