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Abstract

In this work I report on a hybrid trap platform for sensitive optomechanics experi-

ments with applications in quantum physics, thermodynamics and material science.

We characterise a miniature linear Paul trap which can be used in combination with

an optical cavity. The low-frequency harmonic motion of a nanoparticle levitated in

a Paul trap can be detected with competitive sensitivities using a super-resolution

imaging technique. This same method can be applied to characterise trap stabil-

ity and nanosphere parameters such as mass with a 3% uncertainty. Using this

same method at room temperature and at a pressure of 3×10−7mbar, we were able

to measure an ultra-narrow mechanical linewidth of ∼ 80µHz with a novel phase

sensitive scheme which removes slow drifts in the mechanical frequency. We used

this measurement to place new bounds on dissipative versions of wavefunction col-

lapse models. Using two optical cavity modes with different frequencies interacting

with a nanoparticle levitated within a Paul trap realises a versatile optomechanical

system, which can be operated in regimes dominated by either linear or quadratic

optomechanical coupling. We demonstrated cooling of the centre-of-mass motion

of the nano-oscillator exclusively provided by the quadratic coupling. This nonlin-

ear interaction gives rise to a highly non-thermal state of motion which matches

well with theoretical predictions. In the linear regime, we report cooling down to

Teff = 21± 4mK limited by Paul trap noise, demonstrating stable trapping in the

cavity standing-wave down to pressures ∼ 10−6mbar. Using the same technique,

we show that in theory, near ground state cooling could be achieved with better

electronics used in conjunction with the filtering cavity developed as part of this

work.





Impact Statement

The work presented here offers a wide variety of applications within and outside aca-

demic research. There is recently significant interest within the research community

to levitate nanoparticles in Paul traps. We have reported a novel miniature linear

Paul trap with a reliable loading mechanism. The hybrid electro-optical platform

presented here could be used for further experiments in levitated optomechanics

with potential broad research applications. A super-resolution imaging method was

developed to monitor the motion of low-frequency oscillators. Also reported is a

method to measure the intrinsic mechanical linewidth of the oscillator in the pres-

ence of drifts in the frequency of oscillation. Those two techniques have potential

applications in many fields of research. In this work, the first method is used among

others to evaluate the nanoparticle mass and the gas damping. The second one is

used here extensively to estimate the effective mechanical damping acting on the

nanosphere. We have demonstrated a regime where the optomechanical interaction

is dominated by the quadratic optomechanical coupling, which leads to a highly

non-thermal state of motion with potential application to test quantum mechanics

at the nanoscale. We presented as well measurements of the nanoparticle polaris-

ability, little discussed in the literature, which could be used to allow more control

over the fabrication of Stöber silica. One major obstacle of working with low fre-

quency oscillators is the strong effect of laser frequency noise. We have designed and

characterised a filtering cavity to reduce its effect on both the nanoparticle motion

and detection sensitivity. Lastly, we present in this work different ways of testing

wavefunction collapse models which offer a phenomenological response to conciliate

the measurement postulate and Schrödinger dynamics. This last work can be of

particular interest to a broad audience [1].
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Chapter 1

Introduction

Cavity optomechanics is the study of the interaction between optical fields and me-

chanical motion [2, 3]. This interaction has been demonstrated at vastly different

scales with experiments ranging from cold atoms [4], to the Laser Interferometer

Gravitational-Wave Observatory (LIGO) [5]. While quantum mechanics has been

validated more than any other physical theory at the microscopic scale, its lack of

clear signatures at macroscopic scales is puzzling. Manipulating mechanical mo-

tion at micrometer and nanometer scales using optomechanical methods is seen as

a promising way to study quantum behaviours at intermediate scales [6–8]. Fur-

thermore, studying those oscillators has led to new research activities in thermody-

namics at small scales, sensing and material science. After briefly reviewing some

achievements in the field of cavity optomechanics I will outline the motivation for

specific research in levitated optomechanics. The work presented in this thesis is

then motivated. Finally, I provide a summary of each chapter in the thesis.

1.1 Standard optomechanics
Cavity optomechanics has greatly benefited from the Laser Interferometer

Gravitational-Wave Observatory (LIGO) and Virgo collaborations [5, 9], which

have recently been celebrated for the discovery of gravitational waves [10]. The two

LIGO observatories consist of two giant Michelson interferometers with arms, 4 km

long, terminated by 40 kg test mass mirrors. In order to detect the displacement

made by gravitational waves, a strain sensitivity of 10−22/
√
Hz had to be reached

in the audio band. For a 4 km interferometer this is equivalent to a displacement

sensitivity of 10−19 m/
√
Hz. With standard interferometric measurements (by oppo-

sition to more sophisticated methods such as in Ref. [11]), the maximum sensitivity
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for an interferometer is achieved at the standard quantum limit (SQL) [12], which

corresponds to the level saturating the uncertainty principle for the test mass of

the interferometers. In practice, there is an optimum laser power at which the two

main noise sources in the interferometer are equal: shot-noise (imprecision noise)

and radiation pressure noise which drives the mechanical motion of the test mass

(back-action noise). The main challenge for LIGO has been to reach this level.

It has required a high level of mechanical isolation of the test mass, reduction in

classical laser noise, and improvements in optics coatings technologies to reduce

Brownian noise.

The first protocol which can be realised in an optomechanical system is laser

cooling of the mechanical motion. The radiation pressure force can be engineered

to cool the centre-of-mass motion of a mechanical mode. One of the first objects

showing successful sideband cooling was a silicon beam used as an end-mirror of an

optical cavity [13]. In order to cool the oscillator, the laser frequency is red-detuned

with respect to the cavity resonance. The time at which the radiation pressure force

is applied in the mechanical cycle can be controlled with the input beam detuning.

Amplification of the motion can be achieved by blue detuning the laser. In order

for this force to extract work and therefore cool the motion, it has to be in phase

quadrature with the motion (delayed by a quarter of cycle), which is realised in

practice by the finite cavity response time. Cavity cooling can also be understood

in a frequency-domain picture. The mechanical motion creates sidebands on the

optical field. By red-detuning the input field, the blue sideband is enhanced which

makes the mechanical system lose energy [14]. In order to be effective, a high finesse

cavity is required (in the paper cited above, the finesse was 30 000 [13]) to operate

in the sideband-resolved regime where the cavity linewidth is small in comparison

to the mechanical frequency. On top of this, the high finesse cavity leads to a

stronger radiation pressure force used for cooling and enhances the sensitivity for

the detection of the mechanical motion. Cavity sideband cooling to the ground state

was achieved in 2011 in two different experiments. The first system consisted of a

nanophotonic crystal with frequency of 3.7GHz, operated in a 20K cryostat [15].

The cooling led to a 0.85 final occupation number. The second system consisted of

a LC superconducting microwave resonator placed in a cryostat at 20 mK [16]. A
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drum-mode of a capacitor-plate at 10MHz was cooled down to 0.34 phonons.

When the radiation pressure force noise dominates over other noises, it can

lead to squeezing of the optical cavity field [17]. In this case, the mechanical motion

introduces correlations between the amplitude and phase quadratures of the optical

field. This leads to a so-called ponderomotive squeezing where the noise in one

quadrature exhibits sub shot-noise fluctuations.

By measuring one quadrature of the motion, at the price of losing any informa-

tion on the other quadrature, one can perform a so-called quantum nondemolition

measurement [18]. Using a similar scheme, a mechanical drum has been squeezed

and therefore exhibits quantum fluctuations smaller than its zero-point fluctuations

in one of the two quadratures [19]. Recently, two groups have demonstrated entan-

glement between two remote macroscopic mechanical modes [20, 21]. These recent

examples show that mesoscopic oscillators have been demonstrated to exhibit quan-

tum behaviours.

1.2 Levitated optomechanics
1.2.1 Motivation

Arthur Ashkin has been a pioneer in trapping dielectric nanospheres in optical tweez-

ers [22], a tool for which he was awarded the 2018 physics Nobel prize. He showed

that stable optical trapping was the result of the right balance between scattering

and gradient force [23]. The trapping potential defined by the gradient force gives

typical mechanical frequencies ranging from 10 kHz to 200 kHz. Using such a levi-

tated oscillator has been motivated in Ref. [24–27] for cavity cooling experiments

and as potential platforms to demonstrate macroscopic quantum behaviours. The

main advantage over most clamped systems discussed in the previous section is the

very high Q-factor (1012 at 10−8 mbar for a ∼100 nm radius silica particle) and

therefore ultra-narrow mechanical linewidths of 0.1µHz those systems can exhibit

[24]. This leads to a very high level of decoupling between the oscillator and the

bath which implies possible long-life times for non-classical states of motion. One

practical consequence is that there is no need to operate the system in a cryogenic

environment to reach the ground state of the centre-of-mass motion. Another ad-

vantage of those systems is that they only have a few mechanical modes.

This very high Q-factor is very attractive to many experiments ranging from
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small force detection to thermodynamics and even quantum foundations. Because

of their small mass and mechanical damping, levitated spheres in vacuum have been

shown to reach force sensitivities down to 6 zN [28]. This sensitivity could be used to

test non-Newtonian gravity models as well as measure Casimir forces [29]. It could

also be used to probe high-frequency gravitational waves [30, 31].

As mentioned above, a strong motivation for studying levitated nanospheres

is testing quantum mechanics at the mesoscopic scales. There has been several

proposals discussing how a mechanical superposition could be formed and probed,

with matter-wave interferometry experiments [6, 32–34]. Similar experiments could

be as well used to measure signatures of quantum gravity [7]. In order to further

reducing effects of decoherence, the MAQRO collaboration plans to perform these

experiments in space where free-fall time is increased and both lower bath temper-

ature (∼ 20K) and pressure (∼ 10−15mbar) are easily achieved [35]. Lastly, these

platforms can be used to probe models of the wave-function collapse [36, 37]. A

larger account of experimental proposals using levitated nanospheres can be found

in Ref. [8].

1.2.2 Cooling levitated nanospheres

In order to perform the experiments discussed in the previous section, the thermal

variance of the nanoparticle motion needs to be greatly reduced and, in some in-

stances, reach the ground state. Two main schemes have been used so far to cool the

centre-of-mass motion of levitated nanospheres. The first one is feedback cooling.

The second one is cavity sideband cooling already mentioned above. In feedback

cooling, a damping force can be engineered by measuring the particle position and

then applying a force proportional to the particle velocity (cold damping). It has

successfully been demonstrated in an optical tweezer where three orthogonal beams

were used to cool the three centre-of-mass modes with the scattering force. Cooling

down to 1.5mK for a 3µm diameter silica sphere was observed [38] and down to

400mK with 300 nm spheres [28]. By using the Coulomb force on charged particles,

velocity damping down to 4 phonons has been demonstrated [39, 40]. Another ap-

proach, widely used by the community, has been parametric feedback cooling where

the trapping potential is directly modulated at twice the frequency of oscillation

[41]. Intuitively, as the particle climbs the potential, the trap is stiffened and in-
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versely when the particle falls back. The record so far with this approach has been

63 phonons [42].

The other approach, mentioned already in the previous section, is cavity cooling.

As a dielectric moves within the cavity standing wave, it gets more or less polarised

which in turn changes the cavity resonance frequency, hence the optomechanical

coupling. The first demonstration of cavity cooling of nanospheres consisted of

slowing them down when crossing the cavity field [43]. A first endeavour of cooling

a trapped particle in an optical cavity was reported down to 64K using two optical

modes [44]. Further cooling was later demonstrated by using a Paul trap to enhance

the linear optomechanical coupling [45, 46]. Finally, the combination of an optical

tweezer with an optical cavity was recently used to demonstrate cooling down to

∼ 10mK, limited by laser frequency noise [47]. Coherent scattering has recently

been spotlighted within the community as a new approach of cavity cooling [48, 49].

Here, the nanosphere is positioned on a dark fringe of the cavity with an optical

tweezer and the cavity is solely pumped by the tweezer scattered light. This method

offers numerous advantages. The optomechanical coupling has been demonstrated

to be ∼ 40 times larger than with previous schemes [50]. Moreover, it enables full

3D-cavity cooling. Last, the small number of intracavity photons combined with the

particle position at the cavity node reduces the effect of frequency noise by more

than 40 dB [49], which has previously been a major obstacle in cavity cooling [47].

Using this scheme, the centre-of-mass motion of a silica nanosphere has been brought

to the ground-state [51].

1.3 This work
The work presented here is centred around levitation in a hybrid trap consisting of

the overlap between the field provided by a Paul trap and an optical standing-wave.

This was initially studied in Refs. [45, 46]. The Paul trap offers the advantage

of having a broad and deep potential, unlike a tweezer or an optical well. Fur-

thermore, it could be used as a tool to create arbitrary shape potentials [52] for

future quantum experiments. Another advantage of working with the hybrid trap

is the reduction of the effect of the scattering recoil which has been demonstrated

to be the strongest fundamental source of decoherence in optical tweezers [42]. In

this thesis, we describe and characterise the original design of a miniature linear
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Paul trap suitable for optomechanics experiments with nanoparticles. The oscilla-

tor and trap characterisations are realised with a super-resolution technique, which

enables to achieve competitive detection sensitivities for those low-frequency oscil-

lators. Among others, we demonstrate that this imaging technique can be used to

estimate the nanosphere mass with a 3% uncertainty. This same imaging method

is then used at low pressure to measure the gas damping (intrinsic linewidth) of

the oscillator with a novel phase sensitive method. This method enables us to trace

out slow drifts in the mechanical frequency which are orders of magnitude larger

than the intrinsic linewidth. This measurement at low pressure confirms the high-Q

potential of levitated nanospheres which is one of the main motivations of the field.

The measurement of the ultra-narrow linewidth combined with excess noise esti-

mates at low pressures enables us to place new bounds on standard collapse models

along with their dissipative counterparts. The way these bounds are placed in the

dissipative case is novel. Rather than measuring an excess noise as usually done, we

can place constrains in the parameter space of the models by searching for an excess

dissipation rate. Lastly, we demonstrate optomechanical experiments combining the

Paul trap and a high-finesse optical cavity. Here, unlike in previous work (see Ref.

[45, 46]), the Paul trap does not directly play a role in the cooling mechanism. It

is used nonetheless to control the trapping well location within the optical cavity

(with ∼ 10µm of accuracy). The trapping site is relevant when the optical cavity

is pumped with two modes at different frequencies. In conjunction with the intra-

cavity powers of the two modes, it is used to control the ratio between linear and

quadratic optomechanical coupling. This enables us to study the dynamics when

the quadratic optomechanical interaction dominates over the linear one and among

others, demonstrate a highly non-thermal state of motion. Lastly, when operating

the system with linear optomechanical coupling, we are able to achieve lower tem-

peratures (∼ 40mK) than previously reported using a similar cooling scheme and

demonstrate stable trapping in an optical cavity down to ∼ 10−6mbar [44].
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1.4 Thesis layout
The content of each chapter is briefly summarised below

• In Chapter 2, we provide a theoretical background of the cavity-nanoparticle

interaction. Both mechanical oscillator and cavity optical field dynamics are

introduced in the classical and quantum regimes. The Hamiltonian describing

the nanoparticle-cavity interaction is then given and its different components

are explained. Among others, scattering losses, photon recoil and internal tem-

peratures are discussed. Optical classical noise (intensity noise and frequency

noise) are then introduced in order to be taken into account in the model of

the experiment. Finally, a model of the experiment is given where the linear

optomechanical interaction dominates. The expressions of the nanoparticle

position and homodyne spectra are detailed with the different noise contribu-

tions. Lastly, we discuss technically achievable phonon occupancy as well as

corresponding homodyne output spectra.

• In Chapter 3 we review the general Paul trap theory, including Mathieu dy-

namics and stability diagrams. Two custom original designs are then described.

The emphasis is given on the miniature linear Paul trap used in the experi-

ments presented in the subsequent chapters. We detail the calculation of the

efficiency parameters, trap depth and effect of voltage noise for this specific

design. The loading mechanism with an electrospray alongside a quadrupole

guide at a pressure P = 10−1mbar is then finally described. The quadrupole

guide when operated as a mass-spectrometer can be used to select specific

charge-to-mass ratios.

• In Chapter 4, using a super-resolution imaging method we report sensitivi-

ties better than 10−16 m2/Hz with signal-to-noise ratios as good as 106. This

method can be used to illustrate the excellent force sensitivities of a levitated

nano-oscillator, here beyond 1 aN/
√

Hz. We compare and discuss different

methods to evaluate the nanoparticle mass in the Paul trap. Using the imag-

ing method, previously detailed, we report a method with a 3% uncertainty.

Lastly, we discuss the effect of the loading mechanism and the cold cathode

pressure gauge on the trap stability. Using over nearly two weeks of uninter-
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rupted measurement, we report a competitively low secular frequency drift of

2 ppm/h.

• In Chapter 5 a new method to measure the true linewidth of a mechanical

oscillator is presented. This is shown to be suitable even when the drifts in its

frequency of oscillation are larger than its linewidth. By applying this method

to our oscillator we report one of the smallest measured mechanical linewidths

to date at room temperature of 81±23µHz.

• In Chapter 6, we introduce the measurement problem with the possible solu-

tion offered by wavefunction collapse models which combine quantum mechan-

ics and classical behaviours at macroscopic scale. Measurements of a levitated

nano-oscillator at equilibrium with a bath at Tb = 293K, and kept at a pres-

sure lower than 10−6mbar, enables us to confirm recently placed bounds in the

CSL model. We then use the ultra-narrow linewidth measurements from the

previous section to place new bounds in a novel way on dissipative versions of

collapse models (CSL and Diósi-Penrose).

• Chapter 7 focuses on the description of the optical set-up mostly used for the

experiments presented in Chapter 8. The lasers used for the experiment are

characterised with an emphasis on their classical noise budget. In the last

two sections, the two cavities used in the experiment are characterised. We

introduce a design of filtering cavity with a half-linewidth of κ/2π = 2.5kHz

to reduce the classical laser noise and evaluate its performance. The level of

attenuation applied by this cavity on both laser beams could in theory enable

ground state cooling of the oscillator. Finally, we characterise the science

cavity, which is used for the experiments with nanoparticles. Among others

we report four different methods to measure the linewidth and evaluate the

PDH noise floor calibrated in equivalent frequency noise or cavity displacement

noise.

• In Chapter 8, we present experimental results of the optomechanical interac-

tion between the levitated nanosphere and the optical cavity. We describe first

some attempts at measuring the scattering losses which can be used to estimate

the particle polarisability. We demonstrate cooling of the secular motion below
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200mK with feedback on the Paul trap electrodes to minimise the variance of

the motion in the transverse direction. By using two optical beams [24, 44],

in conjunction with the Paul trap, we demonstrate the versatility of this lev-

itated nano-oscillator which can be operated in regimes dominated by either

linear or quadratic optomechanical coupling. We demonstrate cavity cooling

in a regime dominated by the quadratic interaction. More importantly, we

study the highly non-thermal state of motion created in this nonlinear regime.

Lastly, when the linear optomechanical coupling dominates, we demonstrate

cavity cooling down to 21± 4mK, improving by more than three orders of

magnitude results reported with this scheme [44].

• In Appendix A, we review the well-known PDH cavity locking scheme and

detail how the error signal is calibrated. We discuss as well the laser offset-

lock and some locking mechanisms used to compensate for slow drifts in the

system.





Chapter 2

Theory of the experiment

In this chapter we review the main tools to describe the interaction between a

dielectric and an optical field. Firstly, we focus on the harmonic oscillator both in

the classical and quantum regimes. Secondly, we provide tools regarding optical

fields along with some general information about optical cavities. Combining the

two, we discuss the optomechanical coupling between optical field and dielectric.

Among others, we examine scattering losses, photon recoil and absorption. In order

to describe the system more accurately, we discuss how to incorporate both laser

classical intensity noise and frequency noise in the model. The dynamics of both

optical field and nanoparticle is then derived in the quantum Langevin formalism.

This enables us to quantitatively predict centre-of-mass cooling that can be achieved

in this system.

2.1 Mechanical harmonic oscillator

2.1.1 Classical harmonic oscillator

Close to an equilibrium position, a mechanical oscillator such as a levitated

nanosphere (trapped either in a Paul trap as described in Chapter 3 or as below

in an optical field) can be described as a harmonic oscillator within a very good

approximation. In this section, we consider a harmonic oscillator of mass m, me-

chanical frequency ωm and viscous damping γm. In the presence of external driving

forces denoted by Fext(t), the oscillator follows the Newtonian dynamics:

ẍ+γmẋ+ω2
mx= Fext(t)

m
. (2.1)

In the case of a levitated nanoparticle in vacuum, the damping term γm is given
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by collisions with the surrounding gas molecules. A theoretical expression for the

gas damping is [44, 53]

γgas = 6πηr
m

0.619
0.619 +Kn

(
1 + 0.31Kn

0.785 + 1.152Kn+K2
n

)
, (2.2)

where Kn denotes the Knusden parameter, r the particle radius and η the air viscos-

ity. The Knusden number is defined as the ratio between the air mean free path and

the particle radius Kn = λmfp
r with λmfp = kB Tb√

2πd2P
with kB the Boltzmann constant,

P the gas pressure, Tb the bath temperature and d the air molecular diameter. Be-

low a pressure of 10mbar, which is typical in practice, the gas is in the free molecular

flow regime (Knusden parameter satisfying Kn� 1). In this case, the gas damping

is well approximated by [54, 55]

γgas =
(1 + π

8 )c̄P mg

kB Tb rρ
, (2.3)

where the particle mean speed is c̄ =
√

8kBTb/mgπ, ρ the particle density, mg the

mass of the gas molecules (4.84×10−26 kg for air).

Figure 2.1: Gas damping as a function of pressure. In blue gas damping valid below
100mbar (Eq. 2.3) and in orange, both at low and higher pressures (Eq. 2.2).

Even in the absence of deterministic forces and technical noise, an unavoid-

able force exerted on a levitated nanosphere is the thermal Langevin force due

to gas collisions. Without this driving force, the amplitude of the particle mo-

tion would completely decay, which would be equivalent to an unrealistic coupling

to a zero-temperature bath. Following from the equipartition theorem, one has
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1
2m〈ẋ

2〉 = 1
2kBTb where the brackets 〈...〉 denote the statistical average. We can

assume the thermal force Fth(t) to be a zero-mean stochastic process 〈Fth(t)〉 = 0

since this is required to obtain an unperturbed average position of the nanoparticle.

By combining those two properties, we obtain the autocorrelation function of the

thermal force (fluctuation-dissipation theorem) [56]

〈Fth(t)Fth(t′)〉= 2mγmkB Tbδ(t− t′) , (2.4)

with δ(t) the Dirac delta function. It is worth noting that the strength of the

thermal force directly depends on both bath temperature Tb and damping rate γm.

The magnitude of this force can therefore be reduced by lowering the pressure or

operating the system in a cryogenic environment.

Mechanical oscillators at equilibrium are generally studied in the frequency domain

by using the Fourier transform. We define the Fourier transform of a variable x(t) as

x(ω) =
∫∞
−∞x(t)eiωtdω. By applying the Fourier transform to Eq. 2.1, we get x(ω) =

Fth(ω)
m(ω2

m−ω2−iγmω) = χ(ω)Fth(ω) where we have defined the mechanical susceptibility

as χ(ω) = (m(ω2
m−ω2− iγmω))−1, which quantifies the response of the oscillator to

an external driving force. We can define the double-sided power spectral density

(PSD) (definition following from the Wiener-Khinchin theorem) of a time domain

variable x(t) as Sx(ω) =
∫∞
−∞〈x(t)x(t+ τ)〉eiωτdτ . The thermal force noise PSD can

be evaluated from its autocorrelation given above as SFth(ω) = 2mγm kB Tb. We can

then obtain the displacement PSD of the mechanical oscillator driven by thermal

noise:

Sx(ω) = |χ(ω)|2SFth(ω) = 2γm kB Tb
m((ω2

m−ω2)2 +γ2
mω

2) . (2.5)

An experimental PSD of the thermal mechanical oscillators (alongside with theo-

retical fit) can be seen in Fig. 4.4. The area of the PSD gives the variance of the

mechanical motion:

〈x2〉= 1
2π

∫ ∞
−∞

Sx(ω)dω = kB Tb
mω2

m

. (2.6)

Depending on the value of the Q-factor Qf = ωm
γm

, three different regimes can be

considered. The under-damped regime Qf > 1, the critically damped regime Qf ∼ 1

and the over-damped regime Qf < 1. We can show that the evolution of the variance
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of the position of the oscillator in the under-damped regime is [57]

〈(x(t)−x(0))2〉= 2kBTb
mω2

m

(
1−e−

γm
2 t
(
cos(ω̃mt) + γm

2ω̃m
sin(ω̃mt)

))
, (2.7)

with the effective mechanical frequency ω̃m =
√
ω2
m−

γ2
m
4 . In the case of the over-

damped regime, the cos and sin functions have to be replaced with their hyperbolic

counterparts cosh and sinh. In the critically damped regime, the expression of

the variance simplifies to 〈(x(t)−x(0))2〉 = 2kBTb
mω2

m

(
1−e−

γm
2 t
)
. Lastly, the position

autocorrelation functions is:

〈x(t)x(0)〉= kB Tb
mω2

m

− 1
2〈(x(t)−x(0))2〉 . (2.8)

Importantly, it can be seen that the position autocorrelation oscillates at a frequency

ω̃m, with a decreasing exponential envelope of time constant 2/γm. This time is

defined as the correlation time and quantifies the timescale over which the motion

is unperturbed by stochastic noise.

2.1.2 Quantum harmonic oscillator

The treatment of the quantum mechanical oscillator is similar to the one of the

optical field, given in numerous textbooks [58]. The total energy of the quantum

system can be written as

Ĥ = mω2
m

2 x̂2 + p̂2

2m , (2.9)

where x̂ and p̂ represent the position and momentum quantum operators, respec-

tively. Those operators are Hermitian and are therefore observable operators. By

definition, the energy is quantised and in the case of a pure harmonic oscillator,

is evenly spaced by individual quanta of energy h̄ωm. These operators obey the

commutation relation [x̂, p̂] = ih̄. Following from this commutation relation we can

obtain the Heisenberg uncertainty inequality ∆x̂∆p̂ ≥ h̄
2 where ∆ represents the

standard deviation of a quantum operator. This inequality shows the trade-off in

knowledge in one observable with respect to the other. A natural way of studying

quantum harmonic oscillators is by using the non-Hermitian creation b̂† and annihi-

lation b̂ operators which act on a pure Fock state |n〉 of energy n (where n represents

the number of quanta in the system) and increase or decrease by a single quanta the



2.1. Mechanical harmonic oscillator 43

energy of the oscillator

b |n〉=
√
n |n−1〉 , b |0〉= 0 , (2.10)

b† |n〉=
√
n+ 1 |n+ 1〉 , (2.11)

where we have dropped hat symbols ˆ for simplicity of notations, except for the

photon number operator n̂ (defined below), to distinguish it from the photon number

n. Those operators follow the boson commutation relation [b,b†] = 1 and are related

to position and momentum operators as

b=
√
mωm

2h̄ (x+ i

mωm
p) , (2.12)

b† =
√
mωm

2h̄ (x− i

mωm
p) . (2.13)

We can define as well the phonon number operator n̂= b†b since |n〉 is an eigenvector

of n̂ with eigenvalue n: b†b |n〉= n |n〉. The Hamiltonian can be rewritten using the

creation and annihilation operators as

H = h̄ωm

(
b†b+ 1

2

)
. (2.14)

The energy eigenvalues of the Hamiltonian are En = h̄ωm
(
n+ 1

2

)
where 1

2 h̄ωm de-

notes the energy of the ground state. Following from Eq. 2.9, this minimum energy

of the system can be written in terms of zero-point motion xzpf =
√

h̄
2mωm and zero-

point momentum pzpf =
√

h̄mωm
2 , respectively. They correspond to the standard

deviation of the position and momentum of the oscillator in its ground state. Using

typical numbers of the experiment, a single silica nanosphere of 387nm diameter and

density 1850 kg/m3 has a mass of 5.6× 10−17 kg. We typically operate the system

with a mechanical frequency of ωm/2π = 50kHz. In the ground state, the standard

deviation of this mechanical mode is 1.7 pm. When coupled to a bath at tempera-

ture Tb and at equilibrium, the probability pn of finding the system in the mode n

of energy En is

pn = exp(−En/kBTb)∑
n
exp(−En/kBTb)

. (2.15)
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We can calculate from this expression the average phonon number

n̄=
∞∑
n=0

npn = 1
exp(h̄ωm/kB Tb)−1 . (2.16)

In the classical limit where kB Tb� h̄ωm, this formula simplifies to the well known

n̄ = kB Tb
h̄ωm

. In the case of the levitated nanosphere mentioned above coupled to a

bath at 293K, the mean phonon occupancy is 1.2×108. Lastly, the autocorrelation

function of the force noise given in the classical regime has to be modified so that

the position and momentum operators do not commute in the quantum regime. A

full treatment of dissipation in quantum harmonic oscillators coupled to an infinite

number of harmonic oscillators can be found in Ref. [3]. In the Markovian limit

where the coupling between the bath and the oscillator is assumed to be memoryless,

the autocorrelation function is not any more a Dirac delta function and is given by

〈Fth(t)Fth(t′)〉 = h̄mγm
∫ dω

2π e
−iω(t−t′)ω

[
coth

(
h̄ω

2kB Tb

)
+ 1
]
. The classical expression

is recovered in the high temperature limit. The quantum Langevin equations of

motion read [59]:

ẋ= p

m
, (2.17)

ṗ=−mω2
mx−γm p+Fth(t) . (2.18)

Lastly, the quantum PSD of the harmonic oscillator can be shown to be [59]

Sx(ω) = γmx
2
zpf

(
n̄+ 1

(ω−ωm)2 + (γm/2)2 + n̄

(ω+ωm)2 + (γm/2)2

)
. (2.19)

Interestingly, the PSD of a quantum operator is not necessarily symmetric as it

can be seen in the above equation. This is a strong quantum signature as it is a

direct consequence of non-commutation of the position and momentum operators.

A classical measurement of the mechanical spectrum would symmetrise the PSD

shown above. The asymmetric behaviour can nonetheless be preserved depending

on the measurement scheme [60].
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2.2 Optical cavity field

2.2.1 Classical description - Fabry-Pérot resonator

Optical cavities are notably used in lasers to coherently amplify the stimulated

emission process. They have as well been used in numerous physics experiments

to take advantage of some of their properties such as their long decay time, the

high intensity field or the optical standing wave they can provide. They have been

notably used in a key experiment to detect a "single photon without destroying

it" with an average photon lifetime of 1ms [61]. We describe now the standard

optical cavity consisting of two partially reflecting mirrors (see Fig. 2.2) [62, 63].

For simplicity, we assume the internal faces only to be reflective. We denote the

amplitude reflection and transmission coefficients of the two mirrors by (r1, t1) and

(r2, t2), respectively. The intensity coefficients are defined as Ti = t2i and Ri = r2
i

(with i= 1,2). The mirror losses (due to absorption and scattering) are denoted by

Σi = 1−Ri−Ti. We define the input amplitude of the electrical field as Ein. The

first reflection of the input beam on the input mirror gives a π-phase shift (obtained

by energy conservation considerations). The phase shift acquired on each reflection

inside the cavity is denoted by eiδ (its full expression is given below).

Figure 2.2: Schematic of the transmissions and reflections of an input beam of amplitude
Ein in an optical cavity. The mirrors are characterised with amplitude reflec-
tion and transmission coefficients ri and ti, respectively. The reflected input
at the input mirror gets a π-phase shift to satisfy energy conservation rules.
The phase shift accumulated after half a round-trip is denoted by eiδ. The
reflected, intracavity and transmitted fields are denoted by Er, Ecav and Et,
respectively.

When summing up over the different amplitudes we get the intracavity field

Ecav = t1e
iδ

1− r1r2e2iδEin . (2.20)
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The transmitted field is simply Et = t2Ecav = t1t2eiδ

1−r1r2e2iδEin. The field in reflection is

Er =−r1Ein+ t21r2e
2iδ

1− r1r2e2iδEin . (2.21)

We can now look in further detail at the ratios between the transmitted and input

intensities as well as the reflected and input intensities. We obtain

|Et|2

|Ein|2
= t21t

2
2

1− r1r2
2

1
1 +B sin2(δ) , (2.22)

|Er|2

|Ein|2
= (ζ/r2)2 +B(1− r2

1− t21)sin2(δ)
1 +B sin2(δ) , (2.23)

where we have defined B and the coupling parameter ζ as

B = 4r1r2
(1− r1r2)2 , (2.24)

ζ = r2
r1− r2(r2

1 + t21)
1− r2r2

. (2.25)

We can see from the above equations that the condition for resonance is δ = mπ,

with m an integer. As mentioned above, δ corresponds to the phase acquired after

half a round-trip. It can be expressed as δ = kL with k the optical field wave

vector and L the cavity length, which gives δ = 2πν
c L with ν the laser frequency (in

Hz). The resonance condition is satisfied for frequencies ν such that ν =m c
2L . The

separation between two consecutive resonant longitudinal modes is called the free

spectral range (FSR) FSR = c
2L . Let us now define the half-linewidth δν as the

frequency at which the transmitted power (equivalently intracavity power) drops by

two (Half-Width at Half-Maximum). Another important quantity is the finesse F ,

defined as F = FSR
2δν . It quantifies how well resolved are two consecutive longitudinal

modes. For highly reflective mirrors, we have δν� FSR and Ti,Σi� 1. This allows

us to introduce the high-finesse approximation, which greatly simplifies the finesse

and coupling parameter expressions to

F ≈
π
√
r1r2

1− r1r2
≈ 2π
T1 +T2 + Σ1 + Σ2

, (2.26)

ζ ≈ −T1 +T2 + Σ1 + Σ2
T1 +T2 + Σ1 + Σ2

. (2.27)
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With those definitions, we can rewrite Eq. 2.23, in the high-finesse approximation,

in terms of intracavity power Pcav, transmitted power Ptr and reflected power Pr.

We denote the frequency detuning between the input field (the laser) and the cavity

resonance frequency by ∆o = ωl−ωcav (in rad). Pin denotes the input power:

Pcav = T1

(
F

π

)2 Pin
1 + (∆o/κ)2 = (1− ζ) F

π

Pin
1 + (∆o/κ)2 , (2.28)

Ptr = T2Pcav , (2.29)

Pr = ζ2 + (∆o/κ)2

1 + (∆o/κ)2 Pin . (2.30)

Following from Eq. 2.27, −1 < ζ < 1. We can now more easily comment on the

physical significance of ζ. Given a cavity finesse and input power, this parameter

quantifies the achievable intracavity power. For ζ < 0, the cavity is said to be over-

coupled with maximum intracavity power achieved for ζ =−1 in the unrealistic case

of a single-sided cavity with no other losses than the input coupler transmission. For

ζ = 0, the cavity is said to be critically-coupled which occurs when the input losses

are equal to all the other losses. For ζ > 0, the cavity is under-coupled. Moreover, in

the case of an over-coupled (under-coupled) cavity, most of the reflected field comes

from the cavity field (reflected input field). There is no reflected field in the case of

a critically coupled cavity on resonance.

We can estimate the cavity dynamics by looking at the cavity losses after one round-

trip of time ttrip = 2L
c :

dEcav
dt = Ecav(t)−Ecav(t+ttrip)

ttrip
=− c(1−r1r2)

2L Ecav ≈−κEcav where

we have defined the cavity decay-rate κ= 2πδν.

2.2.2 Gaussian beams

Laser beams fail to be accurately described by ray optics as transverse modes are not

included. Assuming a small divergence angle along the beam propagation (paraxial

approximation), Gaussian beams can be shown to be one solution of Maxwell’s

equation, which describe laser beams accurately. The envelope of the electric field

u(r,z) of the lowest order transverse mode (TEM00) has a Gaussian distribution.

Its expression is given below, written in polar coordinates with r the transverse
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coordinate and z the direction of propagation [64]:

u(r,z) = wo
w(z) exp

(
−i(kz−Φ(z))− r2

( 1
w2(z) + ik

2R(z)

))
, (2.31)

with wo the beam waist (defined as the radius at which the amplitude drops by e at

the position of the waist z = 0), w(z) the beam radius, R(z) the radius of the wave

front and Φ(z) the Gouy phase. These are defined as

w2(z) = w2
o

(
1 +

(
λz

πw2
o

)2)
, (2.32)

R(z) = z

1 +
(
πw2

o

λz

)2
 , (2.33)

Φ(z) = arctan
(
λz

πw2
o

)
, (2.34)

with λ the laser wavelength. Near the cavity waist (quantitatively, for −z0 < z < z0

with z0 = πw2
o

λ ), the Gaussian beam is nearly planar and the expression given in Eq.

2.31 can be simplified to

u(r,z) = exp
(
−ik z− r2

w2
o

)
. (2.35)

In addition, it can be shown that the TEM00 mode propagating in an optical cavity

of length L and mirror curvatures R (assuming here identical mirrors) has a waist

wc given by

wc =
√
λ

2π

√
L(2R−L) . (2.36)

We use in this work an optical cavity L = 14.6mm long with mirror of curvatures

R= 25mm. This gives a nominal waist wc = 62µm. Another important quantity to

introduce is the cavity mode volume Vm. It is defined as the volume of the envelope

squared of the cavity mode

Vm =
2π∫
0

L/2∫
−L/2

∞∫
0

u(r,z)2 rdrdz dθ = w2
cπL

4 . (2.37)
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Here we have a mode volume of 4.4×10−11 m3.

2.2.3 Quantum description

Similarly to the treatment of the quantum mechanical oscillator, the intracav-

ity optical field can be described by creation and annihilation operators a† and

a, respectively. The Hamiltonian of the cavity field, ignoring any dissipation, is

H = h̄ωl
(
a†a+ 1

2

)
. The time evolution of these operators is given by the Heisen-

berg’s equation ȧ= i
h̄ [H,a] from which we obtain the evolution

ȧ=−iωl a, (2.38)

with solutions a(t) = a(0)e−iωlt and a†(t) = a†(0)eiωlt. We can then define the light

amplitude and phase quadrature operators X1 and X2 as X1 = a†+a
2 and X2 = ia

†−a
2 ,

respectively where we have redefined the operators as a(0)≡ a and a†(0)≡ a†. The

commutation relations [X1,X2] = i
2 gives the Heisenberg uncertainty ∆X1∆X2 ≥ 1

4 .

In the case of the vacuum optical state |0〉, we can show that the uncertainty in the

two light quadratures is ∆X1 = ∆X2 = 1
2 .

Stimulated emission occurring in lasers can be shown to create coherent states.

This optical state is very similar to the vacuum state |0〉 as it has the same quadra-

ture uncertainties. A coherent state |α〉 is defined as eigenstate of the annihilation

Figure 2.3: Quadratures of a coherent state ||α|eiθ〉. When the field is demodulated with
θ = 0, the X1 and X2 quadratures correspond to the amplitude and phase
quadrature respectively.
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operator a with α a complex number. The stimulated emission process can be

modelled by the displacement operator D(α) acting on a vacuum state as [58]

|α〉=D(α) |0〉= e−
1
2 |α|

2
∞∑
n=0

α2
√
n!
|n〉 , (2.39)

with |n〉 the Fock state of n photons. The thermal occupation for the optical

field is here negligible: n̄th = kB Tb
h̄ωl
� 1. We can write α in polar form |α|eiθ and

show that in terms of light quadratures we get α= 〈X1〉+ i〈X2〉. The quadratures of

a coherent state are shown in phase-space in Fig. 2.3. The expectation values of the

photon number operator n̂ of the coherent state can be shown to be n̄= |α|2, which

directly relates α to the amplitude of the field. Moreover, the standard deviation

of the number of photons is ∆n =
√
n̄. This fundamental uncertainty is called the

photon shot noise. The signal-to-noise ratio of the measured number of photons of

a coherent state is therefore n̄
∆n =

√
n̄ and increases proportionally to the amplitude

of the field.

Now, we can look at the dynamical equations of the field within the optical

cavity. Exploiting the rotating wave approximation, we can show that the evolution

of the annihilation operator a, when including dissipative and driving terms, obeys

[3, 65]

ȧ=−(κ− i∆o)a+
√

2κin(ain+αin) +
√

2κvav , (2.40)

where ain and av represent the input and vacuum field noise operators, αin the

amplitude of the drive, ∆o the detuning between the input field of frequency ωl and

the cavity resonance frequency ωcav, ∆o = ωl−ωcav. The input loss rate is here

denoted by κin (it can directly be related to the input transmission coefficient as

κin = cT1/4L) and vacuum loss rate by κv. Assuming the cavity field is only pumped

on the input port, we have n̄in = |αin|2, which is the input flux of photons in s−1.

The different uncorrelated white input noise aj(t) (j = in,v) are described by the

correlation functions:

〈aj(t)aj(t′)〉= 〈a†j(t)a
†
j(t′)〉= 〈a†j(t)aj(t′)〉= 0 ,

〈aj(t)a†j(t′)〉= δ(t− t′) . (2.41)

Following from the fact that we are pumping the system with coherent states (which
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are eigenstates of the annihilation operators), we can recover the classical dynamics

by simply replacing the operator by their expectation values .

2.2.3.1 Homodyne detection

Rather than measuring the field amplitude, one can measure either quadrature of the

light field by demodulating the optical signal. This is done in practice by mixing the

optical field to be measured, a1, with an additional reference field of same frequency

and controlled phase θ, a2, called local oscillator as shown in Fig. 2.4. After mixing

on a 50:50 beam splitter, the intensity of the two output fields a3 = 1√
2(a1 + ia2)

and a4 = 1√
2(ia1 +a2) is measured on two different photodetectors. The resulting

photocurrent is then subtracted. Assuming the local oscillator is a strong coherent

state, the output signal is proportional to the expectation value of the measured

quadrature Xθ = a†1e
−iθ+a1eiθ

2 . We can show that depending on the phase of θ,

we can measure different quadratures of the optical field. If θ = 0 we measure

the amplitude quadrature X1, in phase with the optical field and sensitive to its

amplitude fluctuations. In the case of the phase quadrature X2, we measure the

field phase fluctuations.

Figure 2.4: Schematic of a balanced homodyne scheme. The field of interest a1 is mixed
on a bean splitter with a strong coherent state a2 of same frequency (local
oscillator). The difference in current between the two photodiodes gives a sig-
nal proportional to the expectation value of the quadrature Xθ = a

†
1e
−iθ+a1e

iθ

2
which can be adjusted with the phase θ of the local oscillator.

2.3 Dielectric in a cavity

In this section, we study in detail the interaction between a dielectric nanosphere

and an optical field.
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2.3.1 Optomechanical interaction

In the presence of an electric field, a dielectric object gets polarised. The Hamiltonian

of the dipole potential energy interaction reads [24, 27]

Hdipole =−1
2

∫
V
dxP (x)E(x) , (2.42)

with V the sphere volume, x the spatial coordinate within the sphere, E(x) the

electric field given by the optical field and P (x) the polarisation within the sphere.

The proportional relationship between the electrical field and the polarisation gives

P (x) = 3ε0 εs−1
εs+2 E(x) with ε0 the vacuum permittivity and εs the relative permittivity

of the nanosphere. Assuming that the nanosphere radius is small in comparison to

the wavelength r� λ we can exploit the Rayleigh-approximation where we assume

the nanosphere to be a point-like particle. This is equivalent to consider a constant

electric field across the particle evaluated at the nanosphere centre-of-mass position
#�x within the cavity field. We discuss the validity of this approximation below. In

the Rayleigh regime we can simplify the expression in Eq. 2.42 to

Hdipole =−1
23ε0

εs−1
εs+ 2

∫
V
dxE2(x)≈−1

2αpE
2( #�x ) , (2.43)

where we have introduced αp = 3ε0V εs−1
εs+2 , the nanoparticle polarisability. The am-

plitude of the electric field in the cavity can be written in terms of creation and

annihilation operators as [58]

E =
√
h̄ωcav
2ε0Vm

(a†+a) . (2.44)

We get the simplified expression of the Hamiltonian by using (a† + a)2 ≈ 2a†a

(rotating-wave approximation):

Hdipole =−3
2
εs−1
εs+ 2

h̄V ωcav
Vm

a†a |u( #�x )|2 , (2.45)

with u( #�x ) the cavity mode profile defined in Eq. 2.31. Let us denote Uo =
3
2
εs−1
εs+2

V ωcav
Vm

. By neglecting any radial motion for the moment, which is a reasonable

approximation if the radial motion of the nanoparticle remains small in comparison
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to the cavity waist, we can simplify the Hamiltonian to

Hdipole =−h̄Uoa†acos2(kx) , (2.46)

with x the centre-of-mass operator of the nanosphere along the cavity axis.

The sum of the bare cavity Hamiltonian with the dipole Hamiltonian reads

h̄
(
ωcav−Uo cos2(kx)

)
a†a where we can identify −Uo cos2(kx) as the cavity position-

dependent frequency shift. As the particle moves within the fringe it gets more

or less polarised which in return shifts the cavity resonance frequency. With only

one cavity mode, the particle is trapped at a cavity antinode (bright fringe) where

kx=mπ. Around a position of equilibrium xo, we can simplify the Hamiltonian of

the dipole interaction with a Taylor expansion by using the notation x→ xo +x.

We have cos2(kx)≈ cos2(kxo)−kxsin(2kxo)−k2x2cos(2kxo). Similarly, we can, dis-

place the field amplitude a→ αs+a with αs the mean amplitude of the intracavity

field. The mean cavity photon number is denoted by ncav = |αs|2. We obtain the

following terms

• Hstatic = −h̄Uoa†acos2(kxo), which corresponds to the static frequency shift.

As the particle gets polarised, the conservation of energy translates into a

decrease of the cavity resonance frequency, hence the minus sign [24].

• Hforce = h̄Uo|αs|2 sin(2kxo)kx, which is a constant force acting on the particle.

• Htrap = h̄Uo|αs|2 cos(2kxo)k2x2 is the trapping potential given by the optical

beam. We can identify a trap frequency called mechanical frequency ωm =√
2h̄Uok2|αs|2cos(2kxo)

m . The mechanical frequency is proportional to the cavity

field amplitude. It is therefore maximum when the nanoparticle sits at a bright

fringe.

• Hl = h̄Uo(αsa†+α∗sa)sin(2kxo)kx gives the linear dispersive optomechanical

interaction, i.e., the frequency shift as a function of the linear particle displace-

ment. The linear optomechanical coupling is given by G1 = Uosin(2kxo)k.

• Hq = h̄Uoαs(αsa† + α∗sa)cos(2kxo)k2x2 gives the quadratic optomechani-

cal coupling. The quadratic optomechanical coupling is given by G2 =

Uocos(2kxo)k2.
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One objective consists in maximising the linear optomechanical coupling to

give better cooling rates and detection sensitivity. The coupling is maximum when

the average particle position is xo = λ
8 , which corresponds to an unstable trapping

location. When trapped optically, the nanoparticle sits at the antinode of the elec-

tric field, xo = 0, where there is no linear optomechanical coupling but maximum

quadratic coupling. Therefore, one optical mode is not enough to achieve significant

cooling using the linear optomechanical coupling. Three ways have been reported to

obtain a non-negligible linear coupling while keeping a high mechanical frequency.

The first way uses two optical modes. One more powerful field defines the optical

trap and an another weaker one, with a different optical phase, is used to provide

some linear coupling [24, 44]. Another method consists in trapping in an optical

tweezer to control the particle position within the optical fringe [49, 66]. Lastly,

adding a slow (smaller than the mechanical frequency) periodic modulation to the

nanosphere mean position allows it to explore regions of larger linear coupling [45, 46]

(realised in practice with the Paul micromotion). In order to further increasing the

optomechanical coupling, some groups use pure silicon which has a higher permit-

tivity εs ≈ 3.4 than silica εs ≈ 2.0 and gives therefore a larger polarisability [43].

Lastly, the coupling is proportional to the particle volume (since the polarisabil-

ity is proportional to the volume). A temptation might therefore be to use large

nanoparticles but this comes at the price of increasing both scattering cavity losses

and recoil heating as discussed in the next section.

So far we have considered nanoparticles in the Rayleigh regime where the parti-

cle radius is small in comparison to the wavelength. In our case we use optical fields

of wavelength λ= 1064 nm and a typical particle radius of 194 nm. We are therefore

at the edge of the validity of this approximation. The full description taking into

account the non-uniformity of the electric field within the sphere is given by the

Mie theory [67]. In this case, the frequency shift at an antinode of the field (xo = 0)

becomes

Uo,Mie = πc

k2Vm
Im
[ ∞∑
n=1

(2n+ 1)(−1)n+1(an+ bn)
]
, (2.47)

where in the above an and bn are spherical Bessel functions depending on the dielec-

tric constant and the sphere radius [67]. While the frequency shift for our parameters

is Uo/2π = 73 kHz in the Rayleigh approximation, we find Uo,Mie/2π = 67 kHz using
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Figure 2.5: Comparison between the static frequency shift given by a nanoparticle as a
function of its radius in the Rayleigh (blue) and Mie formalisms (orange).
This is calculated for a nanoparticle trapped at the antinode of the electric
field (xo = 0), for silica (εs = 2.0), a cavity mode volume of 4.4×10−11m3 and
an optical wavelength λ= 1064 nm.

the Mie formalism. We show in Fig. 2.5 the cavity frequency shift Uo as a function

of sphere radius, given in both the Rayleigh and Mie formalisms for our typical

experimental parameters.

The expression of the linear optomechanical coupling given in the Mie formalism

reads as G1,Mie = |αs| πckVm
sin(2kxo)Im

[ ∞∑
n=1

(2n+ 1)(−1)n+1(an+ bn)
]
.

2.3.2 Scattering losses

Due to the strong polarisability of silica nanoparticles, photons are scattered out

of the nanosphere. This leads to two phenomena, a photon loss in the cavity and

momentum kicks to the particle, which are discussed in the next section. The

scattering losses, which scale with the volume squared of the particle, are detrimental

since they can strongly reduce the effective cavity finesse. In the Rayleigh regime, the

scattering losses are given by κsc = 6π2ωcav
V 2

λ3Vm

(
εs−1
εs+2

)2
cos2(kxo) (half-linewidth),

where we have neglected the radial Gaussian envelope of the beam. In the Mie

regime, this expression becomes [67]

κsc,Mie = cπ

2k2Vm
Re
[ ∞∑
n=1

(2n+ 1)(1− (−1)ncos(2kxo))(an+ bn)
]
. (2.48)

For a nanosphere trapped at the antinode, we get κsc/2π = 18 kHz (κsc,Mie/2π =

15 kHz in the Mie formalism) which is significant in comparison to the half-cavity

linewidth (typically here between 10 kHz and 150 kHz). We show in Fig. 2.6 the
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Figure 2.6: Scattering losses (given in half linewidth) for a silica nanoparticle trapped at
the cavity antinode, calculated in the Rayleigh formalism (Mie) and shown in
blue (orange). The experimental parameters used are the same ones as for Fig.
2.5.

theoretical scattering losses as a function of particle radius in the Mie and Rayleigh

regimes.

2.3.3 Photon recoil

Scattered photons give momentum kicks of energy h̄k leading to a recoil on the

nanoparticle. Within the Rayleigh approximation, the scattering follows a dipole

pattern s(θ) = 3
8π sin2(θ) with θ the angle defined in the transverse plane to the

input field propagation, between the direction of interest and the polarisation vector.

The recoil is studied here with the assumption of a shot-noise limited beam. When

classical laser noise is present (see Section. 2.4), the expression given below of the

recoil force noise can be rescaled by comparing the contributions of classical intensity

noise to shot-noise in the scattered field. Along the cavity axis, the recoil force noise

PSD can be shown to be [42]

SFrc(ω) = 2
5
h̄ωl
c2 Psc , (2.49)

with the scattered power Psc = σscIo with σsc = α2
pV

2k4

6πε20
the scattering cross-section

in the Rayleigh approximation and Io the intensity at the particle position (in the

Mie regime, σsc,Mie = c2π
ω2
cav

Re
[ ∞∑
n=1

(2n+ 1)(1− (−1)ncos(2kxo))(an+ bn)
]
[67]). We

compare the expressions of the scattering cross-section in both formalisms in Fig.

2.7. In the case of the optical cavity, we have Io = 22Pcav
πw2

o
cos2(kxo) with an additional



2.3. Dielectric in a cavity 57

factor 2 since the cavity mode is a standing-wave rather than a travelling wave. In

the case of an optical tweezer (which in a first order approximation can be considered

as a Gaussian beam [42]), it is given by Itw = Ptwk2NA2

2π with Ptw the tweezer power

and NA the numerical aperture of the beam, which corresponds to the numerical

aperture of the objective (typically NA≈ 0.9). One of the advantages of trapping

within a cavity field is that for a same trap frequency, the intensity inside the cavity

is smaller than the one given by optical tweezers (62µm against sub-micron waist).

This leads to higher recoil heating rates when trapping in an optical tweezer in

comparison to the cavity.

From the expression of the scattering force noise given above, we can calculate

a heating rate. To begin with, the mean energy of a harmonic oscillator follows a

Fokker-Planck equation [68]

〈Ė〉=−γm(〈E〉−E∞) , (2.50)

with E∞, the steady state energy. When writing the energy in terms of quanta

E = nh̄ωm, we get ṅ=−γmn+Γ with a heating rate Γ identified as Γ = E∞
h̄ωm

γm. In

the case of the thermal Langevin force (see Eq. 2.6), we have E∞ = kBTb, which

gives Γth = γm
kBTb
h̄ωm

. Similarly, we can obtain a heating rate for the recoil as Γrc =
1
5
Pscatt
mc2

ωl
ωm

. For a silica nanosphere of diameter 387 nm, trapped within a cavity field

with a mechanical frequency of ωm/2π = 50 kHz, we obtain Γrc = 6.9× 103 s−1, a

scattered power Psc = 31µW and a scattering force noise SFsc = 2.6× 10−41N2/Hz

Figure 2.7: Scattering cross section of a silica sphere calculated in the Rayleigh (Mie)
regime and shown in blue (orange).
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(calculated in the Mie regime). In order, to reduce the effect of the recoil, smaller

spheres (typically with diameter smaller than 100 nm) are preferred in tweezers.

It has been demonstrated that a nanosphere of 50nm diameter and mechanical

frequency ωm/2π = 150kHz had a measured recoil close to the nominal one of Γrc =

16×103 s−1 [42]. At pressures lower than P ∼ 10−8mbar, the recoil should dominate

over other fundamental heating mechanisms in the case of the optical tweezer.

2.3.4 Internal temperature

Silica (or silicon) is used by most groups because of its commercial availability

as well as its very low absorption in the near-infra-red frequency band. Despite

being small, this last effect is not negligible for the particle internal temperature

in vacuum, which changes depending on the balance between absorption, black-

body radiation and conduction with the surrounding gas. The absorbed power (in

the Rayleigh approximation) is given by Pabs = 12π Ioλ V Im
(
εs−1
εs+2

)
[24] with √εs =

1.41 + i7× 10−8 [69], where the real part corresponds to the refractive index, and

the imaginary part to the absorption. Those numbers are given in the case of

high purity and amorphous bulk silica. With the parameters given in the previous

section, we get Pabs = 55µW, which is a lower bound since calculated for high purity

silica. In order to estimate the equilibrium temperature, let us first denote the

different heat fluxes by Q̇g, Q̇bb corresponding to conduction and black body emission

rates, respectively. We have [24, 37] Q̇g = −αT πr
2P c̄

2Tb
γs−1
γs+1(Tin − Tb) with αT the

phenomenological accommodation factor αT = 0.65 [70], Tin the particle internal

Figure 2.8: Internal temperature of a 387 nm diameter silica nanosphere as a function
of pressure. This is calculated for a nanosphere levitated in a cavity with
mechanical trap frequency ωm/2π = 50kHz.
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temperature, γs = 7/5 the specific heat ratio, P the gas pressure and c̄ the gas

thermal velocity. The black body emission rate is Q̇bb = −74.9
π2

V k5
B

c3h̄4 εabs(T 5
in−T 5

b ),

with εabs ≈ 0.1 a coefficient depending on the blackbody emissivity [24]. In Fig.

2.8, we show the theoretical internal temperature as a function of pressure. Two

regimes can be noticed, a first regime at pressures higher than P = 10−3 mbar,

where the coupling with the bath dominates the dynamics and the particle internal

temperature remains equal to the bath temperature, and a regime at pressures

below P = 10−6mbar where the absorption reaches an equilibrium with black-body

radiation. Considering a silica nanosphere optically trapped at a cavity antinode

with a frequency ωm/2π = 50kHz, a lower bound on the final internal temperature

at low pressure is 430K (see Fig. 2.8). The final temperature, considering a higher

amount of absorption, is likely to be closer to ∼ 1000K but lower than ∼ 2000K to

be compatible with the observation that our nanospheres do not melt, as it would

be expected at this temperature [45, 70]. At pressures where conductive cooling

becomes negligible, the increase in the internal temperature can lead to a significant

change in the bath temperature [70].

2.4 Classical optical noise
2.4.1 Intensity noise

In the discussion above, it has been assumed that the light field was a pure coher-

ent state. In practice, at frequencies below 10MHz, laser light with optical power

∼1mW is rarely shot-noise limited [17], meaning that the power fluctuations are

not given by the shot noise but by classical intensity fluctuations. We can model

the classical intensity noise by introducing a real stochastic noise term ε, to the

drive amplitude and quantum fluctuations ain+αin→ ain+αin+ ε= α̃in [71] where

we have introduced the total input field amplitude α̃in. The measured intensity on

a photodiode can be defined as the number of photons i = α̃†inα̃in (which is cor-

rect in practice when taking the expectation value and up to some experimental

constants). After linearising to the first order of the quantum and classical fluctua-

tions, we get i≈ α2
in+αin(a†in+ain+2ε). We can define the power spectral density

of the direct detection of the intensity i as 2πSi(ω)δ(ω+ω′) = 〈i(ω)i(ω′)〉+〈i(ω′)i(ω)〉
2 .

This PSD is symmetrised since the measured current is a classical variable [72].

In the case of the quantum fluctuations we have 〈ain(ω)a†in(ω′)〉 = 2πδ(ω + ω′).
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Moreover, we define the classical amplitude field fluctuations noise PSD Sε(ω)

as 2πSε(ω)δ(ω + ω′) = 〈ε(ω)ε(ω′)〉. With those definitions, we get the PSD of

the intensity Si(ω) = α2
in(Sain(ω) + 4Sε(ω)). With typical quantum optics con-

ventions, PSD are normalised to the photon shot noise taken as a reference:

Si,n(ω) = Sain(ω) + 4Sε(ω) with Sain(ω) = 1. This is motivated by the fact that

photon shot-noise fluctuations follow ∆n2 = n̄ with ∆n2 the photon number vari-

ance and n̄ the average number of photons (see section 2.2.3).

Classical intensity fluctuations can have several origins. A common origin is

the fluctuations in the pump diode intensity. Those fluctuations are proportional

to the square of the power ∆n2 ∝ n̄2. We can be quantitative on Sε by looking

for an expression of fluctuations satisfying Sε = kPin with k a constant (and not

proportional to the power squared since we are normalised to the shot noise, itself

proportional to the mean photon number α2
in). We can define Po as the input

power at which the intensity fluctuations are twice above the shot noise. At this

power Pin = Po, we get Si,n(ω) = 1 + 4kPo = 2, from which we get the expression

for the classical intensity noise fluctuations of Sε = Pin
4Po . Finally, we can simplify

the expression given above of the normalised intensity noise to the mean intensity

Si,n(ω) = 1 + Pin
Po

.

2.4.2 Frequency noise

Classical frequency noise arises in lasers, among others, because of noise in the

frequency tuning actuators. In practice, here, this effect is dominated at frequencies

around ∼ 100kHz by mechanical noise in the piezo-actuator used to change the

laser cavity length, and therefore the laser optical frequency. In an optical cavity,

displacement noise caused by vibrations of the cavity mirrors leads to fluctuations of

the cavity resonance frequency, which, inside the cavity are indistinguishable from

laser frequency noise. In practice, these noise sources can easily overwhelm the laser

input intensity fluctuations and lead to excess heating of the centre-of-mass motion

of the levitated nanosphere. We can model frequency fluctuations by introducing

a noise term φ̇ in the cavity detuning ∆o → ∆o− φ̇. In addition to affecting the

nanoparticle dynamics as we will show in the next section, this noise increases the

noise floor in a phase sensitive detection such as a homodyne detection. We define

the frequency noise PSD Sφ̇(ω) as 2πSφ̇(ω)δ(ω+ω′) = 〈φ̇(ω)φ̇(ω′)〉.



2.5. Model of the experiment 61

2.5 Model of the experiment

After having given elements to describe the mechanics, the optical field and the

interaction between the nanosphere and the optical cavity, we can now discuss the

dynamics between the optical field and the nanosphere. We first give the Langevin

equations of motion of the system. In some instances the system can be linearised,

which is more convenient to study the dynamics, and particularly, cavity cooling. In

this case we discuss the contributions of the different noise sources on the nanosphere

motion. Lastly, we give expressions of the homodyne spectra which are used in

practice to infer information on the nanosphere motion and effective temperature.

For simplicity, we only describe the system here with one optical beam, which is

enough to characterise both the cooling effects as well as readout. Other optical

modes can easily be added. We nonetheless discuss how one other mode (separated

by one FSR) can change the mechanical frequency of the nanoparticle.

The Hamiltonian of the system is given below in Eq. 2.51. It is written in the

laser rotating frame ωl where the detuning is defined as ∆o = ωl−ωcav with ωcav the

bare optical resonance frequency. The first term corresponds to the energy of the

optical cavity mode, the second to the particle kinetic energy and the third one to

the dipole interaction, discussed in Section 2.3.1. The last two terms correspond to

the different dissipative terms (photons leaking and mechanical damping) and laser

drive.

H =−h̄∆oa
†a+ p2

2m − h̄Uoa
†acos2(kx) +Hdiss+Hdrive . (2.51)

2.5.1 Langevin equations

The Heisenberg equations of motion are calculated using the Markov quantum

Langevin equation for both mechanical and optical oscillators. The optical field

equation is calculated in the rotating wave approximation (neglecting the fast ro-

tating terms at 2ω0) [3, 65]

ȧ=−(κ− i∆o)a+ iUoacos2(kx) +
√

2κin (ain+αin) +
√

2κv av , (2.52)

ẋ= p

m
, (2.53)

ṗ=−h̄kUoa†asin(2kx)−γmp+Fth . (2.54)
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The total mechanical losses are represented by γm and correspond in practice to

the gas damping (see Section 2.1.1). The total optical losses κ is the sum of dif-

ferent contributions corresponding to the cavity losses (scattering, absorption and

transmission) and losses due to light scattered off the particle (see Section 2.3.2).

The input vacuum fluctuations (corresponding to losses at the input port) are rep-

resented by ain. Vacuum fluctuations corresponding to other losses are represented

by av. The laser drive amplitude is given by αin. In practice, this amplitude can

be rewritten in terms of the laser input power Pin as αin =
√
Pin/h̄ωl. The two dif-

ferent uncorrelated white input noises aj (j = in,v) are described by the correlation

functions given in Eq. 2.41. The mechanical thermal force noise operator is repre-

sented by Fth (see Section 2.1.2). On top of those fundamental noise, we incorporate

classical intensity and frequency noise discussed in Section 2.4. The intensity noise

amplitude is represented by ε and the frequency noise by φ̇. The optical equation of

motion can then be rewritten as

ȧ=−(κ− i(∆o− φ̇))a+ iUoacos2(kx) +
√

2κin (ain+αin+ ε) +
√

2κv av . (2.55)

2.5.2 Linearised dynamics

In the case where the particle equilibrium position is not at the antinode and that

the particle does not explore nonlinearities of the potential (small amplitude of the

motion in comparison to λ/8), then the dynamics can safely be linearised. If these

conditions are not met, this approximation does not hold. The dynamics in this

case is discussed in detail in Section 8.4.

The particle motion is linearised the same way as described for the Hamiltonian

in Section 2.3.1 with x→ xo +x where xo is the nanosphere steady-state position

within the optical fringe. In this section we only consider the linear optomechanical

coupling. This is valid for a particle mean position xo 6= 0, which, as discussed in

previous sections, can be realised with an additional optical mode (see Section 2.5.3).

We can introduce the optical field amplitude steady-sate αs and displace the field

amplitude accordingly a→ αs+a with

αs =
√

2κin
κ− i∆αin , (2.56)
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where we have defined the cavity detuning ∆ which includes the static frequency

shift given by the nanosphere ∆ = ∆o+Uo cos2(kxo). Linearised equations of motion

can then be written as

ȧ=−(κ− i∆)a− iφ̇αs− ikUoαs sin(2kxo)x+
√

2κin(ain+ ε) +
√

2κvav , (2.57)

ẋ= p

m
, (2.58)

ṗ=−h̄kUo(αsa†+α∗sa)sin(2kxo)−mω2
mx−γmp+Fth . (2.59)

2.5.3 Two optical modes

Adding another optical mode can easily be achieved following from the above deriva-

tions. This is motivated in order to obtain a linear optomechanical coupling, nonex-

istent otherwise [24, 44]. We consider here two TEM00 modes, one FSR apart, with

mean intracavity amplitudes for the probe beam (used for probing and cooling) and

trapping beam denoted by αp and αt, respectively. The particle mean position is

given by xs = xi +xo with xi defined as the position of the intensity maximum of

the probe beam (with origin taken at the input mirror) and xo the particle position

within the probe fringe. The phase within the fringe of the probe field is therefore

φp = kxs. The phase on the trapping beam is φt = kxs + π
Lxi. We indicate with

F(y,z) = exp(−2(y2 +z2)/w2
c ) the Gaussian profile of the TEM00 cavity mode. The

coupled dynamical equations describing the full 3D dynamics are then [73]

ȧj =−(κ− i∆j
o)aj + iUoaj cos2(kx+φj)F(y,z) +

√
2κin(αin,j +ain,j) +

√
2κv av,j

ẍ=− h̄kUo
m

∑
j

a†jaj sin(2(kx+φj))F(y,z)−γmẋ+ Fth,x
m

ÿ =−y 4h̄
mw2

c

∑
j

a†jaj cos2(kx+φj)F(y,z)−γmẏ+ Fth,y
m

z̈ =−z 4h̄
mw2

c

∑
j

a†jaj cos2(kx+φj)F(y,z)−γmż+ Fth,z
m

(2.60)

where j = p,t indicate the probe and trap fields, γm the gas damping, ∆j
o is the

empty cavity detuning, κ = κin +κv is the total cavity half linewidth. Field fluc-

tuations are uncorrelated with the only nonvanishing correlation function given by

〈ai(t)a†j(t′)〉 = δ(t− t′)δij and Fth,i is a Brownian stochastic force that arises from
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background gas collisions and with a correlation function given by 〈Fth,i(t)Fth,j(t′)〉=

2kBTbmγmδ(t−t′)δij , where Tb is the temperature of the background gas. The effec-

tive mechanical frequency along the x-axis depends both on the two field amplitudes

as well as the well location xi in the cavity. By defining the intracavity power ratio

µ between the two beams as µ= |αpαt |
2, it can be shown that the effective mechanical

frequency reads [44]

ω2
m = 2h̄k2Uo

m
|αt|2

√
1 +µ2 + 2µcos

(
2π
L
xi

)
, (2.61)

with the equilibrium position xo satisfying

tan(2kxo) =−
sin
(
2 πLxi

)
µ+cos

(
2 πLxi

) . (2.62)

2.5.4 Position spectra

We follow here the approach detailed in Ref. [74] to calculate the position spectra
and study the effect of the optics onto the mechanical oscillator. We only consider
one beam as in the previous sections. An additional optical mode can easily be
added with a similar treatment. Let us denote Ko(ω) = κ− i(∆ +ω). Taking the
Fourier transform of the Langevin equation Eq. 2.57, we obtain

a(ω) = −ikUo sin(2kxs)αsx(ω)− iαsφ̇(ω) +
√

2κin (ain(ω) + ε(ω)) +
√

2κv av(ω)
Ko(ω) , (2.63)

x(ω) = i
p(ω)
mω

, (2.64)

m(ω2
m−ω2− iωγm)x(ω) =−h̄kUo sin(2kxo)(αsa†(ω) +α∗sa(ω)) +Fth(ω) . (2.65)

One can write the equations for the mechanical motion as

χeff (ω)−1x(ω) =B1(ω)
(√

2κin (ain(ω) + ε(ω)) +
√

2κvav (ω) + iα∗sφ̇
)

+B2(ω)
(√

2κin(a†in(ω) + ε(ω)) +
√

2κva†v(ω)− iαsφ̇
)
, (2.66)

where

B1(ω) = −h̄kUo sin(2kxo)α∗s
Ko(ω) , (2.67)
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B2(ω) = −h̄kUo sin(2kxo)αs
K∗o (−ω) . (2.68)

We define the effective coupling rate as G =
√

2G1αs with G1 = kUosin(2kxo).

Another useful definition is the normalised coupling strength to the zero-point

motion: Gn = G
√
h̄/mωm. The symmetrised position PSD Sx(ω) is defined as:

2πSx(ω) = 〈x(ω)x(ω′)〉+〈x(ω′)x(ω)〉
2 . It consists of five terms corresponding to thermal

noise, radiation pressure, intensity, frequency noise and recoil heating contributions.

Sx(ω) = |χeff (ω)|2(SFth(ω) +Srp(ω) +Sin(ω) +Sfn(ω) +Src(ω)) , (2.69)

with the thermal PSD given by SFth(ω) = 2kBTγmm (for the full expression see

Section 2.1.2). The expression for the recoil force noise Src(ω) is given in Eq. 2.49.

The radiation pressure force noise PSD reads

Srp(ω) = h̄2G2κ(∆2 +κ2 +ω2)
(κ2 + (ω+ ∆)2)(κ2 + (ω−∆)2) , (2.70)

the laser classical intensity noise PSD

Sin(ω) = 2h̄2G2
1κinSε

∣∣∣∣ αs
K∗o (−ω) + α∗s

Ko(ω)

∣∣∣∣2 , (2.71)

and the frequency noise PSD

Sfn(ω) = h̄2G2
1Sφ̇

∣∣∣∣∣ −|αs|2K∗0 (−ω) + |αs|2

Ko(ω)

∣∣∣∣∣
2

, (2.72)

with Sε and Sφ̇ defined in Section 2.4. These two noises are considered here to

be white for simplicity. This approximation typically holds for effective mechanical

linewidths smaller than ∼1 kHz. In the above equation we have identified an effective

mechanical susceptibility

χeff (ω) =
(
m
(
ω2
m−ω2− iωγm

)
+ h̄G2∆

(κ− iω)2 + ∆2

)−1

. (2.73)

Finally, from the expression of the susceptibility, one can identify an effective me-

chanical frequency and damping caused by the optomechanical interaction
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ωm,eff (ω) =
(
ω2
m+ h̄G2∆(∆2 +κ2−ω2)

m(κ2 + (ω−∆)2)(κ2 + (ω+ ∆)2)

)1/2

, (2.74)

γm,eff (ω) = γm−
2h̄G2∆κ

m(κ2 + (ω−∆)2)(κ2 + (ω+ ∆)2) . (2.75)

The shift in the effective mechanical frequency given by the optomechanical interac-

tion is the consequence of the so-called optical spring. Furthermore, the optomechan-

ical interaction changes the effective damping which can be increased or lowered de-

pending on the detuning sign. In the "bad-cavity" regime (ωm/κ< 1), for a red detun-

ing (∆< 0), the optical spring reduces the mechanical frequency, and the damping is

increased, which cools the oscillator. Conversely, a blue detuning increases the me-

chanical frequency and leads to heating. The final phonon number can be estimated

by calculating the position and momentum variances: 〈∆x2〉 = 1
2π
∫
Sx(ω)dω and

〈∆p2〉= m2

2π
∫
Sx(ω)ω2dω, respectively [74]. From this calculation, the effective num-

ber of phonons neff can be estimated with h̄ωm
(
neff + 1

2

)
= mω2

m
2 〈∆x2〉+ 1

2m〈∆p2〉.

2.5.5 Homodyne spectra

As detailed above, the position PSD Sx(ω) gives useful information regarding the

final temperature of the motion and the budget of the different sources of heating.

The homodyne spectra adds to this information the detection imprecision noise

coming from the shot noise, vacuum losses and additional classical noise. We detail

here the expression of the homodyne detection which can be simply adapted to

the case of several optical beams. Moreover, the homodyne field is given for the

reflected cavity field, as experimentally obtained here in practice. The reflected

output field reads aout = −ain− ε+
√

2κina. We define the homodyne output field

aθout as aθout = aoute
−iθ +a†oute

iθ with θ the phase of the local oscillator (see Section

2.2.3.1). With this definition, the homodyne output PSD with the contributions of
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the different noise sources reads

Saθout
= Sain

(
|A1(ω)|2 + |A2(−ω)|2 + 2Re

[
A1(ω)A2(−ω)e−2iθ

])
+Sav

(
|A3(ω)|2 + |A4(−ω)|2 + 2Re

[
A3(ω)A4(−ω)e−2iθ

])
+SFth

(
|A5(ω)|2 + |A5(−ω)|2 + 2Re[A5(ω)A5(−ω)e−2iθ]

)
+Src

(
|A5(ω)|2 + |A5(−ω)|2 + 2Re

[
A5(ω)A5(−ω)e−2iθ

])
+Sε

(
|A6(ω)e−iθ +A∗6(ω)eiθ|2

)
+Sφ̇

(
|A7(ω)e−iθ +A∗7(ω)eiθ|2

)
, (2.76)

with Sain , and Sav the spectra of different vacuum input ports all equal to 1 with

the shot noise normalisation convention. Let us define:

A8(ω) =
√

2κin
K0(ω)

(
1 + i

|αs|2h̄G2
1χeff (ω)

K0(ω)

)
, (2.77)

A9(ω) = i

√
2κin

K0(ω)
α2
sh̄G

2
1χeff (ω)

K∗0 (−ω) . (2.78)

With this definition,

A1(ω) =−1 +
√

2κinA8(ω) , (2.79)

A2(ω) =
√

2κinA9(ω) , (2.80)

A3(ω) =
√

2κvA8(ω) , (2.81)

A4(ω) =
√

2κvA9(ω) , (2.82)

A5(ω) =−i
√

2κin
K0(ω)αsG1χeff (ω) , (2.83)

A6(ω) =A1(ω) +A2(ω) , (2.84)

A7(ω) = iαsA8(ω)− iα∗sA9(ω) . (2.85)

2.5.6 Parameters discussion

In this section we discuss the minimum phonon occupancy which can be achieved

with current and future experimental parameters. Here, we consider two laser beams

as discussed in Section 2.5.3. The parameters considered for this case are very close

to the ones experimentally used in Section 8.5 and estimated in Chapter 7. We
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consider the science cavity input transmission coefficient to be T1 = 80ppm and

total losses Σ = 95 ppm (particle scattering losses excluded). This corresponds to

a cavity half linewidth κ/2π = 143kHz. The trapping (probe) beam has an in-

put power Pin = 0.6mW (Pin = 0.2mW) and detuning ∆/2π = −10kHz (varying

detuning), which gives a mechanical frequency ωm/2π ≈ 55kHz, see Fig. 2.9(c).

The particle position within the cavity is xi−L/2 = 0.8mm, and the pressure of

the vacuum chamber is considered to be P = 5× 10−6mbar. The frequency noise

considered for the trapping (probe) beam at 50 kHz is Sφ̇/(2π)2 = 5×10−3Hz2/Hz

(Sφ̇/(2π)2 = 2.5× 10−2Hz2/Hz). The power at which the laser intensity noise is

twice above the shot-noise (for both lasers) is Po = 35µW. We show in Fig. 2.9(a),

the noise budget of the final phonon occupation number as a function of detuning

of the probe beam. With these parameters, a final phonon occupancy neff ≈ 1000

is achievable mostly limited by frequency noise and thermal noise.

In order to achieve the ground state, frequency noise, thermal noise, radiation

pressure shot noise and classical intensity noise need to be reduced. We present

here, reasonable experimental parameters where this could be achieved. We con-

sider now the science cavity input transmission coefficient T1 = 30ppm and total

losses Σ = 5ppm (particle scattering losses excluded). This corresponds to a cav-

ity half linewidth κ/2π = 29kHz. The trapping (probe) beam has an input power

Pin = 0.6mW (Pin = 0.1mW) and detuning ∆/2π =−6kHz (the probe beam detun-

ing is varied), which gives a mechanical frequency ωm/2π ≈ 146kHz, see Fig. 2.9(d).

We consider the optimal particle position within the cavity xi−L/2 =L/4 = 3.3mm,

which therefore leads to a stronger optical damping. The pressure considered in

the vacuum chamber is this time P = 1× 10−8mbar. The frequency noise con-

sidered for the trapping (probe) beam at 150 kHz is Sφ̇/(2π)2 = 1× 10−6Hz2/Hz

(Sφ̇/(2π)2 = 7× 10−6Hz2/Hz). Same classical intensity noise threshold on both

beams at Po = 100mW is considered. We discuss in Section 7.3 how to achieve those

noise levels. We show in Fig. 2.9(b), the noise budget of the final phonon occupation

number as a function of detuning of the probe beam. With those parameters, a final

occupancy neff ≈ 0.7 could be achieved, limited this time by the radiation pressure

shot noise. Finally, for the two cases considered, we show in Fig. 2.10 the theoretical

homodyne spectra in reflection with the main noise contributions. In Fig. 2.10(a),
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Figure 2.9: (a), (b) Theoretical noise budget given in phonon occupancy as a function of
probe beam detuning. The experimental parameters are given in the main
text. Total phonon occupancy (black line), thermal contribution (orange),
laser frequency noise (blue), classical intensity noise (red), radiation pressure
shot noise (green), recoil heating for a shot-noise limited beam (gold). (c),
(d) Effective mechanical frequency as a function of probe beam detuning with
same experimental parameters as the ones shown in (a) and (b), respectively.

we show the homodyne spectra of the reflected probe beam with same parameters as

in Fig. 2.9(a) and with probe beam normalised detuning of |∆|/κ= 0.25. The three

main noise contributions in the homodyne PSD (black) are thermal noise (blue),

frequency noise from the probe beam (orange) and from the trapping beam (green).

The other contributions are not shown. Of particular importance, the effect of fre-

quency noise can be seen both in terms of phonon number occupancy in Fig. 2.9(a)

and significant reduction in detection sensitivity as shown in Fig. 2.10(a). In Fig.

2.10(b), we show the homodyne spectra of the reflected probe beam with same pa-

rameters as in Fig. 2.9(b) and with probe beam normalised detuning of |∆|/κ= 3.

The main contributions to the homodyne PSD are input losses from the probe beam

(blue), photon recoil from the trapping beam (orange) and vacuum losses from the

probe beam (green).
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Figure 2.10: Theoretical reflected output homodyne spectra normalised to the shot noise
level corresponding to the two cases shown in Fig. 2.9(a) and (b) shown in
black. Only the three main noise contributions to the spectra are shown. (a)
Thermal contribution is shown in blue, frequency noise from the probe beam
in orange and frequency noise from the trapping beam in green. (b) Thermal
contribution is shown in blue, noise associated with the input losses on the
probe beam in orange and vacuum losses from the same beam in green.

2.6 Summary
To summarise, we have introduced in this chapter theoretical elements to describe

the optomechanical interaction between a nanosphere and an intracavity mode.

Both theories of the mechanical and optical oscillators were reviewed in the classi-

cal and quantum regimes. We were then able to detail the Hamiltonian governing

the dipole interaction. Among others, scattering losses, recoil heating and absorp-

tion were described. In those experiments where the frequency of interest is low

(ωm/2π ≈ 100kHz), laser classical noise has to be taken into account. We described

how classical intensity noise and frequency noise can be incorporated into the model

of the experiment. Then we derived expressions for both light and nanosphere dy-

namics (Langevin equations) as well as spectra of the particle position and optical

field homodyne quadratures. Lastly, we used this model with typical experimen-

tal parameters to illustrate among others the need for taking into account laser

frequency noise, responsible for both heating of the mechanical motion and lower

detection signal-to-noise ratio. Also discussed were reasonable experimental param-

eters where the ground state could be achieved.



Chapter 3

Paul trap theory and design

Paul traps are a key tool for quantum science and technology [75–77]. They have

been utilised for the creation of stable atomic clocks and for the demonstration of

important protocols in quantum computation and information [77, 78]. In these

traps, atomic and molecular ions can be laser cooled to their ground state and

trapped in isolation for weeks. Key to their utilisation has been that a deep and

stable low noise electrical potential can be readily created. A growing number of

companies are currently using this platform to develop quantum computers1. In

this chapter we review the general theory of Paul traps. We then discuss our trap

architecture that is specifically designed for levitated optomechanics experiments.

Finally, we outline the loading procedure which combines electrospray ionisation and

a quadrupole guide which delivers a charged nanoparticle to the trap.

3.1 Paul trap theory
Paul traps are used to stably levitate charged objects confined in three dimensions.

The first of Maxwell’s equations (Gauss’s law) states that, in the absence of charge

density, the electric field E must follow divE = 0. In order to trap charged objects,

the field has to obey divE < 0 which corresponds to the electric field lines pointing

towards the trap centre. With this condition, if the charged particle moves away

from the trap centre, a force along the electrical field lines will bring it back towards

the centre. Since this cannot be achieved with a DC electric field, Wolfgang Paul

had the ingenious idea of applying an AC field which creates an equivalent static

pseudopotential. Several architectures can be used depending on the experimental

needs but all follow similar dynamics (Mathieu dynamics). Here we discuss linear
1IonQ, Honeywell, Alpine Quantum Technologies, Universal Quantum...
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Paul traps which consist of four electrodes (rods) as the one shown in Fig. 3.1.

The trap can be driven either symmetrically or asymmetrically. Symmetric driving

corresponds to applying the same AC voltage on two electrodes along a diagonal

that is out of phase on the other two. Asymmetric driving corresponds to applying

the same AC voltage on two electrodes and keeping the other two at ground. The

AC field applied on the rods confines the charged nanoparticles in the radial plane of

the trap. DC voltages can be applied on both ends of the trap on so-called endcaps

to confine nanoparticles along the trap axis.

x

y

z

Figure 3.1: Diagram of a linear Paul trap with four electrodes (rods). The same AC voltage
of amplitude Vo and frequency ωd is applied on two opposite rods while the
other two are grounded (asymmetric driving). The particle is confined along
the z-axis by applying a DC voltage Uo on both endcaps.

3.1.1 Mathieu dynamics

The Mathieu equations are derived here assuming asymmetric driving where a volt-

age Vo cos(ωdt) is applied on two opposite rod electrodes, where ωd is the drive

frequency. The field close to the trap centre can be approximated as perfectly

quadratic. This is in practice modelled and quantified by an efficiency parameter η

which can be seen as a quadratic fit to the field near the trap centre [79, 80]. This will

be shown in the section below on the trap designs where we calculate the efficiency

η of our traps. Within the coordinate axis defined by the trap diagonals (see Fig.

3.1), the voltage VAC(x,y, t) in two dimensions within the quadratic approximation
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reads:

VAC(x,y, t) = Vo
2

(
1 +η

x2−y2

r2
o

)
cos(ωdt) , (3.1)

where ro is the shortest distance between the centre of the trap and the electrodes

providing the AC field. A DC voltage Uo is applied on both endcaps to confine the

nanoparticles along the z-axis. Similar to the AC field, a geometric efficiency factor

κ is used to compare the field to a quadratic one. The distance between the centre

of the trap and the endcap electrodes is defined as zo. The endcaps lead to the DC

potential VDC :

VDC(x,y,z) = κUo
z2
o

(
z2− εtx2− (1− εt)y2

)
. (3.2)

The static potential given by the endcap in the transverse direction of the trap is

described (in the quadratic approximation of the field) by the ellipticity parameter

εt. Only two parameters (κ and εt) are needed to describe the field since it has

to follow from the condition divE = 0 stated above. In the case where the trap is

symmetric in the x-y plane we have εt = 0.5. The Coulomb force F on a particle of

charge Q reads

F (t) =−Q∇(VAC(x,y, t) +VDC(x,y,z)) . (3.3)

We can write the Newtonian dynamics along each axis, i = x,y,z, in a canonical

Mathieu equation form where ui stands for the amplitude of the motion along the ith

direction. We can then define Mathieu stability parameters ai and qi that quantify

the stability of the particle motion in the trap, given by the AC and DC fields,

respectively. It is important to include the effect of stray electric fields Ei as well.

We denote the nanosphere mass by m. The canonical Mathieu equation reads

üi+ (ai+ 2qi cos(ωdt))
ω2
d

4 ui = QEi
m

, (3.4)

with the following expression for the stability parameters along each axis

qx =−qy = Q

m

2ηVo
r2
o ω

2
d

and qz = 0 , (3.5)

ax =−Q
m

8εtκUo
z2
oω

2
d

, ay =−Q
m

8(1− εt)κUo
z2
oω

2
d

and az = Q

m

8κUo
z2
oω

2
d

. (3.6)

The trapped particle feels an effective ponderomotive pseudopotential φ(x,y) =
Q

4mω2
d
|∇V (x,y)|2 given by the AC field in the x− y plane [80]. In the common
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case of operation where |ai| � 1 and |qi| � 1, the solution of the above equation can

be approximated to [81]:

ui(t)≈ (uo,i+u1,i cos(ωi t+φi))
(

1 + qi
2 cos(ωd t)

)
, (3.7)

where we have included a phase φi determined by the initial position and velocity

of the nanosphere in the trap and

ωi ≈
ωd
2

√
ai+

1
2q

2
i and uo,i ≈

QEi
mω2

i

. (3.8)
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Figure 3.2: (a) Time trace of the position of the nanosphere in one radial direction obtained
with a stochastic simulation of the 1-D Mathieu equation. The slow motion of
large amplitude corresponds to the secular motion at ωi/2π= 358Hz. The fast
oscillations correspond to both micromotion and excess micromotion. For this
simulation, the mean position of the particle is offset by an additional DC field
of magnitude 10V/m to demonstrate the effect of an additional static force.
(b) Power spectral density of the displacement. The time trace shown in (a)
is a subset of the time trace used to calculate the PSD. The three different
motions can clearly be seen: secular motion at ωi, micromotion at ωi−ωd
and ωi +ωd and excess micromotion at ωd/2π = 3kHz. It is worth noting
that the micromotion has a linewidth identical to the secular motion. The
peak corresponding to the excess micromotion has no linewidth as expected
since corresponding to a driven motion. The parameters for this simulation
are charge-to-mass ratio of 0.7C/kg, bath temperature of 300K, mass of 5.6×
10−17 kg, stability parameters a= 0.01, q = 0.3, AC drive frequency ωd/2π =
3kHz and gas damping γm/2π = 0.34Hz which corresponds to a pressure of
10−3 mbar.

Three different motions arise from the above equation. First, a so-called secular

motion (also called macromotion) of amplitude u1,i and frequency ωi: u1,i cos(ωi t+
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φi). This motion is the one given by the AC pseudopotential and is caused by the

rotation of the AC field. Along the z-axis it is typically thermal, that is to say

incoherent and at equilibrium with the bath temperature Tb. This is also the case

for the motion in the radial direction when the condition |ai| ≤ q2
i (with i = x,y)

is satisfied, which leads to 〈u2
1,i〉 = kB Tb

mω2
i
. The second type of motion is given by

u1,i
qi
2 cos(ωi t+ φi)cos(ωd t), and is called micromotion. The pseudopotential (or

macromotion) leads to a periodic excursion of the particle away from the trap centre.

This leads to two fast oscillations proportional to the macromotion amplitude u1,i

at frequencies ωd+ωi and ωd−ωi. Lastly, in the case of an additional DC field Ei,

the particle’s mean position is not in the centre of the AC field which leads to a

motion uo,i qi2 cos(ωd t) called excess micromotion. Those three motions can be seen

in both time and frequency domains in the simulations shown in Fig. 3.2. They

have been discussed in detail for ion traps since their minimisation is critical in

many instances [81]. Indeed, these motions can lead to several undesirable effects

such as reduced efficiency in Doppler-cooling or broadening of atomic transitions.

Cooling of the thermal secular motion is generally done by combining Doppler-

cooling and sideband cooling. The standard micromotion is reduced by cooling

the secular motion (since its amplitude is proportional to the secular motion). As

mentioned above, the excess micromotion is caused by additional stray fields which

perturb the potential. They can be in practice compensated by applying voltages

on additional electrodes in order to bring the average position of the particle to the

centre of the AC field: uo,i→ 0. Similarly, and relevant to the work presented here,

excess thermal motion of the nanosphere (macromotion) can lead to an undesired

modulation in the experiment. In Section 8.2, we demonstrate cooling of the secular

motion by applying feedback on one of the trap electrodes. Furthermore, we apply

DC voltages on trap electrodes to reduce the excess micromotion (see Section 4.6.3).

We can now discuss the advantages and drawbacks of using symmetric and

asymmetric driving in the linear Paul trap configuration. Driving the trap symmet-

rically offers the advantage of needing half the voltage to provide an equivalent trap

depth. In this case the Mathieu dynamics are identical with an efficiency parameter

that is twice higher. The fact that the electrodes are finite in size leads to a pon-

deromotive potential along the trap axis. While cancelled when using symmetric
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driving, it is not the case in the asymmetric case. The main drawback of using sym-

metric driving is the fact that the phase difference between the two signals needs to

be well under control in order to prevent excess micromotion [81]. In most of the

work shown below, we use asymmetric driving.

3.1.2 Stability diagran

We now discuss the stability of the Mathieu equations shown in Eq. 3.4 which de-

termines if a charged nanosphere remains trapped. In the case of a linear Paul trap,

the radial motion is governed by the Mathieu equation whereas the axial motion

is determined by the endcap voltages (in the z-direction we have qz = 0). Whereas

this is true in the case of symmetric driving, in the antisymmetric case, this is only

a valid approximation when the AC ponderomotive contribution can be shown to

be negligible. Depending on the values of the stability parameters in the radial di-

rection, the motion can be stable or unstable [82]. This is typically illustrated in a

stability diagram [83] shown in Fig. 3.3(a). The blue region corresponds to values

of the a and q parameters which lead to a stable trapped motion. The a parame-

ter needs to be negative to provide stable confinement in the axial direction which

corresponds to a positive endcap voltage for a positively charged nanosphere. In

practice, a is very small (|a|< 0.01) because the effect of the endcap voltages on the

effective radial potential is negligible. For the motion to be stable in this case, the q

stability parameter must satisfy 0< q < 0.91 (see Fig. 3.3(a)). It is worth discussing

the operation of the quadrupole trap as a mass-spectrometer. While not relevant

to the trap itself, we use a quadrupole guide to assist the trap loading mechanism,

discussed in Section 3.3.1. This configuration is the one used in mass-spectrometry

to filter out particles depending on their charge-to-mass ratios [84]. The difference

of this configuration is to apply the same DC voltage U1 on two opposite rods.

We denote by Ueff the effective potential proportional to U1 corresponding to the

quadratic expansion near the trap centre. Since in the mass-spectrometer configu-

ration this potential overcomes the one provided by the endcaps, the a parameters

are very well approximated by (assuming εt = 0.5):

ax =−ay =−Q
m

4Ueff
r2
oω

2
d

. (3.9)
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Figure 3.3: (a) Stability diagram of a linear Paul trap. The motion is stable for parameters
a and q lying inside the blue region. (b) Stability digram when the trap is
operated as a mass-spectrometer. The motion is stable where the blue and
orange regions overlap.

We have therefore in this case ay = −ax and qy = −qx and the stability diagram is

therefore made by the overlap of two identical (same as the one shown Fig. 3.3(a))

but opposite diagrams as shown in blue and orange in Fig. 3.3(b). There are several

stable regions in this case. The main one corresponds to the area of overlap between

the blue and orange regions.

In the above, we have not included the effect of the gas damping γm and of the

Brownian motion. This makes the set of Mathieu equations (Eq. 3.4) only valid

over a time 2/γm which corresponds to the timescale over which the motion loses

coherence (see Section 2.1.1). Furthermore, the gas damping can easily be included

in Eq. 3.4. A new stability parameter bi can then be defined as bi = ai− γ2
m

ω2
d
to replace

the initial ai parameter [85]. At pressures lower than 1mbar we have |bi| � 1 and

the effect of the damping on the trap stability becomes negligible. At high pressure,

this effect dominates and its consequence is to greatly increase the stability domain

shown in Fig. 3.3.

3.2 Paul trap designs
In this section, we discuss two main designs of Paul traps for levitated optomechanics

experiments. Several criteria were taken into consideration to design those traps.

First, to be small enough to fit within an optical cavity that is 14.6mm long and

secondly, to have good control over the position of the nanosphere for compensating
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the micromotion. Lastly, a 3-D access to the centre of the trap is required: one for

the cavity axis, one for loading and one for direct imaging of the trap. In order to

achieve all those requirements, a linear Paul trap consisting of four rod-electrodes

as shown in Fig. 3.1 seemed to be the most convenient solution.

3.2.1 Printed circuit board trap

A first design of Paul trap using a printed circuit board (PCB) was reported in Ref.

[86]. The advantage of using a PCB is the flexibility given by the printed tracks.

In this experiment, NV centres were trapped and detection of the spin state was

realised by observing their fluorescence. To achieve greater detection efficiency the

trap was designed out of one single board with one rectangular hole in its middle

corresponding to the centre of the trap. Tracks on both sides were used to define

the field. For our PCB design, we use the same geometry but bring the two PCB on

top of each other separated by 1.4mm, see Fig. 3.4. The two tracks correspond to

the rods shown in Fig. 3.1 (the tracks are elongated along the z-axis). The tracks

corresponding to the endcaps are the ones elongated along the y-axis. The copper

layers have a thickness of 70µm. The distance between two diagonally opposite AC

electrodes is 1.6mm while the distance between the endcaps is 5.8mm. The efficiency

parameters and geometric factors are η = 0.698, εt = 1.31, κ = 0.382, ro = 1.08mm

and zo = 2.99mm. Though demonstrating stable trapping, this trap was not used

B

Figure 3.4: (a) Picture of the PCB tracks of one of the two identical boards used for the
trap. Two of the four tracks used for the AC field are the ones elongated
along the z-direction. The other two electrodes are used as endcaps. (b) Trap
formed by placing two identical PCB (shown in (a) with a hole drilled in the
middle) on top of each other. The two boards are separated with a spacer
1.4mm thick. Five nanospheres can be seen in the centre of the trap.
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for later experiments. The main drawback of this trap is the fact that the dielectric

of the PCB material is too close to the trap centre. Indeed, it is as close as the

AC electrodes themselves since the faces normal to the y-axis within the drilled hole

are not plated. Because of this, charged nanospheres accumulate on the dielectric

surfaces during the loading process which leads to a different equilibrium position

of the nanosphere in the trap. After having loaded the trap around ten times it

needs to be discarded as too many charges have built up on the dielectric preventing

any loading. Similar issues have been reported in the ion trap community where

accumulation of ions on the electrodes can have a significant effect on the trapping

potential [87].

3.2.2 Miniature linear Paul trap

3.2.2.1 Geometry

In order to still work with a linear Paul trap, while minimising the amount of

dielectric material near the centre, we opted for a miniature linear Paul trap. We

are still using PCB material but it is kept further away from the trap centre. The

PCB is used this time as a trap mount as well as for the electrical connections and

endcaps. A schematic diagram of the trap (with the right proportions) is shown

in Fig. 3.1 and a picture in Fig. 3.5(a). The four rods constituting the trap are

mounted on a printed circuit board (PCB) whose layout is shown in Fig. 3.5 (b) and

(c). The stainless steel electrodes of the trap are rods of 0.5mm diameter which

sit into the plated holes of the PCB. One plated through hole on each PCB in the

middle of the rods is used as an endcap. The end cap geometry is a ring in order to

let the cavity mode go through and therefore be superimposed with the trap axis.

The two PCB boards (and therefore the endcaps) are kept at a distance of 7.0mm.

Both the traces and the holes are gold coated to minimise patch potentials [88].

Using a PCB to support the electrodes allows flexibility in making the electrical

connections to the rods and keep to a minimum their effect on the potential of the

trap. The substrate used here2 is a ceramic-filled woven glass that is compatible with

ultra-high vacuum [89, 90]. The PCB tracks are separated by a distance of at least

225µm to avoid a voltage breakdown [91] at any pressure with the typical ∼ 500V

peak-to-peak AC voltages applied. The efficiency parameters (see next section for

2The PCB is a RO4003C by Rogers.
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Figure 3.5: (a) An image of the linear Paul trap loaded with a nanoparticle in its centre.
(b) The PCB layout of the internal side of the trap. The five holes at the top
of the layout are used for the trap connections. The pad in the centre of the
five holes is used as an endcap. The other four holes are used as both holders
and electrical connections to the four rods constituting the trap. Tracks made
out of gold coated copper are shown in black. (c) The PCB layout on the
external side of the trap. The connections to the PCB board are realised on
the lower part of the PCB using the five lower holes.

calculation) and geometric factors are η = 0.818, εt = 0.5, κ = 0.086, ro = 1.1mm

and zo = 3.54mm.

3.2.2.2 Efficiency parameters

In the previous section we have introduced two efficiency parameters η and κ that

quantify how quadratic the potential is near the centre of the trap. We follow

here the methods discussed in Ref. [79, 80] to calculate those two coefficients by

using finite-element-method simulations. To evaluate η, we carry out a 2D finite

element method simulation (FEM) of the potential near the centre of the trap in

the transverse direction of the trap, which is shown in Fig. 3.6. The efficiency

parameter η is calculated by comparing the potential to a perfect quadrupole po-

tential φ(x,y) = φo(x2−y2)/r2
o (for axis definition see Fig. 3.1). Near the centre of

the trap, the simulated field φ′(x,y) can be written as an expansion in cylindrical

harmonics where φ′(r,θ) =
∞∑
m=1

Cmφcm+
∞∑
n=1

Snφsn, with φcm = (r/ro)mcos(mθ) and

φsm = (r/ro)nsin(nθ). It can be shown that given the symmetries of the potential

distribution, the smallest coefficient different from zero is C2. This coefficient (and

the higher order coefficients) is calculated as the projection of the simulated po-

tential onto the spherical basis: C2 = Ia2/Ib2 with Iam =
∫ π/4
−π/4

∫ ro
0 φ′φcmrdrdθ and

Ibm =
∫ π/4
−π/4

∫ ro
0 φ2

cmrdrdθ= πr2
o/8(m+1). In the case of a perfectly quadrupole field
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Figure 3.6: 2D-simulation of the voltage in the trap radial plane performed using a finite
element method software. The four rods constituting the trap are the four
white holes. We apply 1V (red) to two opposite cylinders and ground (blue)
the other two. The local electric field is shown by red arrows (logarithmic scale
for the amplitude).

φ′(x,y), we would get η = C2 = 1. Here we obtain η = 0.818. This value is consis-

tent with a quadratic fit of the pseudopotential near the centre of the trap (see Fig.

3.7(a)). The efficiency parameter κ is more straightforward to calculate since the

potential provided by the endcaps is static. A 3D FEM simulation is this time car-

ried out. A simple quadratic fit near the centre of the trap, as shown in Fig. 3.7(b),

gives an efficiency parameter of κ= 0.086 with the convention: VDC(z) = κUo
z2
o
z2 with

zo =
√
l21 + l22 = 3.536mm, with l1 = 3.5mm corresponding to the distance between

the centre of the endcap and the trap centre, and l2 = 0.5mm the endcap radius.

3.2.2.3 Voltage noise

Voltage noise, which is discussed in great detail by the ion trap community, needs

to be assessed as it can lead to motional heating of the nanosphere. Whereas patch

potentials can be challenging to assess, the electric field noise given by the different

voltage sources can be more easily modelled. By carrying out simulations similar to

the ones presented above, one can obtain how the voltage noise on the electrodes

is transduced into electric field noise [92]. When considering voltage noise given by

one rod only near the centre of the trap and expanded to the first order, we get
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Figure 3.7: (a) Simulation of the pseudopotential in the transverse direction of the trap.
The simulation is done in the asymmetric case with 1V applied on two opposite
rods. The ponderomotive pseudopotential envelope |∇V (x,y)|2 is shown in
blue. The dashed orange line corresponds to a quadratic fit of the potential
giving a coefficient η= 0.817 consistent with the one found with the integration
method. Deviations from a pure quadratic potential can be noticed from a
distance of 0.3mm away from the trap. (b) Simulation of the potential along
the endcap direction (z-axis) with 1V applied on both endcaps. A quadratic
fit of the potential near the centre of the trap is shown in orange.

E(x) = V (1/D+ x̄/D1) with V the voltage applied on the rod, x̄ the particle mean

position, D = 3.3mm and D1 =−2.9mm2 (with the x-axis defined on Fig. 3.1 and

x= 0 corresponding to the centre of the trap). When the particle is in the centre of

the trap, the excess force noise is given by SF =Q2SV /D
2 where SV is the voltage

noise of the source. In the case where the noise sources are correlated on two opposite

rods, they cancel each other out in the centre. The first order expansion gives then

E(x) = V |x̄|/D1 with D1 = −1.5mm2. Lastly, we consider the case of correlated

noise on both endcaps since we are using the same voltage source for both endcaps.

The electric field noise projected onto the axial direction is E(z) =Uz̄/D1 with U the

same voltage applied on both endcaps and D1 =−71mm2 (with z = 0 corresponding

to the centre of the trap).

3.2.2.4 Trap depth

The trap depth can be directly estimated from the simulations shown in the previous

section. First in the radial direction, we estimate it by carrying out a simulation

of the ponderomotive pseudopotential between the two RF rods of the trap. This

corresponds to the x-axis or equivalently to the y-axis as the trap is symmetric
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Figure 3.8: Simulated pseudopotential |∇V (x,y)|2 along the x-axis. A voltage of 1V is
applied on two diagonally opposed rods.

Figure 3.9: Simulated potential provided by the endcaps along the trap axial direction
(with 1V applied on both endcaps).

(with this time the axis definition given in Fig. 3.5(a)). The trap depth can then

be estimated following from the pseudopotential φ(x,y) = Q
4mω2

d
|∇V (x,y)|2. We

show the envelope corresponding to the pseudopotential in this trap in Fig. 3.8.

We typically trap silica nanospheres of mass ∼ 5× 10−17 kg with ∼ 200 individual

charges. The trap is typically operated with a drive frequency of ωd/2π = 3kHz and

voltage of 500V(peak-to-peak). This gives us in this case a trap depth in the radial

direction of ∼ 10−15J ≈ 5×103 eV . This is equivalent to a velocity of ∼ 5m/s or a

temperature of 108 K. In Fig. 3.9, we show the voltage along the trap axis from which

we estimate a trap depth of ∼ 10−11J with a typical 100V applied on both endcaps.

Lastly, since we are driving the trap asymmetrically, we expect some ponderomotive

confinement along the trap axis that is roughly one order of magnitude smaller than
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Figure 3.10: Simulated pseudopotential |∇V (x,y,z)|2 along the z-axis. A voltage of 1V
is applied on two diagonally opposed rods.

along the radial direction. Given our typical parameters along the trap axis, this

ponderomotive potential is overwhelmed by the one provided by the endcaps, as it

can be seen in Fig. 3.10.

3.3 Paul trap loading

Reliable loading of nanoparticles is critical to the experiment. Extensive research

has been carried out by different groups within the community in order to achieve

specific needs such as loading in vacuum, minimising contamination of nanoparticles

or controlling the number of charges. Several groups use portable nebulisers where

a piezo-actuator pushes liquid through a fine mesh which creates an aerosol. The

issue with this method used at atmospheric pressure is the possible contamination

of the vacuum chamber and, critically, of the cavity mirrors. This can be overcome

by trapping a nanoparticle in an optical tweezer in a first vacuum chamber using

the nebuliser, and then transferring it to another optical trap in another vacuum

chamber [93]. Another method uses a piezo-disk speaker where nanoparticles are first

deposited on its surface and are launched when the speaker is driven on resonance

[38]. The attractiveness of this method is that it can be used in medium vacuum (∼1

mbar). Its limitation is that it becomes extremely challenging to launch sub-micron

spheres from the speaker as an acceleration of ∼ 2×108 m/s2 is needed to overcome

the Van der Walls forces [38, 68]. Furthermore, the number of charges provided

with this method is relatively small (∼ 10 individual charges at best) [46]. A recent

method has been demonstrated at ultra-high-vacuum where nanoparticles are first
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dried on an aluminium foil. The acoustic wave created by a laser pulse applied to

the back of the foil transfers enough kinetic energy to the nanospheres to launch

them [94]. The Paul trap field is triggered so that it is switched on when particles

are in the vicinity of the trap. Alongside the piezo-disk approach, an advantage of

this method is that the vacuum chamber is not contaminated with solvents.

3.3.1 Electrospray

We use electrospray ionisation to charge the nanoparticles. This is used widely in

mass-spectrometry of smaller particles [95, 96]. It consists in charging a solution

containing a mixture of solvent and nanoparticles. When the voltage applied on the

solution is high enough, the charges are repelled and the surface tension is overcome,

which creates an aerosol. As the solvent evaporates, it leaves charges on the spheres.

This method enables us to trap directly at a pressure of ∼ 10−1mbar. Here, silica

nanospheres are typically suspended in ethanol at a concentration of 10µg/mL.

Prior to loading, the solution is left in an ultrasonic bath for 20minutes to restore

monodispersion of nanospheres. A schematics of the loading process can be seen in

Fig. 3.11 and a picture of the set-up is shown in Fig. 3.12. We apply a +1.8 kV voltage

on a needle with a 100µm internal diameter. The polarity of this voltage determines

the sign of the overall charge on the nanosphere. We achieve similar charge-to-mass

x
z
y

scroll pump

turbo pump

2 mbar

10-1 to 10-7 mbar1 bar

+1.8 kV

Figure 3.11: Schematic of the loading process. Nanoparticles suspended in ethanol are
electrosprayed at atmospheric pressure. The aerosol is entrained into the
first pumping stage which is kept at a pressure of 2mbar. The charged
nanoparticles are directed through a beam skimmer and enter the main vac-
uum chamber, which is kept at a pressure of ∼ 10−1 mbar during the loading
phase. It is then guided inside an electric quadrupole guide towards the trap.
The nanoparticle is illuminated with a green diode laser along the x-axis.
The motion of the particle is imaged in the x-z plane with a CMOS camera
placed along the y-axis (see Chapter 4).
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ratios in either case. The aerosol of particles is entrained into a capillary tube that

leads directly into a first pumping stage. The capillary is 5 cm long with a 250µm

internal diameter. This first vacuum stage is kept at a pressure of approximately

2mbar by directly connecting it to a scroll pump. The flux of particles travels

through a skimmer with a 0.4mm aperture. The skimmer isolates the first stage

from the main chamber which is initially kept at a pressure of ∼ 10−1 mbar during

the loading phase. Once in the main chamber, some particles are guided through

a 20 cm long quadrupole guide and their motion is damped by collisions with the

surrounding gas so that the particles have low enough energy to be captured by the

Paul trap where further dissipation occurs [97]. Given the experimental parameters,

we can estimate the velocity of the air molecules and therefore of the nanoparticles

after the entrance capillary. Given that at this pressure the flow is molecular, we

estimate the conductance of the tube to be 1.35×10−6 p̄ d
4
c
lc
(l/s), with the capillary

diameter dc = 0.25mm, length lc = 5 cm and average pressure p̄ [98]. We expect the

nanospheres to exit the skimmer at a velocity ∼100m/s. At 5×10−1 mbar, given our

typical trap parameters and charge-to-mass ratio of 0.5C/kg, the nanosphere will

end up with a velocity between 5 and 15m/s which is the requirement for it to be

trapped. A particle with a velocity of ∼ 5m/s has a kinetic energy that corresponds

to the effective depth of our trap, as described above. A quadrupole trap (that we

Figure 3.12: Picture of the set-up used for the loading phase. See caption of Fig. 3.11.
Inset: Aerosol created by the electrospray.
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call guide) is used to increase the flux of particles reaching the trap and can be seen

on the right-hand side of the Paul trap in Fig. 3.5 (a). Its end is placed ∼ 3mm away

from the Paul trap. By operating the guide in a mass filter configuration [84], where

a high DC voltage is applied onto two electrodes, one can select more efficiently a

given charge-to-mass ratio, as discussed in the next section. Note that since the

trap and the guide have different geometries, the effective stability region is further

reduced, as discussed in the next section. We typically trap particles with charge-

to-mass ratios in the range 0.05<Q/m< 2C/kg. Once the trap is loaded, the guide

is grounded to avoid any excess micromotion caused by the AC field of the guide.

The guide is made of stainless steel rods of 2.5mm diameter. The distance between

the centre of the guide and the rod is the same as the one used for the miniature

linear Paul trap ro = 1.1mm, which gives an efficiency parameter of η = 1.0. We

typically apply an AC voltage Vo = 250V at ωd/2π = 3.0 kHz on the trap and guide

from the same source3. A typical endcap voltage is 100V 4.

3.3.2 Charge-to-mass ratio selection

As briefly mentioned above, by operating the guide as a mass spectrometer by ap-

plying additional DC voltages on two opposite rods, we can select specific charge-to-

mass ratios. Let us consider the trap (as opposed to the guide) stability parameters

discussed above. These are given by (the ai stability parameters are here neglected,

since they are typically very small)

qx =−qy = Q

m

2ηVo
r2
o ω

2
d

and qz = 0 . (3.10)

The quadrupole guide is operated with a same AC drive voltage. In addition, a DC

voltage Ug is applied on two opposite rods. The efficiency parameters of the guide

are given by (both trap and guides have same geometric factor ro = 1.1mm.)

qg,x =−qg,y = Q

m

2Vo
r2
o ω

2
d

, qg,z = 0 , (3.11)

ag,x =−ag,y =−Q
m

4Ug
r2
oω

2
d

and ag,z = 0 . (3.12)

3Wave station 3142 from TeledyneLeCroy is used as signal generator. The signal is then ampli-
fied with the high voltage amplifier TREK 2220

4Signal provided by MDT694A from ThorLabs.
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Figure 3.13: (a) Charge-to-mass selection in the quadrupole guide. The green line cor-
responds to the relationship between ag and qg parameters within the
quadrupole guide. While with a= 0, stable operation satisfies 0< qg < 0.98,
here it becomes 0.3< qg < 0.8 (overlap between the green line with the stabil-
ity diagram), due to the DC offset. The equivalent stability-parameter in the
science trap is q = ηqg (red line). The parameters used here are Vo = 250V,
Ug =20V (DC) and ωd/2π = 3.0 kHz. (b) Experimental selection of charge-
to-mass ratios by increasing the drive frequency while keeping other trap and
guide parameters fixed.

From Eq. 3.12, we can determine that ag,x = −2Ug/Vo qg,x and that ag,y =

−2Ug/Vo qg,y. Therefore, a stable charge-to-mass ratio is determined by the overlap

of this line and the stable region in the stability diagram as shown by the green lines

in Fig. 3.13(a). Lastly, the correspondence between the q parameters of the trap and

the guide is q= ηqg and is shown in red in Fig. 3.13(a). In the example shown on Fig.

3.13(a), we apply Vo = 250V on both guide and trap at ωd = 3.0 kHz, and Ug =20V

(DC) on two opposite rods of the guide. The effect is to filter the nanospheres

with stability parameters 0.3< qg < 0.8, which correspond to charge-to-mass ratios

satisfying 0.26 < Q/m < 0.69C/kg. In Fig. 3.13(b), we show experimentally how

to select higher charge-to-mass ratios. Given the fact that the DC offset leads to

trapped nanoparticles with stability parameter qg satisfying 0.3 < qg < 0.8, as the

trap frequency is increased, for this condition to be met, the charge-to-mass ratio

has to be greater.

3.3.3 Loading droplets

While loading the trap, droplets of solvent can be trapped as well as nanoparticles

and can remain for hours in low vacuum. In order to ensure that we only observe
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bare silica nanoparticles, the pressure is reduced to ∼ 10−4 mbar right after trapping

to increase the evaporation speed. Currently, the pressure can then be reduced in

the main chamber down to ∼ 10−7 mbar and the particles can remain trapped at

those pressures for weeks without any cooling (see Chapter 4).

3.4 Summary
To summarise, we have reviewed the general theory of the Paul trap. The motion of a

levitated nanosphere in the trap is described by Mathieu equations. Its dynamics can

be decomposed in three different motions (secular motion, micromotion and excess

micromotion). Two original designs of linear Paul traps for levitated optomechanics

experiments have been presented. Calculation of the efficiency parameters in the case

of the linear Paul traps were given alongside trap depth and effect of voltage noise.

Lastly, we described our loading process which combines the use of an electrospray

with a quadrupole guide at a pressure of ∼ 10−1mbar. The miniature linear Paul

trap introduced here will be characterised in further detail in the next chapter.





Chapter 4

Imaging of a levitated-oscillator and

trap characterisation

Many charged nanoparticle traps have been demonstrated but there are few reports

characterising their long term stability and noise, which is crucial for applications in

quantum optomechanics and for testing fundamental physics [45, 77, 94, 96, 99–102].

Moreover, a precise knowledge of the mass, the number of charges and their stability

over time is required. In this chapter, we report on an imaging method suitable to

monitor the nanosphere motion. We show how the sensitivity of this technique is

improved by more than two orders of magnitude when using super-resolution algo-

rithms. This method is then directly applied to evaluate the force-noise sensitivity

of a levitated nanosphere. A precise knowledge of the mass is often required to cali-

brate the nanosphere effective temperature or force-sensitivity. Different methods to

evaluate the mass of the nanosphere in a Paul trap are compared. We discuss as well

how the charge-to-mass ratio is estimated. Using the imaging method, we charac-

terise the temperature and frequency stability of the levitated oscillator in the trap.

Despite the simplicity of our trap design, we report stability performances compara-

ble to the ones observed in conventional quadrupole traps used with nanoparticles.

4.1 Super-resolution imaging
4.1.1 Imaging the nanoparticle displacement

A distinguishing feature of charged nano-oscillators is their low oscillation frequency,

typically in the range of a few Hz to kHz. Detection of small amplitude mechanical

motion at these low frequencies is challenging as environmental mechanical noise in

the detection chain can swamp measurements of the trapped motion of the nanopar-
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ticle. A common approach to measurement of particle displacement uses a difference

detection scheme where a laser beam is used to illuminate the particle. The trans-

mitted light modified by scattering from the particle is typically directed onto a

quadrant photodiode or alternatively split into two equal components using a mir-

ror such that each component is detected on a separate photodiode. The motion

of the particle is observed as an imbalance in the difference between the currents

on the photodiodes [41]. While this is relatively noise free at frequencies exceeding

10 kHz, low frequency mechanical noise can induce beam pointing noise which can-

not easily be differentiated from the true mechanical motion of the oscillator. We

present a very simple and surprisingly sensitive imaging method for measuring low

frequency particle displacement which is free of the low mechanical noise observed in

split detection methods but yet demonstrates displacement sensitivity of better than

10−16 m2/Hz. Optical interferometric detection schemes often offer the best sensitiv-

ities in terms of displacement. However, typical sensitivities are often much worst

at low frequency. For example, the noise floor of a standard balanced Michelson

interferometer can be of the order of 10−30 m2/Hz around 100 kHz but it can easily

drop to 10−20 m2/Hz at 100Hz due to environmental noise affecting the beam paths

as well as flicker noise [103]. This difference can be even more pronounced when

x z

y

Figure 4.1: Artistic view of the imaging of a silica nanoparticle motion in a Paul trap. The
scattered light at 90°coming from a green laser (propagating along the x-axis)
is imaged onto a camera (along the y-axis).
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dealing with nanoparticle motion due to the intrinsically lower coupling/detection

efficiency. Here, we exploit a much simpler detection scheme. The trapped nanopar-

ticle is illuminated with a green laser diode with powers ranging from 10mW to

40mW and a beam waist of 250µm. This is shown schematically in Fig. 4.1 and

Fig. 3.11 alongside with the axis definition. The light scattered at 90° is collected

by a zoom objective lens1 mounted on a low cost CMOS camera2. We extract the

particle position in the x-z plane by finding the coordinates of the pixel of highest

intensity.

An example of a time trace for a silica nanoparticle with a mass of 9.6×10−17 kg

can be seen in Fig. 4.2. The camera sensor has a resolution of 1280 x 1024. A smaller

area of interest can be addressed on the sensor allowing an acquisition at a faster

frame rate. In our typical configuration we exploit a 50 x 40 matrix that allows to

acquire between 800 fps and 1000 fps. The exposure time used ranges from 0.4 to

1.2ms. It is kept smaller than the sampling time and as high as possible while

avoiding blurring of the motion. This, in combination with the simplicity of the

algorithm to reconstruct the particle position, allows for a real time acquisition of

two time traces corresponding to the particle motion projected onto the coordinates

defined by the camera pixel matrix. It is worth noting that the time series is com-

posed of 8 bit integers. Combined with the low sampling rate allows for continuous
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Figure 4.2: Time-trace of the motion along the z-axis of a silica nanoparticle of mass
9.6× 10−17 kg at 10−3 mbar, derived from imaging. The particle position is
obtained by considering the pixel of highest intensity. Calibration factor of
(3.11±0.03)µm/pixel.

1The zoom objective used is a Zoom 7000 by Navitar. We mount on the objective a focal length
lens extender from Edmund optics

2The camera used is a DCC1545M by ThorLabs
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monitoring of the particle position over very long times without having large data

storage requirements.

The secular motion can be easily kept at frequencies lower than 500Hz, however,

it is not possible to avoid aliasing of the micromotion with our typical frame rates.

This means that any calibration that is applied to the secular motion cannot be

applied to the aliased micromotion. The motion can be described by a damped har-

monic oscillator. The single-sided power spectral density (PSD) of the motion along

any axis i can be written as: Si(ω) = |χ(ω)|2(SFth +SF ) where SFth = 4kBTbmγm is

the PSD of the thermal Langevin force while SF is the PSD of the total force noise

due to all other unknown sources. The bath temperature is given by Tb, kB is the

Boltzmann constant, m the mass of the nanoparticle and γm the viscous damping

due to collisions with residual gas. Finally, χ(ω), is the mechanical susceptibility,

given by χ(ω) = (m(ω2
i −ω2− iγmω))−1 where ωi is the resonant frequency which

here corresponds to the secular frequency along the ith axis.

4.1.2 Calibration of the motion

We calibrate the motion of the particle by placing the camera on a translation stage

and displacing it by a known amount. Five time traces are taken at different stage

positions. By calculating the mean position of the particle for each time trace, we

directly map the stage position onto the camera pixel matrix since the particle be-

haves like a point source. After a simple linear regression, the example shown in

Fig. 4.3 gives a displacement per pixel of (8.75±0.09)µm/pixel. Two independent

uncertainties are taken into account. The uncertainty of the fit itself, which only ac-

counts for 0.3%, while the uncertainty in the camera focus stability is 1%. This error

is estimated by changing the focus on the trapped particle in a controlled manner.

The focus is checked over days to correct for drifts in the camera mount, focus or

zoom. Lastly, by ensuring that the residuals of the fit do not increase when the cam-

era is displaced away from the nanoparticle, we ensure that distortions due to the

camera objective do not have to be taken into account. This method is competitive

for measurements of low frequency oscillators in comparison to methods measur-

ing the particle response to a known force, which can depend on more parameters

with larger associated uncertainties [104]. Depending on the position of the zoom,

different calibration factors can be obtained.
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Figure 4.3: The displacement of the nanosphere is calibrated by moving the camera by
a known amount. The figure shows the sum of the relative distances of the
translation stage positions. The fit is shown in orange with the residuals in
the inset. The calibration factor is found to be (8.75±0.09)µm/pixel.
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Figure 4.4: Calibrated PSD of the motion of a trapped nanoparticle at 0.10mbar in green
(1.0×10−3 mbar in blue) along the z-axis. The secular frequency is 92.5Hz.
The fits of the mechanical susceptibilities are shown in orange. The time trace
shown in Fig. 4.2 is a subsection of the time trace used to obtain the spectra
shown at 1.0×10−3 mbar. Calibration factor of (3.11±0.03)µm/pixel.

We show an example of a calibrated PSD of the nanoparticle displacement along

the z-axis in Fig. 4.4 at two different pressures. Despite the very simple approach,

this method provides spectra with high signal-to-noise ratios (SNR). Along with the

experimental spectra, we show fit results assuming a total force noise PSD. Down

to pressures of the order of ∼ 10−3 mbar the spectral noise floor is sufficiently low

to resolve the susceptibility down to the zero frequency limit.

4.1.3 Low-frequency spectra

The continuous monitoring of the particle motion, allows us to explore the dynamics

down to extremely low frequencies. Taking into consideration the longest continuous
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stretch of data that lasts almost 3 days at a pressure of ∼ 10−5mbar, we obtain the

displacement PSD shown in Fig. 4.5. Interestingly, a peak (and its harmonics) is

clearly visible corresponding to a period of ∼ 1 hour. It is possible to show that

this displacement modulation is highly correlated to a modulation of the secular

frequency, itself correlated to the temperature drifts in the lab.
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Figure 4.5: Low frequency PSDs calculated from data acquired for almost three days. Red
and blue lines represent the PSD along the x and z-axis respectively. The peak
around 1 hour corresponds to motion in the trap correlated to temperature
fluctuations in the lab. At frequencies above 10−2 Hz, the PSD has been
averaged with more spectra, which leads to the smoother PSD profiles in this
range.

4.1.4 Super resolution measurements

The spectra shown so far in Figures 4.4 and 4.5 have been calculated on time traces

where the position of the particle has been determined by finding the pixel of highest

intensity. This naive approach enables real time traces by controlling the camera

with a software controlled with a Python language library3. This is enough to extract

basic information such as frequencies and linewidths characterizing the mechanical

motion. Applications such as sensing or cooling of the centre-of-mass motion may

require higher sensitivities which can be achieved by using super-resolution imaging.

Complex algorithms to obtain sub-pixel resolution is applied in many fields includ-

ing particle physics [105], chemistry [106] and astrophysics. In the latter case, for

3https://instrumental-lib.readthedocs.io

https://instrumental-lib.readthedocs.io
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example, it was applied to enhance the search for exoplanets [107]. Here, we take

advantage of the diffraction limited spot on the camera to extract a sub-pixel parti-

cle position, which we call super resolution. The imaged spot of the scattered light

can be described with very good approximation by a Gaussian profile, as shown in

Fig. 4.6. The beam spot diameter is 3.5 pixels (18µm). Depending on the exposure

time, the number of pixels along a camera axis above the detector noise can range

from 1 to 10 pixels. When the signal-to-noise is low, and only the brightest pixel

is above the noise floor, the position resolution (given by one pixel) corresponds to

3.1µm. The quantization noise of the PSD is given by ∆2

6fs with ∆ the step size and

fs the sampling frequency [108]. In this case, we expect and find 2×10−15 m2/Hz

(see Fig. 4.8). At the other extreme, when the signal-to-noise is sufficiently high,

we can utilise the full dynamic range of the camera, the position resolution can be

estimated by using the standard error of the mean of the Gaussian distribution. The

Figure 4.6: Raw camera frame, fit and transverse cut of the imaged scattered light (with
both fit (in orange) and intensity values). The frames are acquired at 803 fps
with an exposure time of 1.2ms.

Figure 4.7: Resolution enhancement obtained by fitting a Gaussian distribution to find
the particle position on each frame. Time-trace of the motion along the z-axis
obtained with the resolution enhancement showing sub-pixel resolution.
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number of samples for each pixel is given by its intensity value when the noise floor

is subtracted from the image. In this case, for the 10 pixels above the noise floor,

the equivalent sample size is 1000, which gives a position resolution of 0.06 pixel.

This corresponds to a particle position resolution of 0.3µm and a PSD noise floor

of 7×10−18 m2/Hz. Fitting the image with a two-dimensional Gaussian profile in-

creases the sensitivity by more than two orders of magnitude as it can be seen in

Fig. 4.8, where we plot a comparison between PSDs with and without the resolu-

tion enhancement for both trap directions. These spectra were taken at a pressure

∼ 10−6 mbar for a particle with a charge-to-mass ratio of 0.1C/kg. The secular fre-

quencies along the z, x and y-axis are 72.1, 258.5 and 266.2Hz respectively. A trap

ellipticity slightly different from the nominal one of εt = 0.5 removes the degeneracy

on the x and y-axes, which are easily resolved at this pressure. The peak in the PSD

at 298Hz corresponds to the aliasing of the excess micromotion at the AC drive

frequency of 1.1 kHz.

Figure 4.8: PSD of the particle displacement with super resolution imaging. Blue and
orange lines refer to the motion along the z and x-axis respectively. The
grey shaded area shows the noise floor when the algorithm finds the intensity
maximum to obtain the particle position.

The three factors which can be improved in the measurements presented here

are the sensitivity, the acquisition rate and the fitting speed of the algorithm used

to determine the particle position. The sensitivity of the measurements can easily

be improved by increasing the magnification. The secular frequencies were limited

here to 500Hz by the acquisition rate. In order to directly detect higher secular
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frequencies and avoid aliasing, it is possible to use cameras with higher pixel clocks

(i.e., ∼ 500MHz against ∼ 40MHz here), opening the possibility of getting frame

rates as high as 4 kHz. Furthermore, fluorescence correlation spectroscopy techniques

[109] could be used in the case of fluorescing nanoparticles such as YLF crystals

doped in Yb3+ [110]. This could lead to frame rates of tens of kHz. Recent single-

photon avalanche diode (SPAD) cameras have been operated up to 300 kfps [111].

While here the time traces without subpixel resolution are in real time, the

data with super-resolution are obtained by post-processing the video. Indeed, the

fitting routine used was too slow to keep acquiring data at ∼ 800 frames per second

(fps). It should nonetheless still be possible to acquire real time position traces with

very high frame rates by running the fitting algorithm on a graphics processing unit

(GPU). Gaussian fits or better algorithms can then achieve fit speeds ∼ 100000 fits/s

for a 10 x 10 pixel matrix [112, 113].

4.2 Nanoparticle force sensitivity

Given its low mass and small damping rate, a levitated nanosphere in vacuum is a

sensitive force sensor. The super-resolution enhancement can be used to increase

the force sensitivity bandwidth too. We show an example in Fig. 4.9 which compares

Figure 4.9: Force-noise sensitivity of a silica nanoparticle with a mass of 9.6×10−17 kg at
7.4×10−5 mbar along the z-axis. The orange curve corresponds to the force-
noise sensitivity obtained without the super-resolution enhancement. The blue
one is obtained on the same acquisition but using the super-resolution. This
increases the 3 dB bandwidth, centred around 90Hz, from 21Hz to 112Hz.
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the force sensitivity of a silica nanoparticle with a mass of 9.6×10−17 kg levitated at

7.4×10−5 mbar. The super-resolution and the brightest pixel method for extracting

the particle position are shown. The super resolution method enables us to increase

the 3 dB force-noise sensitivity bandwidth from 21Hz to 112Hz. The sensitivity

peaks at (8.2±0.6)× 102 zN/
√
Hz. At this pressure, the force noise contribution

from the Brownian motion, and therefore the lowest achievable limit without other

noise, is
√
SFth=(6.3±0.3)×102 zN/

√
Hz. The force noise sensitivity,

√
SF , shown

in Fig. 4.9 is calculated from the displacement PSD Sz(ω) as
√
SF (ω) =

√
Sz(ω)
|χ(ω)| with

χ(ω) the mechanical susceptibility defined above. The mechanical susceptibility

depends on the mass, independently measured, as well as the damping and the

secular frequency, obtained by fitting a displacement PSD from an independent

data set. This approach provides a good estimate of the force sensitivity, however,

a more rigorous analysis can be obtained exploiting Wiener filter theory [114].

4.3 Particle size estimation

Different methods can be used to estimate the size (or mass) of the nanoparti-

cles loaded into the trap with different accuracies [66, 99, 100, 103, 115–117]. We

Figure 4.10: SEM image of silica nanosphere of nominal radius of (194± 5) nm. The sam-
ple is prepared with a gold coating layer of ∼1 nm to increase its conductivity
and improve the image quality. The spheres are fitted with circles by using
the Hough transform. The edges are detected and are shown in red. Those
circles are then fitted to find out the radius size of each particle.
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Figure 4.11: Particle size distribution from SEM imaging for nanoparticles of nominal ra-
dius (194± 5) nm. This distribution combines the result of two SEM images.
One is shown above. We find over 223 spheres an average radius (186± 4) nm.

use commercial silica nanospheres by microParticles GmbH with nominal density

of 1850 kg/m3 and nominal radius of (194± 5) nm. A scanning electron micro-

scope (SEM) image of the particles used is shown in Fig. 4.10. We find a radius

of (186± 4) nm from a sample of 223 imaged nanoparticles after fitting circles by

using the Hough transform which transforms an image into edges.

4.3.1 Gas damping

The particle size can be roughly determined by evaluating the gas damping as a

function of pressure. This is done by measuring the linewidth of the displacement

PSD. It is then fitted to the expected gas damping law in the free molecular flow

regime. Here γgas = (1+π
8 )c̄P mg

kB Tb rρ
, where the particle mean speed is c̄=

√
8kBTb/mg/π,

r and ρ the particle radius and density, respectively, kB the Boltzmann constant,

P , mg and Tb correspond to gas pressure, the mass of the gas molecules and the

bath temperature, respectively [54, 55]. The bath temperature Tb can be assumed

to remain at 293K independently from both the centre-of-mass motion and the in-

ternal temperature of the nanosphere [118] (see Section 2.3.4). This gives a radius

of (199±57) nm by assuming a nominal density of 1850 kg/m3 and a spherical shape

(see Fig. 4.12). The main uncertainty contribution is due to the pressure measure-

ment (30%, specified by the manufacturer). On top of its large uncertainty, this

method has a few drawbacks. It requires the knowledge of the density, which can

significantly vary for silica nanospheres [119]. Furthermore, it only works for spheres

and it can therefore be challenging to differentiate a single sphere from a cluster.
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Figure 4.12: Gas damping as a function of pressure. Linewidth measurements from spec-
tra are shown in orange and green corresponding respectively to the damp-
ing along the x and z-axis. The fit is shown in blue. The radius found is
(199± 57) nm assuming a density of 1850 kg/m3 and a spherical shape.

Indeed, in the case of two particles joined together such as a nanodumbbell, the

expected linewidth is numerically shown to be smaller by 8% compared to a sphere

(independently from the size of the spheres and assuming a stochastic rotational

motion of the dumbbell) [54], which is comparable to the statistical uncertainty of

the measurement shown here. In comparison, a change in mass by a factor 2 for a

spherical object corresponds to a reduction in linewidth by 21%, which is easier to

measure. It is therefore challenging to differentiate a nanodumbbell from a single

nanosphere in a Paul trap with this method. It can be more easily differentiated

when the alignment with respect to the trap axis is well defined, such as in an optical

tweezer [120].

4.3.2 Charge jumps

In a Paul trap, a more attractive method to determine the mass is to measure it

from the secular frequency shifts due to charge jumps [99, 116]. For a number of

charges larger than ∼ 50, the secular frequency along the x-axis can be approximated

as ωx ≈ ωd
2
√

2qx (see Eq. 3.6 and 3.8). The frequency shift given by one electron

becomes δωx = |e|V0 η√
2mωd r2

o
where e is the elementary charge. While we have monitored

a constant number of charges for days, it can be changed (mostly increased in our

case) by leaving the pressure gauge on [121], which gives a typical charging rate of

∼ 7 charges/hour. Other ways of charging nanoparticles include using an electron

gun [116] or a UV light source [103]. The jumps in the secular frequency can be
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Figure 4.13: Nanosphere mass measurement inferred from charge jumps. Secular frequen-
cies along the x and z-axis (z-axis rescaled) are monitored and shown re-
spectively in orange and blue. A grid with constant separation of 1.59Hz
is added to the plot. It corresponds to the frequency shift given by one
elementary charge. From the average frequency shift 1.59± 0.07Hz, we es-
timate the mass to be (9.6±0.9)×10−17 kg. The measurement was taken
at 4.6× 10−4 mbar with the pressure gauge on. The AC drive was 500V
(peak-to-peak) at 3.0 kHz and 90.0V on the endcaps.

seen in Fig. 4.13. Assuming that the smallest frequency jump corresponds to a

change of a single elementary charge, we measure a mass of (9.6±0.9)× 10−17 kg.

Two strong motivations to use this method are that thermal equilibrium of the

centre-of-mass motion with the bath is not required and no knowledge over the

density is needed. The systematic error in the mass uncertainty comes from the

trap fabrication tolerances of ±50µm in both the relative position of the holes and

their diameter. This gives an uncertainty of 4% on ro. The statistical error accounts

for 4% and therefore the overall error on the mass is 9%. The statistical error on

the secular frequency shifts is quite high (4%). This is due to the drifts in secular

frequencies and to charges accumulating on the PCB due to the pressure gauge when

left on. When the pressure gauge is turned off drifts as small 2 ppm/h were measured

(see section 4.6). Using this method, statistical uncertainties as small as 100 ppm

with systematic uncertainty of 1% have been demonstrated in mass-spectrometers

[99, 116].
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4.3.3 Thermal equilibrium

The mass of the particle can also be estimated by assuming thermal equilibrium

at 293K with the bath. We verify in the next section the validity of this assump-

tion. However, it is reasonable because the very low intensity (40W/cm2 against

10MW/cm2 for a typical optical tweezer) used to illuminate the particle is not suf-

ficient to increase its internal temperature [118]. Moreover, these measurements are

taken at a high pressure (10−2 mbar) where the heat transfer to the surrounding

gas is more efficient. At this pressure, thermal noise dominates over other sources

of noise e.g. electrical noise. Following from the equipartition theorem, at thermal

equilibrium, 1
2kBTb = 1

2mω
2
i 〈i〉2, where 〈i〉 is the standard deviation of the motion

along the ith-axis. This measurement offers the smallest uncertainty over the differ-

ent mass measurements used here (3%) with m= (9.5 ± 0.3)×10−17 kg. The mass

was obtained after averaging 16 measurements. The total error is composed of a 1%

statistical error and a 3% systematic error that takes into account the temperature

uncertainty of 2%, an error of 1% on the frequency and of 2% on the variance of the

displacement given by the calibration method. The uncertainty on this measurement

could easily be reduced down to 2% by using a more precise temperature sensor.

Another method, combining the thermal equilibrium assumption with a known force

excitation has been demonstrated in Ref. [117]. It would however require a precise

knowledge of the number of charges to be applied here.

4.3.4 Nanodumbbells

Fig. 4.14 summarises the different measurements described above. The measure-

ments in blue and orange correspond to the measured mass obtained from thermal

equilibrium. Those measurements are taken at a pressure of 1.0×10−2 mbar, with dif-

ferent camera magnifications and on two different days to check stability of the mass

over time. The calibration used for the data in blue (orange) is (8.35±0.08)µm/pixel

((3.11±0.03)µm/pixel). The green region corresponds to the uncertainty of the

mass measurement (with one standard deviation) given by the charge jumps (see

Fig. 4.13). As the particle size distribution, obtained from the SEM images, is nar-

row and that there is good agreement between the two mass measurements, we have

good confidence that this nanoparticle is a nanodumbbell, which can easily form

from two particles held by Van der Waals forces [120]. Indeed, assuming a nomi-
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Figure 4.14: Compilation of different mass measurements. The measurements in blue and
orange are obtained by assuming thermal equilibrium of the motion at 293K
with the displacement calibrated with the camera. The measurements are
taken on two different days at a pressure of 1.0×10−2 mbar. The calibra-
tion constant for the measurements in blue (orange) is (8.35±0.08)µm/pixel
((3.11±0.03)µm/pixel). The grey and green regions correspond to the uncer-
tainty of the mass measurements (one standard deviation) with the linewidth
measurement (see Fig. 4.12) and from the charge jumps (see Fig. 4.13), re-
spectively. The yellow region corresponds to the mass estimated of two
nanospheres from the SEM image, assuming a nominal density of 1850 kg/m3

(see Fig. 4.10 and 4.11). The equivalent estimated averaged radius of the
spheres forming the nanodumbbell is shown on the scale on the right-hand
side, assuming a nominal density of 1850 kg/m3.

nal density of 1850 kg/m3 (provided by the manufacturer), a nanodumbbell made

of spheres of radius (186± 4) nm gives a mass of (9.9±0.8)× 10−17 kg (yellow re-

gion), which agrees very well with the different mass measurements. The density

found when considering the mass given by the charge jumps with the size found on

the SEM images gives (1781±196) kg/m3. Lastly, the grey region corresponds to

the expected mass given by the linewidth measurement assuming a cluster of two

particles [54]. Those different measurements demonstrate the lack of reliability of

the linewidth measurement in a Paul trap, as we have to guess the particle shape.

Indeed, if we assume the particle to be spherical, we measure a radius of 199 nm and

if we assume a nanodumbbell made of two identical spheres, we estimate the radius

(of one nanosphere) to be 182 nm, which corresponds to a relative error in mass of

35%. The equivalent radii for a single sphere of the nanodumbbell are shown in

Fig. 4.14.
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Figure 4.15: Measurement of the radial secular frequencies ωx and ωy as a function of
drive voltage and drive frequency. The fit to the data is shown in blue.
The blue area corresponds to the uncertainty on the secular frequency due
to the geometrical uncertainty. The green line corresponds to the expected
secular frequency in the small q approximation (see Eq. 3.8). The charge-to-
mass ratio founds from panel (a) to (d) are (0.198±0.040), (0.2145±0.043),
(0.214±0.043) and (0.197±0.039)C/kg, respectively.

4.4 Charge-to-mass evaluation

We have discussed different ways of estimating the mass of the nanoparticles in a

Paul trap. Another important property is the nanosphere number of charges. One

way of estimating it is to use the knowledge of the trap geometry and measure

the secular frequencies as a function of trapping parameters such as drive voltage,

frequency or endcap voltage. We show here an example by using the PCB Paul trap

described in Section 3.2.1. As can be seen in Eq. 3.8 and Eq. 3.6, when varying the

trap frequency ωd or the drive amplitude Vo, the transverse secular frequencies only
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depend on the geometry parameter ro and efficiency parameter η. We can show with

a simulation that an error on ro will give a negligible error on η, typically ten times

smaller in relative error. For this design the uncertainty on the distance from the

trap centre to the rods ro was 10% and therefore gives an uncertainty of 20% on the

charge-to-mass measurement. Measuring the charge-to-mass ratio by varying the

endcap-voltage is more reliable since zo has a smaller associated error: 5%. As for η,

the error on the efficiency parameter κ is negligible. The error on the charge-to-mass

is therefore 10%.

In Fig. 4.15, we look at the radial frequencies as a function of drive voltage Vo
and drive frequency ωd. An interesting feature of these figures is that we explore a

rather large area of the stability parameter, namely for a stability parameter q from

0.2 to 0.7 (see Eq. 3.6). This enables us to verify that the dynamics of the Paul

trap matches well the theory. Furthermore, the small q approximation shown in Eq.

3.8 is not valid. In order to fit the data, we have to simulate directly the Mathieu

equations Eq. 3.4. The expected secular frequency in the small q approximation is

shown in green on those figures. The four estimations of the charge-to-mass ratio are

compatible. The average charge-to-mass ratio obtained is (0.206±0.041)C/kg. In

Fig. 4.16, we measure the axial secular frequency as a function of endcap voltage Uo.

We find a charge-to-mass ratio of (0.178±0.018)C/kg compatible with the previous

measurement.

4.5 Centre-of-mass temperature
4.5.1 Temperature estimation

We use the mass measurement from the charge jumps above to estimate the centre-

of-mass temperature. The temperature is estimated at different pressures without

any active cooling mechanism on the particle by integrating the PSD numerically. It

is shown in Fig. 4.17 with the motion calibrated with the camera. The blue (orange)

data correspond to the motion along the x (z-axis). Here, we obtain a motion in

thermal equilibrium with the bath ((282± 25)K) down to ∼ 10−4 mbar in the z-axis

and to less than ∼ 10−5 mbar in the x-axis. However, excess force noise increases the

effective temperature of the centre-of-mass motion at lower pressures. We estimate

the excess force-noise in Section 5.4. Despite the increasing temperature at low

pressures as much as ∼ 104 K, the particle can be kept for weeks at 10−7 mbar,



108 Chapter 4. Imaging of a levitated-oscillator and trap characterisation

Figure 4.16: Measurement of the axial secular frequency ωz as a function of endcap volt-
age. The fit to the data is shown in blue. The blue area corresponds to the
uncertainty on the secular frequency due to the geometrical uncertainty. The
measured charge-to-mass ratio is (0.178±0.018)C/kg.

as its temperature remains smaller than the equivalent trap depth of ∼ 107 K. It

was possible to observe thermal motion at the bath temperature TB = 293K down

to ∼ 8×107 mbar when applying voltages on compensation electrodes to place the

mean position of the nanoparticle in the centre of the AC field (see Sections 4.6.3

and 6.3).

4.5.2 Temperature stability

We are also interested in the stability of the effective temperature of the oscillator

over time, as well as the optimum time over which this measurement should be

made. In Fig. 4.18 we show the relative Allan deviation of the temperature σT (τ)/To
at different pressures. The Allan deviation is a tool widely used for sensors and first

applied to atomic clocks to quantify the stability of a frequency standard. We define

the relative Allan deviation of a variable T as σT (τ)/To with To the averaged value

of T and σT (τ) the Allan deviation [122].

σ2
T (τ) = 1

N −1

N−1∑
k=1

1
2
(
T̄

(τ)
k+1− T̄

(τ)
k

)
, (4.1)

where T̄ (τ)
k corresponds to the time average value of T inside N -1 intervals of varying

length τ with N , such that Nτ corresponds to the total measurement time. The
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Figure 4.17: Centre-of-mass temperature of the trapped particle as a function of pressure
(without cooling). The temperature along the x-axis (z-axis) is shown in blue
(orange). The motion is thermal ((282± 25)K) down to ∼ 10−4 mbar along
the z-axis and to less than ∼ 10−5 mbar along the x-axis. The temperature
of the room at 293K is indicated in green.

Allan variance quantifies the stability of the system over time by effectively showing

the optimal value of time needed to estimate a variable, here the temperature. The

measurements in blue (orange) are taken at 1.6×10−5 mbar monitored for 23 hours

along the x-axis (z-axis). We also show measurements at 7.2×10−2 mbar in green
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Figure 4.18: The relative Allan deviation of the temperature at 1.6×10−5 mbar along the
x-axis (z-axis) is shown in blue (orange) and at 7.2×10−2 mbar in green (red).
Theoretical curves of the expected Allan deviation are shown in gray.
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(red) along the x-axis (z-axis). By acquiring statistics, a small error bound, called the

standard error of the mean, (smaller than the standard deviation) can be placed on

any mean value of normally distributed variable, namely σ/
√
n with n the number

of independent samples and σ the standard deviation of the distribution. This

formula can be applied to the temperature measurement of a thermal oscillator and

can be shown to be
√

2
γτ (relative Allan deviation) [104]. It takes on average a

time 2/γ for two samples to be independent (see Section 2.1.1). Therefore at high

pressure, not much time is required to have enough statistics to evaluate accurately

the temperature. At low pressure, more time is required. In the first part of the

plot, the Allan deviation corresponds to the standard error of the mean. More

statistics enables us to place a smaller error bound on a given measurement. After

some time, the confidence bound increases due to experimental drifts. This time

corresponds to the stability time of the variable. Here, we estimate temperature

stabilities of a few hours, limited by drifts in the electrical potential. In comparison,

stability over 100 seconds range has been reported in optical tweezers, which were

believed to be limited by the optical stability of the trap as well as its nonlinearities

[104, 117]. Similar stability of ∼ 100 s were reported as well in other high frequency

optomechanical systems [114].

4.6 Paul trap characterisation

In this section, we study the stability of the Paul trap potential by measuring the

secular frequencies as well as the particle position over time. We show that the Paul

trap stability depends on several parameters such as the trapping mechanism, the

pressure gauge and the material used for the trap itself.

4.6.1 Stray fields due to the ion gauge and the electrospray loading

mechanism

The creation of ions by the vacuum gauge leads to charging of the nanoparticle and

changes in the trap potential. This leads to temporal changes in secular frequency

as well as in the particle’s mean position. The gauge therefore needs to be turned off

for stable measurements. We monitor the secular frequencies ωx and ωz for almost

one week when the gauge is turned on and off (see Fig. 4.19 (a)). Both of these

secular frequencies show very similar behaviour except initially, right after loading
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the trap. When the gauge is on, they follow an almost monotonic increase. The

stable region shown in Fig. 4.19 (b) occurs when the pressure gauge has been turned

off. To some extent, it is possible to separate the change in number of charges

from a change in the potential. To do this we measured the charge-to-mass ratio

at different times (t= 15, 90 and 137 hours) by changing the endcap potential and

measuring the resulting frequency shift. The results are shown in Fig. 4.19 (a) and

(b) along with the respective fits which give an increasing charge-to-mass ratio. We

find 0.10C/kg, 0.16C/kg and 0.18C/kg (10% standard error), from bottom to top.

However, an additional stray potential needs to be accounted for, in order to obtain

a reasonable agreement with the data. This offset directly quantifies the stray field

along the z-axis as it corresponds to the minimum amount of endcap voltage needed

to trap the particle which is ideally 0V (see Fig. 4.19 (b)). Here, a positive voltage

is needed (8.8, 2.7 and 1.5V, respectively).

Stray fields are also due to solvent droplets reaching the dielectric support of the

trap during the loading phase. If the electrospray is kept in operation for sufficiently

long times, the stray field can become quite strong even allowing for trapping in the

z-direction without any additional endcap potential and providing a trap frequency

in this axis of the order of ∼ 100Hz. To verify this description we inverted the sign of
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Figure 4.19: (a) Measurements of secular frequencies monitored over 6 days. ωx/2π is
shown on the left ordinate (blue dataset), ωz/2π on the right one (green
dataset). The three colour bands mark the time at which the charge-to-mass
ratios were measured and are shown in Fig. 4.19 (b). (b) Fits of the charge-to-
mass ratios at different times by changing the end-cap voltage and monitoring
the secular motion along the z-axis. The different times correspond to 15,
90 and 137 hours, with charge-to-mass ratios of 0.10C/kg, 0.16C/Kg and
0.18C/kg, respectively, shown going from lighter to darker colours. The
stray field is anti-trapping (negative effective potential for a positively charged
particle) as it needs to be compensated with a positive voltage to trap the
particle. The strength of this stray field decreases over time.
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the high voltage for the electrospray needle for a given time, to neutralise the charge

build-up, to then go back to the usual configuration. As expected we found that in

such a situation, the stray field given by the electrospray is anti-trapping; meaning

more endcap potential is needed to trap the particle, as it is shown in Fig. 4.19 (b).

Furthermore, its strength is slowly decreasing as mentioned above.

4.6.2 Potential stability

Right after turning the ion gauge off, we have observed an exponential decay in the

trapping field with a time constant of approximately 10 hours. This characteristic

time, consistently measured over tens of traces is likely to be due to the dielectric

material used. Dielectric surfaces should therefore be kept in any trap as far as

possible from the nanoparticle. Some of the charging effects during the loading phase

could be mitigated by using both a bent and longer guide, or by using a loading

mechanism free of solvent [94, 99]. In Fig. 4.20 (a), we show the stability of the

secular frequencies along the x and z-axis right after turning the pressure gauge off.

The exponential rise along the z-axis has a characteristic time of 10.7 hours. A very

periodic modulation (period of ∼30mins) can be seen in the secular frequency along

the x-axis. This modulation is correlated to changes in the temperature of the room

as shown in Fig. 4.20 (b), and is fully attributable to temperature induced changes

in the amplitude of the signal generator, high voltage amplifier and other electronics

used to provide the trapping AC field. This corresponds to a slow modulation of

approximately 1V (peak to peak) in the amplitude of the signal applied to the trap

electrodes (0.2% of the applied signal). Those drifts could easily be reduced with a

better temperature stabilisation. In Fig. 4.20 (c), we show the average position in

the x-z plane over time for the same data as shown in Fig. 4.20 (a). One sample

corresponds to 2.5mins. The time is shown with a colour gradient, starting with

black at t= 0, and ending in yellow at t= 23hours. Correlations can be seen between

the drifts in the secular frequency along the z-axis and the motion along the same

axis. The same can be noticed along the x-axis. This shows that the same potential

drifts are responsible for both changes in the mean position of the nanoparticle in

the trap as well as its secular frequencies. Lastly, we show in Fig. 4.20 (d) the relative

Allan deviation σω(τ)/ωo of the two secular frequencies monitored for 23 hours with

ωo the averaged frequency. The Allan deviation is calculated on the frequency time
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Figure 4.20: (a) Measurement of the secular frequency over time along the x (z-axis)
is shown in blue (orange) while keeping the particle at a pressure of 1.6×
10−5 mbar. The measurements are taken right after turning the pressure
gauge off. An exponential rise of 10.7 hours is fitted along the z-axis (fit
shown in black dotted lines). (b) A plot of the temperature drifts of the
room (in orange) and of the secular frequency (in blue) along the x-axis at
the same time. (c) Measurements of the drifts of the particle mean position
over time (from dark colours to light ones) in the trap along the x and z-
directions for the same data set as the one shown in (a). (d) The relative
Allan deviation of the secular frequency along the x-axis (z-axis) is shown
in blue (orange) at 1.6× 10−5 mbar and in green (red) at 7.2× 10−2 mbar.
Note: The data shown in (a), (c) and (d) at 1.6× 10−5 mbar are from the
same data set with the same particle as the one characterised in Section 4.3.

traces shown in Fig. 4.20 (a). We get in this case a frequency stability of more than

20min with a relative uncertainty on the frequency of ∼30 ppm along the z-axis

(orange line) and with overall drifts of 60 ppm/h. Along the x-axis (blue line),

we recover the periodicity (∼30mins) also shown in Fig. 4.20 (a), as the frequency

periodically gets closer to its initial value. We show in Fig. 4.20 (d) the stability of

the frequency along the z-axis (x-axis) at 7.2×10−2 mbar. These data cover 32 hours

of continuous acquisition that started 33 hours after having turned off the pressure

gauge, to ensure a better stability. As expected, longer optimal times of at least

5 hours were obtained. The optimum time is likely to be even longer since the drifts

are not yet limiting the Allan deviation. Furthermore, the behaviour above 500mins

is likely to be caused by aliasing of the frequency fluctuations.



114
C
hapter

4.
Im

aging
ofa

levitated-oscillator
and

trap
characterisation

Figure 4.21: Continuous monitoring of the secular frequencies and the particle position over more than twelve days at a pressure of 8.7×10−7 mbar.
(Top) Secular frequency along the x-axis, in blue. In orange, same averaged over 3.6 hours. (Middle) Secular frequency along the z-axis.
Drifts of 2.4 ppm/h are measured between the 4th and 12th day (fit in orange). (Bottom) Motion of the particle along the x-axis (z-axis)
in blue (orange) and secular frequency along the x-axis in green. This set is a zoom of the above figure starting at day 9.9. This particle
is a single nanosphere of measured mass of (5.0±0.1)×10−17 kg with (216±22) individual charges. Trap parameters: AC drive of 500V
(peak-to-peak) at 3.0 kHz and endcaps of 120V.
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Lastly we were able to monitor the nanosphere motion and secular frequencies

over more than twelve days as shown in Fig. 4.21 demonstrating a constant number

of charges. The pressure gauge was turned off at the beginning of the time trace.

Frequency stability as good as 2.4 ppm/h is obtained (see Fig. 4.21(Middle)). This

demonstrates, that despite the use of a dielectric and the different stray fields men-

tioned above, a competitive frequency stability can still be achieved [99]. Moreover

the position stability in two directions is smaller than ∼ 2µm (see Fig. 4.21 (bot-

tom)). This is satisfying for our optomechanical experiments since those drifts have

to be kept smaller than the cavity waist of 62µm by at least one order of magnitude

to reduce the amount of alignment required of the relative trap and cavity positions.

4.6.3 Micromotion compensation

As discussed above, stray fields due to imperfections of the electrodes, ions created

by the pressure gauge and both charges and charged nanoparticles accumulated

during the loading phase, modify the potential. This effect can locally be modelled

by a DC electric field as described in Section 3.1.1. This causes the particle average

position to be different from the actual AC centre of the field and causes excess

micromotion which can be seen in the PSD of the motion with a peak at the drive

frequency as shown in Fig. 3.2(b). Those DC fields in the radial direction of the

trap are compensated by adding DC voltages on two of the four rods of the trap

(on one AC electrode and one DC electrode). The most effective method found is to
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Figure 4.22: Compensation of the micromotion. PSD of the particle displacement along
the x-axis at 6.3×10−2 mbar. In blue before compensating the micromotion,
in green after compensation. The camera frame rate is 1011.67 fps and the
micromotion, (at the drive frequency of 3 kHz) is seen aliased at 22Hz and
its first harmonic at 44Hz.
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adjust the DC compensation voltages so that the nanosphere remains at the same

position while changing the trap stiffness (by changing the AC amplitude). The

particle average position can be monitored at the same time by using the imaging

method discussed above. We show a PSD of the motion of the nanosphere with and

without compensation of the micromotion in Fig. 4.22. As it can be noticed, by

applying DC voltages on two adjacent RF electrodes, we can correct for the spurious

electric fields and bring the nanosphere mean position to the effective RF centre of

the field. By doing so, we reduce the excess micromotion which can be seen in the

PSD in the reduction of the peaks at the micromotion and its harmonics (in practice

here, seen at aliased frequencies). We typically apply ∼2V on both compensation

electrodes and while using the camera we are able to optimise the micromotion with

a voltage resolution on the electrodes down to ∼ 10mV.

4.7 Summary
To summarise, we have demonstrated an imaging method for low-frequency oscil-

lators. This method can be improved by using super-resolution algorithms which

enable us to demonstrate displacement sensitivities better than 10−16 m2/Hz. This

technique was then applied to estimate a force sensitivity for our levitated nano-

oscillator better than ∼ 1 aN/
√
Hz. Precise knowledge of the mass and number of

charges might be relevant to many experiments to calibrate the temperature or the

force-noise sensitivity for instance. We have discussed different methods to estimate

the mass. A common method consists in measuring the gas damping as a func-

tion of pressure. Unfortunately, this method has the drawback of depending on the

knowledge of the particle shape and density. Smaller uncertainties in the mass esti-

mation were obtained by monitoring charge jumps in the secular frequency. Lastly,

by using the imaging method we obtain a mass uncertainty of ∼3%. The knowledge

of the trap geometry can be used to estimate the nanosphere charge-to-mass and

therefore the number of charges on the nanosphere. The imaging technique was

then used to monitor temperature and frequency stability of the nanosphere. This

enables us to quantify the stability of the trap over time as well as study the effect

of the loading mechanism and pressure gauge on the trapping potential. After more

than 12 days of continuous measurement we were able to report a frequency sta-

bility of ∼ 2ppm/hr similar to those reported with mass-spectrometers loaded with
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nanoparticles [99]. In the next chapter, we use the imaging method presented here

to measure ultra-narrow mechanical linewidths.





Chapter 5

Ultra-narrow linewidth levitated

nano-oscillator

A fundamental property of any oscillator is its linewidth and mechanical quality

factor Q. Narrow linewidths in the microHertz regime and mechanical Q-factors as

high as 1012 have been predicted for levitated systems [24]. This motivates studying

those systems in the quantum regime since this means that the lifetime of a quantum

state of the mechanical state would be of the order of ∼ 3×105 s for an oscillator with

frequency of oscillation at 100kHz. However, the poor stability of these oscillators

over long periods, coupled with their tendency to operate in anharmonic/non-linear

regimes has prevented direct measurement of the predicted narrow linewidths in high

vacuum. For many levitated systems, the measured linewidths deviate from those

predicted even at moderate vacuum in the 10−4 to 10−5 mbar range [41, 104, 115].

The reduction of noise introduced by the levitating fields is a key challenge for

achieving a stable oscillator. A fundamental limiting noise for optical levitation is

the recoil of photons from the levitation laser itself [42], while internal heating via

absorption of laser light leads to motional heating [118]. In contrast, a charged

nanoparticle that is levitated using electrodynamic fields within a Paul trap, is an

attractive levitated system as it is free from recoil induced heating as only low light

intensities are required for detection. In addition, large well depths in excess of

5×103 eV (see Section 3.2.2.4) allow operation of the trap in the harmonic regime,

even for temperatures exceeding 300K. We demonstrated in the previous chapter

that the charge on a levitated nanosphere in the Paul trap was stable over many

weeks of measurement allowing stable oscillation frequencies limited only by the
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noise and drifts in the applied electric fields and environmental disturbances.

Here we report on a levitated nanoparticle oscillator operating at pressures

down to 10−7 mbar in a room temperature environment. We outline the application

of a phase sensitive detection method that allows us to remove the small residual

variations in the trapping potential over the very long timescales required to measure

an ultra-low linewidth of (81± 23)µHz. This is one of the narrowest linewidths

measured for a mechanical oscillator alongside recent works with larger particles

[123, 124] and paves the way for future precision experiments using levitated systems.

We also characterise the important noise sources for this oscillator and outline a

means to achieve even lower linewidth measurements and higher Q-factors.

5.1 Linewidth measurement
For this experiment a single nanosphere of 230 nm radius was used in the minia-

ture linear Paul trap introduced in Section 3.2.2. The position of the particle as a

function of time was determined from fast imaging of the particle illuminated by

a low intensity laser beam (20W/m2, see Section 4.1 for more detail). Using the

camera, we track the motion along two axis. The z-axis is defined along the Paul

trap axis and the x-axis, which corresponds to the projection of one of the radial

motions (see Fig. 4.1 for axis definition). This low intensity guarantees that the

particle is not perturbed and that the internal temperature remains close to 300K

(see Section 2.3.4). Additionally, shot noise recoil heating from the probe beam is

also negligible (see Section 2.3.3). At relatively high pressures the damping rate can

be accurately measured, even for large particles (i.e. ∼ 130µm). However, as the

pressure is reduced, it becomes increasingly difficult to perform accurate direct mea-

surements. There are many examples in the literature demonstrating a saturation of

the linewidth for levitated systems [41, 104, 115]. Spectral estimation requires con-

tinuous monitoring for time scales much longer than the correlation time (2/γm, see

Section 2.1.1) with the implicit requirement that the drifts δωi in the trap frequency

ωi are smaller than the linewidth γm (δωi≤ γm). On the other hand, for long correla-

tion times, time-resolved techniques, which consist in measuring the relaxation time

of the system, are usually preferred [94]. However, this approach requires driving

the particle to large amplitudes in order to achieve a good signal-to-noise ratio which

could lead to particle loss and, more often, to the exploration of highly non-linear
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regions of the trap potential.

The frequency stability in our trap is of the order of δωo/ωo = 0.003 over a

time scale of an hour. This is dominated by thermal drifts in the electronics that

supply the electrode voltages as well as slowly varying stray fields (see Section

4.6.2). At the lowest pressures, this frequency drift is much larger than the ex-

pected linewidth. Furthermore, the behaviour along the two axis is significantly

different. Along the trap axis (z-axis in Fig. 3.1) the resonance (mean frequency

ωz/2π = 97Hz) goes through a slow smooth drift, while in the orthogonal direction

(x-axis, mean frequency ωx/2π = 185Hz) there is an additional periodic modulation

of δωx/2π = 0.25Hz with a period of roughly an hour. This can clearly be seen in

Fig. 5.1, where we show the displacement PSD along both axes at two different

pressures (P = 10−4 mbar (red curves) and P = 2× 10−5 mbar (blue curves)). The

effect of the frequency drift/modulation in the x-axis is evident by the flattening of

the spectral profile. Even along the z-axis, where the PSD is not strongly perturbed,

the conventional spectral approach yields a reliable linewidth measurement only at

higher pressures.

Figure 5.1: Displacement PSD of a trapped nanoparticle along the two degrees of freedom
monitored. The PSDs refer to two pressures P = 10−4 mbar (red) and P =
2× 10−5 mbar (blue). The linewidth measured exploiting the R2 spectra are
respectively (28.5±0.7)mHz and (7.5±0.5)mHz.
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5.2 Numerical phase-sensitive detection
We remove the problems related to the trapping potential stability by implementing

a numerical phase sensitive detection. To this end, it is convenient to move to a

frame rotating at the mechanical frequency ωi. The motion ui(t) along any axis,

i, can be decomposed into two quadratures Xi(t) and Yi(t) according to ui(t) =

Xi(t)cos(ωit) + Yi(t)sin(ωit). This approximation neglects fast rotating terms at

2ωi, however, it is well known that this is a very good approximation for high-

Q oscillators for which changes of the quadratures amplitude happen adiabatically

with respect to the potential. To simplify the notation, we consider only one degree

of freedom and denote its resonance frequency by ωo. If γm � ωo, the dynamical

equations for the slowly varying quadratures are [114]

Ẋ+ γm
2 X = 1

mωo
f (1) , (5.1)

Ẏ + γm
2 Y = 1

mωo
f (2) , (5.2)

where f (k) are stochastic force terms with autocorrelation functions 〈f (k)(t)f (j)(t′)〉=

δkjδ(t− t′)SF /2, assuming a delta-correlated force noise F , with PSD SF , driving

the oscillator. The spectra of the two quadratures are then SX(ω) = SY (ω) =
SF

2(mωo)2
1

ω2+γ2
m/4

. Experimentally, these PDSs are obtained by implementing a nu-

merical lock-in amplifier, where we demodulate the displacement signal uo(t) at a

frequency ωLO and filter out the fast varying components at 2ωo. The two quadra-

tures are still affected by changes of the trap frequencies or by a frequency difference

between ωo and the reference rotation ωLO; if ωo = ωLO+δωo their spectrum will be

given by a low frequency Lorentzian peak centred at δωo. Of course, any time de-

pendence of ωo will be mapped on δωo leading to a broadened peak and a linewidth

estimation that is incorrect or impossible. However, frequency drifts or offsets are

removed if we look at the amplitude quadrature R =
√
X2 +Y 2. This can be un-

derstood with a simple heuristic argument. Let us consider an almost sinusoidal

signal u(t) =A(t)cos(ωo t+φ(t)) with a slowly varying amplitude and phase. After

demodulation and low pass filtering the two quadratures will be
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X(t) = 1
2A(t)cos(φ(t)) , (5.3)

Y (t) =−1
2A(t)sin(φ(t)) , (5.4)

as long as |dφ(t)
dt | � ωo, i.e., adiabatic phase fluctuations. The amplitude quadra-

ture is then given by R(t) =
√
X(t)2 +Y (t)2 = A(t)/2 which is unaffected by the

slow phase fluctuations φ(t). Obtaining an analytical expression for the amplitude

quadrature spectrum SR(ω) is not trivial, however, neglecting the time dependence

of ωo, it is possible to evaluate analytically the PSD of SR2(ω) which is given by

[125]

SR2(ω) = 8
γm

1
ω2 +γ2

m

(
SF

2m2ω2
o

)2
. (5.5)

Importantly, Eq. 5.5 holds even for an oscillator with a slowly varying resonance as

can be shown numerically and as we demonstrate experimentally in the following.

In contrast to what was shown in the previous section, the linewidth can be

determined from the PSD of R2 as shown in Fig. 5.2(a), (b) and (c) for different

pressures along the x-axis. Also shown is a fit to the data using Eq. 5.5. The smallest

linewidth measured is (81±23)µHz (fit shown in Fig. 5.2(c)). The linewidth follows

the expected behaviour from gas collisions very well despite the frequency modula-

tion that was clearly visible in the conventional PSDs in Fig. 5.1(bottom). We point

out that the modulation in the secular frequency δωx, at the lowest pressure, is 2500

times larger than the linewidth γm. This illustrates the utility of this method for

Figure 5.2: Panels (a), (b) and (c): PSD of the square amplitude quadrature for the
motion along the x-axis along with a fit following Eq. 5.5 for different pressures
P = 9×10−5 , 2×10−5 and 3×10−7 mbar, respectively.
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Figure 5.3: Measured linewidths as a function of pressure along both x-axis (blue) and
z-axis (red) obtained from the R2 spectra. Inset: linewidth measured at high
pressure by standard spectral analysis. The dashed line is a fit of the expected
∝ P behaviour. Only the data in the inset have been used for the fit.

extracting narrow linewidths in the presence of slow, large modulation and drifts

in the trap frequency. To test the accuracy of this approach, we can compare the

linewidths obtained from the R2 spectra to the ones obtained from the conventional

method consisting of directly fitting the PSD. This last method works only at high

pressures because of the frequency drifts, but the linear fit can be extrapolated down

to low pressures. This is shown in Fig. 5.3 where the linewidths along the two mon-

itored axes are fitted separately. All the low pressure measurements are consistent

with the expected behaviour.

Our nanoscale oscillator, with a Q-factor of 2.3× 106, compares well with the

highest Q-factors ever reported for relatively low frequency oscillators, particularly

for operation at room temperature. On a similar experimental system, a Q-factor of

1.5× 105 has been previously demonstrated [94]. A Q-factor of 1.3× 107 was later

reported for a particle of 27µm radius at P = 5.7×10−5mbar and kept at 4K [124].

For clamped oscillators, the most notable ones are balanced torsional oscillators

[126] where Qs of almost 106 are reached for higher oscillation frequencies of a few

kHz. A single-crystal silicon oscillator has demonstrated a linewidth of ∼ 500µHz

at 300K [127] and a Q-factor of 4× 107. For all clamped systems, however, only

a very limited number of normal modes have such high Q-factors. This is in stark
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contrast with the levitated case described here where all three translational degrees

of freedom of the oscillator experience the same dissipative forces, while the internal

modes are completely decoupled as the lowest modes have frequencies greater than

GHz [128].

5.3 Bounds on excess damping
The linewidth as a function of pressure, averaged between the two degrees of freedom,

are fitted with a simple line, i.e., γm = γexc + kP , to allow the estimation of a

possible excess damping γexc due to additional dissipative mechanisms other than

gas damping. The fit is shown in Fig. 5.4 along with the 95% confidence bands.

With the same confidence level we find γexc/2π = (18±30)µHz which is consistent

with zero, confirming that only gas damping is affecting the particle dynamic.
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Figure 5.4: Linewidths averaged over the two degrees of freedom measured and with a
linear fit (blue) and 95% confidence bands (green). Also shown is the fit
assuming no excess damping (dashed-grey)

5.4 Paul trap noise
We show in Fig. 5.5 (a), (b) and (c) histograms of the amplitude quadrature

at different pressures. They correspond to the well known Rayleigh distribu-

tion µ(r,σi) = r/σ2
i e
−r2/2σ2

i with mean and variance given by 〈µ〉 =
√
π/2σi and

σ2
µ = (4−π)σ2

i /2, respectively [129]. Indeed, the X and Y quadratures of a thermal

state are normally distributed with zero-mean and are independent. In this case,

it can be shown that the amplitude quadrature variable R =
√
X2 +Y 2 follows a
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Figure 5.5: Panels (a), (b) and (c): Probability density functions (PDF) of the amplitude
quadrature R for the same respective datasets as in Fig. 5.2. A fit to the distri-
bution is shown in red. Each dataset corresponds to a continuous acquisition
close to one day.

Rayleigh distribution [129]. If the motion along the i-axis is in thermal equilibrium

with the environment we simply have σ2
i = kBTb/mω2

i , which is the usual thermal

variance for an harmonic oscillator. The three data sets have a similar total obser-

vation time of the order of one day. This implies that the number of statistically

independent points significantly drops when the pressure is reduced to the mini-

mum value. The number of independent samples goes from approximately 10000 at

P = 9× 10−5 mbar to 100 at P = 3× 10−7 mbar as can clearly be observed in Fig.

5.5 (a) and (c). We exploit the properties of the Rayleigh distribution to verify that

the sample size is big enough to be representative of the distribution. The first two

moments allow an estimation of the motional variance which can be compared with

each other. Specifically, at P = 9× 10−5 mbar we have ∆σi/〈σi〉 = 0.005 while at

P = 3× 10−7 mbar we find ∆σi/〈σi〉 = 0.08 which is in line with what is expected

(with 〈σi〉, the mean of the σi values calculated over independent sets of R values

and ∆σi the standard deviation of the σi values). Indeed, the relative difference of

the two estimators should scale as the square root of the sample size. It is clear,

from both the PSD spectra and the Rayleigh distributions of Fig. 5.2 and 5.5, that

the variance of the stochastic motion increases as the pressure is reduced. This be-

haviour is also shown as an increase in the effective temperature as the pressure is

reduced in Fig. 5.6.

Here we plot the effective temperature (see Chapter 4) along both trap axes as

a function of pressure. This calibration does not rely on the assumption of thermal

equilibrium at room temperature but exploits the absolute calibration available from
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using the camera (see Section 4.1.2). For the high pressures (P > 10−3mbar), the

mean effective temperature is 〈T 〉 = (293± 3± 25)K, where the systematic error

comes from the uncertainty in the mass measurement. The excess force noise leads

to an increase in effective temperature that varies inversely with pressure. A fit to

the average temperature on the two axes gives Teff = 293(1 + 7.3× 10−6/P ). We

obtain a value for the excess force noise from the PSD of SF ≈ 1×10−38 N2/Hz. For

the nanoparticle illuminated by the detection beam, the back action due to photon

recoil is approximately 4× 10−43 N2/Hz (see Section 2.3.3) which is insignificant

compared to the thermal noise of 10−40 N2/Hz at 10−7 mbar. This excess noise is

consistent with a measured voltage noise from the high voltage amplifier amplifier

used to drive the AC electrodes1 √SV ≈ 200µV/
√
Hz and a nanoparticle position in

the transverse direction of the trap of ∼ 100µm (consistent with observation when

the particle position is not centred in the transverse direction of the trap as described

in Section 4.6.3). The voltage was then evaluated using the formula described in

Section 3.2.2.3 in the case of correlated noise (correlated since identical noise on both

AC electrodes) for a particle with an estimated number of 80 elementary charges.
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Figure 5.6: Centre-of-mass effective temperature as a function of pressure along both x-
axis (blue) and z-axis (red). The average between the two degrees of freedom
is fitted assuming a 1/P contribution that would rise from a white nonther-
mal force noise. A 3 dB temperature increase occurs at P = 7.3×10−6mbar.
Dashed grey line marks the measured room temperature of 293 K.

1Voltage noise of the Trek 2220 below 10 kHz.
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5.5 Summary
To summarise, we have demonstrated a novel phase-sensitive technique to measure

the intrinsic linewidth of an oscillator with varying frequency. This method can be

applied to any oscillator with high Q-factor and frequency drifts or, conversely, phase

fluctuations φ(t) satisfying |dφ(t)
dt | � ωo with ωo the oscillator frequency. Though

frequency drifts can be mitigated, requirements on the electronics to maintain a

stable secular frequency in a Paul trap down to ∼ 10µHz would be complex. This

method was demonstrated to measure a linewidth of ∼ 80µHz corresponding to a

Q-factor of 106 and dissipation solely provided by gas damping. In the case where

the nanosphere would be trapped optically with a trap-frequency of ∼ 100kHz, this

would have corresponded to a Q-factor of 109. In the next section, we apply those

results to dissipative collapse models. This demonstrates the utility of the method

discussed here for future precision experiments that aim to test the macroscopic

limits of quantum mechanics [36, 37]. We use as well this method in Chapter 8

to estimate the total effective damping given by the sum of the gas damping and

optical damping provided by the optomechanical interaction.



Chapter 6

Testing wavefunction collapse models

with a levitated oscillator

The measurement postulate in quantum mechanics is in stark contrast with the

linear Schrödinger equation since inconsistent with each other. Moreover it intro-

duces a clear distinction between a microscopic scale obeyed by the laws of quantum

mechanics and a classical macroscopic one, where the interaction with a quantum

system is dictated by the measurement postulate. This postulate, needed to be

consistent with observations, has been validated in numerous experiments and has

enabled the development of quantum technologies which are directly relying upon

it [130–132]. Wavefunction collapse models offer a phenomenological way of uni-

fying both Schrödinger equation and measurement postulates. We use our current

oscillator to confirm recently placed bounds on the most studied model: Continuous

Spontaneous Localisation (CSL). Finally, we use the narrow linewidth measurements

demonstrated in Chapter 5 to place new bounds in a novel way on the dissipative

CSL and Diósi-Penrose models.

6.1 The measurement problem
Quantum mechanics, and its subsequent theories, is to this day the most validated

physical theory [133]. The measurement of the electron magnetic moment has been

shown to be in agreement within 11 digits of the theoretical prediction [134]. More-

over, no physical theory has been tested as much as quantum theory given its pecu-

liar and distinctive behaviour. This leads the scientific community to a reasonable

feeling of faith towards it as Roger Penrose states [133]. This feeling of faith is

comforted by the Copenhagen interpretation of quantum mechanics where the wave-
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function is viewed as a mathematical tool rather than a real entity. The collapse of

the wavefunction, i.e. the action of the measurement process upon the wavefunc-

tion is a needed postulate which is in stark contrast with the linearity of quantum

mechanics. Furthermore, it implicitly introduces different physical scales as the

interaction between a quantum system and a larger system performing the measure-

ment follows the measurement postulate rather than the Schrödinger dynamics. The

contradiction between the linearity of quantum mechanics and the collapse process

is disconcerting and has puzzled the main founders of quantum physics. A famous

example is Schrödinger’s cat. Heisenberg reported Schrödinger to have said "If all

this damned quantum jumping were really here to stay then I should be sorry I ever

got involved with quantum theory" [135]. According to Dirac, quantum theory is

only at its preliminary stage [136]. Decoherence and the introduction of the density

matrix by von Neumann has enabled precise calculations taking into account the

effect of the environment on a quantum system. Rather than a pure state, when

the environment is traced out, the system is described by a mixed state with a

probability mixture of different measurement outcomes. While this is in practice

a great tool, this formalism does not solve in any way the measurement problem

as the predicted probability mixture needs to be updated once the measurement is

performed [137, 138]. At this point, new theories or interpretations are needed. A

popular theory (and very attractive from a science fiction prospective) is the many

world interpretation which states that superpositions are not observed since they

branch out in different worlds [139]. Another idea, and directly relevant to the work

presented here, is the idea of collapse models where the quantum dynamics provided

by the Schrödinger equation is modified with the slightest possible modifications to

preserve the original quantum behaviour at a microscopic level while leading at the

macroscopic one to the well-observed effective collapse of the wave-function.
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6.2 Continuous Spontaneous Localisation model
The most studied collapse model is Continuous Spontaneous Localisation (CSL)

[140–143]. It modifies the Schrödinger dynamics to become

d |ψt〉=
[
− i

h̄
Ĥdt+

√
γ

m0

∫
dx
(
M̂(x)−〈M̂(x)〉

)
dWt(x)

− γ

2m2
0

∫ ∫
dxdyG(x−y)

(
M̂(x)−〈M̂(x)〉

)(
M̂(y)−〈M̂(y)〉

)]
|ψt〉 , (6.1)

where γ is the collapse strength and m0 the nucleon mass. The usual Schrödinger

equation can be seen on the left hand side of the first line. Stochastic and non-

linear terms are added to the dynamics. The stochastic term prevents superlu-

minal signaling while the nonlinear term breaks the linearity of the Schrödinger

equation and accounts for the localisation of the wavefunction. In this model, the

collapse occurs in space (in the position operator basis). The nonlinear behaviour

can be seen in the product in the second line. The stochasticity is introduced

with a random Wiener process with zero mean, delta correlated in time and spa-

tially distributed as a Gaussian distribution 〈dWt(x)dWs(y)〉= δ(t−s)G(x−y) with

G(x−y) = 1
(4πrC)3/2 exp[−x2/4r2

C ]. In Eq. 6.1, M̂x =mâ†(x)â(x) refers to the mass

density operator. Two important parameters characterise the model. The rate

λ = γ
(4πr2

C)3/2 determines the rate of the collapse. The correlation length rC deter-

mines the size of a superposition at which the collapse occurs. If a nucleon spatial

superposition is much smaller than rC , then the collapse is very unlikely to occur

and other decoherence processes are more likely to be observed. On the other hand,

if the superposition of a single nucleon is macroscopic (of a size much larger than

rC) then it collapses at a rate λ. The description so far only accounts for one single

nucleon and places limits on the size of its possible spatial superposition. When

it comes to an object constituted of many nucleons, the effective collapse rate of

the centre-of-mass is amplified and can be shown to become Λ = λn2N , with λ the

previously described collapse rate of a single nucleon, n the number of nucleons

contained in a sphere of radius rC and N the number of such spheres [144]. This

amplification mechanism, though with no known underlying origin, could therefore

account for the fact that superpositions of a "large" object have not been observed

to date. The two parameters characterising the model, λ and rC , have to be found
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experimentally. A standard procedure by GRW has been to consider rC = 10−7m

[145], with the intuition that this scale is halfway between the human smallest scale

(∼ 0.1mm) and the inter-atomic scale (∼ 10−10m). At this value, a collapse of

λ = 10−16 s−1 was considered, motivated by the hypothesis that only close to the

macroscopic scale, the collapse mechanism would dominate over other phenomena.

Another guess for the individual collapse rate at the same scale of rC = 10−7m

was considered by Adler where λ = 10−8 s−1 [144]. With this much stronger value,

the collapse becomes effective at mesoscopic scales where quantum physics mea-

surements, and therefore wave-function collapse could occur. The CSL model is by

definition experimental and exploration of the parameter space constrains possible

values of both parameters. Two ways have been used to explore validity of possible

parameters: directly (through matter wave interferometric measurements) and indi-

rectly (with non-interferometric measurements). Interferometric methods consist in

observing the coherence time of a given spatial superposition. The record (in size) of

successful matter wave interferometry so far has been with a molecule consisting of

more than 2000 atoms and weighting ∼ 4×10−23kg [146]. Considering rC = 10−7m,

this experiment places the following constraint on the collapse rate λ < 10−7 s−1.

Studies of the CSL dynamics formulated in Eq. 6.1 showed that the CSL stochastic

behaviour leads to a stochastic force noise [147]. It can be shown that the white

force noise PSD on a homogeneous sphere is given by [37] (single-sided PSD)

SCSL = 6h̄2r2
Cm

2

m2
0r

6

[
1− 2r2

C

r2 +e
− r2
r2
C

(
1 + 2r2

C

r2

)]
, (6.2)

where r and m are the particle radius and mass, respectively. Analysing force noises

can therefore be used to place constraints on the CSL model. We use this method

in the next section to place some experimental bounds on the CSL model.

6.3 Bounds on the CSL model

In this section, we use data of the particle motion at 8.6×10−7 mbar to estimate an

excess force noise (additional to thermal force noise), with possible origin attributed

to the force noise induced by the wavefunction collapse. This force noise is estimated

given the thermal force noise, evaluated with the measurements of the linewidth,

bath temperature and nanosphere mass.
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Better control over the particle mean position along the transverse direction of the

trap (see Section 4.6.3) enabled better cancellation of correlated Paul trap noise.

In this case, at a pressure of 8.6×10−7 mbar, the motion was still thermal in both

transverse and axial directions (same data set as the one shown in Fig. 4.21). This

is in agreement with the expected voltage noise on the compensation electrodes of

SV = 1µV /
√
Hz. The nanosphere has an estimated 240 elementary charges which

leads to an expected force noise of SF ≈ 5×10−40N2/Hz. The thermal force noise

from a bath at 293K given the mechanical damping measured (see Fig. 6.1(right))

is SFth ≈ 10−39N2/Hz, and should therefore be the main force noise contribution.

We measure (from the area), an average temperature in the transverse direction of

T = (292± 29)K where the uncertainty comes from the Allan deviation similarly

to what is shown in Fig. 4.18, and in the axial direction of T = (328±33)K. This

value is obtained after averaging over 11.2 days. We show in Fig. 6.1(left) the

position distribution of the oscillator along the x-direction (from the same data

set). A Gaussian fit to this distribution gives a temperature T = (281± 28)K. In

Fig. 6.1(right) we show a fit of the R2 spectra of the motion along the x-direction

(obtained after averaging over 11.2 days). The fit gives a value for the damping rate

of γm/2π = (259± 26)µHz. The same fit along the axial direction gives γm/2π =

(279± 28)µHz. The temperature can be as well estimated from the integral of

the R2 spectra and gives (312±31)K. The temperature measurement can be used

in conjunction with the linewidth measurement to place a bound on excess noise

above the thermal noise. Among those three measurements (in good agreement), we

use the one averaged over the integrals of the PSD: T = (292± 29)K. Taking into

account that the experiment is performed at room temperature Tb = (293± 2)K,

we get an excess temperature along the x-axis smaller than Texc = 61K with a

95% confidence. An excess force noise therefore needs to be smaller than Sexc =

4mγmkBTexc = 3.6×10−40m2/Hz.

When attributing this excess noise to CSL noise by using Eq. 6.2, we can exclude

the λ and rC parameters as shown as the blue area for this specific measurement

in Fig. 6.2. The mechanical frequencies at which this excess noise is probed are

ωx/2π = 420Hz and ωz/2π = 149Hz. This improves bounds at similar frequencies

placed by LIGO experiment, shown as a yellow line [148] (frequency band ranging
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Figure 6.1: (left) Histogram of the oscillator position along the x-axis acquired over 11.2
days of measurement. The oscillation frequency is ωx/2π = 420Hz. The
nanosphere has an estimated mass of 5.6× 10−17 kg. In orange is shown a
Gaussian fit of the distribution which gives an effective temperature T = (281±
28)K. (right) R2 spectra of the motion along the x-axis (spectra obtained with
14 averages). The fit (in orange) gives a linewidth γm/2π = (259± 26)µHz
consistent with the measured pressure of 8.6×10−7 mbar. The effective tem-
perature estimated from the square root of the integral is T = (312±31)K.

from ∼ 50Hz to ∼ 1 kHz). A recent similar experiment excluded further bounds as

shown in orange [123] (∼ 10Hz oscillator). Another experiment with a cantilever

(frequency of 8kHz) and cooled to milliKelvin temperatures exclude even more the

parameter space (brown line)[149]. This last measurement, has been extended with

a specifically designed load, (frequency of 3 kHz) enabling further improvements

over the parameter space (red area) [150]. At milli-Hertz frequencies, the LISA

pathfinder experiment can exclude the area shown in green [148]. Additional heating

from cold atoms enables to exclude the region shown in grey [151]. Other bounds

tested at very high frequencies are shown in dashed purple and dashed red. The

former is inferred by measuring the emission spectrum of Neptune [152]. The latter

is inferred after analysing the X-ray spectrum from a Germanium sample [153].

Lastly, lower bounds are shown in black. Those values are excluded after theoretical

considerations which would otherwise be in contradiction with the human experience

of the macroscopic world [154]. The work presented here paves the way for using

levitated nano-oscillators to test the CSL model. Further reduction of the voltage

noise would enable the nanosphere to remain thermal at lower pressure (and lower

bath temperature). At a pressure of 10−13 mbar, and bath temperature of Tb =
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300mK, a thermal motion would give an upper bound of λ≈ 10−12 s−1 at rC = 10−7.

In order to achieve those bounds, a very careful analysis of the noise contribution

of the detection on the oscillator will be required, as detailed in theory in Ref. [37].

Moreover, mitigation of vibrational noise at those low frequencies will be critical.

Figure 6.2: Current upper and lower bounds of exclusion of the CSL parameter space
with non-interferometric measurements. This experiment excludes the CSL
parameters within the blue area. Assuming the CSL force noise to be white, the
remaining possible values to-date lie within the white area defined between the
black area, green and red-dotted curve. They correspond to bounds provided
by theoretical arguments [154], the LISA pathfinder experiment [148] and the
X-ray spectrum from a Germanium sample [153], respectively. The other upper
bounds correspond to experimental results given by LIGO in yellow [148],
microspheres in orange [123], cantilever in brown and red area [149, 150], cold
atoms in grey [151] and from the emission spectrum of Neptune in purple [152].

6.4 Bounds on dissipative collapse models

We now describe the use of our narrow linewidth oscillator, coupled with our ability

to predict the simple variation of damping with pressure, to put new limits on two

dissipative models for wavefunction collapse. This includes the dissipative continu-

ous spontaneous localisation (dCSL) [155] and the dissipative Diósi-Penrose model

(DP) [156]. Both the conventional CSL and DP models are not energy conserving
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and dissipative versions have been proposed to remove the energy divergence due to

the standard white CSL force noise. The additional dissipation determines a finite

equilibrium temperature for any given system and an additional parameter TdCSL is

introduced which characterises the temperature of the collapse noise. In the dCSL

framework, the force noise is no longer white, and for a nanoparticle it has a spectral

density [157] SdCSL(ω) = h̄2ηdCSL[1 +κ2m2(γ2
t +ω2)], where γt = γm +γdCSL is the

total damping rate and κ= γdCSL/2h̄ηdCSL. In the limit of an infinite temperature

the standard CSL is recovered. In the dCSL model the collapse strength, ηdCSL, for

a spherical particle of radius r and homogeneous density ρ is given by [157]

ηdCSL = 3λr2
Cm

2

(1 +χC)r4m2
0

[
1− 2r2

C (1 +χC)2

r2

+e
− r2

r2
C

(1+χC)2
(

1 + 2r2
C (1 +χC)2

r2

)]
, (6.3)

where m is the total mass of the system, m0 is the nucleon mass, χC =

h̄2/(8makBTdCSLr
2
C), and TdCSL is the thermalisation temperature. In the limit

of no dissipation, TdCSL→∞, we have χC→ 0, and thus one recovers the collapse

strength of the standard CSL model, ηdCSL→ ηCSL. On the other hand, in case of

strong dissipation when a� rC(1 +χC), we obtain an approximate expression

ηdCSL = mmaλrC
2a3m2

0(1 +χC)2 min
[
1, r3

r3
C(1 +χC)3

]
, (6.4)

where ma is the average mass of a nucleus (' average atomic mass), and a

is the lattice constant [147]. Finally, the dissipation rate is given by γdCSL =

ηdCSL4r2
CχC(1 +χC)ma/m.

The DP model has a structure quite similar to the CSL with the main difference

being that the scale of the collapse strength is set by the gravitational constant G,

thus introducing a stronger connection to gravity for the collapse mechanism. As

this thesis is being written, the standard DP model has been ruled out [158]. The

standard DP model is also not energy conserving, and a dissipative version has been

proposed [156]. Since the collapse strength is fixed, the dissipative DP (dDP) model

is characterised by only two parameters, namely, the temperature of the collapse

noise TdDP and a cut off distance R0 which plays a similar role as rC in the dCSL



6.4. Bounds on dissipative collapse models 137

model. The calculation for the dDP model, under the assumption of a homogeneous

sphere, can be carried out similarly as for the dCSL model. Specifically, we find the

following collapse strength:

ηdDP = Gm2
a√

πr6h̄

[√
πr3Erf

(
r

R0(1 +χ0)

)

+ (1 +χ0)R0

{
r2
(
e
− r2

(1+χ0)2R2
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0

)}]
, (6.5)

where χ0 = h̄2/(8makBTdDPR
2
0), and TdDP is the thermalisation temperature. In

the limit of no dissipation, TdDP→∞, we have χdDP→ 0, and the collapse strength

of the standard DP model is recovered, ηdDP → ηDP [147]. Using a lattice model

for the crystal structure we obtain an approximate formula for the case of strong

dissipation, a�R0(1 +χ0), given by

ηdDP = Gmma

6
√
πa3h̄

min
[
1, r3

R3
0(1 +χ0)3

]
. (6.6)

The damping rate for the dDP model is given by γdDP = ηdDP4R2
0χ0(1 +χ0)ma/m.

The CSL and DP family of models share many common features, among which

the amplification of the collapse strength with the size of the system [156], as dis-

cussed in the previous section. Such an amplification mechanism is supposed to

accomplish a dual task: on the one hand, agreement with the quantum mechanical

predictions for very small systems, and on the other hand, that classicality emerges

for large systems [159]. The amplification mechanism has its origin in microscopic

derivations where the centre-of-mass dynamics of a bulk material is obtained start-

ing from the dynamics of nucleons or nuclei. In the present case this is reflected

in geometrical factors ηdCSL and ηdDP that describe the effect of the intensive and

extensive properties of the system on the centre-of-mass dynamics. In the above

formulae we have chosen the nuclei as the building blocks of the models, motivated

by considerations about gravity in the Newtonian regime [160]. However, one could

also postulate that the centre-of-mass motion is always in the single-particle form.

In particular, one can require that the centre-of-mass dynamics depends only on
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the total mass m of the system, but not on other intensive or extensive properties

of the bulk system. This latter choice is suggestive of a hypothetical underlying

theory of spontaneous collapse models, which includes notions of Einstein’s General

relativity [161]. In this latter case, one has that the collapse strengths are given

by ηdCSL = λm2

2m2
0r

2
C(1+χC)5 and ηdDP = Gm2

6
√
πh̄R3

0(1+χ0)3 , and the dissipation rates are

obtained by replacing ma with m and a with r in the corresponding formulae. The

CSL and DP family of models usually discussed in the literature predict that the

collapse strength for the centre-of-mass dynamics depends on the intensive and ex-

tensive properties of the bulk material, such as composition and shape. This is the

version we consider for dCSL. On the other hand, we can also consider the dDP

model in the single-particle version, which depends only on the total mass of the

system, but not on any other property of the system. In the following, we consider

this latter version of the dDP model, while our experiment does not put significant

bounds on the former one.

Here we exploit a new and completely different approach to place bounds on the

dissipative versions of those collapse models. We compare the theoretical predictions

for the damping due to the collapse mechanisms to our measurements of extremely

narrow linewidth presented in the previous section. This allows us to place significant

constraints on the dCSL and dDP models. For the levitated oscillator the damping

rate is well defined by the collisions with the surrounding gas and has a linear

dependence with pressure. This allows us to extrapolate its value at zero pressure

(see Fig. 5.4) and attribute it to the collapse process. We find an upper limit for

the damping rate due to the collapse mechanisms of γdCSL/2π ≤ 48µHz at the 95%

confidence level which is compared to the predictions from the models. Exploiting

this upper limit we derive new bounds for dCSL which are shown in Fig. 6.3(left).

These new bounds assume different dCSL temperatures. When TdCSL = 1 K our

bounds are comparable to existing ones [162]. However, when TdCSL is reduced

to 10−7 K [157] the excluded parameter space is significantly increased reaching a

minimum collapse λ ' 10−14 s−1 for an rC = 1.5µm. Remarkably, for these values

the force noise sensitivity required to place an equivalent bound on both CSL and

dCSL is ∼ 10−50 N2/Hz which would be achievable only for a thermal particle at a

pressure of ∼ 10−15 mbar (assuming the same particle size). The excluded parameter
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space for the dDP model in the single-particle version is shown in Fig. 6.3(right).

The value for R0 originally proposed by Diósi is excluded on an extremely wide

temperature range from 10−10 K to 1010 K while at the GRW value the exclusion is

limited to very unrealistic TdDP values. A value considered reasonable is the cosmic

microwave background (CMB) temperature [157]; in this case the excluded R0 goes

from 10−18 m to 10−12 m. Interestingly, the excluded region has no upper bound

and extends to T∞ for increasingly smaller values of R0.

Figure 6.3: Experimental bounds on dissipative collapse models. (left) Exclusion region for
the dCSL parameters λ and rC . Continuous lines: upper bounds from current
line width measurements for a 231 nm radius silica particle at 3× 10−7 mbar
for different values of TdCSL: 1K (blue), 10−2 K (yellow), 10−4 K (green) and
10−7 K (red). The dashed lines are the expected improved bounds from future
measurements on a 10µm radius silica particle; same colour code for TCSL. The
green region corresponds to upper bound from LISA pathfinder [148, 162, 163]
and the grey region is the lower bound from theoretical arguments [154, 164].
The black markers refer to the Adler [144] (top) and GRW [145] (bottom)
values. (right) Exclusion region for the single-particle dDP model. The darker
green corresponds to the bounds from the current experiment. The lighter
green region is the expected improved bounds from future measurements on a
10µm radius silica particle. We chose to limit the temperature to the lowest
conjectured value of 10−18 K associated with Hawking radiation from a super-
massive black hole [165, 166]. CMB marks the cosmic microwave background
temperature.

6.5 Summary
The measurement problem has puzzled many physicists starting with the founders

of quantum mechanics themselves. We have introduced collapse theories which are

popular phenomenological models to account for quantum mechanics at the smallest

scales and collapse of the wavefunction at the macroscopic one. By placing bounds
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on the excess force noise of our thermal levitated nano-oscillator at 8×10−7mbar, we

were were able to confirm recently excluded parameters in the CSL model (exclusion

for λ > 10−6 s−1 at rC = 10−7m for ∼ 1kHz oscillator). This work paves the way for

further experiments at lower pressures with levitated oscillators. With a thermal

oscillator at equilibrium with a bath at Tb = 300mK and at a pressure of 10−13mbar,

exclusion of λ > 10−12 s−1 could be demonstrated at rC = 10−7m [37]. Moreover,

by using the narrow linewidth of this oscillator (measurements discussed in Chapter

5), we have placed new constraints on two dissipative wavefunction collapse models,

namely the continuous spontaneous localisation and the Diósi-Penrose in the single-

particle version. By utilising lower noise electronics, and a larger mass oscillator

which can be incorporated in this system, we expect to be able to provide even

more stringent limits in the future. Considering a 10µm radius silica particle, and

measuring a linewidth an order of magnitude smaller than measured here, would have

a significant impact. In the case of the dCSL it would allow us to almost entirely

exclude the λ-rC parameters subspace for the lowest TdCSL [154, 164]. In the case

of the dDP, we could exclude R0 values almost two orders of magnitude larger at

the CMB temperature. Achieving these objectives will require an improvement of

the current electronics but nothing beyond the current state of the art.
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Optical set-up

In this chapter, we describe the main optical components used to perform the exper-

iments discussed mostly in Chapter 8. We first describe the general optical layout

of the experiment and then focus on characterising the classical intensity noise, and

the frequency noise of the laser, which is of crucial importance for the experiment.

Finally, the last two sections consist of the characterisation of the two cavities used

in the experiment. In the last section, we evaluate the sensitivity performances of the

PDH error signal of the science cavity used in Chapter 8 to detect the nanoparticle

motion.

7.1 Optical layout
In this section we discuss the general optical layout of the cavity experiment shown

in Fig. 7.1. In the following sections, each component is discussed in further de-

tails. Two optical cavities are used for the experiment: the science cavity where the

nanoparticle is trapped, cooled and monitored, and the filtering cavity used to filter

out laser classical noise. In order to perform the experiment, we use two different

lasers. One is locked to the science cavity and the other one is offset phase-locked

to the first with control over its frequency detuning. Either of the two lasers can be

used to trap the nanoparticle. By using two lasers separated in frequency by one

free-spectral-range (FSR), which corresponds to 10.3GHz, we avoid any undesirable

beat frequency close to the mechanical frequency of the nanoparticle. Furthermore,

we can take advantage of having two modes of different frequencies to tune the ratio

between linear and quadratic optomechanical couplings as discussed in Section 8.3.
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Figure 7.1: Simplified optical layout of the experiment. Laser beams are shown in red, polarisation-maintaining single-mode fibres in blue, and
electrical connections in black. EOM: electro-optic modulator. AOM: acousto-optic modulator. PDH: Pound-Drever-Hall. PFD: phase
frequency detector. VCO: voltage-controlled oscillator. PI: proportional gain and integrator. PI2: proportional gain and double integrator.
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Both cavities are locked with a standard Pound-Drever-Hall (PDH) technique

described in Section A.1. The filtering cavity can be used to filter laser noise of

the 2W beam or can be bypassed (in this case, the laser path is shown by the

red dotted line in Fig. 7.1). Both paths are well overlapped (the fringe visibility

of the overlapped paths is 92%) in order to reduce alignment when using either

configurations. The frequency difference between the two lasers is measured by

monitoring their beat frequency on a photodiode. The offset lock loop is then closed

on an acousto-optic modulator (AOM) in a double-pass configuration. When the

filtering cavity is bypassed, the loop can be closed either on the AOM or on the laser

piezoelectric actuator which is otherwise used for the PDH locking.

Polarisation-maintaining optical fibres are used to decouple the beam prepa-

ration (phase and frequency modulations), corresponding to the upper part of the

layout in Fig. 7.1, from the science cavity mode-matching, shown in the lower part.

This gives a great amount of flexibility to work on one part of the experiment without

interfering with the other one. In addition to this flexibility, using single-mode fibres

enables us to reach high mode-matching efficiencies to the science cavity, which are

above 90%.

The optical table is isolated from the floor with vibration dampers1. This

provides -40 dB/decade of isolation above the resonance frequency of ∼ 2Hz.

7.2 Lasers
We use two Mephisto lasers operating at an optical wavelength λ = 1064nm with

nominal powers of 500mW and 2W. The piezoelectric-actuator gains of both lasers

have been measured by using an electro-optic modulator (EOM) to add sidebands

at 8MHz to the carrier optical frequency. By ramping the laser frequency and

detecting the reflected cavity field (or the transmitted field) we can measure the

frequency shift between the carrier and the sidebands, from which we can estimate

the laser piezoelectric-actuator gain. We measure a gain of (2.16±0.01)MHz/V for

the 500mW laser and (1.87±0.02)MHz/V for the 2W laser. Both laser gains have a

nominal tuning range of ±130MHz and a bandwidth of ∼100 kHz. The laser optical

frequency can be further tuned by changing the gain medium temperature. The

nominal temperature gain is -3GHz/K, with a tuning range of 30GHz (which gives
1Newport I-2000 Stabilizer Series
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us enough flexibility to operate the two lasers one FSR apart) and bandwidth of

. 1Hz. This tuning range is mode-hope free over ∼ 9GHz. In the following sections

we evaluate the intensity and frequency noise of the lasers.

7.2.1 Classical intensity noise

The shot-noise is a direct consequence of the corpuscular nature of light when de-

tected on a photodiode. It is characterised with Poissonian statistics satisfying

∆n2 = n̄ where ∆n2 is the variance in the number of photons and n̄ is the average

number of photons (see section 2.2.3). When detected on a photodiode, the conse-

quent current fluctuations satisfy 〈∆i2〉 = 2e ī∆f (Schottky formula, in A2) with ī

the average current output of the photodiode, e the elementary charge and ∆f the

detection bandwidth. As a consequence, the PSD of a shot-noise limited beam leads

to a voltage PSD of Sshot = 2ePRG2 (single-sided PSD) expressed in V2/Hz with R

and G the photodiode responsivity and gain, respectively. In practice, with optical

powers of the order of ∼1mW and frequencies smaller than 10MHz, most lasers are

not shot-noise limited [17], meaning that the classical fluctuations in the number

of photons overwhelm the quantum noise. This classical noise has different origins

and statistics. At low frequencies it mainly comes from fluctuations in the electrical

current of the pump diode and acoustic noise. At higher frequencies, solid-state

lasers generally have relaxation oscillations which is a signature of the fluctuations

Figure 7.2: Relative intensity noise measurement (RIN) shown in blue (yellow) with (with-
out) activation of the built-in noise eater. This measurement is made with an
input optical power of Pin = 217µW. The measurements in pink and orange
were taken by the manufacturer for this same exact laser. The main difference
with the measurement taken by the manufacturer is the relaxation oscillations
frequency, which can be explained by different laser settings (diode current
and temperature).
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in the steady state of the system. The laser we are using has a built-in feedback

mechanism (noise eater) to reduce the amplitude of the relaxation oscillation peak

(see Fig. 7.2). Classical intensity noise can simply be evaluated by direct detection

on a photodiode. It is generally expressed in relative intensity noise (RIN) defined as
〈∆P 2〉
P̄ 2 with P the optical power. The point of this definition is to obtain a constant

RIN as a function of laser power since the classical fluctuations follow ∆n2 ∝ n̄2.

This definition therefore only applies at power where the noise is dominated by clas-

sical fluctuations. Our goal is to compare those classical fluctuations to the quantum

ones. We characterise this with a threshold optical power Po introduced in Section

2.4.1.

In order to roughly evaluate Po, we measure the laser intensity noise on a

photodiode2 with parameters provided by the manufacturer (R and G). Measure-

ments are taken with three optical powers Pin (1.05mW, 506µW and 217µW). From

50 to 150 kHz, the PSD has a white spectral profile with an average value Stot of

6.0×10−13V2/Hz, 1.7×10−13V2/Hz and 1.8×10−14V2/Hz, respectively. This is well

above the detection noise floor of 1.6×10−15V2/Hz. We can then evaluate Po as

SshotPin/Stot. For those three powers, we get an average value Po = (33±9)µW. As

mentioned above, classical intensity noise can be expressed in RIN, which is shown

in Fig. 7.2 at Pin = 217µW, alongside measurements performed by the manufacturer

for this same laser.

Another method to detect classical intensity noise consists in measuring the

voltage noise fluctuations given by a photodiode output3 as a function of optical

power. We show in Fig. 7.3 the variance of the photodiode voltage fluctuations (PSD

integrated between 50 kH and 200 kHz with dark noise subtracted) as a function of

optical power on the photodiode. As expected we obtain a parabolic characteristic

of the dependency of classical intensity noise as a function of optical power.

7.2.2 Classical frequency noise

Laser frequency noise arises because of mechanical and voltage noise in the laser

piezoelectric-actuator which changes the laser optical cavity length and imparts fre-

2InGaAs photodiode PDA10DT from ThorLabs. Responsivity at 1064 nm of R= 0.23A/W and
nominal gain G= 15kV/A.

3InGaAs photodiode PDA10CF from Thorlabs. Measured gain and responsivity product of
4.6 kV/W. Maximum voltage output of 10V.
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quency fluctuations. Those fluctuations cannot be measured in an interferometer

with arms of equal length as they would be in phase. In order to detect those fluc-

tuations, a large length imbalance between the two interferometer arms is necessary.

We show in Fig. 7.4 the schematics of the set-up used to measure the frequency

noise. It consists of a polarisation Michelson interferometer with a large length

imbalance of 20m made by a 10m long polarisation-maintaining single-mode fibre.

The interference fringes are then detected on a balanced photodiode.

Figure 7.3: Variance of the photodiode voltage fluctuations (integrated between 50 kHz
and 200 kHz) as a function of optical power on the photodiode (blue) along
with parabolic fit (orange). The quadratic behaviour is a clear signature of
classical intensity noise. This is to be compared with Fig. 7.10 where the beam
is shot-noise limited.

Figure 7.4: Schematics of the delay line interferometer used to measure laser frequency
noise. The sensitivity of the measurement is proportional to the length im-
balance between the interferometer arms. In practice, we use a single-mode
polarisation-maintaining optical fibre as one of the interferometer arms. The
frequency noise is measured on a balanced photodiode. Fluctuations in the
interferometer path length are compensated by applying feedback on a mirror
mounted on a piezoelectric-actuator.
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The physics of the measurement can be explained by considering a coher-

ent frequency noise modulation of amplitude K and frequency ωn [167]. Be-

fore being recombined on a beam splitter, the two amplitudes can be written as
A
2 cos(ωlt+

K
ωn

cos(ωnt)) and A
2 cos(ωl(t− τ)+ K

ωn
cos(ωn(t− τ))) where A denotes the

initial amplitude of the beam before the first beam splitter, ωl the laser frequency

and τ the delay between the two interferometer arms. The intensity (ignoring DC

terms) on the photodiodes is I ∝ A2

4 cos
(
−ωlτ + 2 K

ωn
sin(ωnτ2 )sin(ωn(t− τ

2 ))
)
. As ex-

pected for an interferometer, the sensitivity is maximum for a phase φ=−ωlτ = π
2

where we can linearise the above expression to I ∝ A2

4 τK sin(ωnτ/2)
ωnτ/2 sin(ωn(t− τ

2 ))≈
A2

4 τK sin(ωn(t− τ
2 )). The AC component of the intensity measured on the bal-

anced detector is therefore directly proportional to the frequency noise amplitude

K. Furthermore, we can notice that the sensitivity of the measurement is directly

proportional to the time delay τ and therefore to the interferometer length imbal-

ance. The sensitivity of the measurement can be maximised by ensuring that the

interferometer is operated at φ = π
2 . Slow fluctuations in the path length are ac-

tively compensated by using a mirror mounted on a piezoelectric-actuator4. The

Figure 7.5: Frequency noise measurement of the 2W Mephisto laser from Coherent. A
tone is applied on the laser piezoelectric-actuator at 20 kHz to calibrate the
frequency noise with the knowledge of the laser gain of 1.87MHz/V. The phe-
nomenological behaviour of the frequency noise is shown in orange correspond-
ing to Sφ̇/(2π)2 = 1.8×108

f2 Hz2/Hz.

4HPCh10/12-6/2 from Piezomechanik GmbH
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phase difference between the two optical paths φ is kept at φ= π
2 by using a servo5

(proportional gain and single integrator) and a high voltage amplifier fed on the

piezoelectric-actuator (lock bandwidth ∼ 3kHz).

We show a measurement of the frequency noise in Fig. 7.5. The intensity

difference between the two photodiodes is converted into a voltage through the load

resistance from which we obtain a PSD in V2/Hz. We drive the laser piezoelectric-

actuator with a calibration tone of 20mV (peak-to-peak) at 20 kHz from which we

can directly convert the PSD initially in V2/Hz into Hz2/Hz with the knowledge

of the laser piezoelectric-actuator gain of 1.87MHz/V. We find a frequency noise

behaviour following the expected 1/f2 slope: Sφ̇/(2π)2 = 1.8×108

f2 Hz2/Hz (shown in

orange), in very good agreement with the manufacturer specifications. The noise

structures around 400 kHz can be attributed to the mechanical modes of the laser

piezoelectric-actuator. The 1/f4 slope at frequencies smaller than 10 kHz can be

attributed to acoustic noise in the interferometer. The measurement was carried

with a power in the optical fibre of ∼1mW. Two photodiodes6 were mounted in a

custom amplifier for this measurement.

As discussed in Chapter 2, for a non-vanishing detuning, frequency noise is

transduced within the cavity into intensity noise. This intensity noise, typically

orders of magnitude above the photon shot noise, can significantly affect cavity

experiments. Furthermore, it reduces the signal-to-noise ratio of a phase sensi-

tive detection. We can demonstrate that frequency noise dominates the amplitude

quadrature of the cavity spectra over classical intensity noise by comparing them

with a theoretical model. The intensity of the reflected field Ir(∆o) as a function of

detuning ∆o follows (see Eq. 2.30):

Ir(∆o)∝
ζ2 + (∆o/κ)2

1 + (∆o/κ)2 . (7.1)

Fluctuations in the amplitude quadrature given by classical intensity noise are given

by (see Section 2.5.5)

Sin(∆o,ω)∝ Sε
∣∣∣∣−2 + 2κin

κ+ i(∆o−ω) + 2κin
κ− i(∆o+ω)

∣∣∣∣2 . (7.2)

5LB1005-S from Newport
6InGaAs FPGA10 from ThorLabs
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Figure 7.6: (left) DC voltage as a function of detuning of the reflected field measured on
a photodiode (blue data points). A fit of the cavity susceptibility (orange)
gives a half-linewidth κ/2π = (138±1)kHz. (right) Voltage noise PSD of the
photodiode output of the intensity fluctuations of the reflected beam as a
function of detuning (blue) (measured at the same time as the data shown
on the left). The PSD are evaluated around 50 kHz. A fit of the amplitude
quadrature of the frequency noise is shown in orange. The estimated half-
linewidth is κ/2π = (138±1)kHz. The theoretical shape of the contribution of
classical intensity noise to the PSD is shown in green dotted line and is valid
up to a proportional factor.

Whereas, fluctuations in the amplitude quadrature given by frequency noise are

given by (see Section 2.5.5)

Sfr(∆o,ω)∝ Sφ̇

∣∣∣∣∣iαs
√

2κin
κ+ i(∆o−ω) − iα

∗
s

√
2κin

κ− i(∆o+ω)

∣∣∣∣∣
2

, (7.3)

αs =
√

2κin
κ− i∆o

αin . (7.4)

We show this measurement using the science cavity (operated with a half-linewidth

κ/2π = (141±1) kHz) and two lasers. The 500mW laser is locked on resonance with

a PDH lock (see Section A.1). The second laser (2W Mephisto) is locked to the

first one with an offset lock (discussed in Section A.3). The detuning ∆o between

this second laser and the cavity resonance frequency can be precisely controlled. We

measure the reflected intensity field of this second laser on a photodiode. In Fig.

7.6(left), we show the DC average on the photodiode as a function of detuning. The

data is fitted with Eq. 7.1 (we fit the amplitude, offset in the detuning, coupling

parameter ζ and cavity half-linewidth κ). We measure a half-linewidth κ/2π =
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(138±1)kHz. In Fig. 7.6(right) we show the voltage PSD of the photodiode output

(measured at the same time than the DC average and evaluated at ∼ 50 kHz), with

a fit of the fluctuations given by frequency noise (orange). Similarly to Fig. 7.6(a),

we fit the data with the shape of the fluctuations given by frequency noise (we fit

the amplitude, offset in the detuning, and cavity half-linewidth κ). We find κ/2π =

(138±1)kHz. We also show the theoretical shape (correct up to some proportional

factor) of the fluctuations given by intensity noise (green dotted line). The shape

of the fluctuations, in very good agreement with the fit, is a clear signature that

frequency noise dominates the output quadrature PSD over classical intensity noise,

at the frequency at which the fluctuations are considered.

7.3 Filtering cavity

The aim of the filtering cavity is to reduce laser frequency noise. As discussed

in Chapter 2, frequency noise drives the nanosphere and therefore increases the

minimum achievable phonon number. We use a custom-made 40 cm long optical

cavity, which can be shown to behave as a first order low pass filter (with a cut-off

frequency equal to its half-linewidth κ/2π), to reduce this noise. In practice, the

filtering cavity also reduces the classical intensity noise.

7.3.1 Design

In order to be useful, the cut-off frequency of the filtering cavity needs to be at least

one order of magnitude smaller than the frequency of interest to provide sufficient

frequency noise attenuation (here the nanoparticle mechanical frequency ωm/2π is

typically between 50 kHz and 100 kHz). Levitated oscillators have typically smaller

mechanical frequencies than clamped oscillators ∼ 10MHz. This makes the technical

requirements on the filtering cavity much more stringent. Indeed, the higher the

frequency of interest, the less frequency noise or intensity noise to be corrected,

which therefore relaxes requirements for an ultra-narrow cavity [17]. The cavity

holder presented here is designed out of a single INVAR rod (41 cm long), leaving

the two cavity mirrors 40cm apart (see Fig. 7.7). The cavity holder is placed on

TORLON feet (25mm tall, diameter of 19mm) which is a high quality thermal

isolator exhibiting mechanical properties similar to metals. The mirrors are directly

placed in contact with the INVAR rod. They are kept in place with an aluminium
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Figure 7.7: (left) Exploded view of the filtering cavity. The cavity holder is designed from
an INVAR rod, with a hole machined in its centre. Cavity mirrors are kept
in place with aluminium caps. The cavity holder sits inside an aluminium
vacuum chamber and is thermally isolated from the chamber with 5 TORLON
feet. (right) Picture of the cavity holder in the aluminium vacuum chamber.

Figure 7.8: Intensity decay (ring-down) measurement of the filtering cavity shown in blue
(fit in red). The ring-down time is τ = 31.22µs, which gives a cavity half-
linewidth of κ/2π = 2549Hz.

cap and are mechanically isolated from the cap with an O-ring. Both cavity holder

and TORLON feet are placed within a custom-made aluminium vacuum chamber

in order to isolate the cavity holder from thermal drifts and acoustic noise. The

pressure inside this vacuum chamber is kept at ∼ 10−3mbar with a scroll pump and

could be lower with a turbo pump. The nominal mirrors from LayerTec have a

quoted transmission coefficient of T = 40ppm (no uncertainty quoted) and radii of

curvatures of 600mm. The measured transmission coefficients of the two mirrors

are T1 = (13±1) ppm and T2 = (11±1)ppm and total losses Σ = 61 ppm. The half-
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Figure 7.9: PSD of the PDH error signal of the filtering cavity calibrated in effective
frequency noise (blue). The initial frequency noise is shown in orange (slope
obtained from the measurement shown in Fig. 7.5). The filtering effect of
the cavity is seen above 2.5 kHz leading to a 1/f4 slope. Below 2 kHz, the
two integrators in the feedback loop (both with a corner frequency of 2 kHz)
correct the frequency noise fluctuations leading to a f2 slope. The calibration
peak can be seen at 2 kHz.

linewidth is measured after fitting 8 intensity ring-downs, which gives an average

half-linewidth κ/2π = (2497±10)Hz (see Fig. 7.8).

7.3.2 Frequency noise attenuation

As mentioned above, the filtering cavity behaves as a first order low-pass filter for

frequency noise. This filtering effect can be seen in Fig. 7.9 where we show a

calibrated PDH error PSD of the filtering cavity. The cavity locking takes care of

frequency noise fluctuations below 2 kHz. Above 2.5 kHz the expected frequency

noise slope of 1/f4 is measured (product between the frequency noise slope and

the attenuation effect given by the filtering cavity). At 100 kHz, we observe more

than two orders of magnitude of attenuation. Using this filtering cavity on both

lasers would enable to achieve the frequency noise levels quoted in Section 2.5.6 and

could therefore in theory be sufficient to achieve cooling to the ground state of the

centre-of-mass motion.

7.3.3 Intensity noise attenuation

The filtering cavity, which behaves as a first order low-pass filter, attenuates classical

intensity noise and frequency noise. We show in Fig. 7.10 a measurement of the

intensity noise (variance of the photodiode voltage noise integrated between 50 kHz

and 200 kHz with dark noise subtracted) from the transmitted beam of the filtering

cavity as a function of optical power. In this case, the filtering cavity was operated
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with a different output mirror with a transmission coefficient of 80ppm leading

to a measured half-linewidth of 6.7kHz. Regarding fluctuations at 125 kHz (mean

frequency of the integration window considered), we expect the power at which the

beam noise is twice above the shot noise to occur at Po ≈ 11mW. This measurement

is taken in exactly the same experimental conditions and photodiode7 as the one

shown in Fig. 7.3, but this time after the filtering cavity. As expected, since the

optical powers measured are smaller than ∼5mW, the voltage noise variance is

proportional to the optical power, which is a clear signature of a shot-noise limited

beam.

7.4 Science cavity
In this section we characterise the science cavity, used for experiments with nanopar-

ticles in Chapter 8.

7.4.1 Design

The cavity, 14.6mm long, consists of two mirrors of radii of curvatures of 25mm. The

cavity is therefore operated in the very stable near-confocal regime with theoretical

cavity beam waist of 62µm (Eq. 2.36). The mirror holder is designed out of INVAR

in order to reduce drifts in length due to temperature variations. It sits on a double

Figure 7.10: Variance of the photodiode output voltage fluctuations (integrated between
50 kHz and 200 kHz) of the transmitted beam from the optical cavity as a
function of optical power. The proportional behaviour as a function of optical
power, is a signature of a shot-noise limited beam (here demonstrated below
an optical power of ∼2mW). This is to be compared with Fig. 7.3

7InGaAs photodiode PDA10CF from Thorlabs. Measured gain and responsivity product of
4.6 kV/W. Maximum voltage output of 10V.
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suspension stage which is discussed below. The mirror holder has a cylindrical

shape with openings in the three directions. One cavity mirror is directly glued

onto an INVAR cylinder which is then clamped within the cavity holder. The other

mirror is glued on a ring piezoelectric-actuator8 itself glued on a cylindrical holder.

This design enables the mirrors to be removed and placed back very easily without

entirely losing the mode matching alignment. Since the free spectral range (FSR)

is quite large (10.3GHz), the piezoelectric-actuator gives some flexibility over the

tuning between the cavity and the lasers. As mentioned in section A.4, when the

filtering cavity is used, feedback can be applied on it. By applying a voltage ranging

from 0 to 150V, we can tune the cavity resonance frequency by more than one FSR.

The waist can actually be measured experimentally by trapping a nanosphere

within the Paul trap itself. The Paul trap is placed on a 3D linear translation stage

(see Chapter 3 and Fig. 7.14) and we can therefore control the transverse position

of the nanosphere with respect to the cavity mode. By imaging the nanosphere scat-

tered light (which is proportional to the field intensity) while moving the translation

stage we can reconstruct the beam intensity profile. We show two measurements in

Figure 7.11: Two cavity waist measurements, (data points) along with fits (continuous
lines) obtained by imaging the scattered light as a function of the nanoparticle
position. The blue (orange) data set gives a waist of (60±6)µm ((57±6)µm)
and are consistent with the expected value of 62µm. The intensity is obtained
after integration over the camera pixel matrix. More information regarding
the position calibration as well as the imaging technique can be found in
Chapter 4.

8HPCh 150/12-6/2 from Piezomechanik GmbH
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Figure 7.12: Free spectral range measurement of the science cavity. The optical fre-
quency of four consecutive longitudinal modes are measured with a waveme-
ter. We find FSR=(10.30±0.01)GHz which gives a cavity length L=(14.57±
0.01)mm.

Fig. 7.11, where the intensity value is obtained after integration over the camera

pixel matrix. Fits give waist values of (60±6)µm and (57±6)µm, consistent with

the expected value of 62µm.

The cavity length was estimated by measuring the optical frequency of four

consecutive longitudinal modes (see Fig. 7.12). The frequencies were measured

with a wavemeter9 with a resolution of 0.1 ppm. We measure a cavity length L =

(14.57±0.01)mm or equivalently FSR= (10.30±0.01)GHz.

7.4.2 Mechanical suspensions

In order to provide a stable cavity locking, mechanical suspensions might be required

to decouple the optical cavity from acoustic noise in the ground or in the optical

table. The main requirement is to reduce the noise within the cavity half-linewidth,

which depending on the set of mirrors used can be as small as κ/2π= 7.5 kHz for the

science cavity. Mechanical suspensions were designed by Dr Antonio Pontin with

this number in mind. The design is inspired from the one used in the AURIGA

gravitational wave detector [168] and relies on the use of C-shaped springs (see Fig.

7.14). The cavity holder sits on an INVAR platform itself sitting on two isolation

stages (see Fig. 7.14). The motivation in using this peculiar shape is to provide

equivalent attenuation in the three directions. Each stage gives an attenuation factor

of -40 dB/decade (power) above the mass-spring resonances at ∼1 kHz. In Fig. 7.13

9HighFinesse/Angstrom WS Ultimate 30
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Figure 7.13: Simulated attenuation provided by the double stage suspensions in the cav-
ity length, given a white vertical displacement excitation at the base of the
isolation stages. Spring-mass modes can be seen below 1 kHz above which a
roll-off of -80 dB/decade can be noted. Internal mode frequencies can be seen
above 5 kHz. Simulation carried out by Dr Antonio Pontin.

we show a simulation of the amplitude squared of the relative displacement between

the two mirrors as a function of a white excitation in the vertical direction applied

at the base of the isolation stage. An attenuation larger than 40 dB can be seen

between 1 kHz and 6 kHz. Above 5 kHz, the internal structural modes can be seen.

Though the linewidth of the science cavity is slightly larger than the filtering cavity

one, the difference by one order of magnitude in length between the two cavities

makes the resonance frequency more sensitive to cavity displacement fluctuations

by one order of magnitude, therefore relaxing requirements for the filtering cavity.

7.4.3 Finesse measurements

Two sets of mirrors are at our disposal depending on the finesse at which we want

the science cavity to be operated at. The mirrors are 4.0mm thick with 7.75mm

diameter and a 25mm radius of curvature. They have on the flat surface an anti-

reflection coating. Set 1 of very high finesse cavity mirrors (and very high quality!)

was produced by Advanced Thin Films with nominal transmission coefficients of

5 ppm. We measure a transmission coefficient of (2.8±0.5) ppm. Set 2 was produced

by LaserOptik GmbH (fused silica substrates and coating provided by the same

company). The quoted transmission was (80±20) ppm. The mirror was measured

to have a transmission coefficient of (85±3) ppm with estimated losses of ∼ 80 ppm.

In configuration 1, we use two mirrors from set 1. In configuration 2, we use one

mirror from set 2 as input mirror and one from set 1 as the output, in order to
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Figure 7.14: (left) The Paul trap (PCB version shown in here), discussed in Chapter 3,
is decoupled from the isolation stages. It sits on a 3D-printed piece (black),
itself mounted on a 3D-translation stage. (Inset) CAD design of the C-spring.
(right) Picture showing on top the cavity holder along the cavity axis. The
mirrors are mounted in the two circular openings. The cavity holder sits on
two suspension stages. Each stage is isolated with three C-springs.

operate the cavity at a lower finesse. In this case, we measure a half-linewidth of

(142.5±0.2) kHz.

In the following section we show four different finesse measurements for con-

figuration 1, since it is more challenging to perform than for configuration 2. One

standard method is a ring-down measurement. The cavity is locked and then un-

locked. The cavity transmission, directly proportional to the intracavity power is

detected on a photodiode. The measured decay rate is related to the cavity linewidth

(see Chapter 2). Another method consists in sweeping the input beam frequency

and measure the cavity transmission (or reflection). In the case of a high-finesse

cavity, if the sweep frequency is too fast (quantitatively, faster than the cavity decay

rate), a ringing phenomenon can be seen as shown in Fig. 7.16. The ringing comes

from beating between the intracavity field and the input field [169]. In this case,

the cavity dynamics is described with a time dependent detuning (∆o = ∆1t) to

take into account the frequency sweep of the input beam or conversely of the cavity
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detuning. We denote the input field amplitude by αin. The dynamical intracavity

amplitude is then

ȧ(t) =−(κ+ i∆1t)a(t) +
√

2κinαin . (7.5)

This differential equation can be solved to give

a(t) =
√

2κinαin exp
(
−κ(t− t0)− i∆1

(t− t0)2

2

) (1− i)e
iκ2
2∆1
√
π
(
i+Erfi

[
(1+i)(t−t0)∆1+(1−i)κ

2
√

∆1

])
2
√

∆1
,

(7.6)

where Erfi is the imaginary error function. A third method takes advantage of the

nanoparticle-cavity interaction as discussed in further detail in Section 8.1. Nanopar-

ticles sprayed inside the vacuum chamber might go through the cavity-mode. In

this case, the scattering losses are large in comparison to the cavity linewidth (for

a 600 nm diameter sphere used here, the scattering losses are κsc/2π = 117kHz)).

This can lead to a drop in the intracavity field followed by a ring-up which can be

fitted the same way as a ring-down see Fig. 7.17. The fourth measurement consists

of a cavity steady-state sweep. The PDH beam is locked on resonance to the sci-

ence cavity. The other laser is offset locked and the reference detuning is ramped

slowly to prevent any ringing. The transmitted (or reflected) cavity field is directly

proportional to the modulus square of the cavity susceptibility.

We show in Fig. 7.15 a single ring-down measurement which gives a half-

linewidth κ/2π = 7.4kHz. In practice, the cavity is locked at the edge of the dy-

namical range of the lock so that, once unlocked, the free-running laser is unlikely

Figure 7.15: Ring-down measurement (data in blue, fit in orange). The measured half-
linewidth is κ/2π = 7.4 kHz.
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to have its frequency getting close to the cavity resonance frequency. In Fig. 7.16,

we show a single measurement of ringing decay. The input beam frequency is swept

around the cavity resonance frequency (ramp of 7.57 kV/s on the laser piezoelectric-

actuator gain leading to a sweep of 16.3GHz/s). An average over 32 samples gives

κ/2π = (7.69±0.07) kHz, where the uncertainty is the standard error of the mean.

The measurement standard deviation is 0.4 kHz. In Fig. 7.17, we show a ring-

up measurement. While keeping the cavity locked, silica beads are injected within

the cavity mode leading to an instantaneous change in finesse (due to the scat-

tering losses, see Section 8.1 for more detail). As the particle gets away from the

Figure 7.16: Ringing decay to evaluate the cavity linewidth (data in blue, fit in orange).
The input beam frequency is swept around the cavity resonance frequency
(ramp of 7.57 kV/s on the laser piezoelectric-actuator leading to a sweep of
16.3GHz/s). The measurement gives a half-linewidth κ/2π =7.4 kHz.

Figure 7.17: Ring-up measurement. While keeping the cavity locked, silica beads are
injected within the cavity mode leading to an instantaneous change in finesse.
As the particle gets away from the optical mode, the cavity field builds up.
Measured half-linewidth of κ/2π =7.5 kHz.
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cavity, the intracavity build-up is measured. An average over 3705 samples gives

κ/2π= (7.413±0.001) kHz, where the uncertainty is the standard error of the mean.

The measurement standard deviation is 0.08 kHz. Lastly, in Fig. 7.18, we show a

steady-state sweep measurement, averaged over 64 traces. The input beam frequency

is ramped at 64MHz/s around the cavity resonance frequency and the intensity is

measured in transmission. The half-linewidth measured was (10.1± 0.1) kHz. The

measurement was taken with an input power Pin = 0.12mW. This last measurement,

though standard, is particularly challenging in the case of a narrow-linewidth cavity.

Indeed, the sweep has to be slow enough to prevent any ringing from happening. At

the same time, it has to be fast enough not to be blurred by low frequency drifts

(temperature and acoustic noise). Lastly, the power has to be kept low enough to

prevent thermal instabilities as shown in Fig. 7.18(right). Indeed, as optical power

builds up in this high finesse cavity, thermal effects change the effective cavity length.

The first three measurements obtained are compatible with each other. The

ring-up measurement gives the best precision with κ/2π = (7.41±0.08) kHz (where

the error given here is one standard deviation). We evaluate the finesse to be F≈

700000 with an exceptionally low measured cavity losses of Σ = (3.4± 0.5) ppm.

After working with nanoparticles for a couple of months, a drop of finesse was

Figure 7.18: (left) Steady-state sweep (64MHz/s) of the input beam around the cavity
resonance frequency (data in blue, fit in orange) averaged over 64 traces.
The intensity is measured in transmission. The half-linewidth measured is
κ/2π = (10.1± 0.1) kHz. The measurement is taken with an input power
Pin = 0.12mW. (right) Same (single trace) with higher input power Pin =
3.8mW leading to thermal instabilities.
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measured. We illustrate this measurement with our last method used to measure the

linewidth, which is a cavity steady-state sweep. The measured change in linewidth

of ∆κ/2π ≈ 2.6kHz corresponds to a change in optical losses by ∆Σ≈3 ppm.

7.4.4 Cavity displacement noise

We show in Fig. 7.19(top) a calibrated PDH spectrum of the high-finesse cavity

with configuration 1 of mirrors as discussed above. A calibration peak is added at

1 kHz to convert the spectrum in frequency noise or equivalently in cavity displace-

ment noise (see section A.2). We show in orange the PDH error signal calibrated in

in-loop displacement noise. At 50 kHz, it gives a sensitivity of 2×10−35 m2/Hz. The

in-loop signal can be converted into an effective input displacement noise, shown

in blue (see feedback diagram in Fig. A.2). This is calculated from estimation of

the servo gain and integrator corner (here only one integrator of corner frequency

50kHz is activated). We can check that the estimated amount of displacement noise

at low frequency is quantitatively reasonable. A standard model of seismic noise is

[168] Sseismic = βA
f4 with A = 10−14 m2/s4Hz and β which can range from 1 to 100

depending on the location. This seismic noise is then multiplied by the suspen-

sion transfer function (see Fig. 7.13) and a first order low-pass filter (with cut-off

frequency at ∼ 3Hz) corresponding to the filtering effect of the optical table suspen-

sions. The phenomenological displacement noise caused by seismic noise (shown in

green) agrees with the experimental data within an order of magnitude.

As expected when using the cavity in configuration 2, the displacement sensi-

tivity is worst than the one previously discussed. We show in Fig. 7.19(bottom)

the displacement sensitivity obtained when using two different Mephisto lasers. The

0.5W Mephisto gives a much better sensitivity around 50 kHz since it has one order

of magnitude less frequency noise at this frequency than the 2W Mephisto laser.

The features around 200 kHz come from mechanical noise of the science cavity ring

piezoelectric-actuator. Since the best sensitivity is achieved at 50kHz, we will choose

this bandwidth as the target optical trap frequency in Chapter 8.
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Figure 7.19: (top) Calibrated PDH error signal in effective cavity displacement noise of the
high-finesse cavity (configuration 1 of mirrors). The calibrated PDH error
signal is shown in orange. In blue, we show the in-loop noise referenced as
an input displacement noise (see Fig. A.2). In green, we show an order of
magnitude estimation on the cavity displacement noise (see main text). The
calibration tone is added at 1 kHz. (bottom) Calibrated PDH error signal
in effective cavity displacement noise of the high-finesse cavity (configuration
2 of mirrors, cavity linewidth of κ/2π = (142.5± 0.2) kHz). The calibrated
PDH error signal is shown in blue (orange) when locking the cavity with the
2W Mephisto laser (500mW Mephisto laser). The calibration tone is added
at 2.3 kHz. The two PDH signals were obtained with similar experimental
parameters and input optical power of ∼ 1mW.
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7.5 Summary
To summarise, we have reviewed the optical set-up used for the experiments mostly

described in Chapter 8. After describing the general optical layout, we characterised

the classical intensity noise and frequency noise of the laser. In order to filter

laser frequency noise, we have presented our original design of filtering cavity and

evaluated its behaviour on laser noise. The level of attenuation provided by the

filtering cavity applied on both lasers would enable in theory to reach the noise

levels required for ground state cooling of the centre-of-mass motion (see Section

2.5.6). Lastly, we presented the design and characterisation of the science cavity

used in Chapter 8 to manipulate the motion of levitated nanoparticles.





Chapter 8

Levitated cavity optomechanics in a

hybrid electro-optical trap

In this chapter, we study the optomechanical interaction between a levitated silica

nanoparticle and an optical cavity mode in a hybrid electro-optical trap consisting

of an optical cavity (discussed in Chapter 7) and a Paul trap (discussed in Chapter 3

and 4). The theory relevant to this work has been presented in Chapter 2. In previ-

Figure 8.1: Levitated nanosphere (green dot) in the miniature Paul trap and the optical
cavity. The cavity mirrors can be seen on both sides of the trap. The mirror on
the right-hand side is glued on a piezo-actuator to tune the cavity resonance
frequency. The guide used during the loading phase can be seen on the lower
part of the picture. The Paul trap is purposely placed closer to one cavity
mirror to increase the detection sensitivity (see Section 8.3).
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ous works, the Paul trap micromotion has been used to enhance the optomechanical

coupling by providing a periodic modulation to the particle mean position [45, 46].

Here, the Paul trap is used to control the trapping optical well location in the cavity

(the Paul trap is mounted on a 3D translation stage, see Fig. 7.14), while providing

no micromotion to the nanoparticle along the trap axis which corresponds to the

Paul trap axis. Except when mentioned otherwise, we use here the configuration 2

of cavity mirrors (cavity half-linewidth κ/2π ≈ 140kHz, see Section 7.4). In the first

section, we report measurements of the scattering losses discussed in Section 2.3.2.

These are then used to evaluate the particle polarisability. In the second section we

report on the cooling of the transverse secular motion with velocity damping on one

trap electrode. Depending on the trap operation and the amount of voltage noise,

the amplitude of the secular motion can be significant in comparison to the cavity

waist and therefore modulate the optomechanical coupling. This effect is greatly

reduced by using this active compensation method. In the third section, we dis-

cuss the optomechanical dynamics with two optical modes, initially studied in Ref.

[24, 44]. Taking advantage of the versatility of this levitated nano-oscillator system,

we demonstrate an experimental regime where the quadratic optomechanical cou-

pling dominates over the linear one. To the best of our knowledge, this is the first

time that cavity cooling solely provided by quadratic optomechanical coupling is

demonstrated. This intrinsic nonlinear dynamics gives rise to a highly non-thermal

state of motion which matches well the expected behaviour. As quadratic coupling

has a prominent role in proposed protocols to generate deeply nonclassical states,

our work represents a first step for producing such states in a levitated system. This

system can be operated as well in a regime dominated by linear optomechanical

coupling. In this case, we report cooling down to Teff = (21± 4)mK, improving

previous achieved temperatures by more than three orders of magnitude [44]. This

is comparable to recently reported temperatures in the standard optomechanical

case (by opposition to coherent scattering [40, 51]) with an optical tweezer and an

optical cavity [47].

8.1 Cavity transient dynamics and scattering losses
As we have discussed in Section 2.3.2, nanospheres with radii larger than 150 nm can

introduce significant scattering losses when compared to the bare cavity linewidth
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(here half-linewidth κ/2π ≈ 140kHz). In this section we first demonstrate that

by injecting nanoparticles across the cavity mode we can measure the finesse very

accurately as shown in Fig. 7.17. Then we report two measurements of the scattering

losses, one for a 600 nm (diameter) nanosphere and one for a 387 nm sphere. We

then infer from those two measurements the particle polarisability.

8.1.1 Cavity transient behaviour

The dynamics of non-trapped nanospheres crossing an optical cavity mode has been

studied in detail in Ref. [43], where cavity cooling has been reported. When ne-

glecting the effect of the cavity on the nanoparticle, the cavity dynamics reads

ȧ(t) =− [κo+κsc,Mie(x(t))− iUo,Mie(x(t))]a(t) +
√

2κinαin , (8.1)

where x(t) is the particle position. The expression of the scattering losses and

particle-induced frequency shifts can be found in Section 2.3.2 and 2.3.1 (the de-

pendence of those two parameters along the cavity axis is given in Eq. 2.48). Here,

while having one beam locked to the cavity (input power Pin = 260µW), we in-

ject nanoparticles (and solvent droplets) through the cavity mode with the loading

method discussed in Section 3.3.1 at a pressure P = 8×10−1mbar. The nanospheres
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Figure 8.2: (left) Transient cavity dynamics (measured in transmission) of a nanosphere
(or solvent droplet) crossing the cavity mode. In orange we show a fit of the
ring-up. (right) Theoretical calculation in blue of the cavity transient dynamics
as a silica nanoparticle (300 nm diameter) crosses the cavity mode at 25m/s.
The real and imaginary contributions of the cavity field are shown in orange
and green, respectively. In grey, at t = 100µs, we show the imaginary part
contribution (same as green) shifted in time for better clarity.
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cross the cavity mode at high speed (estimated to be ∼ 10m/s see Section 3.3.1)

which is assumed to remain constant while crossing the cavity mode. This is a rea-

sonable assumption given the very small interaction time (∼ 5µs) and the fact that

the optical mode is providing negligible cooling or heating. In Fig. 8.2(left) we show

the cavity transmission intensity as a nanosphere (or solvent droplet) goes through

the optical mode. As the scatterer crosses the beam, the change in finesse makes

the intracavity power drop. The event is directly followed by a ring-up which can

be fitted to evaluate the cavity linewidth. In Fig. 8.2(right), using Eq. 8.1 we show

in blue a theoretical calculation of the intracavity intensity as a silica nanosphere of

600nm diameter crosses the beam in the transverse direction, in a bright fringe, at

25m/s. In orange we show the contribution of the real part of the amplitude which

is equivalent to neglecting the cavity frequency shift induced by the nanoparticle.

In green we show the contribution of the imaginary part. This demonstrates that

here, most of the cavity dynamics can be accounted for by the scattering losses.

With these experimental parameters, the theoretical calculation matches very well

the theory. It is worth noting, that solvent droplets cannot be distinguished here

from nanoparticles. Indeed, their speed will be similar and, in both cases, large scat-

tering losses lead to a similar behaviour. This experiment can be used to evaluate

the cavity linewidth very accurately as discussed in Section 7.4.3.

8.1.2 Scattering losses

Evaluating the scattering losses introduced by the nanosphere enables us to bet-

ter estimate the effective cavity linewidth and the optomechanical dynamics. We

present here two different measurements consisting in evaluating the linewidth with

and without the nanoparticle located in the cavity mode. A first measurement was

taken with spheres of 600 nm nominal diameter1 with the very high finesse cavity

(configuration 1 of mirrors discussed in Chapter 7). Once a particle is levitating in

the Paul trap (in this case PCB trap), we can measure the finesse, evaluated here

by using the "ringing-decay" method presented in Section 7.4.3. We use for this

measurement a single optical beam with input power Pin = 410µW with its optical

frequency scanned at 16.4GHz/s. In Fig. 8.3(left) we show the cavity transmis-

sion measured on a photodiode as a function of time for three different Paul trap

1600 nm silica nanosphere from Corpuscular Inc.
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Figure 8.3: (left) Ringing decay to evaluate the cavity linewidth with the nanoparticle at
different locations within the cavity mode. In blue it is placed in the centre,
orange intermediate position and green away from the cavity mode. Fits are
shown in dashed black. (right) Half-linewidth in the three cases mentioned
above (same code colour). The dashed lines correspond to one standard de-
viation. The result of the three measurements are κ/2π = (9.57± 0.09)kHz
(green), κ/2π = (19.1±0.5)kHz (orange) and κ/2π = (49±2)kHz (blue)

positions. In blue, the trap is aligned such that the nanosphere is located in the

centre of the cavity mode. This is realised in practice by moving the trap by small

steps (∼ 10µm) while either maximising the amount of scattered light or measur-

ing the transmitted power (or the linewidth) and minimising (maximising) it. The

measurement was taken at a pressure P = 4.6× 10−2mbar where the motion is at

equilibrium with the bath at Tb = 293K. As described in detail in Chapter 4, the

particles typically have secular frequencies of ∼ 100Hz. We therefore expect the

secular motion to have a standard deviation of σx,y ≈ 7µm. Therefore, while the

particle transverse motion should have a negligible effect (since small in comparison

to the cavity waist of 62µm) the nanosphere should travel along the optical direction

through many fringes separated by λ/2 = 532nm. We therefore are measuring on

average a half-linewidth κ = κo +κsc/2 where κo is the bare cavity half-linewidth

and κsc is the scattering losses evaluated when the particle is trapped at a bright

fringe. We show in Fig. 8.3(right) the estimated half-linewidth for 100 samples.

When the particle mean position is placed sufficiently far away from the cavity

centre, we measure a half-linewidth κ/2π = (9.57±0.09)kHz compatible with mea-

surements taken with an empty Paul trap. At an intermediate position we measure

κ/2π = (19.1±0.5)kHz and when the trap is moved so that the particle is located

in the middle of the cavity mode κ/2π = (49±2)kHz. This gives an estimate on the

scattering losses of κsc/2π = (79±4)kHz. Assuming this nanosphere has a nominal
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Figure 8.4: Mass measurement of the same nanosphere over two months. Each data point
is an average of 8 measurements taken on a same day. Once a portion of the
mass has been lost (either by evaporating some remaining solvent within the
sphere or burning some impurities), it remains stable. We can estimate the
mass (orange line) to be m = (4.88± 0.03± 0.15)× 10−17 kg (where the first
uncertainty is statistical and the second systematic). The measurements are
typically taken at pressures above ∼ 1×10−2mbar and are described in Section
4.3.3.

diameter of 600 nm, we can estimate the dielectric constant as εs = 1.81±0.02 from

Eq. 2.48. Though this value is much smaller than the nominal value for pure bulk

silica εs = 2.1, it is still compatible with values measured for dehydrated porous

Stöber silica nanospheres in vacuum [170].

Most of the data presented in the remaining sections were taken with a same

nanosphere with a nominal diameter2 of 387nm. After each set of measurements

(optical trapping in vacuum below 10−4mbar) its mass was measured using the

imaging method discussed in detail in Section 4.3.3. It can be seen on the fourth

sample that once above a power threshold Pin ≈ 500µW at a pressure lower than

∼ 10−5mbar, the particle lost 10% of its mass. This input optical power corresponds

to an intracavity power of Pcav ≈ 3.6W and an intensity Icav = 1.2× 109 W/m2.

This behaviour has been consistently observed with different nanoparticles. After

this event, the mass remains stable as it can be seen in Fig. 8.4, regardless of

pressure or input power. We estimate the mass of the nanoparticle (after the event)

to be m = (4.88± 0.03± 0.15)× 10−17kg (where the first uncertainty is statistical

and the second systematic). Assuming the density quoted by the manufacturer of

1850 kg/m3, we estimate the radius of this nanosphere to be r= (185±2)nm in very

2387 nm diameter silica nanosphere from microParticles GmbH
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good agreement with the radii measured from SEM pictures (see Fig. 4.11).

We measure the scattering losses for this nanosphere with a similar experimental

protocol as the one discussed above. For this measurement we use configuration 2

of cavity mirrors. Two laser beams are used for this measurement. A first one

is locked to the cavity with a PDH scheme. The second beam (probe beam) is

offset-locked to the first one and, in addition, its frequency is scanned. In a first

measurement, the power of the PDH beam is high (Pin = 295µW) so that the particle

is optically trapped. The probe beam has an input power Pin = 32µW and its

frequency is scanned at 7.5GHz/s. Since the two laser frequencies are kept one FSR

apart, when trapping optically the nanosphere in an optical well in the centre of

the cavity (location controlled with the Paul trap position), the nanosphere sits at

a dark fringe of the probe beam, with therefore negligible losses. This measurement

is therefore used as reference to evaluate the bare cavity half-linewidth and we

find κ/2π = (141.15± 0.05)kHz. This measurement is consistent with a linewidth

measurement performed just before trapping the particle κ/2π= (141.21±0.01)kHz.

We can then perform this same experiment with a weak PDH beam (Pin = 9.5µW) so

that the particle travels through many fringes. We measure in this case, an effective

half-linewidth κ= κo+κsc/2. We estimate a half-linewidth κ/2π = (146.7±0.7)kHz

from which we infer the scattering losses to be κsc/2π = (11.1±1.4)kHz. This gives

a dielectric constant εs = (1.98± 0.07) for a quoted value by the manufacturer of

εs = 2.02.

A few comments must be given on those two measurements. First, the two

dielectric constants differ significantly, which could be explained by the different

manufacturer origins for the two different nanoparticle sizes. Second and most im-

portant, those measurements are very challenging to perform. As mentioned in

Section 2.3.1, when the nanosphere travels through the optical standing wave it not

only modulates the cavity losses but shifts the cavity resonance frequency. This

leads to a change in the intracavity power which is not instantaneous but occurs on

a timescale 1/κ [43]. Moreover, the measurement accuracy can be affected by drifts

in the cavity resonance frequency due to acoustic noise. A better way of performing

the last measurement discussed here would be first to trap the particle as we do it

in the PDH beam to measure the bare cavity linewidth. We would then keep the
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frequency of both beams separated by two FSR so that in the centre of the cavity,

the particle sits at the bright fringe of both beams. This way, the particle would

remain localised in both cases, reducing intensity modulations caused by the particle

travelling through multiple fringes. Unfortunately, this was not implemented since

the beat note frequency corresponding to two FSR (20.6GHz) is larger than the

photodiode bandwidth3.

8.2 Cooling the secular motion in the Paul trap
As mentioned in Chapter 3, cooling the secular motion is critical in ion trap exper-

iments in order to reduce modulations in the transition frequencies. In this case,

detection of scattered light modulated by the ion secular motion provides a signal

proportional to the ion displacement. Cooling the secular motion was demonstrated

using the trap itself by applying a signal proportional to the ion displacement onto

the trap electrodes and in phase quadrature [171]. Similar methods have been ap-

plied to levitated nanospheres in Paul traps using either parametric feedback cool-

ing (cooling demonstrated down to ∼ 75K) [96, 172] or velocity damping (down to

∼ 7mK) [173]. Here we demonstrate cooling of the secular motion in the transverse

direction of the trap when the particle (silica sphere of nominal diameter of 387 nm) is

trapped optically in the cavity mode (optical trapping frequency of ωm/2π≈ 38kHz).

This enables us to reduce modulation at the secular frequency in the optomechanical

coupling. Scattered light from the trapping optical field is collected on a photodiode4

mounted on a objective5; a lens is used as well to maximise the collection efficiency.

The PSD of the scattered light is shown in blue (orange with feedback) in Fig. 8.5

at a pressure P = 3×10−3mbar. The nominal secular frequencies in the transverse

plane (measured with green light illumination as described in Chapter 4) are 390Hz

and 475Hz. With optical trapping, those frequencies are increased to 427Hz and

508Hz, respectively. This linear coupling between the trapping beam and the trans-

verse motion arises because of a slight misalignment between the centre of the trap

and the cavity mode. Otherwise, only motion at twice the mechanical frequency

would be seen since the particle would go over two intensity minima over half a pe-

riod of oscillation. At high temperature, peaks at the first harmonic can be seen in
3EOT ET-3500, bandwidth of 12.5GHz.
4ThorLabs PDA10DT
5Navitar 7000
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Figure 8.5: PSD of the scattered light from the cavity mode without (with) feedback on the
Paul trap electrodes in blue (orange). The two secular frequencies can be seen
at 427Hz and 508Hz alongside with the first harmonics. The measurement is
taken at a pressure P = 3× 10−3mbar. The effective temperature is smaller
than 200mK for the mode 427Hz and (20±12)K for the one at 508Hz.

Fig. 8.5. In order to apply feedback cooling, this signal is sent to a band-pass filter

(first order band-pass filter with high-pass corner frequency at 50Hz and low-pass

corner at 150Hz). The filter provides a phase shift of -64°and -68°respectively at the

two secular frequencies. The signal is then amplified and applied to one of the two

grounded electrodes of the trap. The cooling effect on the two secular motions can

be seen in Fig. 8.5. As the secular motion in the transverse plane is defined along the

diagonals, the secular motion along the feedback electrode is cooled more efficiently.

Cooling is still obtained along the other axis because of residual trap ellipticity due

to geometrical imperfections and stray fields. Assuming thermal equilibrium of the

secular motion when the feedback is off, we estimate the temperature of the mode

at 427Hz to be Teff / 200mK (which is an upper bound as the sensitivity is too

low to detect the motion) and Teff = (20±12)K for the mode at 508Hz. By reduc-

ing the thermal variance of the transverse motion we can significantly reduce the

modulation in the optomechanical coupling and therefore in the mechanical motion

along the cavity axis (defined by the optical trap, ωm/2π ≈ 38kHz). We show the

amplitude squared R2 spectra of the mechanical motion in Fig. 8.6 (see Chapter 5

for more information regarding R2 spectra) measured in the calibrated PDH error

signal and taken at the same time as the data shown in Fig. 8.5. The secular mo-
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Figure 8.6: PSD of the square amplitude quadrature of the mechanical motion in blue

(fit in orange). (left) Without feedback of the transverse secular motion. The
secular frequency modulation can be seen at 427Hz and 508Hz. (right) With
feedback, the modulations given by the secular frequencies are greatly reduced.

tions in the transverse direction lead to a modulation of the mechanical frequency,

which can be seen in Fig. 8.6 and disappear with the feedback cooling scheme. This

spectral analysis enables us, as well, to check that the feedback scheme does not

modify the effective temperature of the motion along the optical direction. Within

the measurement uncertainty, the motion is at the same effective temperature in

both cases (0.4% of relative difference for 3% of statistical uncertainty on the two

temperature measurements).

In Fig. 8.7, we show spectrograms of the PDH error signal (same datasets as the

ones used in Fig. 8.6), used to measure the mechanical frequency stability over 20 s.

The spectrogram consists of PSDs integrated over 10ms shown as a function of time

with amplitude represented with a logarithmic colour scale. By cooling the secular

motion, greater stability in the mechanical frequency is achieved with suppression

of the sidebands given by the secular motion. The slow fluctuations here in the

mechanical frequency (of the order of 1%) are greatly reduced when cooling the

mechanical motion (see Fig. 8.17). This demonstration of feedback cooling works

efficiently for pressures between 10−2mbar and 10−5mbar. At higher pressures, the

Q-factor is too small to make the feedback effective. At lower pressures, the band-

pass filter used is likely not narrow enough, adding too much voltage noise which

drives the nanosphere in the transverse direction.
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Figure 8.7: Spectrogram of the PDH error signal used to monitor the mechanical frequency.
The colour scale is logarithmic for better visibility. (Top) Without feedback,
sidebands at the secular frequencies can be seen around the mean mechanical
frequency. (Bottom) With feedback on the secular motion, the sidebands are
greatly suppressed.

8.3 Levitated optomechanics with two optical modes
In the second part of this chapter, we focus on experiments of the optomechanical in-

teraction arising between a silica nanosphere and an optical field. In this section, we

describe the set-up, theoretical approximations and temperature calibration meth-

ods. We create our optomechanical system by levitating a highly charged silica

nanosphere in a composite potential obtained by overlapping an electrodynamic po-

tential and an optical standing wave. The former provided by a linear Paul trap

(see Chapter 3 and 4), the latter resulting from driving a high finesse Fabry-Perot

cavity (see Section 7.4). In our typical scenario, the nanoparticle is optically trapped

along the main axis by the gradient force in one of the cavity antinodes while ra-

dial confinement is guaranteed by the Paul trap potential and the transverse beam

profile.

8.3.1 Experimental layout

We show in Fig. 8.8 a simplified schematic overview of our experimental setup (for

more detail see Fig. 7.1). Two Nd:YAG lasers with a wavelength of λ = 1064nm
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drive the science cavity with a finesse of F = 36000 (configuration 2 which gives a

half-linewidth of κ/2π = 143±1 kHz). One laser is exploited as a weak probe field

and locked to the cavity by implementing a Pound-Drever-Hall (PDH) scheme. The

second is used to optically trap the nanoparticle. Its frequency is offset locked to

the weak beam, one free spectral range (FSR= c/2L= 10.27±0.02GHz) away and

its detuning from the cavity resonance can be precisely controlled. The particle is

charged during the loading process by means of electrospray ionisation and captured

directly in medium vacuum in the Paul trap (see Chapter 3). We use commercial

silica nanospheres of measured mass m= (4.88±0.03)×10−17 kg (see Fig. 8.4) and

radius (185±2)nm. The trap is mounted on a three-axis translation stage (see Fig.

7.14). This is important for two reasons. First, it allows us to enhance the linear

coupling of the probe field by trapping optically away from the cavity centre [44].

Second, it allows us to strongly suppress excess micromotion. Indeed, contrary

to previous implementations [45, 46], the dynamics along the cavity axis is ideally

micromotion free as long as this axis coincides with the main axis of the Paul trap.

Figure 8.8: Simplified layout of the experiment (see Fig. 7.1 for more detail). A weak probe
beam is used to lock the cavity by implementing a PDH scheme. A second
beam, generated by a different laser, is used to optically trap the particle.
By detecting the beat note of the lasers, the trapping beam is offset phase
locked to the PDH beam one FSR apart ∼ 10.3GHz. The Paul trap, mounted
on a three-axis translation stage, is aligned in the cavity transverse direction
but kept far from the cavity centre. The trapping site can be controlled with
∼ 10µm resolution.
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We can measure and control the position of the optical trapping site referred to the

cavity centre with a resolution of ∼ 10µm, mainly limited by the particle thermal

variance before optical confinement.

8.3.2 Approximations to the 3D dynamics

The dynamics of the nanoparticle has already been discussed in Section 2.5.3. In

the transverse direction, this is a good approximation if the particle’s rms ampli-

tude, including both thermal and excess micromotion, remains small compared to

the cavity waist. With our typical parameters, secular motion in the transverse

direction is almost degenerate with frequencies ωx,y/2π ' 400Hz. This implies that

the thermal rms is of the order of a few microns, i.e., σx ' σy ' 3.7µm�wc indicat-

ing that the cross coupling is small. Nonetheless, as the particle moves in and out

of the Gaussian profile transversely (due to both secular motion and micromotion)

there is a small and slow modulation of the coupling along the cavity axis which

can lead to a time-dependent optical potential. Since the nanosphere used in this

experiment is not a Rayleigh particle, small corrections to the light-particle inter-

action need to be included according to Mie scattering theory (see Section 2.3.2).

A direct consequence is that the rate of photons scattered out of the cavity is no

longer negligible as is the associated dissipative coupling. This is taken into ac-

count to the first order by modifying the cavity decay rate as κ→ κ+κsc, where

κsc is the scattering induced decay cavity rate. When comparing the experimental

results with analytical expectations one needs to consider difficulties in determining

some critical parameters. Two examples are worth mentioning, the density of silica

nano-spheres can be significantly different from the bulk value of ρ = 2200kg/m3

down to the lowest reported value of ρ = 1550kg/m3 [117]; it has been shown [170]

that the dielectric constant of Stöber SiO2 can be as small as 1.85, depending on

temperature and hydration and rarely reaches the bulk value of 2.1. These examples

clearly indicate how systematic errors could affect experimental estimates. Finally,

quantum backaction, recoil included, could be safely neglected for the parameters

explored.

8.3.3 Optical trapping

As the intracavity optical power is increased, a nanoparticle will become optically

trapped. The threshold power at which trapping becomes stable depends on the
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thermal force noise and therefore on the pressure. For the typical nanospheres

we use (387 nm diameter), we observe stable trapping above 20 kHz at a pressure

P ≈ 10−2mbar. We show in Fig. 8.9 the measured mechanical frequency (trap

frequency along the cavity axis) as a function of input power. Here, the trapping

beam power is much larger than the power of the other beam and co-trapping can

therefore be neglected.
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Figure 8.9: Trap optical frequency ωm/2π as a function of input power (blue). A square-
root fit, which corresponds to the expected behaviour, is shown in orange.

8.3.4 Thermometry

The dynamics of the experiment given above can be used to cool the centre-of-

mass motion of the nanoparticle. The effective centre-of-mass temperature can be

estimated in several ways. A common method assumes a constant bath temperature

at Tb = 293 throughout the experiment. Though common, this approximation is

often valid only at high pressures since absorption can lead to an increase in the

bath temperature at lower pressures [70, 118]. Moreover, this method relies on the

assumption of a constant coupling throughout the experiment. We discuss now

a method not relying on this assumption. We can exploit the measurement of

the particle induced optical losses κsc (see Section 8.1.2), to estimate the particle

dielectric constant. With the measured value κsc/2π = (11.0±1.4) kHz and taking

into account the uncertainty in the particle radius r = 1.98±0.07, we find Uo/2π =

(58± 4) kHz. Calibration of cavity spectra in terms of frequency fluctuations can
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be performed accurately (see Appendix A.2). Then, we exploit the ratio of the

peak area at ωm and at 2ωm along with the measured Uo to simultaneously obtain

the effective temperature and the distance of the trapping site with respect to the

cavity centre, i.e., φp = π/2+πxi/L (see Section 2.5.3). It can be shown that when

the nanoparticle displacement spectrum Sx(ω) is dominated by the thermal noise

contribution, the phase quadrature PSD Sy(ω), around the mechanical frequency ωm
is proportional to Sy(ω) ∝ G2

1Sx(ω). Similarly, around the first harmonic at 2ωm,

Sy(ω)∝G2
2Sx2(ω), where the expression of the squared-position PSD Sx2(ω) can be

found in Ref. [174]. We define by Aωm and A2ωm the integral in Hz2 of the peak areas

of the phase quadrature PSD Sy(ω) around the fundamental and first harmonic,

respectively. By evaluating the area ratio, and the area of the fundamental, we get

the following system of equations

kBTeff
mω2

m

k2

tan2(2φp)
=A2ωm
Aωm

,

kBTeff
mω2

m

k2U2
o sin2(2φp) =4π2Aωm .

(8.2)

Though this approach avoids any assumption regarding the bath temperature, it

cannot be performed at every pressure as for high values, the strong non-linearity

of the optical potential leads to an overestimation of A2ωm , and as the pressure is

Figure 8.10: Area ratios for the fundamental and first harmonic spectral peaks of the
nano-particle motion, along with parabolic fit.
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reduced, A2ωm quickly falls below the detection noise floor since A2ωm ∝ T 2
eff . As

such, Eqs. 8.2 is exploited to obtain a calibration coefficient, at intermediate pressure

of P ∼ 10−2 mbar, which is then assumed to be constant as long as the particle is

trapped in the same optical well and the lock to the cavity is not lost.

We show in Fig. 8.10 that the peak area ratio Aωm/A2ωm as a function of the

trapping site distance from the cavity centre shows the expected behaviour. Indeed,

from Eq. 8.2 we have Aωm/A2ωm ∝ tan2(2πxo/L)' (2π/L)2x2
o. Naturally, to perform

this measurement the particle needs to be released from the optical well at each

data point, the agreement with the expected behaviour indicates good experimental

reproducibility as all other parameters are kept constant. The particle position is

monitored by calibrated direct imaging (see Chapter 4). Data shown in Fig. 8.10

has been obtained with a different nanoparticle than the one used in the following

sections.

8.4 Quadratic optomechanical coupling
In this section, we operate the system in a regime dominated by the quadratic op-

tomechanical coupling. Nonlinearities are of particular interest in optomechanics

[175–179]. For example, the control over the position of ions or levitated nanopar-

ticles within an optical cavity enables tuning between linear and quadratic optome-

chanical coupling [46, 49, 66, 180]. In membranes, single-photon to two-phonon

coupling rates have been demonstrated to reach up to 240Hz [181–183] paving the

way for phonon shot noise measurements [184]. Moreover, to prepare non-Gaussian

quantum states some degree of nonlinearity is necessary so that quadratic coupling

plays a fundamental role in many proposed protocols to generate, for example, quan-

tum superpositions [185] and Fock states [186, 187]. Levitation of a nanoparticle

in a cavity standing wave is particularly favourable to study quadratic coupling,

since there is no external elastic potential. The particle is naturally attracted by the

optical gradient force toward an intensity maximum where the coupling is purely

quadratic. After adapting and simplifying the dynamics presented in Section 2.5.3

to this specific case, we demonstrate a nonlinear coupling strong enough to cool a

levitated nanosphere by more than two orders of magnitude. To the best of our

knowledge, this is the first time dominant cooling due to this type of coupling in

a cavity is reported. Importantly, the resulting oscillator dynamics is equivalent to
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that obtained with active parametric feedback [41, 188, 189]. However, as for the

comparison between linear cavity cooling and cold damping, the cooling mechanism

is passive and does not rely on a position measurement. Finally, we describe the

resulting highly nonthermal state of the mechanical motion caused by the nonlinear

interaction which compares well with our theoretical description of the experiment.

8.4.1 Nonlinear dynamics

In the following we focus on the centre-of-mass motion (COM) along the cavity axis

and assume that the nanoparticle is confined at an antinode of the trapping field.

Moreover, we neglect the degrees of freedom in the transverse direction and their

coupling to the optical fields. The nonlinear dynamical equation of motion for the

oscillator and the optical fields are

ẍ=−ω2
xx−

h̄kUo
m

∑
j

a†jaj sin(2(kx+φj))−γmẋ+ Fth
m

,

ȧj =−(κ− i∆j
o)aj + iUoaj cos2(kx+φj) +

√
2κin(αin,j +ain,j) +

√
2κv av,j .

(8.3)

8.4.1.1 Duffing and Van der Pol nonlinearities

If we consider a scenario where the probe power is significantly weaker than the trap

beam, i.e. αin,p� αin,t, it is quite immediate to see that upon the usual expansion

around the steady state solution to second order of the trigonometric functions in

Eq. 8.3, one finds a purely quadratic coupling for the trapping beam with G2,t = k2Uo

(i.e., φt = 0). The probe field has both a linear and quadratic coupling respectively

given by G1,p = kUo sin(2φp) and G2,p = k2Uo cos(2φp). In these last two expressions

the phase is entirely determined by the position xi of the localisation site referred to

the cavity centre, i.e., φp = π/2 +πxi/L. To gather a clearer understanding of the

oscillator dynamics, however, it is more convenient to trace out the cavity rather

than linearise, i.e., we want to write an approximate equation of motion for the

particle dynamics in the following form

ẍ=−ω2
mx

(
1 + εDx

2
)
−
(
γm−ω2

mγnlx
2
) p
m

+ Fth
m

, (8.4)

where ωm is the optical trap frequency and where we have introduced two additional

terms: an elastic Duffing nonlinearity εD and a Van der Pol nonlinear damping γnl.

The latter corresponds to a dissipation process that becomes more efficient for large
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amplitude oscillations. Eqs. 8.3 can be rewritten in the form of Eq. 8.4 by looking

at a first order correction to the adiabatic approximation. Neglecting the effect of

the probe beam, assuming that ωm/κ� 1, and by following the method described

in Ref. [190], one finds that

εD = 2G2
κ

δ

(1 + δ2) , γnl = 8G2
κ2

δ

(1 + δ2)2 , (8.5)

where δ = ∆/κ is the normalised hot cavity detuning of the trapping beam and

ω2
m = 2h̄G2

m |αt,s|
2 as expected, with αt,s the steady state intracavity field amplitude.

Eqs. 8.5 are valid under the additional condition G2〈x2〉 � κ which is always sat-

isfied in our experiment. As for linear coupling, the oscillator dynamics depends

critically on the detuning sign. For a red detuned (δ < 0) trapping beam the opti-

cal potential is softened and dissipation increased while the opposite happens for a

blue detuned beam, which can result in dynamical instability. Interestingly, both

nonlinear coefficients are power independent, this is a characteristic inherently due

to levitation since there is no intrinsic elastic potential.

8.4.1.2 Energy PDF

It is quite convenient, at this point, to move to a reference frame rotating at ωm
and to write the equation of motion for the amplitude6 R(t) =

√
x2 + ẋ2/ω2

m and

phase ϕ(t) = −atan(ẋ/ωmx)−ωmt of the oscillator. By performing deterministic

and stochastic averaging [191–193], valid in the high Q limit, one obtains two first

order differential equations

Ṙ=−γm2 R+ ω2
mγnl
8 R3 + SFth

4m2ω2
mR

+ ξ =−dV(R)
dR

+ ξ ,

ϕ̇= 3ωm
8 εDR

2 + 1
R
χ.

(8.6)

Here, ξ and χ are two uncorrelated stochastic variables with correlation function

〈ξ(t)ξ(t′)〉 = 〈χ(t)χ(t′)〉 = (SFth/2m2ω2
m)δ(t− t′) and where we introduced the po-

tential V(R). Eqs. 8.6 allows us to highlight two key aspects. First, the effect of

the Duffing term is relegated to the evolution of the phase and has no effect on the

energy of the oscillator. Second, the evolution of the amplitude is phase indepen-

6where we have used another definition for the amplitude quadrature R in comparison to Chap-
ter 5, see Section 5.2
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dent. For this reason, it is possible to write a one dimensional Fokker-Planck (FP)

equation which describes the evolution of the probability density function (PDF)

P (R,t) of the amplitude. This is given by

∂

∂t
P (R,t) =− ∂

∂R
(D(1)P (R,t)) + ∂2

∂R2 (D(2)P (R,t)) , (8.7)

here, D(n), n = 1,2 are the first two Kramers-Moyal coefficients which identify the

drift (n= 1) and diffusion (n= 2) coefficients. From Eqs. 8.6 we have

D(1)(R) =−γm2 R+ ω2
mγnl
8 R3 + SFth

(2mωm)2R
,

D(2)(R) = SFth
(2mωm)2 .

(8.8)

The steady state solution P∞(R) of the FP equation is well known, and in the case

of a purely additive noise, it is given by

P∞(R) =N exp
(

1
D(2)

∫ R

0
D(1)(R′)dR′

)

=N exp
(
−4m2ω2

m

SFth
V(R)

)
,

(8.9)

where the potential V(R) is given by

V(R) = γm
4 R2− ω

2
mγnl
32 R4− SFth

4m2ω2
m

ln(R). (8.10)

Expressing the steady state solution of the FP equation in terms of energy E rather

than amplitude, one readily finds

P∞(E) = N
mω2

m

exp
[
− E

kBTb

(
1 + γnl

4mγm
E

)]
, (8.11)

where N is a normalization constant such that
∫∞

0 P∞(E)dE = 1. Explicitly, we

have

N = ηω2
m e
−1/β2

√
πβErfc(1/β) , (8.12)

where we have introduced β = (kBTbη/m)1/2 and η = γnl/γm. Since the energy

distribution is known, all the relevant dynamical parameters can be obtained, e.g.,

the effective temperature and damping. For a vanishing nonlinear damping Eq. 8.11
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becomes the usual Boltzmann-Gibbs distribution. The energy PDF allows us to

calculate the effective temperature as the expectation value of the energy, i.e., Teff =

〈E〉/kB. For a thermal noise driven oscillator, one readily finds

Teff = 2NTb
ηω2

mβ

[
β−e1/β2√

πErfc
( 1
β

)]
. (8.13)

Another important dynamical parameter is the effective damping γeff . This is to

be interpreted as the equivalent viscous friction that would lead to the effective

temperature Teff in Eq. 8.13, i.e., Teff = Tbγm/γeff .

It is important to notice that the coupled dynamics described here are for-

mally equivalent to active parametric feedback, which is commonly used in levitated

optomechanics [188, 189]. Indeed, Eq. 8.11 describes the steady state energy dis-

tribution of both processes. This should not come as a surprise since in both cases

the oscillator dynamic is modified by an optical force proportional to x2p, i.e., a

Van der Pol nonlinear damping. As such, quadratic coupling can also be viewed as

passive parametric feedback. Furthermore, Eq. 8.11 represents the classical limit of

two phonon cooling in the quantum regime [174].

Finally, we point out that as the pressure is reduced, and the cooling power

provided by the quadratic coupling diminishes, additional parameters have to be

included in the model. Two in particular; an additional force noise, with spectral

density SF , and a residual linear damping γl. The former can arise due to technical

excess noise, e.g., voltage noise, but will ultimately be given by backaction and

photon recoil. The latter could emerge from a residual linear coupling of the trapping

beam or a non-vanishing detuning of the probe field. In such a scenario the energy

PDF would be given by

P∞(E) = N
mω2

m

exp
[
− 2m(γm+γl)
SF + 2kBTbmγm

E

(
1 + γnl

4m(γm+γl)
E

)]
. (8.14)

It is clear that Eq. 8.14 is significantly different from the original PDF, furthermore,

the interdependence of the parameters make their experimental determination diffi-

cult. At the same time, however, the oscillator dynamic can be richer. For example,

a negative γl, possible with a blue detuned probe beam, can lead to a dynamical

equilibrium due to competing processes.
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8.4.2 Results

Here, we present data obtained with a probe and trap beam input power of 2.9µW

and 830µW respectively. The probe is locked near resonance while the trap beam has

a nominal red detuning of ∆t/2π '−100kHz. For this experiment, the nanosphere

is trapped xi−L/2 = (803± 25)µm away from the centre of the optical cavity to

provide a strong linear optomechanical coupling on the probe beam used for read-

out of the motion (see Section 2.5.3). This corresponds to the farthest achievable

position away from the centre of the cavity in our experiment. The optimum posi-

tion would be L/4 = 3.7mm which would provide maximum linear optomechanical

coupling. The particle motion is monitored through the PDH error signal since its

linear coupling enables us to measure the mechanical motion directly. Spectra at

different pressures are shown in Fig. 8.11. It is clear that the oscillator resonance

at ωm/2π ' 51kHz does not converge to a Lorentzian-like peak, as the pressure is

reduced, but rather converges to a Gaussian peak. This apparent broadening is due

to low frequency intensity fluctuations and by crosscoupling with the motion in the

directions perpendicular to the cavity axis. This motion is adiabatically eliminated

when moving to the rotating frame as is the case for the Duffing nonlinearity.

The experimental energy distribution can be obtained from the square of the os-

cillator amplitude R(t) (see Chapter 5). This is shown in Fig. 8.12(a) and (b) at two
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Figure 8.11: Calibrated PSD of the frequency fluctuations induced by the particle motion
in the PDH error signal at different pressures. The blue, orange and green
PSDs show the particle displacement at pressures of 1.2× 10−2mbar, 8.6×
10−4mbar and 5.4×10−6mbar, respectively.
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Figure 8.12: Panels (a) and (b): Energy distribution (blue), expressed in units of kB ,
for the motion along the x-axis along with a fit (orange) following Eq. 8.11
for different pressures P = 8.6×10−2 mbar and 1.6×10−4 mbar respectively.
In Panel (b) the contribution of the detection noise is included; the corre-
sponding marginal distributions for the motion (red dashed) and noise (green
dashed) are also shown. Panels (c) and (d) show the PSD of R2 correspond-
ing to the distributions in panels (a) and (b) respectively; fits (orange) of the
R2 spectra allow a direct estimation of the energy autocorrelation time con-
stant (see main text); Panel (e): effective temperature as function of fitted
parametric gain η = γnl/γm along with an a priori analytical estimation (or-
ange line). Shaded region indicates the uncertainty of the theoretical curves
due to experimental uncertainty in relevant parameters; blue and green data
points correspond to localisation on slightly different optical wells. The red
square marks the data point corresponding to panels (a) and (c), the black
square to panels (b) and (d).

different pressures where the distributions are expressed in units of kB, i.e. temper-

ature, for a more intuitive reading. At the higher pressure of P = 8.6× 10−2 mbar

(panel (a)), the deviation from a thermal exponential distribution is immediately

recognisable, indeed, the nonlinear damping is much more efficient in suppressing

large amplitude fluctuations. At the lower pressure of P = 1.6× 10−4 mbar (panel

(b)) this behaviour is initially less evident. As the motion becomes colder the im-

pact of the detection noise becomes more relevant and it needs to be taken into

account. Assuming the noise floor is white and uncorrelated with the motion, its
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distribution is again exponential. We fit the experimental data taking into account

both processes, the oscillator energy PDF is then recovered by taking the marginal

distribution. As the intrinsic gas damping cannot be measured independently, and

pressure gauges have a rather low accuracy, we use as a fitting parameter the ratio

η = γnl/γm which can be interpreted as a parametric gain. We show in Fig. 8.12

(panel (e)) the experimental effective temperature Teff as a function of η, along

with an analytical estimation. The final temperature can be estimated in two ways:

from the area of the peak in the probe PSD (calibrated using the area ratio method

discussed in Section 8.3.4), as is typical, and from the expectation value of the fitted

distribution. The consistency of these two estimates, well within the experimental

uncertainty, and the agreement with the analytical expectation, demonstrate that

even at the lowest pressure the quadratic coupling is the dominating process in the

dynamics.

Another clear signature of the nonlinear damping, is the dependence on pres-

sure of the effective temperature. An approximate expression can be obtained from

Eq. 8.13; in the low pressure limit, we have Teff = (4mTb/πkBη)1/2. Since η grows

inversely proportionally to the pressure, the effective temperature decreases propor-

tionally to the square root of the pressure. This is shown in Fig. 8.13(a) where

the experimental observation is compared with an analytical estimation. A direct

consequence is that the effective total damping γeff must have a similar behaviour;

in the low pressure limit we have γeff = γm (πkBTbη/4m)1/2. This implies perfect

correlation between Teff and γeff as the pressure is reduced.

A direct estimation of the effective damping can be obtained even in the pres-

ence of the Duffing term and of the broadening of the spectral peak, evident in

Fig. 8.11. By looking at the PSD of R2(t) it is possible to obtain information

on the energy autocorrelation time constant. PSDs at two different pressures are

shown in Fig. 8.12. Although possible for a thermal oscillator (see Chapter 5),

calculating an analytical expression for the R2 PSD when the dynamic is dominated

by a nonlinear damping is not trivial. However, it can be shown that modelling

the PSD as SR2(ω) = 16γRa2
o/(ω2 +γ2

R) then γR allows us to calculate the effective

damping. In the absence of non-linear damping, γR coincides with the gas damping

while ao = σ2
x = kBTb/mω

2
m is the position motional variance. At the same time,
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Figure 8.13: Panel (a): The effective temperature as a function of pressure. Panel (b):
The measured effective damping as a function of Teff . In both panels blue
and green data points correspond to localisation on slightly different optical
wells; also shown is an analytical estimation (orange line) with the shaded
region indicating the uncertainty of the theoretical curves.

σ2
R2 = 4a2

o = 4σ2
E/(mω2

m)2 which connects the energy variance to its mean. The sim-

plicity of this last expression stems from the fact that the PDF is exponential, i.e.,

σE = 〈E〉. This is no longer true in the presence of a non-linear damping where the

distribution tends to an half-normal distribution and ao does not directly provide the

position variance. Indeed, the quadratic coupling is much more effective in reducing

the energy variance than the mean. Interestingly, SR2(ω) can still be modelled with

SR2(ω) = 16γRa2
o/(ω2 +γ2

R). In this case however we have σ4
x = a2

o〈E〉2/σ2
E . This last

expression might seem tautological but it allows us to infer the connection between

γR and the effective damping. Since the area width product must be conserved we

can write γeff = γRσ
2
E/〈E〉2. This expression can be shown to hold through numer-

ical simulations even if derived here not in a rigorous way. The effective damping

calculated with this method plotted as a function of Teff is shown in Fig. 8.13(b)

demonstrating the expected good correlation.
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8.5 Linear optomechanical coupling

In the previous section the system was operated in a regime dominated by quadratic

optomechanical coupling. The versatility of this levitated oscillator system, in addi-

tion to the control over the optical well location provided by the Paul trap, enables

us to operate the system in a very different regime where the linear optomechanical

coupling dominates. Away from the trap centre, as previously demonstrated, probe

and trapping fields have different phases. This was previously used to detect the mo-

tion on the weak probe beam given its linear optomechanical coupling. By increasing

the power of the red-detuned probe beam, its effect on the nanoparticle rapidly dom-

inates over the dynamics. Indeed, first, the linear optomechanical is much stronger

than the quadratic one, second, as the power of the probe beam increases, it pulls

the particle equilibrium position away from the antinode of the strong beam (anti-

trapping), therefore further reducing the effect of the quadratic coupling. While

keeping constant experimental parameters, the pressure in the vacuum chamber is

reduced, leading to a lower effective temperature on the nano-oscillator.

8.5.1 Results

The experimental parameters presented here are similar to the ones used in the

previous section. The input powers of the probe and trap beams are 610µW and

180µW, respectively. Unlike in the quadratic case, the trapping beam is used for

the PDH scheme. It is locked near resonance while the probe beam has a nominal

detuning ∆p/2π=−30kHz, slightly smaller than the optimal one, in order to reduce

heating from frequency noise (see Fig. 2.9(a)). For this experiment, the nanosphere

is trapped xi−L/2 = (822±25)µm away from the centre of the optical cavity. The

particle motion is monitored in the PDH error signal as well as in the direct detec-

tion of the cavity reflected probe optical mode. Spectra at different pressures can

be seen in Fig. 8.14. The noise floor level is compatible with the estimated fre-

quency noise of both lasers. Though the frequency noise level is higher on the probe

field (2W Mephisto laser), the optomechanical coupling is ∼ 4 times larger on the

probe mode, hence a sensitivity ∼ 16 times larger. Interestingly, at pressures below

P ≈ 10−5mbar (see Fig. 8.14(right)), a dip can be noticed in the noise floor in the

right-hand side of the mechanical frequency. This is a clear signature of a classical

interference effect mediated by the optomechanical interaction. In the optical cav-
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Figure 8.14: (left) Calibrated PSD of the frequency fluctuations induced by the particle

motion in the PDH error signal at different pressures. (right) PSD of the
intensity fluctuations induced by the particle motion in the probe beam re-
flection at different pressures. In both cases blue, orange and green PSD show
the particle displacement at pressures 1.2×10−1 mbar, 1.2×10−3 mbar and
4.6× 10−6 mbar, respectively. Spectra of same colour on both figures were
recorded at the same time.

ity, frequency noise of the probe beam is transduced into an intensity noise which

drives the levitated oscillator. As a consequence of the optomechanical interaction,

this motion modulates the phase of the reflected field which in turn modulates the

intracavity field amplitude, hence the interference effect. For a shot-noise limited in-

put with negligible frequency noise fluctuations, this is a well-observed phenomenon

which can lead to squeezing of the field fluctuations below the shot-noise level [17].

In Fig. 8.15, we present different effective temperature estimations, Teff , as a

function of pressure. The temperature can be estimated from direct integration of

the PSD of the PDH error signal (or from the direct detection of the probe field)

around the mechanical frequency ωm/2π ≈ 48kHz as shown in red (purple). We use

the same method for the calibration as the one presented in the quadratic optome-

chanical case by considering the area ratio Aωm/A2ωm at P = 5.4× 10−2mbar (see

Section 8.3.4). The temperature can as well be estimated as Teff = γm
γeff

Tb, where

γm is the gas damping and Tb is the bath temperature (shown in blue). This method

relies on the assumption of a constant bath temperature Tb = (293±2)K through-

out the experiment. The effective damping γeff is evaluated from the amplitude

squared amplitude R2 spectra (see Chapter 5) of either PDH error signal or direct

detection of the probe field (measurements in agreement within 5%). Finally, γm is
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Figure 8.15: Effective temperature as a function of pressure. Red (purple) data points
correspond to the temperature estimated from the integration of the PSD
of the PDH error signal (direct detection of the reflected trapping field)
and calibrated using the area ratio method discussed in Section 8.3.4. Blue
data points are temperature estimations from the measured effective damp-
ing γeff . In green we show the temperature estimated from the integral of
the reflected trapping field but, unlike purple, calibrated using the tempera-
ture estimation given by the effective damping γeff at P = 5.4×10−2mbar.
Also shown is an analytical estimation (orange line) with the shaded region
indicating the uncertainty of the theoretical curves.

estimated from the gas damping law (see Eq. 2.3). Though this law relies on the

precise knowledge of the experimental parameters and particularly the pressure, the

gas damping can be measured independently using the camera (when the particle is

not trapped optically) at each pressure given by the pressure gauge (see Chapter 4).

We also present the temperature estimated from the integration of the direct detec-

tion shown in green, but this time, unlike the purple graph, it is calibrated using

the temperature obtained from the effective damping γeff at P = 5.4× 10−2mbar.

Lastly, in orange, we show a theoretical estimation of the effective temperature

assuming an excess force noise SF = 1× 10−37 N2/Hz. A theoretical estimation,

without Paul trap noise, but with similar experimental parameters was discussed in

Section 2.5.6. As it can be noticed in Fig. 8.15, at pressures below ∼ 5×10−5mbar,

the effective temperature saturates, corresponding to an additional effective force

noise of SF ≈ 5×10−38N2/H, leading to a final temperature of ∼ 20mK. This can

be explained by two facts. First, the Paul trap and cavity axis are aligned with an

accuracy of ∼ 3°. Therefore, any voltage noise on the trap AC rods will be pro-
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jected onto the cavity axis. Given the measured noise of the high voltage amplifier

SV = 200µV/
√

Hz around 50 kHz and assuming a 3° angle, we expect a force noise

SF ≈ 3×10−38 N2/Hz (see Section 3.2.2.3). Furthermore, co-trapping in the trans-

verse direction due to the optical field could shift the particle equilibrium position

away from the Paul trap centre, leading to additional noise in the secular motion

(since cancellation of correlated voltage noise only occurs in the Paul trap centre)

and possible additional excess micromotion. The average of the different estimators

give a final temperature at P = 3.0× 10−6mbar of Teff = (21± 4)mK. This corre-

sponds to an improvement in the final reached temperature with two optical modes

by more than three orders of magnitude, despite the bad-cavity regime [44]. The

lowest temperature reported here is similar to the one demonstrated with an opti-

cal tweezer and cavity in the standard optomechanical case [47] (by opposition to

the coherent scattering case [40, 51]). This final temperature could be improved by

one order of magnitude with lower noise electronics and better alignment between

the Paul trap and the optical cavity. Furthermore, this measurement was taken

without the filtering cavity (see Section 7.3) and without feedback on th secular fre-

quencies (see Section 8.2). Assuming no other technical noise, without the filtering

cavity, frequency noise is expected to become a limiting factor at pressures below

P = 10−6mbar. Nevertheless, it could still be used here to improve the detection

sensitivity, particularly at the lowest pressures (see Fig. 8.14).
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Figure 8.16: Energy distribution expressed in units of kB , for the motion along the optical
direction at different pressures. (left) pressure P = 5.4× 10−2 mbar (right)
pressure P = 6.3×10−4 mbar.
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The energy distribution of the oscillator is thermal (exponential) as expected

with this linear cooling process (see Fig. 8.16 to be compared with Fig. 8.12).

Lastly, we show in Fig. 8.17, the spectrogram of the direct detection PSD, demon-

strating satisfying mechanical frequency stability of the oscillator at different pres-

sures. When cooling the oscillator along the cavity axis, it can be noticed that the

frequency is more stable here in comparison to what was shown in Fig. 8.7 (0.2%

at P = 1.2× 10−1mbar and 0.3% at P = 6.3× 10−4mbar). This can be explained

among others by the reduction of power modulation caused by the scattering losses

(see Section 2.3.2).
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Figure 8.17: Spectrogram of the PSD of the direct detection of the trapping field at
different pressures with logarithmic scale, to monitor the stability of the
trapping frequency. (bottom) pressure P = 1.2×10−1 mbar (right) pressure
P = 6.3×10−4 mbar.

8.6 Summary
There are few reports of estimation of Stöber silica polarisability as measured here.

This is nevertheless a crucial parameter to evaluate accurately the optomechanical

coupling as well as the scattering losses. We have reported measurements of those

losses by measuring the difference in linewidth with and without a single nanoparti-

cle inside the cavity field. We pointed out that those measurements are challenging
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and discussed possible improvements. Inside the optical cavity, with small optical

powers, the trapping potential in the transverse direction is predominantly defined

by the Paul trap. Depending on the Paul trap parameters and relative position

between the optical and trap potential centres, secular motion and excess micro-

motion can have an amplitude comparable to the cavity waist. In this case, the

optomechanical coupling can be modulated which leads to an undesired modulation

of the mechanical frequency and cooling rate. The secular motion can be detected

in the scattered light of the trapping field. Using this signal, we have demonstrated

cooling of the secular motion below Teff = 200mK with a velocity damping feedback

scheme applied on a single trap electrode. Modulations in the mechanical frequency

were clearly reduced. We have also confirmed that the effective temperature of the

motion defined by the optical trap was not affected by the feedback mechanism. By

using two optical modes as initially studied in Ref. [24, 44], in conjunction with the

Paul trap, this nano-oscillator system demonstrates great versatility for the study

of regimes dominated by either quadratic or linear optomechanical coupling. We

demonstrate for the first time, to the best of our knowledge, cooling solely provided

by quadratic optomechanical coupling. Comparison of the experimental results show

good agreement with analytical calculations. This type of passive parametric feed-

back cooling is analogous to the active feedback cooling in levitated optical tweezers

and indeed comparable temperatures are obtained here. The major difference be-

tween the two methods is that the cavity automatically applies feedback whereas,

conventionally, detection and electronic feedback are required to modulate the po-

tential for active cooling. We have also shown that a highly nonthermal state is

produced, which in the quantum regime, would be a highly nonclassical state. In

both cases, the cooling rate decreases as the particle is cooled to the bottom of the

optical potential. When operating the system in the linear optomechanical regime,

we have demonstrated cooling down to Teff = (21±4)mK limited by technical noise

in the Paul trap. By reducing voltage noise in conjunction with using the filtering

cavity, near ground state cooling should be achievable (see Section 2.5.6). We report

here a final effective temperature lower by more than three orders of magnitude with

two optical modes [44]. Furthermore, we demonstrate stable trapping in the optical

well of a cavity standing-wave down to P ∼ 10−6mbar.



Chapter 9

Conclusion and outlook

In this chapter we review the main results presented in this work, both of technical

and physical relevance. We discuss then possible short-term improvements and

reasonable applications.

9.1 Summary of results
9.1.1 Technical achievements

Several technical achievements have been presented here to be able to manipulate

with reliability levitated nanospheres in a low noise environment. After incorporat-

ing classical noise in a theoretical model of the experiment, it is clear that it needs

to be addressed in order to reach the quantum regime with conventional levitated

optomechanics (see Chapter 2). Frequency noise has recently been demonstrated as

a limitation to reach ground-state cooling [47]. Here we have demonstrated experi-

mentally that the detection sensitivity in the current set-up was limited by frequency

noise (see Chapter 7). In order to further reducing its effect on the signal-to-noise ra-

tio and in spurious heating of the nanosphere, we have designed a filtering cavity with

custom original design presented in Chapter 7. With its measured half-linewidth of

κ/2π= 2.5kHz, we characterised the attenuation in frequency noise provided. When

using the cooling scheme with two adjacent optical modes [24, 44], filtering the fre-

quency noise on both lasers could in theory be sufficient to reach the ground-state

of the centre-of-mass motion.

We have characterised a miniature linear Paul trap specifically designed for levi-

tated optomechanics experiments and presented in Chapter 3. Printed circuit boards

are used to mount the trap and facilitate electrical connections. The dielectric re-
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mains 3.5mm away from the trap centre therefore reducing the effect of individual

charges and charged nanospheres accumulating during the loading phase or when

the cold-cathode pressure gauge is on. The trap is small enough to fit in our optical

cavity with openings in the centre of the endcaps for the cavity mode. The two other

access directions are used for the loading process and for imaging of the nanoparti-

cle. Despite its simple design, we reported in Chapter 4 secular frequency stability

of 2 ppm/hr similar to what has been reported in mass-spectrometers loaded with

nanoparticles [99]. We have also reported a method combining electrospray loading

[96] with a quadrupole guide which enables us to reliably trap charged nanospheres

at a pressure of P = 10−1 mbar. It is worth noting that the dielectric of the Paul

trap acts as a shield which has been protecting efficiently the cavity mirrors during

the loading phase.

We have detailed an imaging method in Chapter 4 for low-frequency oscilla-

tors such as a levitated nanosphere in a Paul trap. When used in conjunction with

super-resolution algorithms we have reported displacement sensitivities better than

10−16m2/Hz. We applied this method to demonstrate the good force-noise sensitiv-

ities of levitated nanospheres in vacuum (sensitivity better than 1 aN/
√
Hz). This

imaging method was used to characterise the Paul trap stability and nanosphere

temperature. While estimating the size of the nanosphere with the gas-damping

law as function of pressure is highly inaccurate (due to poor knowledge of pressure,

particle shape and density uncertainties), we have discussed several alternatives.

With the imaging method, we are able to estimate the nanosphere mass with 3% of

uncertainty.

High-Q oscillators typically exhibit drifts in their frequency of oscillation as it

has been reported here in the Paul trap and more generally in optical traps. The

frequency of oscillation is typically very sensitive to potential drifts. We have demon-

strated a phase-sensitive method to measure the intrinsic mechanical linewidth of

an oscillator, with phase fluctuations (or conversely frequency fluctuations) φ(t) sat-

isfying |dφ(t)
dt | � ωo, where ωo is the oscillator frequency. This method was here

illustrated with our levitated oscillator at 8×10−7mbar demonstrating a linewidth

as small as 80µHz and drifts three times larger than the linewidth.
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With the typical trapping frequency in the cavity presented here (ωm/2π ≈

50 kHz), the effective radial frequencies can remain quite low (∼ 400Hz). In this case,

cooling the radial motion can prevent modulation of the optomechanical coupling

and, therefore, of both the mechanical frequency and the cooling rate. We have

demonstrated a proof-of-principle velocity damping where scattered light from the

cavity trapping mode is fed back to one Paul trap electrode to provide cooling below

200mK.

9.1.2 Experimental achievements

Levitated optomechanics is at an exciting stage with much progress having been

realised over the last decade, including the quantum regime having recently been

reached [40, 51]. As mentioned in the introduction, a levitated nanosphere in vac-

uum is a tremendous platform for studying not only different signatures of quantum

mechanics but material science and thermodynamics. Here we report experiments

with applications in those different fields. In Chapter 6, we addressed collapse

models. These phenomenological models combine the measurement postulate and

quantum mechanics to account for a description valid in both the macroscopic and

microscopic regimes. The most studied model (CSL) introduces two parameters

which determine the size of a quantum superposition rC at which the collapse rate

λ dominates. By placing bounds on the measured excess noise of our levitated os-

cillator at 8× 10−7mbar, we were able to confirm recent exclusion bounds in the

parameter space λ−rC . At rC = 10−7m this experiment excludes collapse rate val-

ues λ > 10−6 s−1. Moreover, these studies pave the way for the next generation of

platforms to test the CSL model. By operating the system in a cryostat kept at

300mK, and at pressure P = 10−13mbar, exclusion down to λ > 10−12 s−1 could be

achieved [37]. In this scenario, a very careful analysis of the detection both in terms

of sensitivity and spurious heating will be required as demonstrated theoretically in

Ref. [37]. Dissipative variants of the CSL model have been introduced to satisfy

conservation of energy. The narrow-linewidth measurement presented here enabled

us to bound the excess damping other than provided by ambient gas. This bound

has been directly applied, in a novel way, to exclude parameters in two dissipative

variants of collapse models, namely CSL and Diósi-Penrose. A significant improve-

ment over those bounds is within reach with lower noise electronics and a sphere
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with a 10µm radius.

Precise evaluation of the silica nanospheres parameters such as mass measure-

ments is a compulsory step in levitated optomechanics experiments [66, 99, 103, 117].

A challenging parameter to evaluate is the particle polarisability. Here, we estimate

it by measuring the scattering losses in the cavity, combined with our precise knowl-

edge of the mass. We also discussed a simple improvement to the method, which uses

two optical modes with frequency separated by two FSR. This simple improvement

would significantly reduce the uncertainty in the measurements presented here.

Using two optical modes [24, 44] in conjunction with the Paul trap provides

us with a versatile levitated nano-oscillator system which can be operated either in

the quadratic or linear optomechanical regime. To the best of our knowledge, we

demonstrate for the first time cooling solely provided by the quadratic optomechan-

ical interaction. More interestingly, this creates a highly nonlinear state of motion,

showing good agreement with theoretical calculations. In a regime dominated by

linear optomechanical coupling, we demonstrate cooling down to Teff = (21±4)mK

limited by Paul trap noise. This final temperature constitutes an improvement by

more than three orders of magnitude with the same cooling scheme [44]. Moreover,

the final temperature is similar to what has been reported in standard optomechanics

[47]. With better electronics, and by using the filtering cavity presented in Section

7.3, near ground state cooling should be achievable.

9.2 Outlook
The quantum regime has recently been reached by two groups [40, 51]. In both

cases nanospheres were trapped in an optical tweezer. In the first case, cooling was

provided on a charged nanosphere with a velocity damping scheme. In the other

case, cooling was provided with the coherent scattering scheme [48, 49]. These two

protocols offer numerous advantages over what has been presented in this work.

Nevertheless, a drawback is the scattering recoil which has a larger effect in optical

tweezers in comparison to optical cavities (see Section 2.3.3), introducing a higher

fundamental heating rate and possible source of decoherence when exploring non-

classical states of motion. For this reason, cooling and trapping in an optical cavity

standing-wave might still very well be an interesting alternative.
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One of the main advantages of optical levitation in a cavity field lies in the

possibility of manipulating the optomechanical coupling from quadratic to linear and

vice versa by simply controlling the power ratio between the probe and trapping field.

As linear coupling is significantly more efficient than quadratic cooling it should be

possible to switch between the two configurations producing two nonequilibrium

steady states at different effective temperatures. This is a new tool for exploring

nanoscale thermodynamics allowing the measurement of the relative entropy change

for testing thermodynamics out of equilibrium and fluctuation theorems [194–196].

An even more intriguing possibility is to exploit a similar protocol where the particle

is initialised close to the quantum ground state [51] through linear coupling and then

to adiabatically change to a quadratic coupling. Such a scheme may allow squeezing

of mechanical motion [174] but also the creation of other nonclassical states by using

the nonlinear damping demonstrated here.

There has recently been an increased interest in using Paul traps for experi-

ments using levitated nanospheres [94, 197, 198]. Advantages offered by the Paul

trap include a deep and broad potential and the absence of optical fields. This could

be used for instance to explore macroscopic superposition with nanorotors [199].

Recent proposals include studying hybrid atom-nanosphere systems where sympa-

thetic cooling of the ion could lead to small (∼ µK) motional temperatures of the

nanosphere [200]. Furthermore, this could directly be used to probe quantum grav-

ity [7]. A similar system could be used as well to detect mechanical superpositions

of the nanoparticle [201].





Appendix A

Optical locks

In this appendix, we review and describe the different optical locking mechanisms

used in the experiment. We summarise the well-known Pound-Drever-Hall (PDH)

method, used here to lock laser frequencies to our two optical cavities. We discuss

how the PDH error signal is calibrated in frequency noise (or conversely in cavity

displacement noise). We describe then how we implement an offset-phase lock to

stabilise one laser frequency to another laser. Lastly, we discuss locking mechanisms

used to correct for slow frequency drifts in the experiment.

A.1 Pound-Drever-Hall

In this section we review the Pound-Drever-Hall (PDH) locking method [202]. Tem-

perature drifts and acoustic noise are responsible for fluctuations of the cavity res-

onance frequency. The PDH technique is a feedback scheme used in order to keep

a laser locked to an optical resonance. This is used in practice in this work to

lock both science and filtering cavities. The need for a specific method comes from

the fact that the amplitude transfer function of the reflected field on resonance has

a null derivative and therefore cannot be used as an error signal. A linear slope

can nevertheless be obtained by measuring the phase of the reflected field (see Fig.

A.1). In order to implement the phase detection, a phase modulation is added to

the optical field by means of an electro-optic modulator (EOM). The modulated

input field can be written as Ein = Eoe
iωlt+βsin(Ωt) with Eo the field amplitude,

ωl the laser frequency, β the modulation depth and Ω the modulation frequency.

This frequency modulation creates sidebands on the optical carrier frequency evenly

spaced by Ω : Ein = Eo

(
J0(β)eiωlt+

∞∑
n=1

(
Jn(β)ei(ωl+nΩ)t−Jn(β)ei(ωl−nΩ)t

))
≈
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Eo
(
J0(β)eiωlt+J1(β)ei(ωl+Ω)t−J1(β)ei(ωl−Ω)t

)
where Jn denotes the Bessel func-

tions. We can simplify this expression by keeping only the first terms in

the Bessel function expansion. The reflected field amplitude can be written

as Er = F (∆o) = ζ−i∆o/κ
1+i∆o/κ

Ein with ∆o the detuning between the input field

ωl and the cavity resonance frequency ωcav and κ the cavity half-linewidth

(see Section 2.2.1). The reflected field taking into account the first sidebands

is Er = E0
(
F (∆o)J0(β)eiωlt+F (∆o+ Ω)J1(β)ei(ωl+Ω)t−F (∆o−Ω)J1(β)ei(ωl−Ω)t

)
.

We show the reflected field intensity as a function of detuning in Fig. A.1(left),

where we have used a low-pass filter with cut-off frequency smaller than Ω. The

fit can be used to evaluate the modulation depth β = 0.73. The intensity contains

constant terms (shown in Fig. A.1(left)) and ones rotating at the frequencies Ω

and 2Ω. The reflected beam is measured on a photodiode of response bandwidth

larger than Ω. The output voltage is then mixed with a local oscillator of same fre-

quency Ω and phase θ. After mixing and applying a low pass filter, we obtain

the PDH error signal VPDH ∝ Re[F (∆o)F ∗(∆o+ Ω)−F ∗(∆o)F (∆o−Ω)]cos(θ)−

Im[F (∆o)F ∗(∆o+ Ω)−F ∗(∆o)F (∆o−Ω)]sin(θ). It can be shown that close to the

resonance frequency for optical frequencies ωl satisfying ωcav−κ < ωl <ωcav+κ, we

obtain VPDH ∝ Im[F (ω)] sin(θ). When this condition is met, the PDH error signal is

linear as a function of detuning. It can be shown to be proportional to the phase of

the reflected beam, itself proportional to the detuning and can therefore be used as

an error signal to lock the cavity. We show in Fig. A.1(right) a typical PDH error

signal along with theoretical fit. The central part, highlighted in orange, corresponds

to the linear section of the signal used for locking. The sensitivity of the error signal

is maximised for θ = π/2 which corresponds to the phase quadrature of the field

(here we measure θ= π/2+0.31). Moreover, the sensitivity is maximised for a mod-

ulation depth β = 1.08 (here we measure β=0.73) roughly corresponding to an equal

amount shared between the carrier and the first order sidebands. In practice, we

generate the sidebands at frequencies ranging between 4MHz and 8MHz. We use as

an EOM a LiTaO3 crystal on which we apply a voltage modulation. The modulation

signal is either issued from an off the shelf lock box1 or an FPGA2. The RF signals

1Vescent D2-125
2redpitaya
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Figure A.1: (left) Reflected intensity (data in blue, fit in red) from the science cavity as
a function of detuning. The science cavity here has a half-linewidth κ/2π =
130kHz. Sidebands are obtained at Ω/2π = 8MHz by using an EOM. The fit
gives a modulation depth of β = 0.73. (right) PDH error signal as a function
of detuning (data in blue, fit in red). The dynamic range of the lock, shown
in orange, corresponds to one full linewidth 2κ. The fit gives a demodulation
angle θ = π/2+0.31. Unlike in (left), the EOM modulation is here at 4MHz.

are amplified with Mini-circuits amplifiers3. In the case of the lock box, we typically

apply on the EOM crystal ∼ 30V (peak-to-peak) at 4MHz, when using the FPGA,

∼ 40V (peak-to-peak) at 8MHz. The reflected intensity is detected on a photodiode

with a bandwidth large enough to be sensitive at the modulation frequency4. The

signal is then demodulated either internally in the case of the lock box or with an

external mixer otherwise5. In both cases we use the lock box6 as a servo which has

two integrators and one proportional gain. Given the output voltage of the lock box

and the laser piezo-electric actuator gain, the dynamic range of the PDH lock to the

two cavities is ±20MHz.

A.2 PDH calibration
In this section we discuss how the PDH error signal is calibrated. As discussed above,

the PDH error signal quantifies the detuning, when calibrated in Hz, between the

input optical frequency and the cavity resonance. It can first be used to evaluate the

performance of the lock as well as the frequency noise and/or cavity displacement

3ZHL-1-2W-S+
4InGaAs PDA10CF from ThorLabs. Bandwidth of 150MHz.
5ZX05-1-S+
6Vescent D2-125
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noise. Lastly, since the PDH error signal is actually proportional to the phase of the

reflected beam, it can be used directly to read out the particle motion as it could

be realised in a standard homodyne detection (see Chapter 8). We show in Fig.

A.2, a diagram summarising the different components of the feedback loop as well

as controlled inputs and noise terms.

Laser servo Laser piezo-
electric actuator 

Calibration tone

CavityPDH
 (photodiode + demodulation)

Voltage noise
Laser frequency noise

Cavity displacement noise

Reference 
detuning

PDH error signal

Correction signal

-

Photodiode and 
electronic noise

Figure A.2: Feedback block diagram of the PDH lock. Controlled inputs are written in
orange. Noise inputs are shown in blue. For the calibration, PDH error signal
and correction signal are measured.

The laser servo7 is used with two integrators of cut-off frequencies ω1 and ω2

and a gain Gs. While the frequency of the two integrators is well known, the gain

is not known precisely as it is set with a knob. The transfer function of the servo

is Hs(ω) =Gs
1+i ω

ω1
i ω
ω1

1+i ω
ω2

i ω
ω2

. The laser piezoelectric-actuator gain GPZT is considered

to be white within its working bandwidth ∼ 100kHz. The cavity behaves as a first

order low-pass filter regarding the field frequency. When the PDH error signal is

on resonance, it is well approximated (up to a gain) by Hc(ω) = 1
1+iω

κ
with κ the

cavity half-linewidth which can be measured accurately (see Section 7.4.3). Lastly,

the reflected field is measured on a photodiode and the signal is then demodulated

to provide the PDH error signal. This signal depends on several parameters such

as optical power, photodiode gain, responsivity, amplitude of the local oscillator in

the mixer and possible additional electronic gains. One method of evaluating the

PDH overall gain GPDH consists in taking the ratio of the PDH error signal peak-to-

peak with the cavity full linewidth 2κ. Here, rather than using this approach which

depends on several parameters, a calibration tone is added to the correction signal

driving the laser piezoelectric-actuator. We denote the open-loop transfer function

as OL(ω) = GPZTGPDHHs(ω)Hc(ω). We denote the calibration amplitude by A

7Vescent D2-125
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and its frequency by ωcal. We generally choose a calibration frequency smaller than

the cavity bandwidth, to minimise calibration errors ωcal < κ. The amplitude of the

calibration is chosen such that it dominates both PDH error signal and correction

signal at the frequency ωcal. In this case, the amplitude square of the PDH error sig-

nal V 2
PDH at the calibration frequency ωcal is V 2

PDH(ωcal) =
∣∣∣GPZTGPDH

1+OL(ωcal)

∣∣∣2A2. While,

the amplitude square of the correction signal V 2
corr evaluated at the calibration fre-

quency ωcal (taken after adding the calibration tone) is V 2
corr(ωcal) =

∣∣∣ 1
1+OL(ωcal)

∣∣∣2A2.

By taking the ratio of those two signals, we can evaluate the PDH gain GPDH with

the knowledge of the laser piezoelectric-actuator gain GPZT . The PDH error sig-

nal PSD SPDH(ω) can then be calibrated into an in-loop effective frequency noise

Sfreq noise(ω) = 1
G2

PDH
|Hc(ω)|−2SPDH(ω). It can be written as well in terms of effec-

tive cavity displacement noise after multiplication by L2

ν2
L

with L the cavity length

and νL the laser frequency.

When the PDH is used to measure the nanoparticle motion, a notch filter is

placed at the mechanical frequency on the correction signal to limit actions of the

feedback loop on the nanoparticle motion.

A.3 Offset lock
As mentioned above, two lasers are used in the experiment presented in Chapter

8. One is typically locked to the science cavity (500mW laser) while the second

one (2W laser) is offset locked to the first one. The two lasers are separated in

frequency by one free-spectral-range (10.3GHz) on top of which a small detuning

is added (typically ∼ 100 kHz). The beat note (visibility of ∼ 90%) between the

two lasers is detected on a very high bandwidth photodiode8. It is then amplified9

and its frequency is divided10 by 8 to be used with standard electronic equipments.

An off the shelf offset lock box11 is used to provide an error signal as well as a

correction signal. The offset lock reference signal is provided by a high quality and

ultra stable signal generator12. The offset lock loop is either closed on the 2W laser

piezoelectric-actuator or on an AOM13.

8EOT ET-3500. Bandwidth of 12.5GHz
9ZVA-183W-S+

10HMC494
11Vescent D2-135
12R&S SMB 100A
13Series 3000 by Crystal Technology. Central frequency of 80MHz.
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In the case of the AOM, the error signal has to be converted into a frequency

modulation. This is realised by using a low phase noise voltage-controlled oscillator

(VCO)14. We measure the VCO gain to be (5.81± 0.06)MHz/V. We place on the

VCO output signal a sharp low pass filter15 to attenuate higher order harmonics

generated by the VCO. The signal is then amplified16 and sent to the AOM. The

AOM is operated in a double pass configuration (efficiency in the double pass ∼ 60%)

in order to minimise pointing noise, since the refraction angle is frequency dependent.

The dynamic range given by the offset lock operated with the VCO and the AOM

is ±10MHz.

A.4 Slow drifts locks
As mentioned above, the dynamic range of both AOM and laser piezoelectric-

actuators is ∼ ±20MHz. Furthermore, both cavity resonance frequency and laser

frequencies can drift by a significant amount because of temperature fluctuations.

Even at constant room temperature, the Mephisto lasers from Coherent have drifts

of the order of ∼ 1MHz/min. The temperature drifts in the two cavities are partially

mitigated by using cavity holders designed in INVAR, which has a small linear expan-

sion coefficient of ∼ 1 ppm/K. We can easily calculate the relationship between the

drifts in resonance frequency ν and in cavity length L to be ∆L
L = ∆ν

ν . For both cav-

ities, we therefore have ∆ν ≈ 300MHz/K. Lastly, when taking measurements with

a nanosphere, we generally change the pressure within the science cavity between

∼ 1mbar and ∼ 10−7 mbar. At 1mbar, the refractive index of air is 1+2.7×10−7.

Therefore, lowering the pressure leads to a change in the cavity resonance frequency

by 75MHz. In order to compensate actively for those slow frequency drifts, we use

custom feedback with proportional gain and single integrator of small time constant

∼ 1Hz on the temperature actuator of both lasers.

When the filtering cavity is used, the offset lock loop is closed on the AOM.

Though operated in a double pass configuration, the refracted beam angle still de-

pends on the drive frequency. Due to fibre alignment, this pointing noise can lead

to drifts in power up to ∼ 10% at the science cavity input. In order to cancel out

14CRBV55FL-0075-0085 from Crystek Corporation.
15CLPFL-0100 from Crystek Corporation. 7th order low pass filter with cut-off frequency at

100MHz
16ZHL-1-2W-S+
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those drifts, the AOM is operated at a constant mean frequency and the feedback is

applied on the science cavity piezoelectric-actuator, leading to the AOM only cor-

recting high frequency fluctuations. Therefore, in this case, the 2W laser follows

the filtering cavity drifts, the AOM is operated at a fixed frequency, and the science

cavity length is changed to obtain the desired offset between the two beams. The

500mW laser follows the science cavity frequency.

Those different locks are robust enough to go multiple times up and down in

pressure with the same nanosphere.
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