1,060 research outputs found

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply

    Energy Harvesting for Self-Powered Wireless Sensors

    Get PDF
    A wireless sensor system is proposed for a targeted deployment in civil infrastructures (namely bridges) to help mitigate the growing problem of deterioration of civil infrastructures. The sensor motes are self-powered via a novel magnetic shape memory alloy (MSMA) energy harvesting material and a low-frequency, low-power rectifier multiplier (RM). Experimental characterizations of the MSMA device and the RM are presented. A study on practical implementation of a strain gauge sensor and its application in the proposed sensor system are undertaken and a low-power successive approximation register analog-to-digital converter (SAR ADC) is presented. The SAR ADC was fabricated and laboratory characterizations show the proposed low-voltage topology is a viable candidate for deployment in the proposed sensor system. Additionally, a wireless transmitter is proposed to transmit the SAR ADC output using on-off keying (OOK) modulation with an impulse radio ultra-wideband (IR-UWB) transmitter (TX). The RM and SAR ADC were fabricated in ON 0.5 micrometer CMOS process. An alternative transmitter architecture is also presented for use in the 3-10GHz UWB band. Unlike the IR-UWB TX described for the proposed wireless sensor system, the presented transmitter is designed to transfer large amounts of information with little concern for power consumption. This second method of data transmission divides the 3-10GHz spectrum into 528MHz sub-bands and "hops" between these sub-bands during data transmission. The data is sent over these multiple channels for short distances (?3-10m) at data rates over a few hundred million bits per second (Mbps). An UWB TX is presented for implementation in mode-I (3.1-4.6GHz) UWB which utilizes multi-band orthogonal frequency division multiplexing (MB-OFDM) to encode the information. The TX was designed and fabricated using UMC 0.13 micrometer CMOS technology. Measurement results and theoretical system level budgeting are presented for the proposed UWB TX

    Monitoring and Self-diagnosis of Civil Engineering Structures: Classical and Innovative Applications

    Get PDF
    Eventi estremi come esplosioni o terremoti possono avere un profondo impatto nella sicurezza degli edifici. Le zone sismiche devono convivere con questi tragici eventi, per questo monitorare in maniera continua le condizioni di salute di una struttura è necessario e auspicabile in molti casi. Il monitoraggio strutturale (Structural Health Monitoring – SHM) rappresenta un potente strumento per la valutazione del comportamento dinamico della struttura monitorata. Fino a pochi anni fa queste tecniche erano impiegate prevalentemente in ambito meccanico, aeronautico e nell’ingegneria aerospaziale. Al giorno d’oggi, la riduzione dei costi della strumentazione, sistemi di acquisizione dati di nuova generazione e l’incremento continuo dell’efficienta nelle analisi numeriche hanno reso possibile l’applicazione di queste tecniche anche a strutture civili ordinarie. Le tecniche di monitoraggio strutturale vengono applicate non solo in grandi infrastrutture come ponti, dighe o grattacieli, ma anche in strutture storiche o edifici residenziali. In questo contesto questa tesi tenta di esaminare differenti aspetti del monitoraggio strutturale, in particolar modo riferite a edifici ordinari. Attraverso tecniche Output-Only (Operational Modal Analysis – OMA) sono state monitorate diverse strutture civili con reti di sensori cablate, al fine di ottenere il comportamento dinamico strutturale nelle reali condizioni opertive. Particolare attenzione è stata focalizzata in un altra importante tematica dell’ingegneria strutturale: il danneggiamento strutturale. Attraverso un approccio numerico viene presentato un nuovo metodo per la localizzazione e quantificazione del danno a seguito di un evento sismico. In alternativa alla classica rete cablata, è stato sviluppato un sistema di acquisizione con sensori wireless (Wireless Sensor Network – WSN). I principali risultati ottenuti con questa applicazione vengono riportati nella presente tesi, unitamente al design dei sensori low-cost. Con l’ausilio della sensoristica sviluppata è stato monitorato un edificio storico in muratura, mostrando i risultati positivi ottenuti a seguito della campagna di acquisizione di rumore ambientale (Ambient Vibration Survey -AVS).Extreme events like explosions and earthquakes may have a deep impact on building safety. Seismic regions must live with these tragic events, so that continuous monitoring of structure health conditions is necessary in many cases. Structural Health Monitoring (SHM) represents a powerful tool for the evaluation of dynamic behavior of monitored structures. Until a few years ago these techniques were widely employed especially in mechanical, aeronautical and aerospace engineering. Nowadays, the reduction of equipment costs, the new generation of data acquisition systems, together with the continuous improvement of computational analysis have made it possible to apply SHM also to civil structures without strategic importance. SHM has moved from large infrastructures like bridges, dams and skyscrapers to historical heritage and residential buildings. In this background, the present work tries to examine different aspects of SHM applications, especially referred to ordinary buildings. Using Operational Modal Analysis (OMA) techniques, several civil structures have been monitored through a wired network sensor, in order to obtain the dynamic behavior in operating conditions. The relevant data collection provides a useful tool for calibrating the accuracy and sensitivity of similar SHM case studies. Specific attention is focused in another important issue in civil and in mechanical engineering: detection of structural damages. Through a numerical approach, a new method for damage localization and quantification is proposed. Besides the traditional wired acquisition system a Wireless Sensor Network (WSN) has been developed. The issues related to the usage of low-cost sensors and new generation data acquisition tools for non-destructive structural testing are discussed. Using the WSN an historical masonry building has been monitored, showing the positive results obtained following the Ambient Vibration Survey (AVS)

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Design And Implementation Of An X-Band Passive Rfid Tag

    Get PDF
    This research presents a novel fully integrated energy harvester, matching network, matching network,matching network, matching network,matching network, matching network, matching network, multi-stage RF-DC rectifier, mode selector, RC oscillator, LC oscillator, and X-band power amplifier implemented in IBM 0.18-µm RF CMOS technology. We investigated different matching schemes, antennas, and rectifiers with focus on the interaction between building blocks. Currently the power amplifier gives the maximum output power of 5.23 dBm at 9.1GHz. The entire RFID tag circuit was designed to operate in low power consumption. Voltage sensor circuit which generates the enable signal was designed to operate in very low current. All the test blocks of the RFID tag were tested. The smaller size and the cost of the RFID tag are critical for widespread adoption of the technology. The cost of the RFID tag can be lowered by implementing an on-chip antenna. We were able to develop, fabricate, and implement a fully integrated RFID tag in a smaller size (3 mm X 1.5 mm) than the existing tags. With further modifications, this could be used as a commercial low cost RFID tag
    corecore