4 research outputs found

    Exploiting generalized de-Bruijn/Kautz topologies for flexible iterative channel code decoder architectures

    Get PDF
    Modern iterative channel code decoder architectures have tight constrains on the throughput but require flexibility to support different modes and standards. Unfortunately, flexibility often comes at the expense of increasing the number of clock cycles required to complete the decoding of a data-frame, thus reducing the sustained throughput. The Network- on-Chip (NoC) paradigm is an interesting option to achieve flexibility, but several design choices, including the topology and the routing algorithm, can affect the decoder throughput. In this work logarithmic diameter topologies, in particular generalized de-Bruijn and Kautz topologies, are addressed as possible solutions to achieve both flexible and high throughput architectures for iterative channel code decoding. In particular, this work shows that the optimal shortest-path routing algorithm for these topologies, that is still available in the open literature, can be efficiently implemented resorting to a very simple circuit. Experimental results show that the proposed architecture features a reduction of about 14% and 10% for area and power consumption respectively, with respect to a previous shortest-path routing-table-based desig

    Exploiting generalized de-Bruijn/Kautz topologies for flexible iterative channel code decoder architectures

    Get PDF
    Modern iterative channel code decoder architectures have tight constrains on the throughput but require flexibility to support different modes and standards. Unfortunately, flexibility often comes at the expense of increasing the number of clock cycles required to complete the decoding of a data-frame, thus reducing the sustained throughput. The Network- on-Chip (NoC) paradigm is an interesting option to achieve flexibility, but several design choices, including the topology and the routing algorithm, can affect the decoder throughput. In this work logarithmic diameter topologies, in particular generalized de-Bruijn and Kautz topologies, are addressed as possible solutions to achieve both flexible and high throughput architectures for iterative channel code decoding. In particular, this work shows that the optimal shortest-path routing algorithm for these topologies, that is still available in the open literature, can be efficiently implemented resorting to a very simple circuit. Experimental results show that the proposed architecture features a reduction of about 14% and 10% for area and power consumption respectively, with respect to a previous shortest-path routing-table-based design

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    A 130-nm CMOS 0.007 mm2 Ring-Oscillator-Based Self-Calibrating IR-UWB Transmitter Using an Asynchronous Logic Duty-Cycled PLL

    No full text
    We present a 0.007 mm2 impulse-radio ultrawide- band transmitter (TX) based on a ring oscillator capable of synthesizing pulses with both controlled center frequency and bandwidth using a single duty-cycling/trigger reference input. The TX embeds a single-phase charge-pump phase-locked loop (PLL), implemented with asynchronous logic, with 55 logic elements overall. The system, including radio frequency output buffers, consumes measured 30-45 pJ/pulse with a measured efficiency of ∼47% at 285 MHz center frequency and Vdd in the range of 0.97-1.17 V. At 1.2V supply, the 130 nm CMOS TX tolerates ±10% Vdd variation, maintaining robust lock and controlled power spectral density (PSD) at 300 MHz center frequency, −19 dBm radiated power at 1 MHz pulse-repetition frequency, and a fractional bandwidth of 0.23. At 300 MHz, the system achieves a measured 100 ps RMS jitter, and without output buffers, the sole PLL logic occupies an active silicon area of 0.0045 mm
    corecore