183 research outputs found

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 ÎŒA, with startup time is 250ÎŒs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 ÎŒA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    Efficient and Interference-Resilient Wireless Connectivity for IoT Applications

    Full text link
    With the coming of age of the Internet of Things (IoT), demand on ultra-low power (ULP) and low-cost radios will continue to boost tremendously. The Bluetooth-Low-energy (BLE) standard provides a low power solution to connect IoT nodes with mobile devices, however, the power of maintaining a connection with a reasonable latency remains the limiting factor in defining the lifetime of event-driven BLE devices. BLE radio power consumption is in the milliwatt range and can be duty cycled for average powers around 30ÎŒW, but at the expense of long latency. Furthermore, wireless transceivers traditionally perform local oscillator (LO) calibration using an external crystal oscillator (XTAL) that adds significant size and cost to a system. Removing the XTAL enables a true single-chip radio, but an alternate means for calibrating the LO is required. Innovations in both the system architecture and circuits implementation are essential for the design of truly ubiquitous receivers for IoT applications. This research presents two porotypes as back-channel BLE receivers, which have lower power consumption while still being robust in the presents of interference and able to receive back-channel message from BLE compliant transmitters. In addition, the first crystal-less transmitter with symmetric over-the-air clock recovery compliant with the BLE standard using a GFSK-Modulated BLE Packet is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162942/1/abdulalg_1.pd

    Electro-optic frequency combs and their applications in high-precision metrology and high-speed communications

    Get PDF
    Optische FrequenzkĂ€mme haben sich in den letzten Jahren zu einem vielseitigen Werkzeug im Bereich der Optik und Photonik entwickelt. Sie ermöglichen den Zugang zu einer Vielzahl von schmalbandigen Spektrallinien, die einen breiten Spektralbereich abdecken und gleichzeitig hochgenau definierte Frequenzen aufweisen. Dadurch wurden Experimente in vielfĂ€ltigen Anwendungsgebieten ermöglicht, zum Beispiel in den Bereichen optischer Atomuhren, der PrĂ€zisionsspektroskopie, der Frequenzmesstechnik, der Distanzmesstechnik und der optischen Telekommunikation. Allerdings umfassen ĂŒbliche Frequenzkammquellen und die jeweiligen Laboraufbauten typischerweise komplexe opto-elektronische und opto-mechanische Anordnungen, welche aufgrund von BaugrĂ¶ĂŸe und fehlender Robustheit gegenĂŒber UmwelteinflĂŒssen wie Temperatur bislang kaum Einzug in breitere industrielle Anwendungen gefunden haben. Diese Arbeit legt deshalb ein besonderes Augenmerk auf die praktische Nutzbarkeit von frequenzkamm-basierten Systemen in industriellen Anwendungen. Im Fokus stehen dabei Robustheit, Kompaktheit und flexible Anpassungsmöglichkeiten an die jeweilige Anwendung. Das bezieht sich sowohl auf die Frequenzkammquellen selbst, als auch auf die zugehörigen anwendungsspezifischen optischen Systeme, in welchen die FrequenzkĂ€mme genutzt werden. In der vorliegenden Arbeit wird das Potential elektro-optischer FrequenzkĂ€mme in der optischen Messtechnik sowie der optischen Kommunikationstechnik anhand ausgewĂ€hlter experimenteller Demonstrationen untersucht. Als Mittel zur Realisierung miniaturisierter optischer Systeme mit einem FlĂ€chenbedarf von wenigen Quadratmillimetern wird die photonische Integration in Silizium verfolgt. Ein integriertes System zur Frequenzkamm-basierten Distanzmessung sowie integriert-optische Frequenzkammquellen werden demonstriert. Die Erzeugung von FrequenzkĂ€mmen durch Dauerstrichlaser in Kombination mit elektro-optischen Modulatoren ist dabei ein besonders vielversprechender Ansatz. Zwar werden dabei ĂŒblicherweise kleinere optische Bandbreiten erzielt als bei der weitverbreiteten Frequenzkammerzeugung durch modengekoppelte Ultrakurzpulslaser oder durch Kerr-NichtlinearitĂ€ten, aber es bieten sich andere wertvolle Vorteile an. So erlaubt die elektro-optische Kammerzeugung beispielsweise eine nahezu freie Wahl der Mittenfrequenz durch Auswahl oder Einstellung des Dauerstrichlasers. Durch den Einsatz verschiedener Laser können sogar gleichzeitig mehrere FrequenzkĂ€mme unterschiedlicher Mittenfrequenz erzeugt werden, was sich in verschiedenen Anwendungen vorteilhaft ausnutzen lĂ€sst. Dies wird in dieser Arbeit anhand zweier Beispiele aus der optischen Messtechnik demonstriert, siehe Kapitel 3 und Kapitel 5. Der Kammlinienabstand ist bei elektro-optisch erzeugten KĂ€mmen definiert durch die elektronisch erzeugte Modulationsfrequenz. Das bietet mehrere Vorteile: Der Linienabstand ist frei einstellbar, sehr stabil, und einfach rĂŒckfĂŒhrbar auf einen Frequenzstandard. Der Verzicht auf einen optischen Resonator macht die Kammquelle robust gegenĂŒber UmwelteinflĂŒssen wie z.B. Vibration. Zudem machen Fortschritte bei der Entwicklung von hochintegrierten optischen Modulatoren auf Silizium eine Umsetzung der Frequenzkammquellen in Siliziumphotonik möglich. Die erste derartige Komponente und deren Anwendung in der optischen Telekommunikation wird in Kapitel 6 vorgestellt. Photonische Integration in Silizium bietet außerdem das Potential, miniaturisierte optische Systeme mit vielfĂ€ltiger FunktionalitĂ€t zu realisieren. Solche Systeme zeichnen sich durch extrem kleinen Platzbedarf, KompatibilitĂ€t mit hochentwickelten und massentauglichen Fertigungstechniken aus der CMOS-(Complementary Metal-Oxide-Semiconductor)-Mikroelektronik und durch die Möglichkeit zur Kointegration elektronischer Schaltungen auf demselben Chip aus. Die hohe Integrationsdichte eröffnet die Perspektive, optische Systeme z.B. fĂŒr Sensorik tief in industriellen Maschinen zu integrieren. Kapitel 1 gibt eine kurze EinfĂŒhrung in optische FrequenzkĂ€mme und deren vielfĂ€ltige Anwendungen in Wissenschaft und Technik. Der Stand der Technik zu unterschiedlichen AnsĂ€tzen zur Frequenzkammerzeugung und deren jeweiligen Eigenschaften werden diskutiert, und es werden die VorzĂŒge der in dieser Arbeit verwendeten elektro-optischen FrequenzkĂ€mme erlĂ€utert. Des Weiteren wird die Integration photonischer Systeme und Bauelemente auf Silizium vorgestellt. Schließlich werden die sich ergebenden Vorteile bei der Anwendung in optischer Messtechnik und optischer Telekommunikation diskutiert. Kapitel 2 fasst die physikalischen Grundlagen der Arbeit zusammen. Die Funktionsprinzipien elektro-optischer Modulatoren werden beschrieben sowie deren Anwendung zur Erzeugung von FrequenzkĂ€mmen. ZusĂ€tzlich wird das Konzept sogenannter synthetischer WellenlĂ€ngen eingefĂŒhrt, welches in der optischen Distanzmesstechnik Anwendung findet. Kapitel 3 beschreibt ein Prinzip zur Distanzmessung mittels zweier elektro-optischer FrequenzkĂ€mme zur kontaktlosen Vermessung technischer Objekte. Die LeistungsfĂ€higkeit des Ansatzes wird durch eine Erfassung von ausgedehnten OberflĂ€chenprofilen in Form von Punktwolken demonstriert, wobei eine verhĂ€ltnismĂ€ĂŸig kurze Messzeit von 9.1 ”s pro Punkt ausreichend ist. Dabei wird der faseroptisch angebundene Sensorkopf von einer Koordinatenmessmaschine ĂŒber die OberflĂ€che bewegt. Durch Temperaturschwankungen im faser-optischen Aufbau ausgelöste Messabweichungen werden durch die Messung mit Lasern unterschiedlicher Emissionsfrequenz kompensiert. Kapitel 4 beschreibt ein integriert-optisches System auf Silizium zur frequenzkamm-basierten Distanzmessung. Das System beinhaltet das zum Heterodynempfang genutzte Interferometer inklusive eines einstellbaren Leistungsteilers sowie der Photodetektoren. Der Platzbedarf aller Komponenten auf dem Siliziumchip betrĂ€gt 0.25 mm2^{2}. Der Chip wird in dem in Kapitel 3 eingefĂŒhrten Messverfahren eingesetzt, wobei Distanzmessungen mit Root-mean-square-Fehlern von 3.2 ”m und 14 ”s Erfassungszeit demonstriert werden. Kapitel 5 stellt ein Distanzmesssystem vor, bei welchem eine grobauflösende Phasenlaufzeitmessung mit großem Eindeutigkeitsbereich mit einer interferometrischen Distanzmessung mit synthetischen WellenlĂ€ngen zur Verfeinerung der Messgenauigkeit kombiniert wird. Die durch vier Laser erzeugten synthetischen WellenlĂ€ngen bzw. die FrequenzabstĂ€nde der Laser werden zeitgleich zur Distanzmessung mittels eines auf elektro-optischer Modulation basierenden Verfahrens vermessen. Durch diese Referenzierung wird der Einsatz freilaufender Laser ohne WellenlĂ€ngenstabilisierung ermöglicht. Es werden Messraten von 300 Hz und Genauigkeiten im Mikrometerbereich erreicht. Kapitel 6 beschreibt die weltweit erste Demonstration elektro-optischer Frequenzkammquellen auf Silizium und die hierzu genutzte hybride Materialplattform aus Silizium und organischen Materialien (Silicon-Organic Hybrid, SOH). Spektral flache FrequenzkĂ€mme mit 7 Linien innerhalb von 2 dB und LinienabstĂ€nden von 25 GHz und 40 GHz werden erzeugt. Die praktische Anwendbarkeit solcher FrequenzkĂ€mme wird durch eine Reihe von DatenĂŒbertragungexperimenten demonstriert. Die einzelnen Kammlinien dienen als TrĂ€ger fĂŒr Daten in einem WellenlĂ€ngenmultiplex-System, womit eine spektral effiziente DatenĂŒbertragung mit Datenraten von ĂŒber 1 Tbit/s ĂŒber Distanzen von bis zu 300 km demonstriert wird. Kapitel 7 fasst die Ergebnisse der vorliegenden Arbeit zusammen und gibt einen Ausblick auf die Möglichkeiten, die sich durch weiterentwickelte Kammquellen und fortschreitende Möglichkeiten in der photonischen Integration ergeben

    Realization of advanced 171Yb optical lattice frequency standard

    Get PDF
    Atomic clocks constitute a fundamental tool for time and frequency metrology and their application is widespread in many technological fields. In particular, the International System of units (SI) defines the second on a microwave transition of Caesium atoms. The realization is made by clocks reaching uncertainties of few parts in 10^−16, making the second to be the quantity realized with the smallest uncertainty in the SI. However, a new generation of atomic clocks, called optical clocks, have already demonstrated to surpass Caesium standards both in accuracy and stability. The research performed during my PhD activity has been focused on the development and characterization of Ytterbium (Yb) optical lattice clocks. These systems operate with a large number of ultra-cold neutral atoms having a clock transition in the visible region of the electromagnetic spectrum. The atomic sample is trapped in an periodical optical potential called optical lattice that gives the advantage to interrogate many quantum absorbers for an extended time, with small perturbations, allowing to achieve an unprecedented stability and accuracy. The main experimental work has been carried out in the laboratories of the Istituto Nazionale di Ricerca Metrologica (INRIM) in Turin, where several atomic clocks are present including the Italian primary frequency standard, the Caesium fountain ITCsF2, and where an Yb optical lattice clock is currently being developed. This thesis describes the functioning of the system along with the full characterization of systematic effects, the complete uncertainty budget and its first absolute frequency measurement against the primary frequency standard. The clock exhibited an accuracy of 1.6 × 10^−16 and the comparison with the Cs fountain resulted in a frequency of f171Yb = 518 295 836 590 863.59(31) Hz, limited by the fountain uncertainty. This measurement is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the SI and constitutes the first measurement of a Yb clock in Europe and the second one in the world against a primary frequency standard. Several upgrades have been applied after the absolute measurement. In particular, the design and realization a system capable to frequency stabilize several lasers on a single optical cavity is illustrated. This cavity has been implemented to lock the lasers used to cool and trap the atomic sample at 399, 556 and 759nm using the offset sideband locking technique, a modified version of the Pound–Drever–Hall method that gives an extended frequency tunability. The system proved to be an easy-to-use and reliable tool for the experimental activity showing a linewidth below 300 Hz at 556nm, which is the wavelength that requires the most stringent performance, and a long term drift below 20 kHz per day at 759nm. That is suitable for operating the lattice laser with a light shift uncertainty below 1 × 10−18. During my PhD I have been guest researcher at the National Institute of Standards and Technology (NIST) of Boulder, Colorado, for nine months in 2016. In these laboratories two Yb optical lattice clocks are operative. I worked on the instability measurement of a composite system exploiting the two clocks to suppress the Dick effect, called zero-dead-time (ZDT) clock, which demonstrated a fractional instability of 3 × 10−17 at 1s. The two clocks can also be operated to extend the interrogation time obtaining a spectroscopic feature after 4 s of 120(20)mHz corresponding to a quality factor Q > 4 × 10^15. I also worked on the characterization of several systematic shifts that allowed to complete the uncertainty budget of the clocks at 1.6 × 10^−18. In particular, I contributed to the characterization of lattice light shifts considering the effect of atomic sample temperature and the identification of a metrological regime called operational magic frequency where frequency shifts are insensitive to changes in trap depth

    A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

    Get PDF
    Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB radar sensors for high resolution measurements of surface elevation and snow cover over Greenland and Antarctica. These radar systems are routinely operated from both surface and airborne platforms. Low cost implementations of UWB chirp generators are possible using an UWB Voltage Controlled Oscillator (VCO). VCOs possess several advantages over other competing technologies, but their frequency-voltage tuning characteristics are inherently non-linear. This nonlinear relationship between the tuning voltage and the output frequency should be corrected with a linearization system to implement a linear frequency modulated (LFM) waveform, also known as a chirp. If the waveform is not properly linearized, undesired additional frequency modulation is found in the waveform. This additional frequency modulation results in undesired sidebands at the frequency spectrum of the Intermediate Frequency (IF) stage of the FMCW radar. Since the spectrum of the filtered IF stage represents the measured range, the uncorrected nonlinear behavior of the VCO will cause a degradation of the range sensing performance of a FMCW radar. This issue is intensified as the chirp rate and nominal range of the target increase. A linearization method has been developed to linearize the output of a VCO-based chirp generator with 6 GHz of bandwidth. The linearization system is composed of a Phase Lock Loop (PLL) and an external compensation added to the loop. The nonlinear behavior of the VCO was treated as added disturbances to the loop, and a wide loop bandwidth PLL was designed for wideband compensation of these disturbances. Moreover, the PLL requires a loop filter able to attenuate the reference spurs. The PLL has been designed with a loop bandwidth as wide as possible while maintaining the reference spur level below 35 dBc. Several design considerations were made for the large loop bandwidth design. Furthermore, the large variations in the tuning sensitivity of the oscillator forced a design with a large phase margin at the average tuning sensitivity. This design constraint degraded the tracking performance of the PLL. A second compensation signal, externally generated, was added to the compensation signal of the PLL. By adding a compensation signal, which was not affected by the frequency response effects of the loop compensation, the loop tracking error is reduced. This technique enabled us to produce an output chirp signal that is a much closer replica of the scaled version of the reference signal. Furthermore, a type 1 PLL was chosen for improved transient response, compared to that of the type 2 PLL. This type of PLL requires an external compensation to obtain a finite steady state error when applying a frequency ramp to the input. The external compensation signal required to solve this issue was included in the second compensation signal mentioned above. Measurements for the PLL performance and the chirp generator performance were performed in the laboratory using a radar demonstrator. The experimental results show that the designed loop bandwidth was successfully achieved without significantly increasing the spurious signal level. The chirp generator measurements show a direct relationship between the bandwidth of the external compensation and the range resolution performance

    Characterization and analysis of viscoelastically loaded thin film piezoelectric resonators incorporated in an oscillator microsensing system

    Get PDF
    In the recent advancement of piezoelectric resonator technology, there has been a large growth in the application of these devices for chemical sensing. These sensors operate by detecting changes in their environment which perturb the electrical - acoustic operation and in turn can be harnessed by means of supporting electronics and signal processing to monitor various processes. Examples include remote environmental monitoring, chemical process control, and commercial gas phase detectors. In this dissertation, the chemical sensing theory and properties of piezoelectric resonators such as the bulk-acoustic wave thin-film resonator (TFR) and the quartz crystal microbalance (QCM) are developed. This analysis concentrates on characterizing the resonance behavior of thickness mode resonators based upon the physical properties at the electrode interface which include interfacial mass density, elasticity, viscosity, and thickness of the composite device consisting of the piezoelectric material, the electrodes, and any deposited layer on the electrode surface in contact with the surrounding medium. In this work, no approximation is made as to the stress or particle displacement variation across the visco-elastic film which allows a complete study of the perturbational mechanical variations on the electrical and resonance properties of the composite resonator. The derivation and verification of equivalent circuit models based on the physical properties of the piezoelectric resonator and visco-elastic sensing film are presented. The results and models from this research will be beneficial to surface chemistry studies and also have application to fabrication techniques and electrical modeling. The use of this theory is employed in a study of a QCM coated with a commercially developed negative resist. Photo-polymerization of the resist results in induced visco-elastic structural changes which can be monitored and characterized using the full admittance theory of the composite thickness mode resonator. In order to validate the chemical sensing concept, the design and implementation of a TFR controlled chemical sensing system is demonstrated. This system employs the frequency selectivity of the chemical sensing TFR as the feedback element in integrated Colpitts oscillators which are downconverted by superheterodyne techniques. The integrated system design philosophy and performance tradeoffs are discussed. This analysis also investigates the phase noise performance and injection locking considerations of the design. The sensor system detection limit is derived which sets the lower limit of signal detection based upon measurand sensitivity and measured phase noise

    An experimental setup for quantum optomechanics

    Get PDF

    Improvement of vertical precision in GPS positioning with a GPS-over-fiber configuration and real-time relative hardware delay monitoring

    Get PDF
    Une des principales limitations du positionnement GPS est que la composante verticale est gĂ©nĂ©ralement 2 Ă  3 fois moins prĂ©cise que la composante horizontale. Pour des applications de haute prĂ©cision, il est possible d'atteindre, par mĂ©thode GPS en mode relatif, des prĂ©cisions de l'ordre de quelques millimĂštres en composante horizontale mais non pas en composante verticale. Cependant, plusieurs applications, telles que l'auscultation de structures d'ingĂ©nierie, exigent une prĂ©cision similaire tant en horizontal qu'en vertical. Par simulations, il a Ă©tĂ© dĂ©montrĂ© par (Santerre & Beutler, 1993), qu'il est possible d'amĂ©liorer la prĂ©cision du positionnement vertical en utilisant un rĂ©cepteur Ă  antennes multiples et un calibrage prĂ©cis du dĂ©lai de propagation relatif dans les cĂąbles et circuits Ă©lectroniques sĂ©parant les antennes du rĂ©cepteur. Cependant, aucune implementation n'avait Ă©tĂ© faite Ă  ce jour pour prouver le concept. L'objectif principal de ce travail de recherche a donc Ă©tĂ© de concevoir et d'implĂ©menter un tel systĂšme et de dĂ©montrer qu'il permet une nette amĂ©lioration dans la prĂ©cision du positionnement vertical. Pour ce faire, le dĂ©fi principal a Ă©tĂ© de dĂ©velopper un systĂšme permettant simultanĂ©ment le transport des signaux GPS sur fibres optiques et le calibrage prĂ©cis du dĂ©lai de propagation relatif entre ces mĂȘmes fibres en temps rĂ©el. Une fois le premier prototype complĂ©tĂ© et testĂ©, des expĂ©riences rĂ©alisĂ©es sur une poutrelle de calibrage utilisĂ©e comme ligne de base de rĂ©fĂ©rence dĂ©montrent qu'avec le prototype et le systĂšme de traitement des donnĂ©es proposĂ©, une nette amĂ©lioration dans la prĂ©cision du positionnement vertical a Ă©tĂ© observĂ©e. Tel que prĂ©vu par la thĂ©orie et les simulations, une amĂ©lioration d'un facteur 2 Ă  3 a Ă©tĂ© atteint, permettant ainsi d'obtenir la mĂȘme prĂ©cision dans la composante verticale que dans la composante horizontale. Ces rĂ©sultats, qui reprĂ©sentent une percĂ©e importante dans le positionnement GPS de haute prĂ©cision, permettent ainsi d'envisager le dĂ©ploiement de ce type de systĂšmes dans des applications rĂ©elles oĂč la mĂȘme prĂ©cision dans toutes les composantes tridimensionnelles est essentielle mais n'avait pas pu ĂȘtre atteinte auparavant par positionnement relatif GPS

    Optomechanics with an electrodynamically levitated oscillator

    Get PDF
    In this work I report on a hybrid trap platform for sensitive optomechanics experiments with applications in quantum physics, thermodynamics and material science. We characterise a miniature linear Paul trap which can be used in combination with an optical cavity. The low-frequency harmonic motion of a nanoparticle levitated in a Paul trap can be detected with competitive sensitivities using a super-resolution imaging technique. This same method can be applied to characterise trap stability and nanosphere parameters such as mass with a 3% uncertainty. Using this same method at room temperature and at pressure of 3×10⁻⁷ mbar, we were able to measure an ultra-narrow mechanical linewidth of ∌80 ”Hz with a novel phase sensitive scheme which removes slow drifts in the mechanical frequency. We used this measurement to place new bounds on dissipative versions of wavefunction collapse models. Using two optical cavity modes with different frequencies interacting with a nanoparticle levitated within a Paul trap realises a versatile optomechanical system, which can be operated in regimes dominated by either linear or quadratic optomechanical coupling. We demonstrated cooling of the centre-of-mass motion of the nano-oscillator exclusively provided by the quadratic coupling. This nonlinear interaction gives rise to a highly non-thermal state of motion which matches well with theoretical predictions. In the linear regime, we report cooling down to Teff=21±4 mK limited by Paul trap noise, demonstrating stable trapping in the cavity standing-wave down to pressures ∌10⁻⁶ mbar. Using the same technique, we show that in theory, near ground state cooling could be achieved with better electronics used in conjunction with the filtering cavity developed as part of this work
    • 

    corecore