29 research outputs found

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Frequency Synthesis in Wireless and Wireline Systems

    Get PDF
    First, a frequency synthesizer for IEEE 802.15.4 / ZigBee transceiver applications that employs dynamic True Single Phase Clocking (TSPC) circuits in its frequency dividers is presented and through the analysis and measurement results of this synthesizer, the need for low power circuit techniques in frequency dividers is discussed. Next, Differential Cascode Voltage-Switch-Logic (DCVSL) based delay cells are explored for implementing radio-frequency (RF) frequency dividers of low power frequency synthesizers. DCVSL ip- ops offer small input and clock capacitance which makes the power consumption of these circuits and their driving stages, very low. We perform a delay analysis of DCVSL circuits and propose a closed-form delay model that predicts the speed of DCVSL circuits with 8 percent worst case accuracy. The proposed delay model also demonstrates that DCVSL circuits suffer from a large low-to-high propagation delay ( PLH) which limits their speed and results in asymmetrical output waveforms. Our proposed enhanced DCVSL, which we call DCVSL-R, solves this delay bottleneck, reducing PLH and achieving faster operation. We implement two ring-oscillator-based voltage controlled oscillators (VCOs) in 0.13 mu m technology with DCVSL and DCVSL-R delay cells. In measurements, for the same oscillation frequency (2.4GHz) and same phase noise (-113dBc/Hz at 10MHz), DCVSL-R VCO consumes 30 percent less power than the DCVSL VCO. We also use the proposed DCVSL-R circuit to implement the 2.4GHz dual-modulus prescaler of a low power frequency synthesizer in 0.18 mu m technology. In measurements, the synthesizer exhibits -135dBc/Hz phase noise at 10MHz offset and 58 mu m settling time with 8.3mW power consumption, only 1.07mWof which is consumed by the dual modulus prescaler and the buffer that drives it. When compared to other dual modulus prescalers with similar division ratios and operating frequencies in literature, DCVSL-R dual modulus prescaler demonstrates the lowest power consumption. An all digital phase locked loop (ADPLL) that operates for a wide range of frequencies to serve as a multi-protocol compatible PLL for microprocessor and serial link applications, is presented. The proposed ADPLL is truly digital and is implemented in a standard complementary metal-oxide-semiconductor (CMOS) technology without any analog/RF or non-scalable components. It addresses the challenges that come along with continuous wide range of operation such as stability and phase frequency detection for a large frequency error range. A proposed multi-bit bidirectional smart shifter serves as the digitally controlled oscillator (DCO) control and tunes the DCO frequency by turning on/off inverter units in a large row/column matrix that constitute the ring oscillator. The smart shifter block is completely digital, consisting of standard cell logic gates, and is capable of tracking the row/column unit availability of the DCO and shifting multiple bits per single update cycle. This enables fast frequency acquisition times without necessitating dual loop fi lter or gear shifting mechanisms. The proposed ADPLL loop architecture does not employ costly, cumbersome DACs or binary to thermometer converters and minimizes loop filter and DCO control complexity. The wide range ADPLL is implemented in 90nm digital CMOS technology and has a 9-bit TDC, the output of which is processed by a 10-bit digital loop filter and a 5-bit smart shifter. In measurements, the synthesizer achieves 2.5GHz-7.3GHz operation while consuming 10mW/GHz power, with an active area of 0.23 mm2

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Low Power Adaptive Circuits: An Adaptive Log Domain Filter and A Low Power Temperature Insensitive Oscillator Applied in Smart Dust Radio

    Get PDF
    This dissertation focuses on exploring two low power adaptive circuits. One is an adaptive filter at audio frequency for system identification. The other is a temperature insensitive oscillator for low power radio frequency communication. The adaptive filter is presented with integrated learning rules for model reference estimation. The system is a first order low pass filter with two parameters: gain and cut-off frequency. It is implemented using multiple input floating gate transistors to realize online learning of system parameters. Adaptive dynamical system theory is used to derive robust control laws in a system identification task. Simulation results show that convergence is slower using simplified control laws but still occurs within milliseconds. Experimental results confirm that the estimated gain and cut-off frequency track the corresponding parameters of the reference filter. During operation, deterministic errors are introduced by mismatch within the analog circuit implementation. An analysis is presented which attributes the errors to current mirror mismatch. The harmonic distortion of the filter operating in different inversion is analyzed using EKV model numerically. The temperature insensitive oscillator is designed for a low power wireless network. The system is based on a current starved ring oscillator implemented using CMOS transistors instead of LC tank for less chip area and power consumption. The frequency variance with temperature is compensated by the temperature adaptive circuits. Experimental results show that the frequency stability from 5°C to 65°C has been improved 10 times with automatic compensation and at least 1 order less power is consumed than published competitors. This oscillator is applied in a 2.2GHz OOK transmitter and a 2.2GHz phase locked loop based FM receiver. With the increasing needs of compact antenna, possible high data rate and wide unused frequency range of short distance communication, a higher frequency phase locked loop used for BFSK receiver is explored using an LC oscillator for its capability at 20GHz. The success of frequency demodulation is demonstrated in the simulation results that the PLL can lock in 0.5μs with 35MHz lock-in range and 2MHz detection resolution. The model of a phase locked loop used for BFSK receiver is analyzed using Matlab
    corecore