10 research outputs found

    Gestión de jerarquías de memoria híbridas a nivel de sistema

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadoras y Automática y de Ku Leuven, Arenberg Doctoral School, Faculty of Engineering Science, leída el 11/05/2017.In electronics and computer science, the term ‘memory’ generally refers to devices that are used to store information that we use in various appliances ranging from our PCs to all hand-held devices, smart appliances etc. Primary/main memory is used for storage systems that function at a high speed (i.e. RAM). The primary memory is often associated with addressable semiconductor memory, i.e. integrated circuits consisting of silicon-based transistors, used for example as primary memory but also other purposes in computers and other digital electronic devices. The secondary/auxiliary memory, in comparison provides program and data storage that is slower to access but offers larger capacity. Examples include external hard drives, portable flash drives, CDs, and DVDs. These devices and media must be either plugged in or inserted into a computer in order to be accessed by the system. Since secondary storage technology is not always connected to the computer, it is commonly used for backing up data. The term storage is often used to describe secondary memory. Secondary memory stores a large amount of data at lesser cost per byte than primary memory; this makes secondary storage about two orders of magnitude less expensive than primary storage. There are two main types of semiconductor memory: volatile and nonvolatile. Examples of non-volatile memory are ‘Flash’ memory (sometimes used as secondary, sometimes primary computer memory) and ROM/PROM/EPROM/EEPROM memory (used for firmware such as boot programs). Examples of volatile memory are primary memory (typically dynamic RAM, DRAM), and fast CPU cache memory (typically static RAM, SRAM, which is fast but energy-consuming and offer lower memory capacity per are a unit than DRAM). Non-volatile memory technologies in Si-based electronics date back to the 1990s. Flash memory is widely used in consumer electronic products such as cellphones and music players and NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. The rapid increase of leakage currents in Silicon CMOS transistors with scaling poses a big challenge for the integration of SRAM memories. There is also the case of susceptibility to read/write failure with low power schemes. As a result of this, over the past decade, there has been an extensive pooling of time, resources and effort towards developing emerging memory technologies like Resistive RAM (ReRAM/RRAM), STT-MRAM, Domain Wall Memory and Phase Change Memory(PRAM). Emerging non-volatile memory technologies promise new memories to store more data at less cost than the expensive-to build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. These new memory technologies combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the non-volatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. The research and information on these Non-Volatile Memory (NVM) technologies has matured over the last decade. These NVMs are now being explored thoroughly nowadays as viable replacements for conventional SRAM based memories even for the higher levels of the memory hierarchy. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional(3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years...En el campo de la informática, el término ‘memoria’ se refiere generalmente a dispositivos que son usados para almacenar información que posteriormente será usada en diversos dispositivos, desde computadoras personales (PC), móviles, dispositivos inteligentes, etc. La memoria principal del sistema se utiliza para almacenar los datos e instrucciones de los procesos que se encuentre en ejecución, por lo que se requiere que funcionen a alta velocidad (por ejemplo, DRAM). La memoria principal está implementada habitualmente mediante memorias semiconductoras direccionables, siendo DRAM y SRAM los principales exponentes. Por otro lado, la memoria auxiliar o secundaria proporciona almacenaje(para ficheros, por ejemplo); es más lenta pero ofrece una mayor capacidad. Ejemplos típicos de memoria secundaria son discos duros, memorias flash portables, CDs y DVDs. Debido a que estos dispositivos no necesitan estar conectados a la computadora de forma permanente, son muy utilizados para almacenar copias de seguridad. La memoria secundaria almacena una gran cantidad de datos aun coste menor por bit que la memoria principal, siendo habitualmente dos órdenes de magnitud más barata que la memoria primaria. Existen dos tipos de memorias de tipo semiconductor: volátiles y no volátiles. Ejemplos de memorias no volátiles son las memorias Flash (algunas veces usadas como memoria secundaria y otras veces como memoria principal) y memorias ROM/PROM/EPROM/EEPROM (usadas para firmware como programas de arranque). Ejemplos de memoria volátil son las memorias DRAM (RAM dinámica), actualmente la opción predominante a la hora de implementar la memoria principal, y las memorias SRAM (RAM estática) más rápida y costosa, utilizada para los diferentes niveles de cache. Las tecnologías de memorias no volátiles basadas en electrónica de silicio se remontan a la década de1990. Una variante de memoria de almacenaje por carga denominada como memoria Flash es mundialmente usada en productos electrónicos de consumo como telefonía móvil y reproductores de música mientras NAND Flash solid state disks(SSDs) están progresivamente desplazando a los dispositivos de disco duro como principal unidad de almacenamiento en computadoras portátiles, de escritorio e incluso en centros de datos. En la actualidad, hay varios factores que amenazan la actual predominancia de memorias semiconductoras basadas en cargas (capacitivas). Por un lado, se está alcanzando el límite de integración de las memorias Flash, lo que compromete su escalado en el medio plazo. Por otra parte, el fuerte incremento de las corrientes de fuga de los transistores de silicio CMOS actuales, supone un enorme desafío para la integración de memorias SRAM. Asimismo, estas memorias son cada vez más susceptibles a fallos de lectura/escritura en diseños de bajo consumo. Como resultado de estos problemas, que se agravan con cada nueva generación tecnológica, en los últimos años se han intensificado los esfuerzos para desarrollar nuevas tecnologías que reemplacen o al menos complementen a las actuales. Los transistores de efecto campo eléctrico ferroso (FeFET en sus siglas en inglés) se consideran una de las alternativas más prometedores para sustituir tanto a Flash (por su mayor densidad) como a DRAM (por su mayor velocidad), pero aún está en una fase muy inicial de su desarrollo. Hay otras tecnologías algo más maduras, en el ámbito de las memorias RAM resistivas, entre las que cabe destacar ReRAM (o RRAM), STT-RAM, Domain Wall Memory y Phase Change Memory (PRAM)...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Switching mechanisms, electrical characterisation and fabrication of nanoparticle based non-volatile polymer memory devices.

    Get PDF
    Polymer and organic electronic memory devices offer the potential for cheap, simple memories that could compete across the whole spectrum of digital memories, from low cost, low performance applications, up to universal memories capable of replacing all current market leading technologies, such as hard disc drives, random access memories and Flash memories. Polymer memory devices (PMDs) are simple, two terminal metal-insulator-metal (MIM) bistable devices that can exist in two distinct conductivity states, with each state being induced by applying different voltages across the device terminals. Currently there are many unknowns and much ambiguity concerning the working mechanisms behind many of these PMDs, which is impeding their development. This research explores some of these many unanswered questions and presents new experimental data concerning their operation. One prevalent theory for the conductivity change is based on charging and charge trapping of nanoparticles and other species contained in the PMD. The work in this research experimentally shows that gold nanoparticle charging is possible in these devices and in certain cases offers an explanation of the working mechanism. However, experimental evidence presented in this research, shows that in many reported devices the switching mechanism is more likely to be related to electrode effects, or a breakdown mechanism in the polymer layer. Gold nanoparticle charging via electrostatic force microscopy (EFM) was demonstrated, using a novel device structure involving depositing gold nanoparticles between lateral electrodes. This allowed the gold nanoparticles themselves to be imaged, rather than the nanoparticle loaded insulating films, which have previously been investigated. This method offers the advantages of being able to see the charging effects of nanoparticles without any influence from the insulating matrix and also allows charging voltages to be applied via the electrodes, permitting EFM images to capture the charging information in near real-time. Device characteristics of gold nanoparticle based PMDs are presented, and assessed for use under different scenarios. Configurations of memory devices based on metal-insulator-semiconductor (MIS) structures have also been demonstrated. Simple interface circuitry is presented which is capable of performing read, write and erase functions to multiple memory cells on a substrate. Electrical properties of polystyrene thin films in the nanometre thickness range are reported for the first time, with insulator trapped charges found to be present in comparable levels to those in silicon dioxide insulating films. The dielectric breakdown strength of the films was found to be significantly higher than bulk material testing would suggest, with a maximum dielectric strength of 4.7 MV•cm-1 found, compared with the manufacturers bulk value of 0.2 – 0.8 MV•cm-1. Conduction mechanisms in polystyrene were investigated with the dominant conduction mechanism found to be Schottky emission.Engineering and Physical Sciences Research Council (EPSRC)The National Physical laboratory, UK (NPL

    Ferroelectrics

    Get PDF
    Ferroelectric materials exhibit a wide spectrum of functional properties, including switchable polarization, piezoelectricity, high non-linear optical activity, pyroelectricity, and non-linear dielectric behaviour. These properties are crucial for application in electronic devices such as sensors, microactuators, infrared detectors, microwave phase filters and, non-volatile memories. This unique combination of properties of ferroelectric materials has attracted researchers and engineers for a long time. This book reviews a wide range of diverse topics related to the phenomenon of ferroelectricity (in the bulk as well as thin film form) and provides a forum for scientists, engineers, and students working in this field. The present book containing 24 chapters is a result of contributions of experts from international scientific community working in different aspects of ferroelectricity related to experimental and theoretical work aimed at the understanding of ferroelectricity and their utilization in devices. It provides an up-to-date insightful coverage to the recent advances in the synthesis, characterization, functional properties and potential device applications in specialized areas

    Desenho de materiais funcionais 2D para futuras aplicações em microeletrónica

    Get PDF
    Doutoramento em Ciência e Engenharia de MateriaisDevido à redução de dimensões e ao aumento da velocidade de processamento de dados nos dispositivos microeletrónicos baseados em semicondutores convencionais, estão a ser exploradas abordagens inovadoras envolvendo novos materiais tais como óxidos funcionais. Com o rápido desenvolvimento da indústria eletrónica existe uma maior necessidade de elevado desempenho, de elevada fiabilidade, e de componentes eletrónicos miniaturizados integrados em vários dispositivos. A fim de tornar os dispositivos amplamente acessíveis e de fácil utilização, requisitos adicionais devem ser considerados: o tamanho e peso desejados, o custo reduzido, o baixo consumo de energia e a portabilidade. Materiais funcionais de baixa dimensionalidade são muito promissores para cumprir essas exigências. Em particular, os ferroeléctricos de filmes finos bidimensionais (2D) têm recebido grande atenção devido à sua crescente utilização em memórias não voláteis, detectores piroelétricos, transdutores piezoeléctricos miniaturizados e dispositivos sintonizáveis de micro-ondas. A temperatura de cristalização é um parâmetro chave na preparação de ferroelétricos 2D. Muitos filmes finos ferroelétricos são cristalizados a temperaturas >600 °C. Esses valores estão acima da temperatura que certos elementos do dispositivo funcional podem suportar. Recentemente, este facto tornou-se ainda mais importante, devido às promissoras aplicações que podem ser consideradas caso os ferroeléctricos 2D sejam compatíveis com substratos poliméricos flexíveis de baixo custo e de baixo ponto de fusão. A compatibilidade de filmes finos ferróicos com estes últimos tipos de substratos é muito difícil, mas se conseguida pode ampliar acentuadamente a gama de aplicações para os mais recentes requisitos de eletrónica flexível e microeletrónica, onde dispositivos leves e baratos são exigidos. Neste trabalho, é implementada uma combinação da modificação da química de precursores e assistência por luz UV, com promoção simultânea da cristalização pela introdução de sementes nanocristalinas na solução precursora, para a fabricação de filmes finos ferróicos sem chumbo - Método de Precursores Fotossensíveis Semeados. Neste contexto, o principal objetivo deste trabalho foi fabricar filmes finos sem chumbo BiFeO3 (BFO) e Na0.5Bi0.5TiO3 (NBT) a baixas temperaturas (~300 °C) com uma resposta ferroelétrica competitiva. Além disso, a investigação do efeito do elétrodo-base sobre as propriedades dielétricas e ferroelétricas de filmes finos de BFO foi levada a cabo, e a comparação entre o comportamento de condensadores de BFO com base em IrO2, LaNiO3 (LNO) e Pt foi estabelecida. Adicionalmente, os efeitos dos vários eléctrodos sobre a microestrutura de filmes finos ferroeléctricos de BFO foram estudados por microscopia eletrónica de transmissão (TEM) de alta resolução. Primeiramente, filmes finos finos de perovesquite BFO e NBT foram preparados sobre substratos de silício revestidos com Pt, por deposição de solução química. Os filmes finos de BFO foram preparados a temperaturas na gama de 400-500 °C, a partir de soluções de precursores estequiométricas e com excesso de Bi. Os filmes de BFO cristalinos foram obtidos a 400 °C, o limite inferior de temperatura. Os filmes preparadas com excesso de Bi possuem curvas de histerese ferroelétrica mais definidas do que aqueles sem qualquer excesso, para filmes com espessuras ~150 nm. Uma vez que as densidades de corrente de fuga nos filmes finos diminuem com a diminuição da temperatura de processamento, a polarização de filmes finos de BFO preparados com excesso Bi e recozidos a 400 e 450 °C pode ser efetivamente comutada à temperatura ambiente. Obtiveram-se valores de polarização remanescente de Pr ~10 e ~60 μC/cm2 com campos coercivos de EC ~ 205 e 235 kV/cm para os filmes finos preparados a 400 e 450 °C, respectivamente. Os filmes finos de NBT foram preparados a temperaturas entre 400 e 650 °C. As propriedades estruturais e ferroelétricas dos filmes foram examinadas. A constante dieléctrica observada e as perdas dieléctricas a 100 kHz são 616 e 0,032, respectivamente, enquanto que a polarização remanescente observada e o campo coercivo são Pr ~ 24 μC/cm2 e EC ~ 215 kV/cm, respectivamente para o filme de NBT recozido a 650 °C. O recozimento térmico, em atmosfera de oxigénio após cada camada de revestimento, é eficaz na promoção da cristalização do filme na fase de perovesquite romboédrica a uma baixa temperatura de 400 °C. No entanto, obteve-se um ciclo P-E quase linear para os filmes NBT cristalizados a 400 °C devido à sua incipiente cristalinidade. Os filmes finos de BFO foram depositados numa gama de elétrodos para determinar o seu papel no controlo da formação de fases e da microestrutura. A cristalização em elétrodos de óxido seguiu a sequência: amorfa → Bi2O2(CO3) → perovesquite, enquanto que nos elétrodos de Pt cristalizaram diretamente a partir da fase amorfa. Os elétrodos de IrO2 promoveram a formação da fase de perovesquite à temperatura mais baixa e o LNO induziu adicionalmente o crescimento epitaxial local. O LNO tem a estrutura de perovesquite com o parâmetro de rede a = 0.384 nm, compatível com o de BFO, a = 0.396 nm, e assim a epitaxia é mais provável. Todas as composições exibiram precipitados inteiramente coerentes ricos em Fe dentro do interior de grão da matriz de perovesquite, enquanto que a incoerente segunda fase de Bi2Fe4O9 foi também observada nos limites de grão de BFO crescido em eléctrodos de Pt. Esta última pode ser observada por difração de raios X, bem como TEM, mas os precipitados coerentes foram observados apenas por TEM, principalmente evidenciados pelo seu contraste Z em imagens de campo escuro anular. Estes dados têm consequências acentuadas permitindo alargar a utilização de filmes de BFO sob campo aplicado, a aplicações como atuadores, sensores e aplicações de memória. Em seguida, os filmes finos de BFO foram depositados em substratos de Si com elétrodos distintos, como Pt, LNO e IrO2, para investigar o efeito do elétrodo-base sobre o crescimento e as propriedades elétricas do BFO. Todas os filmes de BFO são compostos por grãos colunares cujo tamanho é dependente do elétrodo-base. Não se observou textura para filmes de 320 nm de espessura fabricados em Pt orientado (111). Os filmes sobre eléctrodos de óxido, em particular sobre LNO são altamente orientados no plano (012). A grande polarização remanescente em BFO/Pt e BFO/IrO2 é atribuída à alta contribuição de corrente de fuga. Os filmes BFO de 400 nm de espessura em LNO possuem uma baixa densidade de corrente de fuga ~4 × 10-6 A/cm2, uma grande polarização remanescente de 50 μC/cm2 e um pequeno campo coercitivo de 180 kV/cm à temperatura ambiente. Demonstramos que as camadas de LNO aumentam a cristalinidade e a orientação de filmes finos BFO, o que se reflete nas suas propriedades funcionais. Este estudo mostra que, além da simples necessidade de filmes monofásicos, os elétrodos de óxido de metal têm um impacto relevante no desenvolvimento de filmes finos BFO de alta qualidade fabricados por métodos químicos de deposição de solução. Estes resultados têm uma implicação grande para a fabricação de dispositivos BFO baseados em filmes finos. Finalmente, provamos que é possível fabricar diretamente filmes finos de BFO sem chumbo em substratos flexíveis de poliamida com funcionalidades ferroelétricas e magnéticas (multiferroicidade) à temperatura ambiente. O nosso método inovador, baseado em soluções de Precursores Fotossensíveis e nanosementes cristalinas, foi usado com sucesso para diminuir a temperatura de cristalização de filmes finos de BFO até uma temperatura tão baixa quanto 300 °C, a mais baixa temperatura reportada até agora para a preparação de filmes finos multiferróicos de BFO. Apesar deste excepcionalmente baixo nível térmico, obtém-se uma polarização remanescente Pr de 2.8 μC/cm2 para os filmes semeados + UV, com um campo coercitivo EC de 300 kV/cm. A estratégia de síntese baseada na utilização de precursores fotossensíveis sementados pode ser transferida para qualquer outra família de óxidos metálicos funcionais.With the dimensions reduction and data processing speeds increasing of conventional semiconductor based microelectronic devices, innovative approaches involving new materials such as functional oxides are being explored. With the rapid development of the electronics industry there is a need for high performance, high reliability and miniaturized electronic components integrated into various devices. In order to make the devices user friendly and widely accessible, additional requirements should be considered: the desired size and weight, low cost, low power consumption, and portability in addition to high levels of functionality. Low dimensional functional materials hold great promises to fulfil those requirements. In particular, two-dimensional (2D) thin film ferroelectrics have received wide attention because of their growing use as non-volatile memories, pyroelectric detectors, miniaturized piezoelectric transducers and tunable microwave devices. Crystallization temperature is a key parameter in preparation of 2D-ferroelectrics. Many ferroelectric thin films are crystallized at temperatures >600 °C. This is above the temperature that certain elements of the functional device can withstand. Recently it became even more important due to promising applications that can be envisaged if 2D-ferroelectrics will be compatible with low cost, low melting temperature flexible polymeric substrates. The compatibility of ferroic thin films with those last types of substrates can markedly widen the range of applications towards the most recent requirements of flexible electronics and microelectronics, where lightweight and cheap devices are demanded. In this work, a combination of the modification of precursor chemistry and the assistance of UV-light, with simultaneous promotion of crystallization by introducing nanocrystalline seeds in the precursor solution, is implemented to fabricate lead-free ferroic thin films - Seeded Photosensitive Precursor Method. Within this context, the main objective of this work was to fabricate lead-free BiFeO3 (BFO) and Na0.5Bi0.5TiO3 (NBT) thin films with a competitive ferroelectric response at low temperatures. Moreover, investigations of the effect of the bottom electrode on the dielectric and ferroelectric properties of BFO thin films was conducted and the comparison between the behavior of IrO2, LaNiO3 (LNO) and Pt based BFO capacitors established. Additionally, the effects of these various bottom electrodes on the microstructure of BiFeO3 ferroelectric films was studied by high-resolution TEM. Firstly, BFO and NBT perovskite thin films were prepared on Pt-coated silicon substrates by chemical solution deposition. BFO was prepared at temperatures in the range 400-500 °C, and from stoichiometric and Bi excess precursor solutions. Crystalline BFO films were obtained at the lowest temperature limit of 400 °C. The films prepared with Bi excess possess more defined ferroelectric hysteresis loops than those without any excess; for films with thicknesses ~150 nm. As the leakage current densities in the films decrease with decreasing the processing temperature, polarization of BFO films prepared with Bi excess and annealed at 400 and 450 °C can be effectively switched at room temperature. Remanent polarization values of Pr ~ 10 and ~60 μC/cm2 with coercive fields of EC ~ 205 and 235 kV/cm were obtained for the films prepared at 400 and 450 °C, respectively. NBT thin films were prepared at temperatures from 400 to 650 °C. Structural and ferroelectric properties of the films were examined. The observed dielectric constant and dielectric losses at 100 kHz are 616 and 0.032, respectively, while the observed remanent polarization and coercive field are Pr ~ 24 μC/cm2 and EC ~ 215 kV/cm, respectively for the NBT film annealed at 650 °C. Thermal annealing in an oxygen atmosphere after each layer of coating is effective in promoting crystallization of the film into rhombohedral perovskite phase at a low temperature of 400 °C. However, almost linear, P-E loop was obtained for those NBT films crystallized at 400 °C due to incipient crystallinity. BFO thin films were grown on a range of electrodes to determine their role in controlling phase formation and microstructure. The crystallization on oxide electrodes followed the sequence: amorphous → Bi2O2(CO3) → perovskite, while those on Pt crystallized directly from the amorphous phase. IrO2 electrodes promoted perovskite phase formation at the lowest temperature and LaNiO3 additionally induced local epitaxial growth. LNO has the perovskite structure with lattice parameter a = 0.384 nm, compatible with that of BFO, a = 0.396 nm and thus epitaxy is more likely. It was observed for the first time that all compositions exhibited fully coherent Fe-rich precipitates within the grain interior of the perovskite matrix, whereas incoherent Bi2Fe4O9 second phase was also observed at the grain boundaries of BFO grown on Pt electrodes. The latter could be observed by X-ray diffraction as well as transmission electron microscopy (TEM) but coherent precipitates were only observed by TEM, principally evidenced by their Z contrast in annular dark field images. These data have pronounced consequences for the extended use of BFO films under applied field for actuator, sensor and memory applications. Then, BFO thin films were deposited on Si-based substrates with distinct electrodes, such as Pt, LNO, and IrO2, in order to investigate the effect of bottom electrode on the growth and electrical properties of BFO. All BFO films are composed of columnar grains which size is dependent on the bottom electrode. No texture was observed for 320 nm thick films fabricated on (111) oriented Pt. Films on oxide electrodes, in particular on LNO are highly (012) oriented. The large remanent polarization in BFO/Pt and BFO/IrO2 is attributed to the high leakage current contribution. 400 nm thick BFO films on LNO possess a low leakage current density ~4 × 10-6 A/cm2, a large remanent polarization of 50 μC/cm2 and a small coercive field of 180 kV/cm at room temperature. We demonstrate that LNO layers enhance the crystallinity and orientation of BFO thin films, which is reflected in their functional properties. This study shows that besides the simple need of monophasic films metal oxide electrodes have a relevant impact on the development of high quality BFO thin films fabricated by chemical solution deposition methods. These results have a broad implication for the fabrication of BFO thin film based devices. Finally, we prove that it is possible to directly fabricate lead-free BFO thin films on flexible polyamide substrates with ferroelectric and magnetic functionalites (multiferroicity) at room temperature. Our own proprietary novel solution-based Seeded Photosensitive Precursor Method was successfully used to decrease the crystallization temperature of BFO thin films down to a temperature as low as 300 °C, the lowest reported up to now for the preparation of multiferroic BFO thin films. Despite this exceptionally low thermal budget a remanent polarization Pr of 2.8 μC/cm2 is obtained for the seeded + UV films, with a coercive field EC of 300 kV/cm. The synthesis strategy based on the use of seeded photosensitive precursors can be transferred to any family of functional metal oxide

    Architecture design of video processing systems on a chip

    Get PDF

    Tunnel Field Effect Transistors:from Steep-Slope Electronic Switches to Energy Efficient Logic Applications

    Get PDF
    The aim of this work has been the investigation of homo-junction Tunnel Field Effect Transistors starting from a compact modelling perspective to its possible applications. Firstly a TCAD based simulation study is done to explain the main device characteristics. The main differences of a Tunnel FET with respect to a conventional MOSFET is pointed out and the differences have been explained. A compact DC/AC model has been developed which is capable of describing the I-V characteristics in all regimes of operation. The model takes in to account ambi-polarity, drain side breakdown and all tunneling related physics. A temperature dependence is also added to the model to study the temperature independent behavior of tunneling. The model was further implemented in a Verilog-A based circuit simulator. Following calibration to experimental results of Silicon and strained-Silicon TFETs, the model has been also used to benchmark against a standard CMOS node for digital and analog applications. The circuits built with Tunnel FETs showed interesting temperature behavior which was superior to the compared CMOS node. In the same work, we also explore and propose solutions for using TFETs for low power memory applications. Both volatile and non-volatile memory concepts are investigated and explored. The application of a Tunnel FET as a capacitor-less memory has been experimentally demonstrated for the first time. New device concepts have been proposed and process flows for the same are developed to realize them in the clean room in EPFL
    corecore