

Architecture design of video processing systems on a chip

Citation for published version (APA):
Jaspers, E. (2003). Architecture design of video processing systems on a chip. [Phd Thesis 2 (Research NOT
TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR565191

DOI:
10.6100/IR565191

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR565191
https://doi.org/10.6100/IR565191
https://research.tue.nl/en/publications/ecfde734-0e40-476c-9acd-e820620d2e3a

Architecture Design of
Video Processing Systems

on a Chip

E.G.T. Jaspers

The work described in this thesis has been carried out at the Philips Re-
search Laboratories Eindhoven, the Netherlands, as part of the Philips
Research Programme.

Printed by: Eindhoven University Press
Cover design: Henny Herps (Philips Research AV-service) and Egbert Jaspers
The chip on the cover is a video processing system, called the CPA that is
described extensively in Chapter 4.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Jaspers, E.G.T.
Architecture Design of Video Processing Systems on a Chip
Proefschrift Eindhoven Universiteit of Technology –
Met literatuur opgave – Met samenvatting in het Nederlands
ISBN 90-74445-57-8
Trefw.: video processing, flexibility, heterogeneity, memory, programming,
hierarchical communication, algorithm-architecture codesign

c© Copyright 2003 Egbert G.T. Jaspers
All rights are reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior writ-
ten permission from the copyright owner.

Architecture Design of
Video Processing Systems

on a Chip

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Eindhoven Universiteit of Technology, op gezag van de
Rector Magnificus, prof.dr. R.A. van Santen, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
donderdag 24 april 2003, te 16.00 uur.

door

Egbert Gerarda Theodorus Jaspers

geboren te Nijmegen

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. P.H.N. de With
en
prof.dr.ir. J.L. van Meerbergen.

Copromotor:
dr.ir. J.T.J. van Eijndhoven

ISBN 90-74445-57-8

Simplex sigillum veri –
Eenvoud is de zegel van het ware

(Boerhaave, 1668-1738)

Voorwoord

HET is zover: ik mag een voorwoord schrijven. Ondanks de uitzichtloze
momenten, de zware tijd en de enorme inspanning die het me gekost

heeft om dit proefschrift te schrijven, voel ik me nu alleen maar trots. Na
een langdurige opleiding van MAVO, MTS, HTS en TU heb ik met dit
promotieonderzoek wéér een grens verlegd.

Veel dank ben ik verschuldigd aan prof.dr.ir. P.H.N. de With ofwel Peter,
die als begeleider, collega en promotor altijd in me heeft geloofd. Hij heeft
mij al sinds 1991 in vele stadia van mijn prille carrière bijgestaan. Tijdens
mijn afstuderen voor de HTS was hij, als afstudeerbegeleider bij Philips
Research, een van degenen die mij gestimuleerd hebben om mijn studie
te vervolgen aan de Technische Universiteit. Nadat ik daar was afgestu-
deerd, heeft hij me bij Philips Research binnengeloodst, als jonge onder-
zoeker in de groep Televisiesystemen. Als één van de vaders van het TVP-
systeem (hoofdstuk 4) heeft hij me bekendgemaakt met veel facetten van
een systeemontwerp en heeft hij mijn interesse gewekt voor de architectuur-
aspecten van videobewerkingsalgoritmen. Ook tijdens mijn promotieonder-
zoek heeft hij me steeds ondersteund met wijze raad, oppeppers, adviezen
en velen uren samenwerken achter het toetsenbord. Bekende uitspraken
van Peter als “hier belanden we in de mud”, “tante Betje stijl”en “het
dooft uit als een nachtkaars”hebben uiteindelijk geleid tot een proefschrift
waar ik met recht trots op ben. Ik heb nog nooit iemand ontmoet die
zoveel vertrouwen heeft in de mensen om hem heen, zoveel trots uitstraalt
voor het vele werk dat we in al die jaren hebben verzet, en zo toegewijd is
aan zijn vak. Peter, jouw vertrouwen, trots en toewijding zijn een enorme
kracht geweest in het vormen van wat ik nu ben.

Het onderzoek dat de basis van dit proefschrift vormt en is uitgevoerd
bij Philips Research Eindhoven, zou nooit mogelijk zijn geweest zonder de
inspanningen van velen. In het TVP-project heb ik in een team gewerkt
aan het ontwikkelen van videobewerkingsalgoritmen, en heb ik collega’s

vii

terzijde mogen staan bij het implementeren in VHDL en zelfs bij het testen
en demonstreren van een werkend systeem. In het Eclipse-project (hoofd-
stuk 7) ben ik betrokken geweest bij de architectuurdefinitie in een team
van ervaren architecten. De ervaringen met alle mensen in deze projecten
zijn onderdeel van mijn vorming en hebben in grote mate bijgedragen aan
de resultaten, zoals die in een 25-tal publicaties zijn beschreven.

Ik wil prof.dr.ir. E.F.A. Deprettere van de Technische Universiteit Delft
en prof.dr.ir. J.W.M. Bergmans van de Technische Universiteit Eindhoven
bedanken voor hun deelname aan de kerncommissie en waardevolle sug-
gesties ter verbetering van het proefschrift. Mijn speciale dank gaat uit
naar prof.dr.ir. J.L. van Meerbergen van de Technische Universiteit Eind-
hoven en dr.ir. J.T.J. van Eijndhoven, die naast hun bijdrage als tweede
promotor en copromoter ook als specialisten en collega’s een bron van in-
spiratie waren. Waardering gaat ook uit naar prof.dr.ir. R.H.J.M. Otten
van de Technische Universiteit Eindhoven, prof.dr.ir. T. Krol van de Tech-
nische Universiteit Twente, prof.dr. L.O. Herzberger van de Amsterdamse
Universiteit en prof.dr. R. Männer van de Universität Mannheim in Duits-
land voor hun rol als leden van de promotiecommissie.

Uiteraard ben ik ook dank verschuldigd aan het management van Philips
Research Eindhoven, dat me de mogelijkheid heeft geboden voor dit pro-
motieonderzoek. Ook wil ik niet voorbijgaan aan mijn naaste collega’s
van nu en in het verleden, die naast een beroepsmatige relatie ook hebben
gezorgd voor een plezierige werksfeer.

Daarnaast wil ik mijn ouders en schoonouders een warm hart toedragen
voor hun onmisbare steun en interesse. Ten slotte wil ik mijn gevoel uiten
voor hen die het middelpunt zijn in mijn leven en van wie ik voor de reali-
satie van dit proefschrift een grote opoffering heb gevraagd. Het laatste half
jaar bestond voor mij hoofdzakelijk uit werken, slapen, en mijn proefschrift
afmaken. Hierdoor kwamen alle werkzaamheden en verantwoordelijkheden
thuis neer op mijn vrouw Janine, die naast haar baan ook de handen vol
had aan onze lieve kinderen Milan en Marin. Nee, het moeilijkste van de
vele avonduren achter mijn laptop was niet de enorme inspanning, maar
de tijd die ik niet kon delen met mijn familie. Janine, lieve schat, bedankt
voor alle opofferingen. Zonder jou was het niet gelukt.

Contents

List of Tables xv

List of Figures xvii

1 Introduction and motivation 1
1.1 Problem statement . 1
1.2 Trends and developments of TV systems 4
1.3 Functional requirements . 9
1.4 Computational effort . 11
1.5 Architectural requirements 12
1.6 Outline of the thesis . 15
1.7 Background and motivation of the chapters 18
1.8 The main contributions of the author 21

2 Developments in video computing architectures 23
2.1 Introduction . 23
2.2 Exploiting parallelism in computing systems 24
2.3 Aspects of application-specific parallelism 28
2.4 Parallelism and control . 31
2.5 Examples of media processor architectures 33

2.5.1 Introduction to media processors 33
2.5.2 The Video Signal Processor 37
2.5.3 The Multimedia Video Processor (MVP) 40
2.5.4 The TriMedia processor 44
2.5.5 The Emotion Engine 51

2.6 Concluding remarks . 57

ix

x Contents

3 Examples of video functions and their expenses 61
3.1 Tradeoffs in system design 61
3.2 Sharpness enhancement . 63

3.2.1 Introduction to sharpness enhancement 63
3.2.2 Local intensity level and related noise visibility . . . 65
3.2.3 Local sharpness of the input signal 67
3.2.4 Noise contained by the signal (adaptive coring) . . . 67
3.2.5 Prevention of aliasing from non-linear processing . . 70
3.2.6 The system including all controls 73
3.2.7 Results and conclusions 74

3.3 Advanced sampling-rate conversion 76
3.3.1 Introduction to video scaling 76
3.3.2 Basic theory of sampling-rate conversion 77
3.3.3 Considerations for SRC implementation 79
3.3.4 Transposition of a sampling-rate converter 81
3.3.5 Requirements for transposed filters 83
3.3.6 Experiments and results for polyphase filters 84
3.3.7 Conclusions on video scaling 86

3.4 Computational costs of video functions 86
3.4.1 Estimation model for complexity 86
3.4.2 Sharpness Enhancement complexity estimation . . . 88
3.4.3 Sampling-rate conversion complexity estimation . . . 92
3.4.4 Temporal noise reduction 93
3.4.5 Motion-Compensated frame-rate conversion 95

3.5 Conclusion . 97

4 Flexible television processor system 101
4.1 Preliminary statements and requirements 101
4.2 Consequences from the requirements 103

4.2.1 Computational aspects 103
4.2.2 Off-chip memory considerations 104

4.3 Analysis of TV applications 106
4.4 Architecture design . 110

4.4.1 Top-level architecture 111
4.5 Signal-processing subsystem 113

4.5.1 Tasks and task graphs 113
4.5.2 Processor model . 116
4.5.3 Communication network 118
4.5.4 Interaction between controller and processor 121

4.6 Memory . 122
4.6.1 Partitioning of internal versus external memory . . . 122
4.6.2 Communication between subsystems 124

Contents xi

4.6.3 Memory resources versus quality 125
4.6.4 Interfacing with the real-time world 127

4.7 Implementation example of the architecture 133
4.7.1 Introductory system presentation 133
4.7.2 Overview of hardware functions 136
4.7.3 Video applications 137

4.8 Conclusions . 151
4.8.1 Concluding remarks about the proposal 151
4.8.2 Modifications for future systems 154

5 Off-chip memory communication 159
5.1 Problem statement for off-chip memories 159
5.2 Memory technology . 162

5.2.1 Prospects of emerging RAMs 163
5.2.2 Functioning of SDRAM-based memories 164

5.3 Video-data storage in SDRAM memory 166
5.3.1 The concept of data units 167
5.3.2 The mapping of pixels into the memory 170
5.3.3 Architecture model for simulation 173
5.3.4 MPEG decoding as application example 176
5.3.5 Model simulation results 181

5.4 Concluding remarks . 184

6 Communication bandwidth improvement 187
6.1 Embedded compression . 187

6.1.1 Related work in compression 188
6.1.2 Feasibility of bandwidth reduction 189
6.1.3 Bandwidth Calculations 192
6.1.4 Extraction of feasible solutions 195
6.1.5 Picture quality assessment 198
6.1.6 Conclusions . 201

6.2 Caching . 202
6.2.1 Experimental results for MPEG decoding 203
6.2.2 Conclusions . 211

6.3 Combined techniques . 213

7 System study on MPEG-4 decoding 219
7.1 Introduction into hybrid systems 219
7.2 Analysis of various MPEG-4 architectures 221

7.2.1 Grain size of parallelism and the amount hierarchy . 225
7.2.2 Memory in hierarchy communication 226

7.3 Processor system overview 227

xii Contents

7.3.1 Grain size of computation and communication . . . 229
7.3.2 Synchronization . 231
7.3.3 Multitasking . 232
7.3.4 Programmable processors 233
7.3.5 Programming of the configuration 235
7.3.6 Processor system wrap-up 235

7.4 Decoder functionality . 237
7.4.1 TransMux, Delivery, and Synchronization Layers . . 238
7.4.2 Object decoding . 239
7.4.3 Rendering & composition and presentation 239
7.4.4 Scene-graph and resource management 240
7.4.5 Application domain for the target architecture . . . 241
7.4.6 Desired selection of Profiles and Levels 242

7.5 Analysis of the functions . 243
7.5.1 Decoder framework 243
7.5.2 MPEG-4 processing task properties 244
7.5.3 Hardware/software partitioning 246

7.6 Mapping proposal . 248
7.7 Conclusions . 252

8 Conclusions 255
8.1 Recapitalization of the individual chapters 255
8.2 State-of-the-art system design 257
8.3 Future system design . 260
8.4 Concluding statement . 267

A Operation of SDRAM-based memories 269
A.1 Memory commands . 270
A.2 Timing constraints . 273

B MPEG decoding with reduced memory access 277

C Refinement of the access alignment grid 283
C.1 Single addressable memory 283
C.2 Separately addressable memory 285

D Video-specific caching 289
D.1 Basics of caching . 289
D.2 Caching of 2-D video data 292

D.2.1 Associating cache lines within the set of a cache . . 294
D.2.2 Two-dimensional set-associative caching 296
D.2.3 MPEG-specific caching 297

Contents xiii

D.3 Replacement strategy . 299

References 303

Summary 315

Samenvatting 319

Biography 323

Index 325

xiv Contents

List of Tables

1.1 Expenses of various TV functions. 12

2.1 Characteristics of experimentally developed VSPs. 37
2.2 Selection of custom operations of the TM1000. Regular adds

and multiplies at full resolution have been omitted. 48
2.3 Characteristics of Emotion Engine. 54
2.4 Performance and chip parameters of Emotion Engine. . . . 55
2.5 Overview of merits and shortcomings of the presented systems. 58

3.1 Operations per sample for sharpness enhancement. 90
3.2 Operations per sample for advanced sampling-rate conversion. 92
3.3 Operations per sample for temporal noise reduction. 95

4.1 Computational costs and memory of various TV functions. 104
4.2 Hardware functions in the micro-controller chip. 136
4.3 Hardware functions in the coprocessor-array chip. 138
4.4 Task resources of the coprocessors. 141
4.5 Background memory requirements for the multi-window ap-

plication. 144
4.6 Chip-set characteristics of the TVP system. 155

5.1 Comparison between standard DRAM, SRAM, and embed-
ded DRAM using similar process technology. 164

5.2 Example probability of occurrence, P (Bx × By), of a set of
data-block requests for motion-compensated prediction. . . 178

5.3 Example probability of occurrence, P (Bx × By), of a set of
data-block requests for the complete MPEG decoding. . . . 181

5.4 Bandwidth results for 32-Byte data units and line-based re-
quests for output. 182

5.5 Bandwidth results for 32-Byte data units and (M×N)-based
requests for output. 183

xv

xvi List of Tables

5.6 Bandwidth results for 64-Byte data units and line-based re-
quests for output. 183

5.7 Bandwidth results for 64-Byte data units and (M×N)-based
requests for output. 183

6.1 RTB requirement for data units with increasing sizes and the
optimal dimensions. 190

6.2 Transfer bandwidth for MPEG decoding. 215
6.3 Options with different combinations of bandwidth reduction

techniques (compression factor = 2, cache size = 4 kByte). 217

7.1 Novelties of the various systems. 224
7.2 Properties of the adopted architecture template. 236
7.3 Characteristics of some MPEG-4 Visual Profiles @ Levels. . 242
7.4 Properties of the MPEG-4 decoding tasks that determine

the mapping onto HW or SW. 245

8.1 The main differences between the characteristics of future
and traditional applications. 261

8.2 Overview of the main video functionality of a future TV. . 264

A.1 Memory command for SDRAM memories 272
A.2 Legend of timing parameters (minimal latency). 274
A.3 Worst-case timing parameter values in cycles for maximum

throughput. 276

B.1 Transfer bandwidth for MPEG decoding for various data-
unit dimensions. 279

B.2 Transfer bandwidth for MPEG decoding with double writing. 280

List of Figures

1.1 The process of system design. 2
1.2 Hierarchy in the design process of systems. 3
1.3 The HW architecture of a conventional high-end TV set. . . 6

2.1 Basic general-purpose computing architecture. 24
2.2 Examples of increasing parallelism in computing from single-

input to multiple output: (a) SISD, (b) SIMD, (c) MIMD.
. 26

2.3 Harvard architecture with separated data and instruction
memory. 27

2.4 Generalized template for architectures featuring instruction-
level parallelism. 28

2.5 An example graph of Amdahl’s law. 29
2.6 Hierarchy of functional granularity: function level of a TV

application (a); task level of an MPEG decoder function (b);
fine-grain operation level of a filter task (c). 30

2.7 Control hierarchy in a TV system. 31
2.8 System properties versus instruction grain size. 32
2.9 Computational efficiency of dedicated versus general-purpose

hardware. 36
2.10 Architecture of the Video Signal Processor. 38
2.11 Architecture of ALE and ME subsystems in the VSP. . . . 39
2.12 Architecture of Multimedia Video Processor. 41
2.13 Architecture of the ADSP (a) and MP (b) modules in the

MVP. 42
2.14 Architecture of TriMedia processor chip. 45
2.15 Concept of TriMedia’s VLIW instruction handling. 46
2.16 TriMedia’s different types of instructions. 47
2.17 Sample C code for MPEG frame reconstruction. 49
2.18 Loop-unrolled code for MPEG frame reconstruction. 50
2.19 TM code based on two custom operations. 51
2.20 Emotion engine processor architecture, based on a CPU core

and two vector processors (VP). 52
2.21 Emotion engine vector processor architecture. 55

xvii

xviii List of Figures

3.1 Concept of the modular sharpness-enhancement architecture. 65
3.2 Simultaneously perceived brightness as a function of the in-

tensity. 66
3.3 k2(j, k) as function of the dynamic range. 68
3.4 k3(j, k) as function of the peaking filter output. 69
3.5 Division of the image in a raster of blocks. 71
3.6 Bilinear interpolation of K4(j, k) values. 72
3.7 Temporal filtering of the gain factor to suppress temporal

aliasing. 73
3.8 Block diagram of the generic 2-D peaking. 74
3.9 The original ’Baltimore’ image (upper picture) and the sharp-

ness enhanced version of this image (lower picture). 75
3.10 Sampling-rate conversion by means of digital filtering. . . . 80
3.11 Sampling-rate converter after transposition. 82
3.12 Filter operation in transposed mode for fixed down-sampling

and a variable up-sampling factor. 82
3.13 Transposition of an N-taps polyphase filter. 84
3.14 Results of transposition of an N-taps polyphase filter. . . . 85
3.15 Iterative design process. 87
3.16 Block diagram of an alternative sharpness enhancement al-

gorithm. 91
3.17 De-interlacing by means of median filtering. 93
3.18 Block diagram of a temporal noise reduction function. . . . 94
3.19 Block diagram of the motion compensated frame-rate con-

version function. 96

4.1 An example of a task graph. 107
4.2 Example subgraphs, corresponding to Figure 4.1. 110
4.3 The top-level architecture with separated subsystems. . . . 111
4.4 More detailed view of architecture proposal. 112
4.5 Architecture of the signal-processing subsystem. 114
4.6 The model of a signal processor. 117
4.7 Mapping of three tasks onto two coprocessors, causing a

deadlock situation. 118
4.8 A space switch (left) and a time switch (right). 119
4.9 A Time-Space-Time (TST) network, ensuring a guaranteed

bandwidth for hard real-time tasks. 120
4.10 Communication protocol for interactive processing. 122
4.11 Stand-alone and a combined system with unified memory. . 124
4.12 The blanking and the active part of a video signal for pro-

gressive (a) and interlaced (b) video. 128
4.13 A video signal with H- and V-pulses indicating the active part.129

List of Figures xix

4.14 Block diagram of a processing component. 130
4.15 Relation between the processing latency and the V-pulse delay.133
4.16 The experimental two-chip digital video platform. 134
4.17 Block diagram of the coprocessor array. 137
4.18 The task graph of a PiP application. 142
4.19 A multi-window application with video and Internet. 143
4.20 Task graph of the multi-window application with Internet. . 144
4.21 An example application with 100-Hz conversion. 147
4.22 Overview of system features. 148
4.23 Example of a multi-window application. 153
4.24 Layout of the CPA (left) and the TCP (right) chips. 155

5.1 The performance increase of external memory compared to
the performance increase of CPUs. 161

5.2 Memory cell of a DRAM and an SRAM. 162
5.3 Block diagram of a DDR SDRAM. 164
5.4 Consumer system architecture. 166
5.5 Video pixels mapped onto data units, each located in a par-

ticular memory bank. 168
5.6 Memory access of a macroblock including the transfer over-

head. 168
5.7 Mapping of 64× 1 adjacent pixels onto data units. 170
5.8 Mapping of 16× 4 adjacent pixels onto data units. 171
5.9 Mapping of interlaced video onto memory data units. 171
5.10 Decomposition into mappings for separate video fields. . . . 172
5.11 Definition of the size parameters. 172
5.12 Multimedia architecture model including an MPEG decoder

for simulation. 174
5.13 Example of probability function for luminance of P17×17(n, m)

from set Vp with (M, N) = (8, 8). 177
5.14 Example of probability function for chrominance of P18×4(m, n)

from set Vi with (M, N) = (16, 4). 177
5.15 Obtained bandwidth gain of the proposed mapping strategy. 184

6.1 A video system with embedded compression. 189
6.2 Memory access of a macroblock including the transfer over-

head. 190
6.3 32× 2 (a) and 12× 5 data units (b) overlaid on a MB grid. 194
6.4 Minimal RTB for B = 64 as function of the data-unit size S. 196
6.5 Feasible data-unit configurations for compression into 64-Byte

data bursts. 197

xx List of Figures

6.6 Feasible data-unit configurations for compression into 32-Byte
data bursts. 197

6.7 Feasible data-unit configurations for compression into 16-Byte
data bursts. 198

6.8 PSNR : 9-Mbps bitrate and worst-case GOP structure. . . . 199
6.9 PSNR : 4-Mbps bitrate and typical GOP structure. 199
6.10 Quality degradation from embedded compression due to MPEG

quantization noise. 200
6.11 The results of four different simulations, indicating the per-

formance difference between a direct-mapped cache and a
cache with more set-associative cache lines. 206

6.12 Data bandwidth reduction as function of the data-unit di-
mensions. 207

6.13 Cache performance as function of the data-unit dimensions. 208
6.14 Cache performance as function of the cache size for standard-

definition video. 209
6.15 Cache performance as function of the cache size for high-

definition video. 209
6.16 Relative data bandwidth of a 4-kByte full-associative and

four-way set-associative cache as function of spatial arrange-
ment of the cache lines. 210

6.17 Reference MPEG-2 decoder system. 214
6.18 Histogram of the data traffic for decoding of an high-definition

MPEG-2 slice. 216

7.1 Block diagram of the Imagine media processing system with
its hierarchical communication infrastructure. 223

7.2 Conceptual block diagram of the two-level system architecture.228
7.3 Signal flow through MPEG-2 decoder processing units, in-

cluding data transport bandwidths (MByte/s) for HDTV
signals. 230

7.4 Data communication via a cyclic FIFO buffer. 232
7.5 Block diagram of a system containing a general-purpose pro-

cessor with a connection to both levels of the hierarchical
communication network. 234

7.6 Simplified view of the MPEG-4 decoding system layered model.238
7.7 Task graph of the MPEG-4 decoder functionality. 243
7.8 Block diagram of Video Object Plane decoder, including

data transport bandwidths (MByte/s). 247
7.9 The MPEG-4 rendering process, controlled by the scene-

graph manager. 249

List of Figures xxi

7.10 Architecture implementation of the MPEG-4 decoding sys-
tem, including data transport bandwidths (MByte/s). . . . 250

8.1 Merging of set-top box and TV systems. 258
8.2 Block diagram of the Viper system. 259
8.3 A Future multimedia system, featuring hierarchical commu-

nication and a heterogeneous mixture of processing units. . 262
8.4 Partitioning of a TV application for mapping onto a hierar-

chical system-architecture template. 263
8.5 The future TV system with a network on chip for hierarchical

communication. 266

A.1 Block diagram of a DDR SDRAM. 270
A.2 Timing diagram of a typical DDR SDRAM device. 275

B.1 Block diagram of an MPEG decoder with indicated memory
access. 278

B.2 Schedule for accesses in the frame memories for a conven-
tional MPEG decoding system. 281

B.3 Schedule for accesses in the frame memories for the new pro-
posed system. 282

C.1 Traditional SoC with a memory configuration comprising
four parallel SDRAM devices. 284

C.2 The memory map of a 64-bit wide memory configuration. . 284
C.3 Transfer overhead for a requested data block from a tradi-

tional memory configuration. 285
C.4 SoC with a memory configuration comprising four parallel

SDRAM devices, each having shared and dedicated address
lines. 286

C.5 Transfer overhead for a requested data block from the sepa-
rately addressable memory configuration. 287

D.1 A basic cache implementation using a tag field for comparison.291
D.2 Association of memory addresses with cache-line coordinates. 294
D.3 Addressing of a two-dimensional cache set. 295
D.4 Equal set coverage for different cache line dimensions in a

two-way set-associative cache. 296
D.5 Equally-sized set-associative caches with different amount of

cache lines per set in horizontal and vertical direction. . . . 297
D.6 Implementation of a four-way set-associative cache. 298
D.7 An example direct-mapped cache for multiple video streams. 298

xxii List of Figures

Chapter1
Introduction and motivation

THIS thesis discusses the analysis of video processing algorithms and
architectures for Systems-on-Chip (SoC). The design of a system com-

prises an interdependent design process of both the architecture and the as-
sociated functional algorithms. The functional algorithms are constrained
by the architecture, whereas the architecture design is derived from the func-
tional requirements. This mutual balancing can be described as a multidi-
mensional design space that can be explored by constraining the design pa-
rameters and making the proper tradeoffs. This chapter has two purposes.
First, it discusses some trends and the necessity for more flexibility as a
general introduction to the television application domain, from which ar-
chitectural requirements are derived. Second, it summarizes the individual
chapters, it motivates the thesis background, and it presents the publication
history.

De nihilo nihil (Lucretius, c.99 BC – c.55 BC)
Nothing comes from nothing

1.1 Problem statement

The principal theme of this thesis is the analysis of video processing algo-
rithms and architectures for SoC. The definition of architecting according
to Maier and Rechtin [1] is: the art and science of designing and build-
ing systems. Basically, a set of requirements describing what the customer
wants, needs to be translated into a description of how these requirements
are satisfied. Figure 1.1 show how in addition to the requirements, also a
set of constraints and cost functions are input parameters for this system
design process. This process is particularly complex due to the dependen-

1

2 Chapter 1 – Introduction and motivation

what

how

constraints
cost functions

Figure 1.1: The process of system design.

cies of the design parameters, which are generally conflicting and require
a proper balancing. For example, at first sight it seems straightforward to
implement a system with sufficient flexibility. In addition, a huge amount
of computation performance can be achieved by providing enough system
resources. However, it becomes more difficult when implementing this at
low costs. These constraints together with many more, are not orthogonal
and make the design of a System-on-Chip (SoC) rather complex. This com-
plexity becomes even more apparent due to the ever-increasing demand for
more media processing and the continuously advancing VLSI technology.

The design of a System-on-Chip (SoC) involves a large design space and
depends on a large set of design parameters such as, power dissipation, chip
package, clock rate, memory requirements, timing constraints, communica-
tion bandwidth, network topology, silicon area, HW/SW partitioning, pro-
duction volume, product differentiation, etc. Although a large part of the
physics behind video processing techniques and the implementation is an
exact science, the design of a system also depends on non-technical aspects
such as time-to-market, business model, company capabilities, competitors,
and even art1.

The extremely large design space makes it impossible to present ’the’ archi-
tecture for a given application. A recently asked question about whether
this thesis shows how a consumer-electronics company should derive solu-
tions for TV processing is therefore poorly conditioned. To answer this

1The design of a system, satisfying a large set of requirements, shows many analogies
with practicing art and is partially based on non-technical reasoning such as heuristic
rules, intuition, company culture, business model, etc. This observation was already
recognized in the early nineties by Rechtin [2] and was later even formulated explicitly
by Maier and Rechtin [1] in the following quote: “In contrast with science-based
methodologies, the art or practice of architecting – like the practice of medicine, law, and
business – is nonanalytic, inductive, difficult to certify, less understood, and, at least
until recently, is seldom taught formally in either academia or industry. It is a process
of insights, vision, intuitions, judgement calls, and even taste.”....

1.1 Problem statement 3

question, the full context should be known, i.e. for what time frame, for
what performance, what functions, technology process, compatibility is-
sues, or even the capabilities of the designers. Hence, there does not exist
a cookbook for constructing optimal architectures and the corresponding
“baking of the chips”. Nevertheless, the content of this thesis gives suffi-
cient basics for understanding the problem area and ways to approach the
realization of a design.

This thesis mainly discusses the aspects of a design process for a high-
level video-oriented system, starting from analyzing the required video al-
gorithms while considering all additional constraints. Notice that this only
comprises a part of the total system design. Figure 1.2 schematically shows
various steps of the total design process of the system. First, functional

application/functions

algorithms

high-level architecture

RT-level architecture

boolean-level architecture

transistor-level architecture

design

design

design

design

Focus of this thesis

design

system-level architecture

design

Figure 1.2: Hierarchy in the design process of systems.

requirements are translated into video processing algorithms. At the same
time or at least highly iteratively, the system-level architecture is defined,
describing the structure of the system in terms of building blocks such as
processors. This codesign process is the main focus of this thesis. The next
iterative design process determines the high-level architecture, which also
describes the internals of the system-level building blocks. Subsequently, a
design process determines the architecture at Register Transfer (RT) level.
At this level, the architecture consists of clocked elements, registers, with

4 Chapter 1 – Introduction and motivation

operations in between. As for the concept of time, we introduced a clock
that is used to drive all registers. The design of the boolean- and transistor-
level architecture add even more details to the system architecture.

In particular, this thesis discusses the impact of advanced video-processing
applications on the architectures for high-end television, featuring various
forms of flexibility or programmability. We have adopted high-end tele-
vision processing as the key application field for our architectural studies.
The resolution and quality of the pictures lead to significant demands on
computing power and memory usage and bandwidth. Sampling rates range
from 13.5 to 64 MHz, and individual pictures require memory space in the
order of MBytes. As we will show later, computational requirements for
such video signals go far beyond the power of single-processor system ar-
chitectures as currently available in the PC domain.

The first part of this thesis focusses on TV processing for advanced features,
with the aim to come to flexible and programmable system designs. There-
fore, in this chapter we commence with determining the high-level func-
tional requirements for such a system, followed by important architectural
aspects. First, Section 1.2 presents the trends and developments of mod-
ern TV systems. Subsequently, Section 1.3 and 1.4 derive the functional
requirements and the associated compute requirements. Finally, these func-
tional requirements are used to determine the architectural requirements
(Section 1.5), thereby also addressing non-functional issues such as ease of
programming. The second part of this chapter motivates and outlines the
remainder of this thesis and describes the background of the contents of
the individual chapters and their publication history.

1.2 Trends and developments of TV systems

Let us now briefly discuss the architecture of traditional television systems
and present some trends that require a new approach for system design. Up
till now, architectures and the resulting chip sets for TV systems have been
developed mostly as dedicated embodiments, having as much as possible
the required memory for the functionality integrated or tightly coupled to
it. The TV sets based on such a concepts have been introduced more than
half a century ago [3]. The basic architecture of TV sets in those times
already showed the traditional standard video path consisting of a demod-
ulator, color decoder and the picture control block with a separate audio
path. Since that time, the functionality that was offered to the customer
has been increased significantly, without reconsidering the architecture of

1.2 Trends and developments of TV systems 5

the system. Feature extension boxes have been added to upgrade the tra-
ditional system to high-end TV sets currently available in the consumer
market. Figure 1.3 shows an example of such a high-end TV architecture.
In addition to the conventional TV it shows functionality for Teletext, 50-
to-100 Hz conversion, PALplus decoding, an additional Picture-in-Picture
(PiP), dual-screen, new sound standards and more recently, digital trans-
mission standards based on MPEG. All these new features are an extension
of the basic TV architecture half a century ago, resulting in a suboptimal
structure. Because each function uses its own memory device with a ded-
icated communication path, the architecture becomes very rigid and the
memory organization becomes cost inefficient.

Obviously, the realization of dedicated solutions is motivated by the con-
tinuous pressure on cost reduction, so that only the strictly required func-
tionality is implemented without extensions or flexibility. This approach
can be very beneficial when development costs are negligible and flexibility
is required only within the product. Obviously, low costs are important,
but also flexibility is and will become even more important.

Chapter 2 shows some architecture examples that feature the tradeoff be-
tween flexibility, cost, and performance for a certain application domain.
Although it seems straightforward that the required applications could be
implemented on a fully programmable multimedia processor, thereby en-
abling sufficient flexibility, the cost constraint is still not met. In Chapter 3
it becomes clear that a fully-programmable general-purpose processor(s) is
not feasible for a cost-efficient solution. To determine the requirements for
a TV system architecture, developments in this domain are briefly outlined.

• Programmability – The introduction of Internet and PC-like applica-
tions, such as information search and retrieval, multimedia playing,
and games will have a clear impact on the diversity within a new TV
architecture and points directly to much more programmability than
was usual in the past. Another convincing motivation is that the cod-
ing standards become increasingly suitable for fully-programmable
architectures, i.e. based on software implementations. Let us illus-
trate this with an example. The successor of the well-known MPEG-2
standard is likely to be the MPEG-4 standard. In this standard, im-
ages are not treated as rectangular frames or arrays of pixels, but an
image is seen as an ensemble of objects. Every object is then coded
and processed independently. This allows individual processing of the
objects which are naturally of variable size and quality. A process-
ing architecture for such a standard is not easily designed, but it is

6 Chapter 1 – Introduction and motivation

HF
electr.

std.
decode

picture
enhancement

picture
control

PALplusIC
16:9 helper

MEM MEM

MEM

100Hz
conv.

IC

MEM

MEM

TXT CPU
acq control

prog
ROM

RAM

audio
demod.

NICAM
decod.

Audio
proces.

MPEG
audio

MPEG
video

MEM

demod

chan.
decod.

transp.
demux

PAL/NTSC

YUV

1fh
YUV

2fh
RGB
2fh

display
std.

decoder

PiP
+

Mem
RGB
2fh

CVBS

speaker

cable
antenna

channel
bits

Figure 1.3: The HW architecture of a conventional high-end TV set.

plausible that at the top layer of the encoder and decoder, a highly
programmable control system will be needed to dynamically manage
the resources of the memory and functional units, to control the sig-
nal flow through the system and to compose an image at the receiver
side from individually transmitted and coded objects. Furthermore,
since the standard only specifies the syntax and semantics of a coded
bitstream, the encoder is free to encode content in many different
ways. For example, for the same video content, it can use segmen-
tation into objects in combination with sprite coding, or it can code
all objects in different Video Object Planes (VOPs), or it can render

1.2 Trends and developments of TV systems 7

the object texture onto an 2-D or 3-D mesh and animate the vertices
of the mesh to portray the motion of the object. Since the method
of encoding is done by the producer or broadcaster and is not known
in advance, the decoding and composition process in the TV receiver
asks for a flexible architecture, capable of decoding any format.

• Flexibility – The use of the above-mentioned Internet and PC-like
applications implies that several video windows should be displayed
simultaneously, rather than a single broadcast stream. For example,
the background or a separate window could be used for TV signal
watching, where in the second window, Internet (TV) could be dis-
played for additional information. It goes without saying that this
has clear implications for a new architecture and require sufficient
flexibility. Another reason for more flexibility is the increasing num-
ber of standards from international bodies. A DVD player is capable
of decoding different audio standards such as AAC, AC3, DTS, Dolby
Prologic, SACD, MP3, etc., but handles only one at the same time.
Programmable or reconfigurable architectures provide satisfactory so-
lutions to cost-effectively deal with this large amount of functionality.
Moreover, often such standards comprise an extensible and scalable
system. Parts of the functional behavior are strict and do not allow
any deviation, whereas in other parts the user is allowed to configure
the system accordingly to personal interest. For example, an MPEG
bitstream allows the insertion of any user data and can be used for
proprietary coding improvements, various forms of scalability, error
resilience, or any other purpose. A flexible architecture framework is
then the only way to cope with the as yet unknown additions.

• Reuse – Clearly, Systems-on-Chip become increasingly diverse and
complex. This trend is simply due to the continuous improvement
of transistor density in CMOS technology. Currently, chips for con-
sumer electronics are designed containing up to 10M gates, having a
computing power of 10 GOPS (Giga Operations Per Second) [4]. For
such complex systems, it is not possible to start from scratch while
having a short time-to-market. This requires a modular approach.
Similarly, reuse of the architecture is also attractive to increase the
range of potential products. For example, a related application area
for a flexible TV system is the set-top box for digital TV reception.
In this area, digital video-broadcast decoding is required with vari-
ous forms of video pre- and postprocessing. Some modules, such as
signal enhancement (noise, sharpness) may be applicable to both ap-
plication areas, whereas others, such as MPEG decoding (compared

8 Chapter 1 – Introduction and motivation

to PAL/NTSC) are fundamentally different. In any case, a subset of
processing functions and the communication infrastructure of a new
architecture together with memory access and control units can be
reused. This would lead to a faster development of the secondary
application field.

• Reconsideration of TV functions – The advent of digital television
brings different picture characteristics than the conventional PAL and
NTSC signals. Presently, the introduction of DVD players for movie
playback is highly successful. This system is based on MPEG-2 coded
video signals. Another application of digitally compressed video sig-
nals is the reception of Digital Video Broadcast (DVB) and digital
cable TV. Such a new TV technology will inevitably push the quality
of the conventional TV to a higher level. The new digital processing,
such as decoding of MPEG-2 streams, will also lead to performance
reconsideration of the conventional video enhancement algorithms,
like noise reduction and sharpness improvement. Furthermore, re-
consideration of the video processing functions is required for the
pixel-based graphics in the afore-mentioned Internet and PC-like ap-
plications in the TV domain. Since computer graphics are artificially
generated and individual pixels are addressed, the quality and per-
formance of the conventional video processing functionality should
be suitable to allow this type of signals. For example, sampling-rate
conversion for up- and down scaling of the bandwidth-limited video
pictures may introduce ringing and aliasing artifacts when applied to
synthetic graphics.

• Centralized off-chip memory – As was presented earlier, the tradi-
tional TV systems contain many independent modules with features,
each having its only external memory device. With respect to the
total system, the distributed memory devices form a significant part
of the costs. A system that would have a centralized shared mem-
ory is much more cost effective. However, such a system requires a
flexible communication infrastructure to connect all video processing
modules to the memory. Although this approach reduces the costs, it
often remains a critical issue in system design. In many recently intro-
duced media processors, the memory part is actually the bottleneck
in system performance. Consequently, on-chip distributed memory
may still be attractive. Communication and particularly the mem-
ory increasingly dominates the costs in the design. For this reason,
we elaborate on optimizing the memory usage for video processing in
Chapter 5 and 6.

1.3 Functional requirements 9

In the following section, it is our objective to convert the aspects discussed
here into a series of technical implications for the design of a new architec-
ture.

1.3 Functional requirements

The aforementioned system aspects can be converted into a number of
requirements, concerning new TV architectures.

1. It must be possible to monitor several video streams on a TV display
with flexible windows, together with graphical information.

2. Conventional algorithms for TV video enhancement need to be re-
considered and redesigned for digital TV, i.e. MPEG-decoded appli-
cations.

3. If several video streams have to be displayed, appropriate video scal-
ing is required, suitable for both high-quality video and graphics sig-
nals.

4. Video processing and pixel-based graphics will be used side by side
or in mixed form. Architectures should be flexible in using various
sources with different quality.

Let us now discuss these requirements in some more depth and commence
with the multi-window aspect. A realistic implementation example of how
an extra video signal is included is shown in Figure 1.3. A well-known fea-
ture is Picture-in-Picture (PiP), where a small video window is displayed in
upper left or right corner of the display. Up till now, the required processing
is mostly realized with additional dedicated hardware [5], such as a second
(e.g. PAL-) decoder, and low-cost filters and down sampling for signal com-
pression. A field memory is required for synchronizing the PiP window with
the primary video signal. The extra hardware is usually minimized to limit
costs, thereby accepting some quality loss. In a new architecture, it will be
interesting to focus on hardware sharing, so that e.g. signal enhancement
processing like noise reduction and sharpness improvement for a secondary
signal, are executed on the same hardware that is being applied for the
primary video signal.

Figure 1.3 also shows that alternative processing, such as PALplus in Eu-
rope, (or equivalently EDTV in Japan) and a 100-Hz up-conversion for
large area flicker reduction, may be added.

10 Chapter 1 – Introduction and motivation

An expensive part of this extra signal enhancement processing is the off-
chip memory usage: it is distributed among the applications, and if the
application is switched off, the memory cannot be reused. Similarly as
with the signal processing functions, memory sharing can be pursued here
to save system costs. This is particularly true for functions that are not
used simultaneously. For example, when advanced graphics are used, it
may not be required to have optimal picture quality of a PALplus signal at
the same time. Thus the memory for full-quality decoding of the PALplus
signal can be used for the graphics processing. Without the graphics, the
memory can be used for the extra sideband video information transmitted
in PALplus format.

The second point mentioned above refers to the new standards that are
gradually introduced in the TV application domain. Digital Video Broad-
cast (DVB) is based on MPEG-2 coding, which can provide a large range
of bit-rates for transmission. This means that also high bit rates will be
possible and it has been proven that the MPEG-2 coding algorithm can
provide excellent quality. For example, the first generation of DVD players
which is also based on MPEG-2 coding, shows a quality far exceeding regu-
larly received broadcast signals. As a consequence, an upward bias in image
quality for secondary signals in the TV environment can be expected. The
actual processing functions are based on the average quality of conventional
broadcast signals, so that they need to be adapted to the quality level of
high-quality digitally coded video signals. Moreover, the noise contained in
digitally compressed signals differs clearly from the noise found in analogue
broadcast signals, so that an adaptation of signal enhancement functions
will be required in any case.

The display of several signals on a single display poses the question of
the preferred display area usage desired by the TV viewer. This problem
has a clear impact on the user interface and convenience experienced by the
viewer, but this is beyond the scope of this thesis. Nevertheless, a direct
technical requirement is implied by the aforementioned problem statement:
the various signals need to be scaled (down) in size to offer them simulta-
neously to the TV viewer. Since the preferred image sizes are not known
in advance, the best solution is to implement video scalers that take the
scaling factor as input parameter, thereby offering flexibility in usage to
the consumer. It will be shown later that the desired flexibility can be
enhanced by extending this concept to upconversion (up-scaling) as well,
so that digital zooming on a particular signal is also possible.

1.4 Computational effort 11

An additional aspect of scaling is that one of the extra video signals may
be based on computer-generated video, i.e. graphics. In graphics signals,
individual pixels can be addressed and filled with arbitrary colors. If such
a signal is considered as a video signal, it is characterized by spurious
high-frequency components in the signal spectrum, because extreme signal
transitions can take place from one pixel to the other. Since video scaling
also requires filtering, the selection of the corresponding filters and the scal-
ing principle should be chosen carefully, since it will not be accepted that
the intrinsic sharpness of graphical images is lost after a video scaling nor
that ringing or aliasing artifacts appear. Hence, flexibility in video scaling
for alternative types of video such as graphics is required, so that the origi-
nal quality is preserved. The quality setting of the scalers should also cope
with the high-quality video signals resulting from MPEG decoding.

Another point of concern in the new architecture is the optimal inser-
tion point for digital TV signals. Depending on the signal quality, it is
sometimes required to insert a signal at different stages of the signal en-
hancement processing chain. More generally, it is desirable that functions
can operate on signals at arbitrary positions in a task graph (order of signal
processing functions). The new architecture should enable more flexibility
in these system aspects.

1.4 Computational effort

From the previous section it is clear that besides low cost, flexibility is
highly required. Although flexibility may limit the costs in some sense,
adding too much flexibility will undoubtedly result in the opposite effect.
To get a rough indication of the system cost, we analyze how much com-
puting power should be realized. A number of typical TV signal-processing
functions were studied and computational and memory requirements were
evaluated. Table 1.1 shows the intrinsic processing power of several TV
functions at standard definition (SD) resolution for a realistic currently
available high-end system [6]. With respect to operation counting, addi-
tions, multiplications, pixel read and writes, etc., are considered as single
operations. Note that the functions in the table are not standardized unlike
e.g. MPEG decoding or PALplus decoding. Thus, the table does not indi-
cate the exact algorithm that is used, nor the quality of the result. Chap-
ter 3 shows that different algorithms of similar functions can easily have an
order of magnitude difference in the operation count. The fourth column
shows the amount of memory or cache required. Here it is assumed that
the video data can be retrieved or stored by single reads and writes (which

12 Chapter 1 – Introduction and motivation

Table 1.1: Expenses of various TV functions.
Function Operations Bandwidth Memory/

per Second MByte/sec. Cache
H zoom / compress 400 MOPS 38–64 samples
V zoom / compress 400 MOPS 38–96 lines
Filters, Comb filters 200 MOPS 64–128 samples-field
Advanced peaking 650 MOPS 32 lines
Color transient 300 MOPS 48 samples
improvement
Dynamic noise 500 MOPS 64–128 field
reduction
MC-100 Hz 2–4 GOPS 192-256 2–3 fields
Color space 150 MOPS 80 None
Teletext conversion 10 MOPS 48 > field
Adaptive luminance 60 MOPS 32 1 kByte

is optimistic). Moreover, it is assumed that field and frame memories are
stored in the background memory thereby increasing the data communica-
tion bandwidth of the function, which is indicated in the third column. For
these bandwidth numbers, it is assumed that data can be loaded or stored
by read and write operations without any bandwidth overhead or any stall
cycles. For a normal TV application with 50-to-100 Hz conversion, Picture-
in-Picture (PiP), noise reduction and aspect-ratio conversion, the amount
of operations already exceeds 6 GOPS (Giga operations per second). This
is not readily implemented cost-effectively on a general-purpose processor.
Such processor would give most flexibility, maximal reuse of the functional
units (in this case fine-grain operations) and the memory organization is
effective for such a solution, however, the sequential nature of processing
limits the amount of computational power within a given IC technology
and increases the power consumption, thus the system costs.

1.5 Architectural requirements

Adding flexibility in a system for future TV applications adds complexity
and with this, costs such as silicon area and power dissipation will increase.
To limit the costs of a flexible system, the following architectural require-
ments can be defined.

Parallelism – The integration of more functionality into a single SoC in-
creases the computational requirements for the system. Simply performing

1.5 Architectural requirements 13

all operations in a sequential order does not satisfy the real-time constraints,
since this would require unrealistic processing speed and power consump-
tion. Hence, a large amount of parallelism is needed instead.

Communication topology – Once we have a system that features a large
amount of functional processing units performing parallel computations, a
communication infrastructure needs to be provided. Input data has to be
conveyed to the functional units in the correct order and the final result
is delivered, synchronous with the display. Furthermore, data exchange
between the functional units need to be provided. The design of the com-
munication network depends on the amount of parallelism, the granularity
of data packets, the granularity of the synchronization, and the signal flow
through the processing units. Generally, this part of the design is very
costly because considerable buffering and wiring in the chip is involved.

Memory – Memory is an inherent part of data communication. Com-
munication between functional processing units is provided by means of
a memory that is shared by a data-producing functional unit and one of
more functional units that consume the data. This memory can serve two
purposes. Either the schedules between the processing units are fixed, i.e.
the memory only provides a fixed delay, or the memory is used to decouple
the functional processing units allowing less constrained scheduling. In both
cases, the memory is only shared by two functional processing units. How-
ever, from Section 1.3 it can be concluded that from an application point
of view, it is desirable to convey the video signals through the processing
units in arbitrary order. To allow this type of flexible routing of data,
the above-mentioned shared memory should be shared by all functional
processing units. This thesis shows two example systems with different so-
lutions for this. Chapter 4 outlines a system with small distributed FIFO
memories that are connected to the inputs and outputs of the processing
units. Subsequently, a switch-matrix communication network provides the
sharing of the memories between any pair of functional processing units,
depending on the desired task graph. Alternatively, Chapter 7 discusses an
architecture with a centralized shared memory, connected to all functional
processing units by means of a bus architecture.
Apart from the memory for intercommunication, memory is also required
for the signal processing itself, depending on the function. For example,
temporal noise reduction requires video data from both the current video
picture and pictures from the past. Hence, memory is necessary to delay
the video signal. Section 1.3 states that for flexibility at low cost, it is most
beneficial to share these type of memory resources. Consequently, this re-

14 Chapter 1 – Introduction and motivation

quires a communication network that allows access to a shared memory for
all associated functional processing units.

Hardware-software codesign – The problem statement in Section 1.1 ba-
sically shows the trend of the ever-increasing demand for flexibility. As a
result, system implementations will shift from dedicated hardware to more
software-oriented systems. Because this trend is conflicting with the de-
sire for low-power solutions, the amount of additional flexibility should be
balanced carefully. Two different dimensions for hardware-software par-
titioning can be distinguished. The first dimension consists of functional
partitioning. For example, MPEG decoding can be provided in hardware,
whereas a successive histogram modification of the decoded result is applied
in software. The second dimension covers the granularity of the function-
ality. For example, high-level software can start/stop a Picture-in-Picture
feature in a TV set. However, at a low granular level, software may control
multiply-accumulate operations in a video scaling function. Summariz-
ing, applications can be decomposed into hierarchical levels of functional
granularity, where each level can be implemented in hardware or software.
The optimal choice for hardware-software partitioning depends on design
constraints and the architectural analysis and hence, commonly results in
a heterogeneous architecture (unless the constraints require homogeneous
structures) with dedicated hardware, fully programmable processors, and
hybrid combinations of those.

Programmability – Programmability of an architecture is directly related
to the flexibility of a system and is therefore an important topic. Although
this is not a central theme of this thesis, it implicitly appears in various
chapters. From the thesis it will become clear that current and near fu-
ture media-processing systems will be based on heterogeneous architectures
for high-performance computing, having sufficient flexibility, and at a rel-
atively low cost. To provide the application programmer with sufficient
abstraction from the hardware, an adequate Application Programmers In-
terface (API) is required to hide the details of the architecture. How-
ever, from a programmability point of view, the programmer has to have
knowledge about the details of the architecture for efficient programming
of application-specific systems, whereas general-purpose systems generally
do not require this. Note that this does not imply that general-purpose
systems are more easy to program, because all functionality needs to be
implemented in software as opposed to application-specific systems.

1.6 Outline of the thesis 15

1.6 Outline of the thesis

This thesis is divided in three parts. The first part shows a historical
evolution of general-purpose processors towards more powerful application-
specific computing systems (Chapter 2). Moreover, it describes the analysis
of some example video processing functions to derive the architectural re-
quirements as discussed in Chapter 3. Finally, it extensively elaborates on
the architectural analysis and implementation of an existing flexible televi-
sion processor system (Chapter 4). Subsequently, the second part consist-
ing of Chapter 5 and 6, elaborates on application-specific memory usage
and the corresponding bandwidth, because this topic is a highly critical
aspect in system design. The last part of the thesis proposes hierarchy in
the communication infrastructure to solve the communication bottleneck
and discusses the partitioning of the functionality in hardware and soft-
ware. Since a growing number of fully-programmable processor cores in
combination with more application-specific hardware in SoC is inevitable,
the architecture should enable such mixtures of different types of hardware
units.

Chapter 2 gives a short overview of the basics of computing architec-
tures. Starting with a sequential general-purpose processor, parallelism
is increased thereby making a tradeoff between costs and the amount of
application-specific hardware. After the introduction of instruction-level
parallelism in a Very-Long-Instruction-Word architecture and task-level
parallelism in a multiprocessor system, a section is devoted to the rela-
tion between the amount of parallelism that can be exploited and data
dependencies. Subsequently, the chapter discusses how the granularity of
control (e.g. instruction level, task level, or function level) is related to the
potential amount of parallelism and the flexibility of the system. The last
section of Chapter 2 elaborates on some example processor architectures
for video applications to obtain insights in system design. These examples
indicate technology trends and discuss the merits and shortcomings of the
systems.

Chapter 3 presents the analysis of the required computing and memory us-
age of several example video-processing functions. First, some algorithms
for advanced sharpness enhancement and video scaling are presented in
detail. The analysis of these functions gives a first insight in the type of
architecture that fits naturally to the algorithms. Obviously, the choice of
an architecture also depends on many other constraints as already stated in
the first section. To go one step further in determining the feasibility of an
architecture, the resource requirements are also analyzed. For the sharp-

16 Chapter 1 – Introduction and motivation

ness enhancement and the scaling algorithms, but also for noise reduction
and 50-to-100 Hz conversion, the computational complexity, the memory
bandwidth, and the required memory capacity is determined. Considering
all constraints and the results from the analysis, the architectural require-
ments of a system can be defined more clearly.

Chapter 4 discusses the design of the so-called TeleVision Processor (TVP)
system, starting with a short overview of the trends, followed by a brief
description of the functional requirements. Subsequently, the chapter dis-
cusses the conflicting requirements of flexibility, together with high com-
putational performance at low cost. First, the concept of a task graph is
explained. Subsequently, a set of requirements is presented such as real-
time constraints, the flexibility to construct different task graphs, and the
capability to processes a minimum of two input streams. Moreover, an
unified off-chip memory should be provided to support memory reuse and
low system cost. The resulting architecture consists of two chips: a micro-
controller chip with peripherals to perform tasks that are not time critical
and event-oriented control, and a coprocessor-array chip for powerful video
processing. The communication network of the latter chip provides a data-
flow model for asynchronous and autonomous operation of the coprocessors.
The subsequent sections of Chapter 4 elaborate on the implementation of
the communication network and explain how internal and external commu-
nication is provided. The last part of the chapter discusses the functionality
of the system. Among other issues, this part addresses the scalability to
exchange system resources for picture quality. Moreover, it describes a
large set of possible applications such as multi-window TV and includes
an analysis to determine the required system resources. The chapter con-
cludes with the merits of the system but also proposes some modifications
for future systems.

Chapter 5 and 6 are devoted to application-specific memory usage and
the bandwidth of data communication, because the desire for a shared cen-
tralized memory and flexible inter-processor communication often induces
a bottleneck in the communication infrastructure. The centralized system
memory is particularly expensive and continuously grows due to the increas-
ing complexity of video algorithms. For example, 50-to-100 Hz conversion
required one field memory in the past to do median filtering, whereas cur-
rent frame-rate conversion algorithms require several frame memories to
do film detection, motion-compensated de-interlacing and up-conversion.
Another example is the popular MPEG-2 standard [7] which requires up to
three frame memories. The newly developed H.264 standard [8] requires at

1.6 Outline of the thesis 17

least twice that memory space. Hence, the memory is an important part of
the system and we can expect that it becomes an even more dominant part
of the SoC. Therefore, Chapter 5 and 6 elaborate on efficient utilization
of memory resources, and in particularly the off-chip memory. Chapter 5
shows that significant gains can be achieved when matching the application-
specific memory accesses with the behavior of the memory device. First, it
explains the physics and the operational behavior of SDRAM devices and it
gives a short prospect of future memory devices. Subsequently, the chapter
deals with optimization of the memory efficiency by means of an MPEG-
decoder example. Chapter 6 describes some application-transparent tech-
niques to reduce the memory bandwidth. First, a straightforward embed-
ded compression technique is presented, followed by a section on function-
specific caching. Because the MPEG-2 decoder from Chapter 5 represents
one of the most critical functions for memory access, it is again adopted
as an example function. The last section of the chapter reflects a collage
of several discussed techniques, such as double writing (Appendix B), em-
bedded compression (Section 6.1), and caching (Section 6.2). It shows that
most techniques are complementary and can be used in combination, re-
sulting in tremendous memory bandwidth reductions.

Chapter 7 discusses the partitioning of video-processing applications on a
heterogeneous multiprocessor system called Eclipse. Although the above-
discussed TVP system and the presented solutions for interfacing off-chip
memory are satisfactory, the ever-increasing complexity of SoCs requires a
new design paradigm that deals with the costly communication resources,
the desire for scalability toward following generations of the same system,
and reuse of the design for different products. This observation leads to
a hierarchical design of the communication infrastructure and the mem-
ory architecture. Chapter 7 proposes a close match of this hierarchical
design with the hierarchy that is inherently present in video processing ap-
plications. This approach forms the basis of the Eclipse system which is
thoroughly discussed for implementation of an MPEG-4 decoder system.
Hence, after discussing the new insights and the architecture template of the
Eclipse system, an overview is presented of some state-of-the-art MPEG-4
systems that are described in the literature. Subsequently, we explain the
functionality of an MPEG-4 decoder. Then, the characteristics of each task
in the decoder are analyzed, leading to distinct architectural requirements
for each task. Finally, a partitioning over a mixture of fully-programmable
processors and application-specific processing units is presented, followed
by a hypothetical proposal for implementing the MPEG-4 decoder.

18 Chapter 1 – Introduction and motivation

Chapter 8 concludes with the most important findings and provides a fu-
ture outlook. First, we recapitalize the conclusions of the individual chap-
ter. Most important is the observation that video processing algorithms
and the corresponding architecture should be designed corporately to at-
tain a cost-effective solution. Moreover, it is concluded that a hierarchical
design of the communication infrastructure and the memory architecture
is inevitable to deal with the ever-increasing complexity of SoCs. To show
the significance of the contribution from this thesis, the design of a state-of-
the-art television SoC is first briefly outlined, followed by a proposal for a
similar system with a hierarchical design. This example clearly shows that
the codesign of the embedded video processing functions and the architec-
ture is and remains important for implementing cost-effective systems on a
chip.

1.7 Background and motivation of the chapters

Most parts of the chapters in this thesis have been published in conference
proceedings or scientific journals. In this section, we explain the origin of
the chapters and their publication history.

Chapter 2 presents a historical overview of system architectures to indicate
the trends in the design of systems for multimedia computing. These trends
have resulted in large shifts in design methodologies. Whereas laborious
low-level IC layout design of video processors with a high transistor density
was the main challenge in the past, the current emphasis is on reliability,
robustness, clock skew, timing closure, power consumption, development of
high-level design tools, and software architectures focussing on reuse, scala-
bility, portability, etc. Although general-purpose processors and dedicated
video processors have been separate domains in system design, Chapter 2
clearly shows a convergence of both domains. General-purpose processors
are being specialized for media processing with special instructions for vec-
tor operations on video algorithms, whereas the hardwired dedicated video
processing chips are becoming increasingly programmable.

Chapter 3 elaborates on the resource requirements such as operation count
and memory bandwidth. The chapter was included because the architec-
tural requirements depend a lot on characteristics of the video processing
algorithms, such as the computation complexity. To provide more insight
in the type of computing that is involved in video processing algorithms,
Chapter 3 first presents some example video functions in detail. The design
of these video functions was achieved as part of the Television Processor

1.7 Background and motivation of the chapters 19

project at Philips Research, which is described in more detail in Chapter 4.
Results of Chapter 3 were presented in the papers “A Generic 2-D Sharp-
ness Enhancement Algorithm for Luminance Signals”[9] and “An Advanced
Sampling Rate Conversion Technique for Video and Graphics Signals”[10],
which were coauthored with J.G.W.M Janssen and P.H.N. de With and
presented in 1997 at the IEEE International Conference on Image Pro-
cessing and its Applications. Parts of these results were later reused in
system-oriented papers (see below).

In the mid-nineties, the problem statement as portrayed in Chapter 1 was
already recognized, resulting in a project for designing a Television Pro-
cessor (TVP). The project was a collaboration between Philips Research,
Philips Semiconductors, and Philips Consumer Electronics, and was initi-
ated by amongst others the promotors of this thesis. The TVP architec-
ture design is described in Chapter 4 and is inspired by the work of many
project members. At the end, the project resulted in two working chips.
The Coprocessor Array (CPA) chip (see cover page) and the Telecommuni-
cation and Control Processor (TCP) chip were successfully implemented in
a demonstration setup. This demonstrator proved all concepts and clearly
indicated the usefulness of the flexibility that was offered. Furthermore, the
TCP chip was successfully produced under the name SAA7430. The first
overview of the system was published in the IEEE Transactions on Con-
sumer Electronics and was titled “A Flexible Heterogeneous Video Pro-
cessor System for TV Applications”[11]. The paper was coauthored by
P.H.N de With and J.W.G.M. Janssen and received a Chester Sall Award
for the best papers of the IEEE CE Transactions in 1999. In the same
year, another overview article [12], focussing more the memory bandwidth
issues, was presented at the International Conference on Image Processing
in Kobe, Japan. Subsequently, a set of three papers was published, each
focussing on different aspects of the system. The first one, named “Chip-set
for Video Display of Multimedia Information”[13], which was coauthored
by P.H.N. de With, describes the functionality of the coprocessors in more
detail and discusses a range of possible applications. The second paper, en-
titled “A Video Display Processing Platform for Future TV Concepts”[13],
elaborates more on architectural issues such as the data communication
and was published in the 1999 IEEE Transactions on Consumer Electron-
ics. The third paper was presented at the IEEE International Conference
on Solid-State Circuits and particularly focusses on the VLSI aspects. The
TVP system consists of relatively tightly coupled coprocessors that oper-
ate independently and asynchronously. As a consequence, the Video Input
and Output modules needed to be designed under strict timing constraints

20 Chapter 1 – Introduction and motivation

compared to similar modules in synchronous systems and systems with very
loosely coupled coprocessors (e.g. decoupled with frame buffers). Because
the design of these specialized modules is beyond the scope of the thesis,
only a brief overview of the research is given in Subsection 4.6.4. However,
a more detailed paper was presented at the SPIE conference on Visual
Communications and Image Processing 2000, entitled ”Synchronization of
Video in Distributed Computing Systems”. The paper “Synchronization of
Video in Distributed Computing Systems”[14] was coauthored with P.H.N.
de With and one of the VLSI circuit designers, B.S. Visser.

During the architectural analysis of the video processing in the TVP system,
it was recognized that the required memory bandwidth was an important
and critical issue. This is motivated by the research of Chapters 3 and
4. During the design of another video-processing system, called Eclipse,
which is discussed more thoroughly in Chapter 7, again memory traffic
appeared to be an important concern. The Eclipse project aimed at de-
signing platform technology for a broad range of applications, but a first
experimental instantiation was limited to multi-channel MPEG decoding
and encoding. As a part of this Eclipse project, several options for memory-
bandwidth reduction were explored. Chapter 5 discusses the first option,
which basically outlines the optimal mapping of video data into the physical
memory addresses and some implementation optimizations for further effi-
ciency improvement. Part of this work was published in 2001 in the IEEE
Transactions on Consumer Electronics with the title “Bandwidth Reduc-
tion for Video Processing in Consumer Systems”[15]. Other parts were filed
as patent applications [16] [17]. Other options for bandwidth reduction are
presented in Chapter 6. First, a low-cost embedded-compression technique
is explored. Feasibility of the concept has been presented at the SPIE Media
Processors Conference in 2002, with the title “Compression for Reduction
of Off-chip Video Bandwidth”[18]. Later that year, additional experiments
revealed that also the picture quality could be maintained although a lossy
compression algorithm was applied. These results were published in the
Proceedings of the IEEE Benelux Signal Processing Symposium of 2002.
The paper, called “Embedded Compression for Memory Resource Reduc-
tion in MPEG Systems”[19], was coauthored with P.H.N. de With. In the
same chapter, a section is also devoted to video-specific cache design for
reduction of memory bandwidth. As a an example, it focusses on memory
access for motion-compensated prediction in an MPEG decoder. Because
the outcome of this work is just recently available, it has not yet been pub-
lished.

1.8 The main contributions of the author 21

Chapter 7 elaborates on the hardware-software partitioning of video appli-
cations for SoC design. Part is based on experiences from the TVP project
as discussed in Chapter 3 and 4 and is published in the proceedings of the
“IEE International Conference on Image Processing and its Applications
1999”in an article, entitled “A Flexible Heterogeneous Video Processing Ar-
chitecture for Powerful HQ Television Applications - Finding the optimal
balance between HW and SW”[20]. However, the main part of the chapter
is inspired by a case study for MPEG-4 decoding that was conducted for
the Eclipse project. This project aims at designing platform technology for
fine-grain multiprocessors which enables a mixture of tasks being performed
in both hardware and software. The first sections of the chapter describe
the adopted architecture and are based on publications with the members
of the involved architecture team. First, the architecture was presented at
the 2002 International Workshop on Parallel and Distributed Computing
in Image Processing, Video Processing and Multimedia [21] by M.J. Rut-
ten, J.T.J van Eijndhoven, E-J. D. Pol, E.G.T. Jaspers, P. van der Wolf,
O.P. Gangwal and A. Timmer. Later, these authors published an improved
version under the same title [22] in the magazine “IEEE Design & Test of
Computers”. The actual description of the hardware-software partitioning
for the MPEG-4 decoder is described in the second part of Chapter 7 and
is based on a paper that was coauthored with E.B. van der Tol and pre-
sented at the SPIE Media Processors Conference 2002, called “Mapping of
MPEG-4 Decoding on a Flexible Architecture Platform”[23]. Later that
year, this paper resulted in an invited lecture of the author of this thesis at
the 2002 International Workshop on Parallel and Distributed Computing
in Image Processing, Video Processing and Multimedia (PDIVM) [24].

1.8 The main contributions of the author

The research that forms the basis of this dissertation has been performed
at Philips Research Laboratories in Eindhoven and would never been ac-
complished without the efforts of many colleagues. The participation in
two projects, containing multi-disciplinary teams of algorithm developers,
architects and VLSI designers, have resulted in the design and implementa-
tion of the complete systems. The first project, called Television Processor
(TVP) has lead to the insights of Chapter 3 and 4. For this project, the
author developed the sharpness-enhancement algorithm and specified the
design of the corresponding coprocessor. Moreover, he specified the design
of the video input and output modules. In a later stage of the design and
during the testing of the system he was responsible for the application-
related support. The second project, called Eclipse covered the design of

22 Chapter 1 – Introduction and motivation

the system as described in Chapter 7. For this project, the author was
shortly involved in the definition of the architecture and later on focussed
on the application-specific functionality of the system. Among others, he
analyzed MPEG-4 decoding for modelling of the application-specific co-
processors and studied the feasibility of a cache for motion-compensated
prediction in an MPEG decoder. Particularly the study on caching has
lead to the discussions in Chapter 5 and 6.

Chapter2
Developments in video

computing architectures

THE problem statement and requirements of new architectures for high-
end TV, in the previous chapter, have clarified that a large computa-

tional power is required for TV and multimedia systems, especially in those
systems where several video functions have to be executed in parallel. In
this chapter, the objective is to look into computer and DSP architecture
developments and learn from the techniques that have been implemented to
improve computing power, communication and memory usage, while pro-
viding sufficient programmability. This chapter also serves as a partial
literature overview and broadens the problem statement of designing a new
programmable architecture for digital TV systems.

respice, adspice, prospice (Walter Pach, 1883 – 1980)
examine the past,
examine the present,
examine the future

2.1 Introduction

In modern TV systems, a plurality of functions is operational in parallel to
offer the high performance perceived. Therefore, this chapter concentrates
on the system aspects of enabling parallelism in computing. Important
aspects are the type of architecture of the system, such as SIMD systems,
and provisions for parallel instructions (VLIW and superscalar engines) and
computational units. Afterwards, additional aspects such as control over-
head and the tradeoff between general-purpose computing and application-
specific hardware together with programmability are briefly addressed.

23

24 Chapter 2 – Developments in video computing architectures

A special part of the chapter is devoted to real examples of DSP processors,
where the order of the processors is put in a historical perspective. These
examples illustrate how specialized processors emerged and also portray to
some extent the density improvement in IC technology. The overview is by
no means complete, but its purpose is more to learn from possible short-
comings from the past and to collect attractive architectural aspects which
are relevant for new or upcoming processor architectures. The overview
ends with a multimedia processor, called Emotion Engine, which is one of
the latest examples of flexible and powerful computing.

Some time is also spent on discussing other system aspects which have
to be defined in a complete architecture, such as data communication, con-
trol communication for programming or flexibility features and the usage
of memory in a high-performance architecture.

control
unit

memory
unit

address bus

data bus

I/O
unitA L U

Figure 2.1: Basic general-purpose computing architecture.

2.2 Exploiting parallelism in computing systems

A standard general purpose-computer, e.g. an Intel 8080, has no parallelism
above the level of fundamental operations such as addition, logic shift, etc.
as shown in Figure 2.1. The control of the hardware in such a system is at
the level of operations, and it is symbolized as the program of instructions.
The most straightforward way to increase the amount of computational
performance of such a system is by increasing the clock frequency of the
processor. As a consequence of this performance enhancement, the power
dissipation per logical gate Pg of the system increases according to:

Pg = C × V 2 × fmax, (2.1)

where

fmax ∝ (V − VT)2

V
, (2.2)

2.2 Exploiting parallelism in computing systems 25

with V the supply voltage, VT a constant threshold voltage, fmax the opera-
tion frequency, and C the capacity of the gates which is given by the feature
size. If we assume the minimal supply voltage for the necessary operation
frequency, the equations show that the power dissipation increases approx-
imately with a power of three for increasing clock frequency (substitution
of Equation (2.2) into Equation (2.1)). Obviously, this power dissipation is
limited by the physical power durability, but can also be constrained for e.g.
mobile applications, reliability, and package cost. Instead of increasing the
operation speed to increase performance, it is also possible to increasing the
amount of parallelism. This approach increases the total power dissipation
only linearly with the added parallelism. Moreover, because parallelism
increases the silicon area, the power dissipation per unit of area remains
approximately equal and is therefore more easy to handle.

At a low level in a simple general-purpose processor which performs se-
quential processing, some forms of parallelism are already available, e.g.
an adder in the ALU unit uses several gates in parallel to perform the ad-
dition of all bits. To further improve in parallel computing, the amount of
functional operations in parallel can be increased.

Architectures can be classified in various forms of parallelism. Examples of
enhanced parallelism are depicted in Figure 2.2, where either data and/or
instruction streams are duplicated. The simplest form is called Single In-
struction Single Data (SISD). More data can be processed with one single
instruction, by using the instruction stream for an additional stream of
data, leading to the so-called Single Instruction Multiple Data (SIMD) ar-
chitecture. These architectures, control the parallel operations with a single
instruction stream, i.e. a single thread of control. Often, these architec-
tures are referred to as vector processors or array processors. An ALU of
such a processor is able to process e.g. two 64-bit operands but also to pro-
cess four 32-bit operands. Typically, it can use quad-words (1×64), double
words (2×32), packed words (4×16) for audio and packed bytes (8×8) for
graphics and video. As a trend, it can be noticed that the width of the
operands increases as technology advances. Current designs, such as the
PowerPC and the Pentium IV contain 128-bit operands and the first Pow-
erPC has been introduced containing 256-bit operands.

More data streams can be processed simultaneously with multiple instruc-
tions (MIMD). This architecture is attractive if several independent func-
tions have to be executed in parallel, but it is also the most complex sys-
tem because multiple instructions basically imply multiple threads of con-

26 Chapter 2 – Developments in video computing architectures

(b) (c)

(a)

control
unit

proc.
unit

instructions

data
stream

instr.
stream

memory

instruction
stream

proc. unit

instructions

memory
data stream

control
unit

instr.

proc.
unit

proc.
unit

proc.
unit

memory
data stream

control
unit

control
unit

control
unit

instr.
streams

Figure 2.2: Examples of increasing parallelism in computing from single-
input to multiple output: (a) SISD, (b) SIMD, (c) MIMD.

trol. Hence, SIMD is typically provided within a single processors whereas
MIMD is typically provided by multi-processor architectures.

Besides the SISD and SIMD architectures, also other types of parallelism
are introduced to increase the performance for single-threaded architec-
tures. Examples can be found in the following architectures and concepts

• Von Neumann architecture,

• Harvard architecture,

• parallelism in time: pipelining,

• superscalar architecture,

• VLIW architecture.

In the Harvard architecture as shown in Figure 2.3, the data bus and the in-
struction bus are separated as well as the data memory and the instruction
memory, thereby solving the Von Neumann’s bottleneck [25] (two streams
to the same memory). A double (modified) Harvard architecture contains a
double data bus and data memory to retrieve two operands of an operation
simultaneously using one instruction.

2.2 Exploiting parallelism in computing systems 27

control
unit

proc.
unit

instructions

data streaminstr.stream

instr.
memory

data
memory

Figure 2.3: Harvard architecture with separated data and instruction
memory.

The aforementioned architectures introduce parallel processing in space.
Another concept of parallelism can be enabled by exploiting the dimension
time. When an operation is split up into subsequent pipeline stages, which
are separated by a predetermined amount of clock cycles, the clock rate can
be increased. Although the the number of clock cycles for the operation
has increased, the latency (expressed as an absolute time) remains equal.
The benefit is that for every clock cycle, a new operation can be issued,
resulting in a higher throughput due to the higher clock rate.

In a follow-up architecture, a single instruction stream is scheduled and
partitioned over two or more independent processing-units by a single con-
trol unit at run-time. This superscalar architecture contains partially com-
plex hardware to dynamically schedule the instructions over the separate
instruction pipelines, and to perform some optimizations, such as branch
prediction and speculative calculation. Example implementations of such
an architecture are Pentium, PowerPC, and PA-RISC.

Other developments in instruction-level parallelism (ILP) have resulted in
Very Long Instruction Word (VLIW) architectures. Like the superscalar
architecture mentioned above, it is based on an single instruction stream
that controls two or more independent processing units. A single full-width
instruction is a concatenation or coded form of multiple instructions. Since
the mapping of each small instruction onto the processing units is deter-
mined at compile time, no instruction partitioning and scheduling hardware
is required. Also some optimizations like branch prediction, speculative cal-
culation and loop unrolling, can be performed by the compiler. Example
implementations of such architectures are Trimedia [26], MPact [27] and
TMS320C62 [28]. Even though the superscalar and VLIW architecture
are classified as single instruction architectures (single threaded), they fea-
ture instruction-level parallelism (ILP) and fit to a general template that
is currently used for many implementations and is depicted in Figure 2.4.

28 Chapter 2 – Developments in video computing architectures

memory1 memory2 memoryn

internal processor communication

.....

proc.
unit 1

instruction
sequence

instr. decode
instr. fetch

instr.
memory

decoded
instr. stream

multiple
data stream

instruction
stream

proc.
unit 2

proc.
unit 3

Figure 2.4: Generalized template for architectures featuring instruction-
level parallelism.

2.3 Aspects of application-specific parallelism

As mentioned before, parallelism can be increased by simultaneously car-
rying out multiple operations like additions, multiplications, logic AND,
etc. However, the complexity of the associated control increases rapidly.
To some extent, this complexity can be hidden in a compiler, but evidently
such an approach has its limits. The VLIW architecture provides an ex-
ample of such a case in which a compiler performs complex scheduling of
the instructions such that the resources are well utilized. Although good
results can be obtained, the compilation into efficient micro code highly
depends on intelligent programming of the algorithms.

The main reason for the increase of complexity with augmented paral-
lelism results from the data dependent operations during processing, i.e.
conditional instructions and branches. To explain this, let us consider for
example the use of an MPEG encoder of which its processing tasks are
mapped onto a imaginary processor. The processor has capabilities for
unlimited parallel instructions and may carry unlimited parallel data. A
multiplication in an inverse DCT (IDCT) function might be performed
in parallel with an addition in the motion-compensation unit, because for
some pictures the result of the inverse DCT and the motion-compensation
(MC) unit is used to create a new reference picture. The compiler should be
able to identify if and when the intermediate result of the addition and the
multiplication are used to form a new result. Furthermore, the scheduling

2.3 Aspects of application-specific parallelism 29

of all additions in the MC and all the multiplications in the IDCT should
be such that finally an inverse DCT result corresponds with the correct
output of the motion-compensation unit. Even if the compiler would be
able to look far ahead, it cannot determine whether it concerns a reference
picture to be used in further coding iterations, or that data would be used
in a different way. Such decisions are clearly data dependent and are con-
tained in the statistics of the input bitstream. It can be concluded that
instruction-level parallelism has its limits, even though this limit highly
depends on the function. Commercially available VLIW processors feature
five parallel issue slots [29] or more and critical loops in more application-
specific processing functions can be identified that feature an ILP of 20 to
50. However, adding even more parallel functional units does not further
increase the computation performance [30]. This problem is basically sim-
ilar to the an observation of Amdahl [31], who states that the speedup of
a multiprocessor system depends on the fraction of code that cannot be
executed in parallel, according to:

speedup =
1

f + 1−f
p

, (2.3)

with f the fraction of code that cannot be executed in parallel, and p the
number of parallel processors. Opposed to a linear speedup, Figure 2.5
shows how the speedup saturates for a larger number of parallel proces-
sors. The graphs shows that adding parallelism to the system is only useful
if the parallelism can be exploited by the application.

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19

sp
ee

du
p

of parallel processors, p

Figure 2.5: An example graph of Amdahl’s law.

It can be concluded that data dependencies are an important hurdle for
designing parallel systems. This problem can be combated by providing
task-level parallelism. This technique does not replace the instruction-level
parallelism (ILP), but rather adds an additional hierarchical level to the
system. A task is defined as set of more fine-grain operations that are exe-
cuted by a single thread of control. Thus, within a task parallel processing

30 Chapter 2 – Developments in video computing architectures

is performed at a lower level in the hierarchy, e.g. additions, subtracts, and
multiply operations. At higher levels, parallel processing is performed on
task level. For example, Figure 2.6 shows how a TV application contains a
hierarchy of functions, tasks, and fine-grain operations.

pict.
crtl

audio
proc.

display

speaker

MPG

audio
decode

picture
enhance.

100
Hz

(a) (b) (c)

T

+

T

+

uu u

ZZ

RL

VLD

Q-1

DCT-1 MC

MEM

OUT

de-
mux

HF

chan
dec.

Figure 2.6: Hierarchy of functional granularity: function level of a TV
application (a); task level of an MPEG decoder function (b);
fine-grain operation level of a filter task (c).

Note that a hierarchical structure does not imply an implementation in
hardware or software. A task can be implemented with CPU operations
that are controlled with software, but can for example also be implemented
with hardwired operations in a dedicated hardware block. However, the
design of parallel systems becomes more and more complex when increas-
ing the amount of flexibility. First, such systems imply the configuration of
functionality at each level in the hierarchy. For example, a programmable
task needs to be configured (loading with the correct software program)
for the required functionality. Secondly, parallel systems that can be pro-
grammed with software at all hierarchical levels contain usually expensive
communication networks. Such systems have a communication network to
load operands, route them to the correct functional units in the correct
order, and subsequently store the calculated results in the correct memory
locations or registers. At the task level, software implements task switches
on the processor cores, initializes the correct communication buffers in the
memory that correspond to the task, and provides synchronization of exe-
cuting tasks on different processor cores. At an even higher level, software
configures the signal flow through the tasks (task graph), and dynamically
adds or changes functions on the media processor. Chapter 7 shows that
the hierarchy in the architecture of the communication networks matches

2.4 Parallelism and control 31

the natural hierarchy of applications. An example of such natural hierar-
chy in applications is a which contains functions such as channel decoding,
demultiplexing, video and audio decoding, picture enhancement, etc. The
functions consist of tasks such as variable-length decoding, inverse quanti-
zation, discrete cosine transform, etc. And again one level lower, the tasks
comprise operations such as add and multiplications.

TV

video audio telecom-
municationTeletext

splitscreen Picture in
Picture Internet source

decoding
video
phone

scaling restoration enhancement graphics modem smart
card

add multiply divide logic
AND

logic
OR

logic
shift

..............
......

...
............

Hardware

domain level
(on /off button)

application level
(remote control)

functional level
control

task level
control

instruction level
control

Figure 2.7: Control hierarchy in a TV system.

2.4 Parallelism and control

Let us first clarify the definition of hierarchy and the associated control by
means of an example as depicted in Figure 2.7. The example system is used
in a TV environment, where high-speed processing for video at low cost is
very important. In the bottom row of the picture, fine-grain operations
are depicted. The adjacent higher level represent the task level. As men-
tioned before, a task represents a set of operations that are executed by a
single thread of control. Notice that such thread of control can be imple-
mented by a sequence of instructions, i.e. a software program, but can also
be controlled by hardwired connections between operations, i.e. dedicated
hardware. Each task represents a separate thread of control. The hier-
archical level on top of the task-level shows the granularity of functions.
Functions represent a set of intercommunicating tasks that are executed
by a single thread of control. Notice that this control results in more pro-
cessing. For example a single command to start a task within a functions
leads to the execution of many fine-grain operations. Hence, the amount of
control per unit of computational power is different for each level. Within
a task, control takes place at a small granularity such as operations, i.e. a
relative large amount of control overhead. At higher levels in the hierarchy,
control is performed on task level and thus shows much less control per

32 Chapter 2 – Developments in video computing architectures

unit of computational power. Similar to the control of operations, tasks
and functions, we can extend the hierarchy to even higher levels.

Because many functions in this domain are quite application-specific and
flexibility and programmability is generally inefficient due to afore-men-
tioned control overhead, many tasks can be implemented with hardwired
operations (not programmable), whereas tasks requiring flexibility are map-
ped onto a general-purpose CPU.

Apart from implementation in hardware or software, each hierarchical level
also expresses a different granularity of parallelism. Within a task, many
fine-grain operation can be executed in parallel, thereby providing ILP.
Within a function, tasks can be executed in parallel, thereby providing
TLP, etc. As a result, the amount of parallelism increases significantly.

The following list summarizes the different properties of the various lev-
els in the control hierarchy as depicted in Figure 2.8 and is subsequently
discussed briefly:

• amount of parallelism in processing;

• grain size of functionality;

• amount of control overhead;

• general-purpose vs. application-specific processing;

• amount of flexibility.

parallel
processing

coarse
grain

rigid
low control
overhead

application
specific

sequential
processing

fine
grain

flexible
large ctrl
overhead

general
purpose

decreasing
level in the

control hierarchy

Figure 2.8: System properties versus instruction grain size.

Amount of parallelism
A logical gate is made from several transistors which are operating in par-
allel. For an adding operation, several logical gates are arranged in paral-
lel. A convolution operation in a DSP or VLIW-processor executes several

2.5 Examples of media processor architectures 33

multiplications and additions in parallel which consist of parallel gates that
contain parallel transistors, etc. Since a level in the hierarchy is a subset
of a higher level, the amount of parallelism increases.

Grain size of processing
Obviously, as the level of hierarchy increases, the grain size of the func-
tionality also increases. A multiplication has less functionality than e.g. an
MPEG quantizer task in which several multiplications are used to perform
the complete function.

Amount of control overhead
To perform a DCT at task level, only one command or function call is
required, whereas many instructions are necessary at the level of adders
and multiplications. The amount of communication that is required for
a sequence of instructions or commands is smaller at higher levels in the
control hierarchy, as compared to the amount of processing. Thus the com-
munication of high-level control has a low rate with respect to the data
communication. This requires a different approach for implementing the
high-level control communication as compared to the data communication.

General-purpose vs. application-specific processing
A task can be mapped on a dedicated processor or a general-purpose CPU,
but once the hardware or CPU is configured for the functionality of the
task, it remains fixed and it is controlled on task level. Therefore, at this
level, the control becomes more application-specific.

Amount of flexibility
Because the functionality at higher levels in the control hierarchy is more
application-specific, the flexibility decreases. A zig-zag scanning function
in an MPEG decoder can perform only a limited amount of different scan-
ning orders for a fixed block size. At a lower level, any scanning order
can be programmed for any block size or even a different function can be
implemented.

2.5 Examples of media processor architectures

2.5.1 Introduction to media processors

In the next chapter, we will analyze the computational complexity and
communication bandwidth requirements of high-end television functions.
This is an essential prerequisite for considering the problem of formulating
a new architecture, as it should be known beforehand which tasks should

34 Chapter 2 – Developments in video computing architectures

be carried out and with how much memory and speed. This chapter serves
as an overview text that could be labelled as “lessons learned from the
past”. The relevant architectural aspects in a new design should be taken
into account and mistakes should be avoided.

Some attempts in the past were made to deal with the requirements dis-
cussed in the previous chapter. Let us give an overview of these attempts
and discuss some of the architectural aspects required for the problem state-
ment. It is emphasized here that this chapter does not pretend to give an
exhaustive overview of media processors. Such overviews can be found in
alternative literature about DSPs or specialized handbooks. The purpose
of this chapter is to show samples of proposed systems, both in style and
of the evolution over time.

A fully programmable multimedia solution was presented by the so-called
Multimedia Video Processor (MVP) [32]. This processor was based on four
programmable DSPs, containing VLIW engines of 64-bit width, each of
them having a substantial computing power. Furthermore, the architec-
ture contained a powerful RISC processor for control and general-purpose
computing. Communication between the processors was based on a switch
matrix network, allowing arbitrary connections between processors and a
bank of memory units of size 20 × 2kByte.

Strong points of this system are the large parallelism of the computing
tasks by the set of VLIW DSPs and the corresponding large internal com-
munication bandwidth. Furthermore, including a RISC core enables flexible
control tasks to be carried out. A clear disadvantage is that the system is
rather expensive for consumer products, because it is more general than the
TV application domain desires. Another disadvantage is the programma-
bility of the system. Efficient programming of the DSPs appeared to be
feasible in DSP assembler language only, although this is not an inher-
ent problem. The tool set was just lacking. A further problem was the
programming of the parallelism. Tools for obtaining high parallelism were
not available, so that the scheduling and synchronization of the individual
processing tasks were left to the programmer. A third disadvantage of the
system is the distribution of the internal memory into many small banks.
For a typical TV function operating in the vertical dimension, a number
of video lines in memory is already required. Hence, a group of memory
blocks would be allocated for only a single function, thereby reducing the
flexibility and parallelism seriously, especially with respect to memory shar-
ing.

2.5 Examples of media processor architectures 35

A highly-programmable solution, which is tailored to the specific appli-
cation domain of video processing, is the so-called Video Signal Processor
(VSP) [33]. This processor contains generic operations with a large amount
of instruction-level parallelism, which makes the processor surprisingly pow-
erful. Due to the large amount of parallel operations and the single thread
of control that is scheduled at compile time, the VSP can be classified as
a VLIW processor. The set of arithmetic logic units (ALUs) and memory
elements are fully interconnected by means of a switch matrix. Although
some tools exist for scheduling of all the necessary operations performing
a function, a large amount of intelligent interaction by the programmer is
required. Moreover, the architecture is designed for regular processing with-
out conditional branches. Branches that are contained in the algorithms
have to executed in parallel, followed by a conditional selection. Conse-
quently, this makes the programming of video processing functions with
a large amount of data dependencies extremely complicated. Due to the
fully interconnecting switch matrix, the processing of the functional units is
never hampered by the communication network, while the communication
data can be routed from any output to any other input. The drawback of
such communication network is the lack of scalability, because the number
of long wires increases quadratically with the number of processing units.

Currently, the usage of Very Long Instruction Word (VLIW) becomes in-
creasingly popular for boosting processing power [26] [34]. These archi-
tectures have a large number of functional units that can be programmed
individually. High parallelism is obtained by using a very wide instruction
format, so that various functional units can be addressed at each instruc-
tion issue to the processor. An advantage of a classical VLIW over the
above-mentioned VSP system is that it is still reasonably effective for data-
dependent control, which makes the concept very powerful and suitable for
video processing and/or multimedia tasks. This explains the popularity of
this processing model in recent technical proposals.

The width of the instruction word is still limited in practice, since the
instruction decoding and memories would otherwise become unfeasible and
the compiler should be able to exploit more parallelism in the application.
This results in a parallelism factor of e.g. 4–6 for DSPs and 20–30 for more
application-specific processors (ASIP).

More cost/power efficient implementations are possible by introducing task-
level parallelism and by adapting the system more closely to the target

36 Chapter 2 – Developments in video computing architectures

application domain. The functionality within the task can be designed
rather dedicated to the application. Hence, they become only weakly pro-
grammable to change e.g. modes, resolution, pixel format, etc. In order to
do so, we need to provide evidence about the computational complexity of
typical TV functions. Are these kind of functions indeed significantly more
expensive when implemented by means of flexible fine-grain operations,
controlled by software? In general we can state that a dedicated solution
is more efficient than a similar function implemented on a general-purpose
processor. Figure 2.9 depicts a graph [35] that shows a difference of about
two orders magnitude in computation efficiency measure in mega-operations
per Watt (MOPS/W) between a dedicated hardware implementation and
an implementation with a general-purpose processor.

feature size [µm]

[MOPS/W]

106

105

104

103

102

101

100

2 1 0.5 0.25 0.13 0.07

i386SX
i486DX

micro-
sparc

7400
604e

turbo-
sparc

21164a 21364
604e

super-
sparc

P6

604
601

68040

ultra-
sparc

dedicated hardware
general-purpose hardware

Figure 2.9: Computational efficiency of dedicated versus general-purpose
hardware.

In the sequel, we present a few processor architectures which were summa-
rized in this section. The purpose of this limited overview is to comprehend
the architectural tradeoffs to be made and learn relevant system aspects.
Afterwards, in a succeeding chapter, several TV functions will be studied
and presented with complexity estimations.

2.5 Examples of media processor architectures 37

Table 2.1: Characteristics of experimentally developed VSPs.

Parameter VSP1 VSP2
technology 1.2 µm CMOS 0.8 µm CMOS
chip size 90 mm2 156 mm2

transistors 206k 1.150 M
package QFP 160, PGA 176 QFP 208
dissipation 1 W < 5 W
clock 27 MHz 54 MHz
word length 12 bits 12 bits
ALEs 3 12
MEs, size 2, 512 × 12 4, 2k × 12
ME style single port dual port
BEs – 6
inputs 5 6
outputs (OEs) 5 6

2.5.2 The Video Signal Processor

The architecture of the Video Signal Processor (VSP) is based on using a
plurality of signal processors which are connected via a high-speed commu-
nication network [36]. The paradigm for this work is based on the repeti-
tion of relatively small programs, repeatedly processing all passing pixels.
Branches in the program are not allowed. Instead, all conditional pro-
cessing steps are performed in parallel, followed by a conditional selection.
This makes it difficult to implement highly data-dependent or event-based
applications. This is in contrast with the current development in general-
purpose computing, i.e. the use of a powerful processor that carries out
all tasks more or less sequentially at very high speed and a large uniform
memory space in the background. Let us discuss some architectural aspects
of the VSP system [33] [36].

Two processor ICs have been designed and implemented successfully, called
the VSP1 and VSP2. The features of both ICs are given in Table 2.1.
The VSP2 also served as a vehicle for research on IC design to exceed
the 1-million transistor boundary in 0.8 µm CMOS technology. The VSP2
has about eight times the computing power of VSP1, because it contains
four VSP1 cores, running at the double clock frequency. As the table in-
dicates, the VSP architecture contains various elements: arithmetic logic
element (ALE), memory element (ME), buffer element (BE) and output
element (OE). Figure 2.10 shows the architecture in which the processing
elements are connected to a switch matrix. The architecture is organized

38 Chapter 2 – Developments in video computing architectures

switch matrix

ALE
core

P

ME
core

P P P

ALEs MEs BEs OEs

inputs

outputs program
load

Figure 2.10: Architecture of the Video Signal Processor.

such that all elements are active in parallel, by using pipelined process-
ing in all stages. For each processing element (PE), the instructions are
stored in a local program memory. After initializing the system with se-
rial downloading of programs, the PEs execute their instructions cyclically.
Branches in parallel processing are implemented by mapping conditions as
data-dependent selections (multiplexers). Each clock cycle, every PE can
take one or several data samples from the switch matrix and produce after
some delay, a new result that can be redistributed.

Figure 2.11 portrays a more detailed view on the ALE and ME building
blocks. The ALE unit primarily contains input data buffers (silos) and the
ALE core. Inside the ALE core, shifters, multiplexers for constant input
and an ALU for conventional operations can be distinguished. A multi-
plication inside the ALU is carried out as a series of successive additions
(Booth algorithm), to save hardware costs of a full multiplier. Typical op-
erations of the ALU are ADDi , SUBi (subtract), LOGi (logical), BM (bit
mask), UM (unsigned multiply) and SM (signed multiply). Index i refers
to various forms of the same operation.

The Memory Elements (ME) contain a two-port dynamic RAM and an
address calculation unit (see Figure 2.11). At the input side, so-called data
silos accept data with a capacity of 32 words of 12 bits. Data is written
cyclically into the RAM. The read address is calculated by subtracting the

2.5 Examples of media processor architectures 39

from switch
matrix

12 1212

shift

mux

P

shift

mux

Q

shift

mux

R

ALU
3

12

program

matrix
control

to switch
matrix

cnst

load

from switch
matrix

12 1212

+

12

program

matrix
control

to switch
matrixload

silos silos

60 60

A B C

RAM

2048
words

+
cnst

ra

write
addr.

read
addr.

wa

ME coreALE
core

data
in

Figure 2.11: Architecture of ALE and ME subsystems in the VSP.

desired (to be programmed) delay from the write address. The data silos
are required for time alignment of the data at the input stages of the PEs
(scheduling). Moreover, the silos facilitate interleaving of data streams for
(de)multiplexing operations and multi-rate processing.

Programming of the VSP is performed with signal flow-graphs, where the
units are graphically connected by wires. The nature of the architecture is
stream-oriented, meaning that small programs are repeatedly executed on a
stream of video samples. The programmer has to specify the periodicity of
the signal processing and the pipelining and delay of the processing units.
Despite the availability of graphical tools for programming the flow-graphs,
this can be a rather cumbersome task, especially if the processing task be-
comes so complex that it has to be partitioned over several processors. In
fact, the programmer is responsible for the three major issues in the pro-
cessor: partitioning, scheduling and time delay management.

Summarizing, various system and design aspects of the VSP can be listed.

1. The processor architecture clearly recognizes the high parallelism re-
quired for video processing. Important blocks such as PEs, MEs, etc.,
and memory silos are offered in parallel to the programmer. Because
the system is merely designed for pixel processing, the number of op-

40 Chapter 2 – Developments in video computing architectures

erations of the ALUs are limited. Hence, more complex operations
need to be emulated thereby consuming a considerable amount of
resources.

2. Communication is well covered by the implementation of a full switch
matrix. This allows arbitrary connections between the modules, so
that flexibility in programming of video functions is ensured. How-
ever, such a communication network does not scale properly for an
increasing number of function processing elements.

3. The grain of parallelism offered to the system designer is on the level
of primitive operations, that is individual instructions of a function
to be carried out. For example, a video filtering operation is bro-
ken down into individual operations of multiplications, additions and
delays. These operations are mapped onto the PEs described earlier.

4. All operations in the system are executed by a single thread of con-
trol which is scheduled by the compiler. This means that all parallel
operations need to fit into a single complex schedule. Programming
of the signal flow through the processing element in the correct order
is reasonably simple, but programming of the delays (scheduling) by
means of the silos and the buffer elements is cumbersome and is only
partially supported by some tools. This is problematic, because the
programmer has to know the processor and its subsystems in consid-
erable detail.

2.5.3 The Multimedia Video Processor (MVP)

In 1993-1994, the Multimedia Video Processor (MVP) [28], released under
the product code TMS320C80, was offered to the market. Just after the
breakthrough of MPEG coding in a wide application field, it was felt that
systems would be built in SW from that point on or in the nearby future.
The MVP Processor was certainly advanced in various ways. The chip,
designed in a 0.5 micron CMOS process, contained over four million tran-
sistors in a single package. Besides this, it was a clear multiprocessor sys-
tem and even heterogeneous in its kind, since a general-purpose computer
was combined with four advanced digital signal processors (ADSPs). Each
ADSP can handle 32 bits of data and 64-bit instructions, thereby boosting
the potential computing power to high numbers. Moreover, the chip offered
wideband communication facilities. The main application field of the pro-
cessor was video conferencing, general video processing and MPEG-related
applications. Figure 2.12 presents the global architecture of the processor.

2.5 Examples of media processor architectures 41

TI’s 320C80 / 4M transistors

transfer
control

video
control

crossbar network

advanc.
DSP

32 32 64

64 b.

RISC
MP+FPU

50 kByte SRAM
(organized as 25 x 2 kByte)

J
T
A
G

advanc.
DSP

32 32 64

advanc.
DSP

32 32 64

advanc.
DSP

32 32 64 64 32
32 b.

mem.
64 b.

display/capture

Figure 2.12: Architecture of Multimedia Video Processor.

Let us take a closer look at the multiprocessor architecture. The system
contains four advanced DSPs and a master processor (MP) which is a cus-
tomized RISC core. The MP RISC is a 32-bit computer can be programmed
with efficient high-level languages and is included for simple user interfaces,
control of the entire MVP, and for higher precision operations (including
floating point). The ADSPs are suited for stream-based computing with
high parallelism, in particular video and audio processing. The 64-bit in-
structions and data path enable several video samples to be processed in
parallel.

Parallelism in communication is ensured by a crossbar network, which en-
ables the connection of processors to a special part of the on-chip mem-
ory. The crossbar network supports up to 4.2 GByte/s bandwidth on-chip,
consisting of 2.4 GB/s data and 1.8 GB/s instruction traffic. The system
contains the considerable amount of 50-kByte memory, which is partitioned
into 16 blocks of 2 kByte, two 4-kByte caches for data and instruction of
the MP, and a separate scratch-path memory for the MP. The crossbar
facilitates a connection between each ADSP and a group of four 2-kByte
data modules. Furthermore, a second connection on each ADSP can be
connected to the four data modules of its neighboring ADSP for inter-
processor communication. Besides the processors, also a transfer controller
is connected to the memories. This transfer controller, which is activated
by the applications executing in the ADSPs, is responsible for managing the
entire traffic to on and off-chip memory and controls the image data flows
through the chip. The total off-chip bandwidth amounts to 400 MByte/s.

42 Chapter 2 – Developments in video computing architectures

Finally, programmable video controllers enable one to capture or display
video sequences in various resolutions.

data unit
registers

two 32-bit
data ports

multiplier

integer and
pixel data

path

address registers
local addr.

unit
global addr

unit

3 zero-overhead
loop/branch
controllers

instruction
and cache

control

64-bit
instructions

data
unit 31 32-bit registers

(scoreboarded)

integer unit
floating-
point unit

instruction
and data
cache ctrl

crossbar and TC interface

32-bit
instructions

64-bit
data

(a) (b)

Figure 2.13: Architecture of the ADSP (a) and MP (b) modules in the
MVP.

Figure 2.13 portrays a detailed diagram of the ADSP and the MP archi-
tecture. The key features of one ADSP unit are described below.

• Instruction word has 64-bit width and supports many parallel opera-
tions.

• Two address units are available, so that two memory operations per
clock cycle can be carried out.

• A single-cycle multiplier is included, which can handle one 16-bit
multiplication or produce two 8-bit results per clock cycle.

• The ALU accepts three inputs which can be split for parallel opera-
tions. In each pass when data is fetched from the registers, multiple
operations can be performed and it can yield up to four 8-bit results
per clock cycle.

• 44 Data registers keep data locally available for high-throughput pro-
cessing.

2.5 Examples of media processor architectures 43

• The ADSP operations range from simple bit-field operations to mul-
tiple arithmetic and logic functions on multiple pixels in each cy-
cle. Moreover, the ADSP has three hardware loop controllers for fast
repetitive processing which is typical for audio and video.

The Master Processor (MP) shown in Figure 2.13 is a clean RISC computer
to be programmed for high-level languages as C/C++. As opposed to this,
the ADSPs are programmed in assembler language in order to obtain the
highest possible efficiency and to have easy access to hardware features of
the DSP. The RISC core further comprises an IEEE-754 floating-point mul-
tiplier, capable of handling 100 MFLOPS, based on parallel handling of the
multiplication, addition and load/store operation. Even this processor has
thirty-one 32-bit registers and two 4-kByte caches for instructions and data.

Programming of the MVP is well possible, but it needs skilled program-
mers. Efficient programming of the ADSPs can only be done efficiently
in assembler language, which requires detailed knowledge of the hardware
architecture. Generally, assembler programs are not portable. Fortunately,
the RISC core is programmable in a high-level language. The communi-
cation to and from the internal and external memories is provided by the
transfer controller, which is activated by the application on the ADSPs or
the MP. Consequently, the programmer is responsible for the management
of the memory usage and the mapping of tasks onto the ADSPs. The sys-
tem designer has to distribute the tasks over one or more ADSPs and then
route and monitor the data flows in the architecture, in order to prevent
large caching problems and/or data storage collisions. The programmer is
responsible for an efficient and unique data preservation process, which is
not easily done in a shared memory system.

Summarizing, the main advantages and disadvantages of the MVP are pre-
sented below.

1. The distinction between high-level control decisions and some general-
purpose computing on one hand and stream-based high-throughput
processing on the other hand is acknowledged in the MVP architec-
ture.

2. The system is a multiprocessor computer that can perform the video
signal processing asynchronously from the input and output video
rate. This is achieved by internal buffers that decouple the chip clock
speed from the video application. Moreover, the buffers also decouple
and synchronize independent tasks on the processors.

44 Chapter 2 – Developments in video computing architectures

3. The system exhibits large parallelism in all three major aspects: com-
puting, crossbar communication and memory storage. Particularly
the last two have been broadly dimensioned (more connections and
buffers) and thereby enable to drive the chip to its maximum com-
puting performance.

4. For advanced processing and maximum performance, the designer
has to distribute computing tasks over several ADSPs. Also the split
between high-level control and native signal processing is preferably
performed by the designer, since the ADSPs can only achieve high
throughput for stream-oriented processing containing parallelism.
This still requires considerable knowledge of the processor.

5. Careful data I/O analysis is required for planning and usage of the
internal 2-kByte SRAM buffers. Since the memory is shared be-
tween the four ADSPs and the MP, data integrity has to be kept
and protected. The manufacturer delivers tools for programming the
individual processors and monitoring their performance, but a clever
distribution of tasks and their memory usage is handcrafted work.

2.5.4 The TriMedia processor

The TriMedia processor was one of the first experimental Very Long In-
struction Word (VLIW) processors. The processor is targeted for multi-
media computing applications and contains amongst others application-
specific hardware for MPEG decoding. The objective for the processor
usage is concentrated on embedded flexible computing for consumer elec-
tronics systems, like TVs, video phones, and set-top boxes.

The processor chip has a clear focus on MPEG-1 and MPEG-2 coding
which can be seen from the block diagram in Figure 2.14 of the first em-
bodiment, the TM1000 processor [26]. The chip contains supportive units
for variable-length decoding, and an image coprocessor which is special-
ized to advanced handling for blocks of image samples. Such a block can
be applied successfully for programmable filtering, scaling, and color-space
conversion [29]. The supportive blocks are discussed below in more de-
tail. Typical applications of the processor is are video/audio processing
applications. In the sequel, we address the functional blocks individually,
especially those relevant for video processing.

• VLIW processor core. This is a 32-bit DSP processor is suited for me-
dia applications. However, as opposed to most DSPs, the VLIW core

2.5 Examples of media processor architectures 45

Video in

Mem. IF

to PCI/XIO IF
32 bits, 33 MHz

Audio in

Timers

I2C
int.face

VLD copr.

VLIW
CPU

Video out

Audio out

SPDIF out

Sync.
Serial out

Image
copr

PCI/XIO

Intern. 32-bit bus
 (highway)

to SDRAM
CCIR656

YUV 4:2:2
19 Mpix/s

Stereo audio
I2S

2/4/6/8 chan.
I2S

CCIR601/656
YUV 4:2:2
40 Mpix/s

I2C bus to
camera, etc.

Variable-length
dec. for MPEG
slice-at-a-time

32K I$
16K D$

V.34 or ISDN
Front end

scaling,
YUV to RGB,
50 Mpix/s

D$

I$

Figure 2.14: Architecture of TriMedia processor chip.

does not provide special hardware for loop control. The processor fea-
tures a register file with 128 32-bit registers, which can be individually
applied and accessed. The processor enables general-purpose opera-
tion and is based on a VLIW instruction set. Five issue slots allow
the instructions to execute up to five operations simultaneously. An
operation can target one of the 27 available functional units (this will
be discussed later). A special feature is the use of so-called custom-
operations or media-operations, which can dramatically accelerate the
execution of a multimedia application. The processor has a 16-kByte
data cache and a 32-kByte instruction cache which are both 8-way
set-associative and contain cache lines of 64 Byte.

• Video-in and Video-out unit. The video-in unit accepts CCIR-601/656
compliant signals, based on 8-bit parallel data samples representing
4:2:2 YUV time-multiplexed data. The input unit can do limited
processing during receiving a video signal, such as horizontal sub-
sampling with a factor of two without CPU intervention. Video data
is written in separated Y, U, and V planes in the SDRAM memory.
The Video-out unit performs the inverse functions of the Video-in
unit, with the addition of enabling graphical overlays with a blending
function.

46 Chapter 2 – Developments in video computing architectures

• Image Coprocessor (ICP). The ICP is applied for intensive but straight-
forward image processing tasks, such as horizontal or vertical filtering
and image resizing. Internally, it has 32 FIR filters based on five sur-
rounding samples. The filter coefficients are programmable. The 32
filters are organized in a raster to generate pixels at subpixel resolu-
tion at the output side. In a special communication mode, the ICP
can also perform color-space conversion (e.g. YUV-to-RGB). In order
to locate the correct pixels in memory during the above-mentioned
tasks, the coprocessor contains management logic for keeping pointers
to input and output images in memory and support for bit masks to
manage several video windows simultaneously.

• Variable-Length Decoder (VLD). This unit decodes MPEG-1 and
MPEG-2 Huffman-coded bitstreams into DCT-coded streams for fur-
ther decoding. Since this decoding process operates on bit level, this
certainly relieves the CPU from time-consuming instructions on a low
system level. The decoding task runs as a memory-to-memory pro-
cess, where an input bitstream is converted into data-structures with
fixed-sized word lengths that have to be further decoded.

• Internal data bus. The data bus connects all internal subprocessing
units and enables access to the background memory. General access
to the bus is controlled by an arbiter, which is programmable and
can prioritize the accessability to create e.g. guaranteed bandwidth
or latency to specific blocks. Moreover, the bus supports access to
the PCI bus. This PCI bus can be used as interface to other chips
providing other interfaces such as UARTS, ethernet, USB, etc.

data
cache
16KB

data
cache
16KB

multi - port 128 words x 32 bits register filemulti-port 128 words x 32 bits register file

FU FU FU FUFU
funct.
unit

instruction
cache
32 KB

instruction
cache
32 KB

bypass networkbypass network

PC

VLIW instruction decode and launchVLIW instruction decode and launch

funct.
unit

funct.
unit

funct.
unit

funct.
unit

memory
bus

64-bit

Figure 2.15: Concept of TriMedia’s VLIW instruction handling.

2.5 Examples of media processor architectures 47

Let us now briefly discuss the instruction data format in somewhat more
detail. Figure 2.15 shows the concept of the VLIW processor in more de-
tail. Instructions are fetched from memory and expanded to drive five issue
slots in parallel. Each issue slot can access one of the functional units. The
operands and results are read from or written in the register file.

ALU DSP ALUFP ALU Shifter

add
subtract
comparisons
byte swap

add
subtract
round
int float

FIR
motion estim.
quad average

rotates
shifts

to bypass
network

arg2
5x32

arg1
5x32

Figure 2.16: TriMedia’s different types of instructions.

Figure 2.16 portrays conceptually how a compound unit can be utilized
for addressing a particular functional unit. A compound unit is the partial
instruction format, containing the arguments (or operands), correspond-
ing with an issue slot. The arguments are inputs for the operation to be
carried out. This operation can be of general ALU type, such as add, sub-
tract, mask, or floating-point type, which can all use e.g. rounding and
conversion. The DSP ALU enables the special custom operations men-
tioned earlier, such a FIR(.) for filtering, or QUADAVG(.) for averaging
of groups of samples. Also a shifter can be included, featuring pattern
shifting or rotation. To efficiently employ registers and data transfer units,
most instructions are implemented for vector processing. This means that
e.g. samples are packed together into four 8-bit or two 16-bit data items.
Otherwise, it would be a waste of computing power to use a 32-bit data
path if 8-bit video samples are processed.

Let us now briefly focus on the most powerful instructions, i.e. the cus-
tom operations. The operations are specialized to a certain application
domain and would require a sequence of traditional instructions if not

48 Chapter 2 – Developments in video computing architectures

Table 2.2: Selection of custom operations of the TM1000. Regular adds
and multiplies at full resolution have been omitted.

Function Custom Op. Description
DSP add dspidualadd dual clipped add of signed 16-bit halfwords

dspuquadaddui quad clipped add of unsigned/signed bytes
DSP multiply dspidualmul dual clipped multiply of signed 16-bit

halfwords
Sum of ifir16 signed sum of products of signed 16-bit
products halfwords

ifir8ii signed sum of products of signed bytes
ifir8iu signed sum of products of signed /

unsigned bytes
Byte average quadavg unsigned byte-wise quad average
Byte multiply quadumulmsb unsigned quad 8-bit multiply most signif.
Motion ume8ii unsigned sum of absolute values of signed
estimation 8-bit differences

ume8uu unsigned sum of absolute values of unsigned
8-bit differences

present. Computing power is further enhanced by using operations that
are frequently required in media processing applications. The following ex-
ample shows how the special custom operations can be exploited to achieve
a higher computation power. The example is based on the frame recon-
struction loop in the MPEG decoder, where a reference frame “back”and
“forward”are used for the past image and future image, respectively. The
inverse cosine transformed block is stored in “idct”. A straightforward cod-
ing example in the C programming language will look as in Figure 2.17.
The code addresses a byte at every clock cycle, while the infrastructure can
handle 32 bits, so that 75 % of the bandwidth is wasted. Moreover, the
special operations packing four samples into one word is not employed.
This packing is enabled in the converted code of Figure 2.18, where the
for-loop is unrolled with a factor of four. The code enables parallelization,
because the four pieces do not depend on each other. As a preparation for
upcoming steps, the variable “temp”is copied into four different ones, and
as an intermediate step, the copying of the result into the array “destina-
tion”can be demultiplexed and grouped together as a last step.
In Figure 2.19, a further optimization is reached by employing the spe-
cial custom operations. It can be noticed easily that the instruction “qua-
davg”can be applied for summing up the contributions “back[i+j]”and “for-
ward[i+j]”. This result is stored in “temp”which is then used to add the

2.5 Examples of media processor architectures 49

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
int i, temp;
for (i = 0; i < 64; i += 1) {
temp = ((back[i] + forward[i] + 1) >> 1) + idct[i];
if (temp > 255) temp = 255;
else if (temp < 0) temp = 0;
destination[i+0] = temp;

}
}

Figure 2.17: Sample C code for MPEG frame reconstruction.

contribution of the IDCT to the loop. This last step is mapped elegantly
with a parallel addition “quadadd”operation. Note that the last two steps
in Figure 2.19 can be combined into a single instruction, thereby eliminat-
ing the temporal storage in the variable “temp”. This last step is left to
the reader.

Let us now compare the complexity of the last result with the initial code.
In the initial code, the requirements were 3 additions, 1 shift, 2 tests, 3
loads, and 1 data store operation per pixel. After merging the last two
instructions in Figure 2.19, the code with custom operations requires 2
custom operations, 3 loads, and 1 store for 4 pixels. When comparing on a
pixel basis, this represents an improvement factor of about 6. Notice that
this concerns a simple example with no data dependencies, which
which can vectorized perfectly.

At the end of this section, we summarize various system and architectural
aspects of the Trimedia processor.

• The aforementioned example for MPEG-loop decoding shows the
powerful usage of custom operations. If repetitive signal-processing
tasks occur, then parallelism of the VLIW concept can be exploited
to its maximum. On the other hand, these instructions should be
known well in advance, since the compiler is not capable to exploit
this parallelism automatically.

• The processor is programmable in the common C language. This
is a major advantage that gives great flexibility for the application
programmer. The code can be developed on any platform and then

50 Chapter 2 – Developments in video computing architectures

void reconstruct (unsigned char *back
 unsigned char *forward
 char *idct
 unsigned char *destination
{
int i, temp0, temp1, temp2, temp3;
for (i = 0; i < 64; i += 4){
temp0 = ((back[i+0] + forward[i+0] + 1) >> 1) + idct[i+0];
if (temp0 > 255) temp0 = 255;
else if (temp0 < 0) temp0 = 0;
destination[i+0] = temp0;

}
}

temp1 = ((back[i+1] + forward[i+1] + 1) >> 1) + idct[i+1];
if (temp1 > 255) temp1 = 255;
else if (temp1 < 0) temp1 = 0;
destination[i+1] = temp1;

temp2 = ((back[i+2] + forward[i+2] + 1) >> 1) + idct[i+2];
if (temp2 > 255) temp2 = 255;
else if (temp2 < 0) temp2 = 0;
destination[i+2] = temp2;

temp3 = ((back[i+3] + forward[i+3] + 1) >> 1) + idct[i+3];
if (temp3 > 255) temp3 = 255;
else if (temp3 < 0) temp3 = 0;
destination[i+3] = temp3;

Figure 2.18: Loop-unrolled code for MPEG frame reconstruction.

easily mapped onto a Trimedia-based system. Subsequently, critical
loops can be optimized to considerably improve the performance.

• Clearly, the final parallelization factor strongly depends on the ap-
plication. If the application contains many irregular control loops
or conditional tests, the factor drops significantly. The VLIW core
is actually not suited for control processing, that is, although it can
handle general-purpose control processing, the parallelization factor
will decrease significantly.

• The input-output functions or data exchange operations between sub-
systems are carried out via the background memory. This gives flex-
ibility, but it further expands the required memory bandwidth – al-
ready being scarce – to high values.

• The chip subsystems are gathered around the data bus system. For

2.5 Examples of media processor architectures 51

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
int i, temp;

for (i = 0; i < 16; i += 1){
temp = QUADAVG(i_back[i], i_forward[i]);

i_dest[i] = temp;
}

}

int *i_back = (int *) back;
int *i_forward = (int *) forward;
int *i_idct = (int *) idct;
int *i_dest = (int *) destination;

temp = DSPUQUADADDUI(temp, i_idct[i]);

Figure 2.19: TM code based on two custom operations.

highly-parallel systems containing a plurality of coprocessors, the
bandwidth of such a bus structure is too limited. Moreover, the
available communication resources of the bus for a coprocessor de-
pends on the activities of the other coprocessors. This makes the
system unpredictable when the system is highly utilized. Yet another
drawback of the communication model of the Trimedia system is the
inter-coprocessor communication via the off-chip memory. This re-
sults in a high requirement for the already scarce off-chip memory
bandwidth.

• The second item mentions that the efficient mapping of software onto
the Trimedia core is on of its strengths. One of the reasons for this is
the centralized register file which offers a large amount of flexibility.
However, because all issue slots may require simultaneous access to
this single register file, multiple ports are required and therefore it
becomes a critical part in the design.

2.5.5 The Emotion Engine

The Emotion Engine is a processor system which was introduced for con-
struction of the second generation of gaming machines for connection with
a TV set (known as Playstation) [37]. The system forms the core of the
computational engine and is in its complete form a multiprocessor system.
Playing consoles are nowadays based on advanced 2-D or 3-D graphics gen-
eration in order to provide an impressive viewing experience. The amount

52 Chapter 2 – Developments in video computing architectures

of computations involved for high-quality graphics at more than TV resolu-
tion is huge and in the order of multiple GOPS. This explains why several
vector processors are contained in the system.

The processor architecture is based on a two-way superscalar core [38],
which is a 128-SIMD processor and two vector coprocessors [39]. This part
offers together nearly 5 GOPS and 6.2 GFLOPS computing power. The
chip is very large, over 240 mm2 in a 0.25 µm CMOS process and at the same
time, runs at the relatively high clock frequency of 300 MHz. The strategy
that the chip designer follows is worthwhile to mention here. Instead of the
usual evolutionary improvements in the chip design, the manufacturer has
chosen for an extremely aggressive computing performance specification.
Subsequently, the design is shrunk for every new technology step, while
keeping important parameters of the design specification, such as the clock
frequency, constant. To meet the specification with the initial technology
process, most of the blocks are customized designs, all running at a single
synchronous clock domain of 300 MHz [40]. Although difficult to achieve
for such a large die size, this approach enables to quickly follow technology
improvements without redesigns, so that the price goes down rapidly. The
hardware costs are reducing to a fraction of the system costs, while the
specification is reused for a number of generations.
The Emotion Engine portrayed by Figure 2.20 has a heterogeneous pro-

FPU Int-
Unit0

GIF

Interrupt
Ctrl

Timer
SIO

CPU core

128-bit 2.4 GB/s
1.2 GB/s

64 b.16K
I$

8K
D$

FIFO

VLD

CSC

Zigzag

VQ

IQ

Int-
Unit1

16K
RAM

VU0
4 FMACs, 1 FDIV

VP Unit 0

4K VU
mem0

4K micr
mem0

4Fmacs
1 Fdiv

VP Unit 1

16Kmicr
mem1

EFU:
1fm/1fd

16K VU
mem1

10-chan.
DMA
Unit

Memory
control

dual RAC
IDCT

Macroblock decoder

2x16-bit 3.2 GB/s

I/O
int.
fac

32-bit 150 MB/s

128b

Figure 2.20: Emotion engine processor architecture, based on a CPU core
and two vector processors (VP).

2.5 Examples of media processor architectures 53

cessor architecture where three types of processors are contained in the
same system: a general-purpose CPU core, two vector processors (VP)
for performing many floating-point matrix operations, such as perspective
transformation, and a JPEG/MPEG decoder processor [41]. The natures of
these three processor types are essentially different. The CPU core is used
for special actions and control. The VPs are applied for all kinds of graph-
ical generations and need high throughput rates to obtain high-resolution
graphics. For this reason, vectors of picture elements are processed at clock
speed in order to acquire sufficiently high parallelism. The high clock fre-
quency needs to be “multiplied”to generate the required resolution of the
graphics pixels. Finally, the MPEG/JPEG decoder is a –to a large extent–
dedicated processor for decoding the compressed pictorial data which is
recovered from an optical disk inserted in the system. Let us briefly high-
light the main elements of the architecture in Figure2.20 and discuss some
system aspects.

• The CPU core is a conventional RISC core, however, with increased
parallelism: the integer arithmetic has been implemented twice. This
enables some processing tasks for decoding such as MPEG bit-stream
conversion, while performing another task(s) in parallel. The in-
creased parallelism is also supported from the memory side, because
the core has 16 kByte RAM inside to store sufficient context.

• The Vector Processors VP0 and VP1 are powerful engines for par-
allel pixel computing. The processors resemble each other but are
not identical. The cache memories VU of 4K and 16K are orga-
nized for vector-based storage functions and both processors contain
a scratchpad memory of similar size to contain context of graphi-
cal extension programs or local pictorial information. Differences are
found in the local computation facilities. The VP1 processor contains
an extended functional unit for floating-point division and multipli-
cation. Both processors have four multiply-accumulate units suited
for floating-point accuracy (FMAC) and a divider (FDIV). Note that
VP0 can communicate directly with the CPU core for intermediate
coprocessing activities.

• The MPEG/JPEG decoder contains the conventional required de-
coding blocks, such as inverse cosine transformation (IDCT), inverse
quantization (IQ), scanning (zigzag), and variable-length decoding
(VLD). Some extra functions are integrated, like vector quantization
(VQ) in order to quickly modify the resolution of vectors of samples
and a FIFO buffer for feeding the decoder with compressed data from

54 Chapter 2 – Developments in video computing architectures

disk. The reconstruction with motion-compensated prediction, which
is required for MPEG is performed in software.

It is worthwhile to mention the communication facilities here, of which the
primary function are a 64-bit graphics interface (GIF) to communicate to
an external graphics engine for pixel rasterization, and the double 16-bit
direct RAMBUS interface which supports a bandwidth up to 3.2 GByte/s.
This high bandwidth is particularly required for high-resolution graphics
generation. The high external bandwidth led to a 128-bit wide bus to con-
nect the different processors internally.

Table 2.3: Characteristics of Emotion Engine.

Parameter Value
CPU core 128-bit RISC (MIPS IV subset)
Integer unit 64-bit wide
Clock frequency 300 MHz
Multimedia ext. instructions 107 at 128-bit width
Integer gen.-purp. register 32 at 128-bit width
Table-lookup 48 double entries
Instruction/Data cache 16 kB (2-way)/ 8 kB (2-way)
Scratchpad RAM 16 kB (dual-port)
Main memory 32 MB RDRAM, dual channel, 800 MHz
DMA 10 channels

Table 2.3 portrays the key parameters of the Emotion Engine. The table
shows that the RISC core is already quite powerful and enables consid-
erable parallelism with 128-bit wide instructions and 64-bit integer units.
Attention has also been payed to multimedia instructions, such as indicated
in the previous section. Since four different processors are contained, the
memory bandwidth has been specified to an ultimate speed of 800 MHz
based on RAMbus technology, offering 3.2 GB/s bandwidth.
Table 2.4 shows a few graphics performance parameters and the main tech-
nology parameters. The graphics performance is in tens of millions of poly-
gons/s and even the MPEG decoder has a throughput rate of 150 Mpixels/s,
which enables high-resolution TV pictures at real time display.

A more detailed diagram of the vector processor is shown in Figure 2.21.
Instructions are entered in 64-bit format and split into two subfields of 32
bits each. One part controls the 4-way floating multiply-accumulate units,
while the other part programs the lower execution unit with a.o. a divider

2.5 Examples of media processor architectures 55

Table 2.4: Performance and chip parameters of Emotion Engine.

Parameter Value
Perspective transformations 66 Mpolygons/s
Lighting/fogging 38 M / 36 Mpolygons/s
Curved surface (Bezier) 16 Mpolygons/s
Image Processing Unit MPEG-2 block decoder 150 Mpix/s
Gate width / Vdd voltage 0.18 µm / 1.8 V
Metal layers 4 layers
Transistor count 10.5 Million
Die size 240 mm2

Package 540 PBGA

and ALU. Local data for the upper unit is stored in 32×128-bit floating-
point registers, enabling quick data exchange between the FMAC-units.
The 16×16-bit integer registers support the lower execution unit. Note
that the vector processor is basically a VLIW machine.

Upper Execution Unit

32 x 128 bit
floating-point registers

G
ra

ph
ic

s
in

te
rf

ac
e128-bit

64-bit128 b

64-bit Instructions

F
M

A
C

16K VU Mem1

VP Unit 1

16Kmicro-
mem1 VLIW

16x16b
Integer
Regs

Main data bus

64-bit Instructions

Upper I / Lower I

128-bit

F
M

A
C

F
M

A
C

F
M

A
C

128-bit

Lower Execution Unit + EFU

F
D

IV

M
is

c

LS
U

A
LU

F
M

A
C

F
D

IV

128 b.

2x 128 b.

32 b.

Figure 2.21: Emotion engine vector processor architecture.

It is emphasized here that the emotion engine chip connects to an exter-
nal graphics chip which is even more powerful than the internal vector
processors. This external graphics processor will not be discussed here in

56 Chapter 2 – Developments in video computing architectures

detail, but some key figures will be supplied. The graphics chip also runs
on 300 MHz clock frequency and has 16 pixel processing engines in paral-
lel. The internal RAM size is 4 MByte. Memory bandwidth and internal
data communication has been specified to top performance: 48 GByte/s
bandwidth in total. Data bus size internally is a 2 × 1024-bit bus for sep-
arate reading and writing. The display color depth is 32 bits, using RGBα
planes. The external graphics chip can perform all typical graphics func-
tions, such as texture mapping, fogging, alpha blending, bi- and tri-linear
filtering, anti-aliasing, multi-pass rendering, etc. Performance is in the 50–
75 Mpolygons/s area, and yields a 150 Mpixel/s pixel drawing rate. The
chip contains 43 million densely packed transistors on 279 mm2 area, and
it is packaged in a 384 BGA.

At the end of this section, we summarize the most relevant aspects of the
Emotion Engine.

• The engine is a rather asymmetrical or heterogeneous multiprocessor
system on a single chip. The RISC core is general purpose, whereas
the vector processors are suited for processing groups of pixel data.

• The system architecture is heterogeneous, particularly in the hard-
ware functions implemented. The different processors are mostly
based on the VLIW principle. Besides these processors, a dedicated
hardware processor for MPEG decoding is included. This leads to
three different processing architectures on a single chip.

• It seems that programming of functions is separated on a functional
level. Given the total complexity of the chip and the possible inte-
grated functionality, this is a sensible choice. However, due to the
heterogeneous nature, a high utilization of the hardware can only be
achieved by programmers with sufficiently detailed knowledge of the
architecture.

• The included MPEG decoding pipe serves as full hardware decoder
for video material read from the optical disk storage system. Since
the programmable processing part is rather powerful, the system can
be used as a DVD video player. This improves the re-usability of the
system considerably.

• The emotion engine connects to a graphics processor which is about
as large as the processor system itself, thereby boosting graphics to
ultimate performance. The result is a system with a very large ca-
pacity for even 3-D graphics processing.

2.6 Concluding remarks 57

2.6 Concluding remarks

This chapter has briefly outlined ways for improving parallelism in com-
puting architectures and discussed also the associated control aspects. The
examples of media processors have revealed that a number of aspects have
to be considered carefully if an appropriate system design for television has
to be adopted. The primary aspects are computing power, communication
and memory, which are all related to other dimensions in the design space
such as costs, parallelism, control, etc. In this section, we provide a few
concluding remarks prior to presenting a new concept in the next chapter.

The VSP was designed as a generalized signal processor for pixel appli-
cations. Its main problems are the complex scheduling problem of the
large amount of parallel operations and the missing capabilities for data-
dependent and event-driven (irregular) processing. The MVP is a much
more powerful and flexible (of course another IC technology), providing a
multiprocessor architecture. Also for the MVP, the main problems are the
programming, particularly for multiple tasks on low level and the passing
of data from one subprocessor via memory to another one (memory man-
agement). The C-compiler does not have a high efficiency, necessitating co-
programming of C and assembler language. The TriMedia provides a fully
C-programmable environment and comprises a heterogeneous architecture
with more dedicated hardware. However, due to the limited instruction-
level parallelism and the lack of task-level parallelism, the system does not
offer sufficient computational performance for the TV domain so that more
TV-oriented coprocessor engines are required. The processor seems an in-
teresting candidate for high-end TV, if it is combined with other processors
which are tailored to high-performance and/or high-throughput processing
tasks.

Finally, the last example of media processors, called Emotion Engine, shows
what can be achieved if the latest performance in IC technology is chosen.
The system provides a heterogeneous architecture with various and differ-
ent high-performance programmable embedded processors. This approach
could well be adopted for high-end TV where also various processing tasks
and intensive memory communication have to be covered. However, a clear
discrepancy is the aspect of programmability. Since this programmable
hardware is more costly than dedicated functional units, a highly pro-
grammable architecture needs to be justified by other aspects. For game
applications, licensing of the associated SW could be the source for fund-
ing the extra costs. Unfortunately, in the TV world, such corresponding
SW which can be sold separately, is absent. This clearly points towards

58 Chapter 2 – Developments in video computing architectures

Table 2.5: Overview of merits and shortcomings of the presented systems.

System Merits Shortcomings
VSP - Large amount of ILP - No TLP

- Deterministic behavior; per-
formance known at compile
time

- Switch matrix does not scale
very well for more complex sys-
tems

- General-purpose by fine-grain
primitive operations

- Complex scheduling of the op-
erations

- Computational performance
does not depend on the com-
munication network, i.e. no
stall cycles

-

-

Not programmable in a stan-
dard language such as C
Not effective for data-
dependent programs

MVP - Heterogeneous mixture of par-
allel DSPs and a general-
purpose CPU

- Detailed architecture knowl-
edge is required for efficient pro-
gramming in assembly

-

-

An adequate amount of par-
allel communication resources
Both ILP and TLP

- Centralized memory controller
and the switch matrix limits the
scalability

- Mapping of tasks on the multi-
processors by hand

TriMedia - Easily programmable in stan-
dard C

- No TLP by means of pro-
grammable multiprocessors

- Heterogeneous mixture of a
DSP and dedicated coproces-
sors

- Unpredictable performance be-
havior due to run-time assign-
ment of the communication re-
sources (memory and bus)

Emotion
Engine

- Heterogeneous mixture of par-
allel DSPs (vector processors),
a general-purpose CPU, and a
dedicated coprocessor

- The heterogeneous nature and
the large extend of programma-
bility requires detailed knowl-
edge for efficient programming

-
-

Both ILP and TLP
High computation perfor-
mance

- Lacking on-chip shared memory
for inter-processor communica-
tion hampers the programming

- Dedicated design of blocks for
a single product limits the
reusability

Note: ILP = Instruction-Level Parallelism, TLP = Task-Level parallelism

a more low-cost solution for TV systems. A possible solution will be ex-
plored later, but to make the correct tradeoffs between programmability
and application-specific processing, it is first required to analyze TV appli-
cations and associated computing and memory costs more extensively.

2.6 Concluding remarks 59

Table 2.5 gives an overview of the most important achievements and short-
comings of the presented systems. The table shows how certain architec-
tural aspects result from design tradeoffs. For example, a switch-matrix
network offers high-throughput communication with a predictable perfor-
mance behavior. However, it results in a complex design and does not scale
properly toward more complex systems. Another example is the realiza-
tion of a high amount of instruction-level and task-level parallelism in a
system. On the other hand, such systems are often more difficult to pro-
gram efficiently. Clearly, system requirements are usually contradicting as
was already stated in Chapter 1. Hence, the tradeoffs for system design
with its merits and disadvantages should be made carefully.

60 Chapter 2 – Developments in video computing architectures

Chapter3
Examples of video functions

and their expenses

To determine the architectural requirements, first the functional require-
ments have to be understood. To this end, this chapter shows the char-
acteristics of the video processing functions by means of some examples.
Such an exercise give a first insight in the type of architectures that fit
naturally to the algorithms. Obviously, the choice of an architecture also
depends on many other constraints as stated already stated in Chapter 1.
If these constraints are conflicting with the naturally fitting architecture,
reconsideration of the algorithms might be required. Note, that determining
the architecture depends on the algorithm and visa versa. Hence, this re-
quires an integral design approach. To go one step further in determining
the feasibility of an architecture, the resource requirements need to be ana-
lyzed. Therefore, the chapter also discusses resource requirements by means
of example analysis of typical video processing functions. Considering the
results from the analysis and all additional constraints, the architecture re-
quirements of a system can be determined.

Scire est mensurare (J. Kepler, 1571 – 1630)
To measure is to know

3.1 Tradeoffs in system design

In Chapter 1 it has already been clarified that the architecture of conven-
tional TV systems does not satisfy the needs of future multimedia systems

61

62 Chapter 3 – Examples of video functions and their expenses

in the consumer electronics domain. Future TV technologies require hetero-
geneous systems that are able to perform a large diversity of tasks, ranging
from real-time, stream-based processing such as video filtering, to non-
real-time and event driven processing for e.g. web browsing. Moreover, the
increasing integration density according to Moore’s law is exploited by the
integration of more functionality and the growing complexity of multimedia
functions. These motivations lead to a continuously growing complexity of
Systems-on-Chip (SoC), where complexity is determined by the number of
different component types (not number of components), the different types
of interactions, and lack of structure in the interactions. To maintain a short
time-to-market for such systems, reuse of design effort is absolutely essen-
tial. This requires extensible and scalable systems. Besides time-to-market,
there is another important driver for requiring more flexible systems. Be-
cause Moore’s law dictates more and more transistors on a silicon die and
an increasing complexity of the production process, also the design costs for
SoC continuously grows. At this moment in time, we are facing a new era
in the TV domain in which the hardware and software design costs and the
fixed production costs (e.g. cost of a mask set) significantly start to affect
the total cost of the SoC, particularly in the higher market segment with
its relative small production volume. Consequently, these chips need to be
produced in large volumes to decrease the cost per product. To achieve this
target, the market range of the SoC needs to be increased, i.e. the system
should be flexible enough to be applied in a larger range of products or even
product families. For example, the system should offer 50-to-100 Hz con-
version for CRT-based TV, motion-compensated deblurring for LCD-based
flat TV, and motion-compensated subfield generation for plasma-based flat
TV. The flexibility should provide a motion-compensation unit which is
required for all three different TV systems. Adding flexibility to achieve
such above-discussed market increase, potentially increases system costs.
Nevertheless, it can be concluded that all these considerations lead to an
increasing amount of required flexibility.

This required extra flexibility can be provided by a high-speed, fully-pro-
grammable sequential processor. Such processor is most suitable for imple-
menting any algorithm and is therefore typical for a general-purpose CPU.
However, due to other constraints such as system costs, a high computa-
tional performance, and a low power consumption, a high degree of parallel
computing is inevitable. To establish this high computational performance
per unit of silicon area, the parallelism in the system should be optimally
exploited. However, designing such a system with well-utilized hardware
components, while offering sufficient flexibility to meet all requirements,

3.2 Sharpness enhancement 63

is most challenging. Hence, the amount of parallelism is an important
design parameter to tradeoff flexibility, computational performance, and
system costs. This chapter analyzes the expenses of several video process-
ing functions, enabling the architect to make the correct tradeoffs. First,
Section 3.2 and 3.3 elaborate on the functionality of sharpness enhance-
ment and sampling-rate conversion as examples of video processing func-
tions. Subsequently, Section 3.4 determines the computational complexity
of video processing functions. Because the results are very function specific,
Section 3.5 discusses some general observations and postulates the codesign
of both the algorithms and the architecture.

3.2 Sharpness enhancement

To determine expenses in terms of computational complexity, first the al-
gorithms of the function should be studied. Therefore, as an example this
section will elaborate on a sharpness enhancement algorithm as discussed in
[9]. Section 3.2.1 will first motivate the desire for sharpness enhancement,
followed by detailed descriptions of each part in the algorithm.

3.2.1 Introduction to sharpness enhancement

In the consumer electronics area, the display technologies of televisions and
computers are gradually merging, due to the advent of new features such as
internet, games and video conferencing. Since the spatial resolution of syn-
thetic images of the PC outperforms that of natural video scenes, the desire
for improved quality in TV images will increase. The subjective attribute
sharpness, which is determined by the human visual system, is one of the
most important factors in the perception of image quality. The conventional
techniques derived from generic image processing applications to improve
the image sharpness are not suitable for broadcasted TV material, because
they do not consider motion pictures and transmission impairments, such
as noise, whereas the conventional algorithms from the TV world are not
applicable for synthetic images. In this section, we elaborate on a generic
sharpness improvement algorithm that can be applied for television images
containing both natural scenes and graphically generated pictorial infor-
mation.

We have confined ourselves to an approach for sharpness improvement in
which an overshoot is added to the edges around objects in the image [42].
A literature study revealed that peaking, crispening, sharpness unmasking
and statistical differencing are all techniques based on adding overshoot

64 Chapter 3 – Examples of video functions and their expenses

[42] [43] [44]. It has been shown experimentally that from the above-cited
possibilities, peaking gives a high subjective sharpness improvement and it
yields a simple solution from the signal processing point of view. In addition
we have extended this technique with an advanced adaptive control which
uses the local image content, for combating various signal deteriorations
such as transmission impairments and aliasing artifacts, thereby enabling
the application for a much wider range of video signals. Spatially variant
enhancement has already been subject of investigation for e.g. contrast
enhancement [45] [46] [47].

In peaking, the added overshoot is determined by 2-D high-pass filtering of
the input signal, which can be formulated mathematically as:

G(j, k) = F (j, k) +
w∑

n=−w

w∑
m=−w

an,m · F (j − n, k −m), (3.1)

where F (j, k) denotes the input signal and the weight factors ax,y repre-
sent the coefficients of the high-pass filter with order w. In this model,
the filtered signal acts as an approximation of the second derivative of the
original image. With the aforementioned model, a generic sharpness im-
provement algorithm can be found by locally controlling the amount of
overshoot added, i.e. making the addition adaptive to the local picture
contents and the transmission impairments measured in the same area. We
have concentrated on the following properties for adaptive control of the
sharpness enhancement:

• local intensity level and related noise visibility;

• noise level contained by the signal;

• local sharpness of the input signal;

• aliasing prevention, where alias results from non-linear processing
such as clipping.

Each of these control functions is very specific for a certain artifact. Conse-
quently, dependent on the type of source signal it is desirable to enable a se-
lection of the control functions. Moreover, future input signals may require
different or additional control functions for different artifacts. For example,
digitally coded signals generally contain artifacts such as blocking and ring-
ing that are not detected by the above-mentioned control functions. As a
result, these artifacts may be enhanced and become more visible. Hence, a
modular architecture concept as depicted in Figure 3.1 is designed to enable

3.2 Sharpness enhancement 65

extensibility and modifications of the control functions. The blocks that
denote “artifact metric”, model the content-adaptive control functions to
prevent artifacts. From the resulting suppression gains k1 through kn the
overall suppression gain is derived and subsequently applied to control the
output signal of the peaking filter. Let us now discuss the control functions
in more detail.

F(j, k)

2-D
peaking

filter

+

artifact
metric 1

artifact
metric 2

artifact
metric n

overall suppression calculation

ko

G(j, k)
ko(j, k)

k1(j, k) k2(j, k) kn(j, k)

H(j, k)

Figure 3.1: Concept of the modular sharpness-enhancement architecture.

3.2.2 Local intensity level and related noise visibility

The Human Visual System (HVS) is capable of perceiving a large range
of intensities, but not simultaneously within an image [48]. Instead, the
HVS handles this large variation by adapting itself to its overall sensitiv-
ity, a phenomenon known as brightness accommodation. The “simultane-
ously”perceived subjective brightness B is for a given brightness accom-
modation level Bb a continuous function of the intensity. B increases as a
function of the intensity and is upper-bounded by peak-white and lower-
bounded by pure black. The exact functional dependence of the intensity
is unknown, but a mathematical approximation derived from experiments
can be:

B = K1 · {erf(K2(I −Bb)) + 1}, (3.2)

with K1 and K2 constants and Bb the brightness accommodation level (see
Figure 3.2). Let us now consider the influence of noise on the perceived
brightness. If the intensity level of an object in the image exceeds the
accommodation level, noise with a negative amplitude is perceived to be
more visible than noise with a positive amplitude at that position. This

66 Chapter 3 – Examples of video functions and their expenses

intensity(I)

Simultaneous
perceived
brightness(B)

Bb

Figure 3.2: Simultaneously perceived brightness as a function of the in-
tensity.

phenomenon is shown in Figure 3.2. To perceive the same amount of “posi-
tive”and “negative”noise, the noise with positive amplitude has to be larger
than the noise with negative amplitude. Consequently, overshoot resulting
from the 2-D high-pass peaking filter has to be larger than the undershoot
from this filter for high-intensity regions in the image. For low-intensity
regions in the image, an opposite statement applies. Here, high-intensity
values are the intensity values higher than the accommodation level Bb and
low-intensity values are the intensity values lower than Bb. However, the
accommodation level also depends on intensity contributions from other
sources than the display (sun light, light spots, etc.). For example, if a
large amount of surrounding light is present while watching a television
picture, details in dark areas cannot be distinguished. Since the surround-
ing light conditions are unknown in a TV set, the accommodation level Bb

is assumed to be half the intensity range of the video signal (Bb = 128 for
8-bit intensity values). By compensating the amount of overshoot in high-
and low-brightness areas, the perceived amount of overshoot is equal for all
intensity levels. Experimental evaluations show that the subjective noise
sensitivity decreases when the output of the peaking filter is corrected with
a suppression gain k1(j, k) according to:

k1(j, k) =

{ F (j,k)
256 , H(j, k) > 0

255−F (j,k)
256 , H(j, k) ≤ 0

, (3.3)

where F (j, k) is the input intensity level (0...255) and H(j, k) stands for
the output of the peaking filter.

3.2 Sharpness enhancement 67

3.2.3 Local sharpness of the input signal

Occasionally, the generated overshoot can be rather large, which may re-
sult in conspicuously visible sharpness or even annoying impressions of the
image. For steep luminance transitions, the output of the high-pass filter
has generally a high amplitude. This results in a considerable amount of –
undesirable – extra overshoot at already steep edges. To prevent this, the
local steepness of luminance transitions is measured. The steepness mea-
surement is based on an approximation of the maximum derivative of the
signal in all spatial directions. The approximation is based on determining
the dynamic range of the signal within a small surrounding of the desired
position. The steepness can be described mathematically as:

D(j, k) = Fmax(j, k)− Fmin(j, k), D(j, k) with
Fmax(j, k) = max{F (j − n, k −m) | n, m ∈ 〈−1, 0, 1〉},
Fmin(j, k) = min{F (j − n, k −m) | n, m ∈ 〈−1, 0, 1〉}.

(3.4)

Thus for 8-bit pixel values D(j, k) ∈ [0..256〉. This steepness indication can
now be used to adaptively control the amount of sharpness enhancement.
Hence, a correction gain k2(j, k) is applied to suppress the enhancement
there where the steepness is too large. The relation between the correction
gain k2(j, k) and the local steepness, is evidently inversely proportional to
the dynamic range D(j, k) according to:

k2(j, k) =

0, k̂2(j, k) < 0
1, k̂2(j, k) ≥ 1
k̂2(j, k), elsewhere

,

where k̂2(j, k) = 1.25− 0.01 ·D(j, k).

(3.5)

Thus for 8-bit pixel values −1.3 ≤ k̂2(j, k) ≤ 1.25. It can be seen that
k2(j, k) suppresses the sharpness enhancement for steep edges, i.e. large
dynamic ranges (see Figure 3.3). Relation (3.5) is an empirical relation
that was found after conducting numerous experiments.

3.2.4 Noise contained by the signal (adaptive coring)

Sharpness enhancement amplifies the noise level and thus decreases the
signal-to-noise ratio (SNR). Since the output of the enhancement filter is
proportional to the local detail in the image, and the noise is equally dis-
tributed over the image, the SNR decreases in low-detail areas, so that
noise in these image parts is mostly annoying. By suppressing the sharp-
ness enhancement for low-detail areas, the subjective image quality can be

68 Chapter 3 – Examples of video functions and their expenses

D(j,k)
0 256

k2(j,k)

0

1

128

Figure 3.3: k2(j, k) as function of the dynamic range.

improved. If the output of the peaking filter is large, it may be assumed
that an edge is detected. This is true when the signal power exceeds the
noise power, thus if the SNR is larger than 0 dB. If the filter output is
small, noise can be a significant part of the signal contents. Summarizing,
the SNR can be preserved by suppressing the sharpness enhancement at
positions in the image where the information content of the video signal
is small. To explain the effect of applying a correction gain k3(j, k) at the
output of the peaking filter we first define the peaking operation P{.}.

H(j, k) = P{F (j, k)} =
w∑

n=−w

w∑
m=−w

an,m · F (j − n, k −m),

where H(j, k) denotes the output of the peaking filter and F (j, k) is the
input signal consisting of the original noise-free video signal S(j, k) and a
superimposed noise signal N(j, k). Thus,

F (j, k) = S(j, k) + N(j, k).

Consequently, when applying a correction gain k3(j, k) at the output of the
peaking operation, the output SNR becomes:

SNRo =
E

{
[S(j, k) + k3(j, k) · P{S(j, k)}]2}

E {[N(j, k) + k3(j, k) · P{N(j, k)}]2} , (3.6)

Regularly, the noise signal is equally distributed over the image for a given
noise level. When the term P{S(j, k)} in Equation (3.6) is small, e.g. in
low-detailed areas, the SNR can only be improved by decreasing k3(j, k).
For other values of the filter output, k3(j, k) equals unity. The previously
described behavior of k3(j, k) can be formulated by:

k3(j, k) =

0, k̂3(j, k) < 0
1, k̂3(j, k) ≥ 1
k̂3(j, k), elsewhere

where k̂3(j, k) = −0.25 + 0.05 · |H(j, k)|,

, (3.7)

3.2 Sharpness enhancement 69

with H(j, k) the output of the peaking filter. This function, also known
as coring, has a small transition to let k3(j, k) increase gradually from 0
to 1. Consequently, in flat low-detailed areas in the image where S(j, k) is
relatively large, the low filter output H(j, k) will lead to a small k3(j, k).
However, this solution has a disadvantage. When the noise power is small,
k3(j, k) does not have to depend on H(j, k) as described in Equation (3.7) to
obtain a good SNR. A high SNR can also be obtained if k3(j, k) is decreased
less for smaller values of H(j, k). This problem is solved by giving H(j, k)
a penalty E depending on the noise level. Consequently, k3(j, k) becomes:

k̂3(j, k) = −0.25 + 0.05 · (|H(j, k)| − E). (3.8)

The noise level is determined using Equation (3.4). It was empirically found
that the amount of noise is inversely proportional to M , where M is the
number of times D(j, k) does not exceed a certain threshold τ within a
picture. This property can be formulated mathematically as:

M =
Ll∑

j=1

Lf∑
k=1

U [D(j, k)− τ], (3.9)

where U [.] denotes the unit-step function, Ll the number of pixels per video
line and Lf the number of video lines per field or frame. Experimental
results have shown that τ = 10 is a satisfactory threshold value. The
measured value of M is translated to the penalty E according to:

E = 50−
(

M · 210

Ll · Lf

)
. (3.10)

Evidently, the value of M is normalized to the image size. The noise mea-
surement as discussed above is not very accurate, but it proved to be suffi-
cient for our application. When the image is noiseless (45 dB), the penalty

k3(j, k)

5+E 25+E
|H(j, k)|

E<0

E>0

1

Figure 3.4: k3(j, k) as function of the peaking filter output.

decreases below zero and no coring will be applied. The suppression gain

70 Chapter 3 – Examples of video functions and their expenses

k3(j, k) is depicted in Figure 3.4. It can be seen that the coring function
shifts to the left when the image is noiseless and it shifts to the right if
more noise is measured in Equation (3.9).

3.2.5 Prevention of aliasing from non-linear processing

Clipping of the signal to prevent the pixel values to exceed the maximum
range, may cause artifacts. Clipping is a non-linear operation which creates
additional cross-frequencies, which may partially fold back into the signal
spectrum, causing undesired aliasing components. The only way to solve
this problem is to prevent the occurrence of clipping.

The clipping problem occurs mostly locally in a number of samples on
or close to a signal transient. If, in accordance with the previous subsec-
tions, a suppression factor k4(j, k) would be defined, the gain factor would
show significant corrections for the clipped samples only, and little for the
surrounding samples. Consequently, the parameter k4(j, k) would portray
a rather discontinuous behavior at locations in the image where clipping
occurs, thereby resulting in aliasing effects. Alternatively, if k4(j, k) would
vary smoothly as a function of the sample position, the system would be-
come locally linear and aliasing would not be visible. A smooth behavior
of k4(j, k) is guaranteed if it is considered and controlled on an area basis
(e.g. rectangular blocks) instead of a sample basis. As a result, the image
is divided into a raster of blocks, each of them being represented by a sin-
gle k4(j, k) value. Hence, the “subsampled”suppression gain of k4(j, k) is
defined as:

K4(J, K) = k4(nJ + 0.5n, mK + 0.5m), (3.11)

where n is the horizontal size of a block in pixels and m the vertical size of
a block expressed in lines. Experimental results have shown that a block
size of 32× 32 is a good choice.

Let us now consider a workable definition of K4(J, K) and k4(j, k). It was
found that the potential number of clippings that would occur in the actual
block area is related to the smoothed version of k4(j, k) by the following
reasoning. If k4(j, k) shows a strong local decrease in the correction gain
in a particular area, then because of its smoothness, a significant number
of samples will be affected. If the decrease is small, then the amount of
samples affected is also small. Hence, the value of the correction is propor-
tional to the number of clippings in that area. Since this relation was found
to be more or less linear, K4(j, k) is defined as a value proportional to the
number of potential clippings. The counted number of potential clippings,

3.2 Sharpness enhancement 71

called NC(J, K), is determined by

NC(J, K) = (3.12)
32J+16∑

j=32J−16

32K+16∑
k=32K−16

(U [−H(j, k)− F (j, k) + 0] + U [H(j, k) + F (j, k)− 255]),

where U [.] denotes the unit-step function and where H(j, k) + F (j, k) rep-
resent the sharpness enhancement output if no correction gain would be
applied. Hence, counting the number of times that H(j, k) + F (j, k) is
smaller than 0 and larger than 255 gives the number of potential clippings.
Notice that U [−H(j, k)− F (j, k) + 0] and U [H(j, k) + F (j, k)− 255] equal
1 for H(j, k) + F (j, k) < 0 and H(j, k) + F (j, k) > 255, respectively. After
counting these potential clippings, the counter value NC(J, K) is converted
to K4(J, K) with a linear transfer function. This function equals

K4(J, K) =

0, K̂4(J, K) < 0
1, K̂4(J, K) ≥ 1
K̂4(J, K), elsewhere

,

where K̂4(J, K) = 1.3− NC(J, K)
170

.

(3.13)

The division of an image into a raster of blocks is partially depicted in
Figure 3.5. To reduce the amount of line memories, K4(J, K) is determined,
stored and provided in the next field or frame. Prior to carrying out the
actual gain correction, K4(J, K) has to be up-sampled and interpolated

K4(0,0)

pixels

lines

K4(0,1)

K4(1,0)

Figure 3.5: Division of the image in a raster of blocks.

to prevent blocking artifacts and is performed by a bilinear interpolation
technique. This technique can be accomplished with low cost by using
three one-dimensional linear interpolations as shown in Figure 3.6. Let us
now consider the bilinear interpolation in more detail. The first vertical

72 Chapter 3 – Examples of video functions and their expenses

K4(J, K) K4(J+1, K)

K4(J+1, K+1)K4(J, K+1)

∆K = k - mK - 0.5m

∆L = j - nJ - 0.5n

k4(j, k)

1st vertical
interpolated
gain

2nd vertical
interpolated
gain

horizontal
interpolated
gain

Figure 3.6: Bilinear interpolation of K4(j, k) values.

interpolation is done according to:

a1 = K4(J, K),
a2 = K4(J, K + 1)−K4(J, K), and
k4(nJ + 0.5n, mK + 0.5m + ∆K) = a1 + a2 ·∆K.

(3.14)

Similarly, the second vertical interpolation yields

b1 = K4(J + 1, K),
b2 = K4(J + 1, K + 1)−K4(J + 1, K), and
k4(nJ + 1.5n, mK + 0.5m + ∆K) = b1 + b2 ·∆K.

(3.15)

Finally, the results of Equations (3.14) and (3.15) are used for a horizontal
interpolation, leading to

c1 = k4(nJ + 0.5n, mK + 0.5m + ∆K),
c2 = k4(nJ + 1.5n, mK + 0.5m + ∆K)

−k4(nJ + 0.5n, mK + 0.5m + ∆K) and
k4(nJ + 1.5n, mK + ∆J, mK + 0.5m + ∆K) = c1 + c2 ·∆J.

(3.16)

The value of k4(j, k) is calculated sequentially by first letting j run from 1
to Ll and subsequently letting k run from 1 to Lf . Due to the sequential
index augmentation, the calculation can be made recursive. Rewriting
Equation (3.16) as a function of the K4(J, K) and writing k4(j, k) as a
function of k4(j − 1, k) leads to:

k4 = K4(0.0)
k4(j, k) = k4(j − 1, k) + c2

= k4(j − 1, k) + b1 − a1 + (b2 − a2) ·∆K.

(3.17)

3.2 Sharpness enhancement 73

For each new block, the terms a1, a2, b1 and b2 are recomputed. It can be
noticed that one multiplication and a few additions are sufficient to perform
each iteration. Vertical recursion is also possible at the cost of a video line
memory, in order to restore k4(0, k − 1) till k4(Ll, k − 1).

Experimental results showed that the problems due to clipping were still
not solved completely. Aliasing was not only produced by the two spatial
dimensions, but also by the temporal dimension. Apparently, k4(j, k) also
contains discontinuities in the temporal domain. The aliasing produced by
the time component is perceived as field flicker. This problem was solved
by filtering K4(J, K) with a first-order recursive filter as a function of time.
As was mentioned before, K4(J, K) is determined, stored and subsequently
provided in the next field or frame. The temporal filter updates the stored
K4(J, K) instead of replacing it (see Figure 3.7). The block size influences
both the image quality and the implementation as follows.

• Spatial aliasing: too small blocks lead to a inconsistent k4(j, k) and
too large blocks lead to loss of local adaptivity.

• Required memory resources to restore K4(J, K).

• Errors in the temporal moment of k4(j, k): due to the temporal fil-
tering and the motion in the images, small blocks will lead to larger
position errors in k4(j, k).

K4(J, K)

K4(J, K, T) Memory N×M
field delay (T)

1-p

p +
K4(J, K, T-1)

Figure 3.7: Temporal filtering of the gain factor to suppress temporal
aliasing.

Although sharpness enhancement will locally decrease in the areas where
much clipping would occur, aliasing is perceived as more annoying than the
local sharpness loss.

3.2.6 The system including all controls

In the overall sharpness enhancement model, the overshoot at edges in the
peaking processing is suppressed by a special control parameter ko(j, k),

74 Chapter 3 – Examples of video functions and their expenses

F(j, k)

2-D
peaking

filter

+

dynamic
range

brightness
adaption

clipping
prevention

control

adaptive
noise
coring

local
sharpness

control

minimum

ko

G(j, k)

D(j, k)

ko(j, k)

k1(j, k) k2(j, k) k3(j, k) k4(j, k)

H(j, k)

Figure 3.8: Block diagram of the generic 2-D peaking.

which is determined by all aforementioned artifacts and considerations.
The overall block diagram of the algorithm is depicted in Figure 3.8. In
the complete system, the formulation of the peaking becomes as follows:

G(j, k) = F (j, k) + ko(j, k) ·
w∑

x=−w

w∑
y=−w

ax,y · F (j + x, k + y), (3.18)

where ko(j, k) is bounded between 0 ≤ ko(j, k) ≤ 1. When one of the indi-
vidual contributions ki(j, k) for i = 1...4, portrays a large occurrence of the
corresponding artifact, the correction of the added overshoot will be large
too, leading to a small ko(j, k). In this model, the smallest correction factor
represents the most annoying artifact. When the gain of the smallest arti-
fact measure is applied to suppress the total enhancement, the remaining
artifacts will be suppressed as well. We have found that this decision crite-
rion yields a good performance, although it is a highly non-linear operation.

3.2.7 Results and conclusions

This section presents a sharpness enhancement technique for TV applica-
tions based on adding overshoot to luminance transitions in the image. A
key feature of the system is that the amount of overshoot added depends on
four correction gain parameters. These parameters result from analyzing
different properties of the local image signal, i.e. intensity level, noise level,

3.2 Sharpness enhancement 75

Figure 3.9: The original ’Baltimore’ image (upper picture) and the sharp-
ness enhanced version of this image (lower picture).

local sharpness of the input and potential clipping artifacts. The concept
enables a stable sharpness improvement for a large variety of TV scenes.

The algorithm has been evaluated by computer simulations and the re-
sults of the adaptive peaking together with its special artifact control per-
forms satisfactory. The algorithm is robust with respect to varying image
statistics which is explained by the artifact controls, while the performed
sharpness enhancement is good. Even for high-quality video signals, a re-
markable improvement is obtained (see Figure 3.9 in which the original is

76 Chapter 3 – Examples of video functions and their expenses

digital YUV). The appropriate suppression of overshoot in textured areas
with large signal amplitudes or areas containing significant noise energy, is
working quite effectively and subjectively improves the image quality.

3.3 Advanced sampling-rate conversion

To show that expenses of different functions may be related to different
implementation aspects, this section discusses another example function
in more detail. Where the example in the previous section is complex in
terms of computations, the sampling-rate converter as described in this
section [10] is particularly complex in terms of memory usage, when ap-
plied in vertical direction. The first subsection will motivate the need for
such a function in the TV domain, whereas the subsequent subsections will
elaborate on the algorithm.

3.3.1 Introduction to video scaling

As was mentioned in the previous section, a merge of video technology for
TV and PC is foreseen. In a multimedia PC environment, it is common to
display several windows containing different video signals, such as MPEG,
JPEG and Graphics. The windows can be scaled in arbitrary sizes. How-
ever, the quality of this scaling for video signals is rather poor. In high-end
TV sets, Picture-in-Picture (PiP) is an established feature and this is cur-
rently being upgraded to dual-window TV. In the future, with an increasing
number of broadcast TV channels and the augmented application of MPEG
decoding in TV (via DVD, DVB), it is expected that more windows of video
signals and graphics signals will be used for display. On top of this, graph-
ics and menus will be superimposed for user interface and control. The
parallel display of several of the aforementioned signals relies heavily on
sampling-rate conversion.

Until now, sampling-rate converters were more or less dedicated and op-
timized to perform one function (e.g. size conversion for PIP). This leads
to architectures in which sampling-rate converters, tuned for different ap-
plications, are scattered, thereby leading to – sometimes – higher system
costs. The objective for future TV, however, is to design a more flexible,
high-quality 2-D scaler, that can be used for a broad range of TV functions
and graphics applications. It is obvious that flexible advanced scalers will
become an integral part of consumer electronics and multimedia products.
The system requirements for defining the desired high-quality sampling-rate
converter for TV applications are severe and listed below.

3.3 Advanced sampling-rate conversion 77

• Large dynamic scaling range. Current PIP converters yield a
good visual performance for small picture sizes only. However, for
Split Screen/Dual Window, the secondary picture has a comparable
size to the main picture. The video quality of the secondary picture
should therefore be equal. In multi-window applications, any size of
a video window may be used and the quality should always be good.

• Matching to source material. High-quality size conversion of
graphics and video should both be enabled. The visibility of alias-
ing for graphics signals differs substantially from that of bandwidth-
limited video signals.

• Matching to the resolution of the display. The video signal
processing with its scaling should be applicable to various displays,
such as CRT, LCD and plasma displays.

• Down-scaling and up-scaling. The converter should not only be
used for zooming (up-scaling) the video signal, but also for compres-
sion (e.g. PIP) with the same level of picture quality.

Current implementations of sampling-rate converters are usually only suited
for a limited conversion range. In this section, an advanced sampling-rate
conversion technique is presented which is suited for high-quality up- and
down-scaling of video and/or graphics source material, using a large con-
version range.

3.3.2 Basic theory of sampling-rate conversion

In order to understand sampling-rate conversion, the basics of sampling
and sampling-rate conversion theory are described briefly.

Since sampling implies that the values of a signal are only evaluated at
discrete points of time, sampling can be described as a product of delta
sampling on equidistant time intervals and a continuous signal x(t), so that
the sampled signal xs(t) becomes:

xs(t) = x(t) ·
∞∑

n=−∞
δ(t− nT). (3.19)

78 Chapter 3 – Examples of video functions and their expenses

Note that xs(t) is still a continuous signal. The Fourier transform of the
sampled function can be calculated using the product theorem:

Xs(ω) =
ω0

2π
X(ω) ∗

∞∑
n=−∞

δ(t− nT),

=
ω0

2π

∞∑
n=−∞

δ(ω − nω0),

(3.20)

where ω0/(2π) = f0 = 1/T and ’∗’ represents the convolution operator.
The combination of the convolution operation and the periodic delta func-
tion results in a repetition of spectrum X(ω) along the ω-axis.

It can be deduced that an error-free reconstruction (separation of the
baseband spectrum) is possible if the original signal is properly limited
in bandwidth with cut-off frequency ωc, meaning that it should satisfy
ω0 = 2π/T ≥ 2ωc, which is known as the sampling theorem. Perfect re-
construction of the signal x(t) may be performed by using a low-pass filter
with the following characteristics:

Lp(ω) =
{

1 for|ω| < ω0/2
0 elsewhere . (3.21)

The impulse-response according to (3.21) is

lp(t) =
sin(πt/T)

πt/T
, (3.22)

which is the so-called sinc function. For simplicity, the sampled signal can
be considered as a sum of weighted delta pulses. This model allows the
sampled signal to be written as a sequence of numbers representing the
signal samples, or alternatively, as the pulse weights of a delta sequence.
Accordingly, we find that

{x[n]} = {x(nT)} =
∞∑

n=−∞
x(nT) · δ(t− nT), (3.23)

where {x[n]} denotes the sequence of sampled values of the analogue signal
x(t) at time nT . This theory can be extended to describe sampling-rate
conversion in more general terms.

Let {x[n]} denote a sequence of sampled values at time nTi where Ti is

3.3 Advanced sampling-rate conversion 79

the input sampling period. Assuming that the bandwidth of the continu-
ous signal x(t) is less than fi/2, the value of this signal at any point of time
t can be calculated exactly from {x[n]}, using

x(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT)/T)
π(t− nT)/T

. (3.24)

It can be understood that (3.24) can be rewritten as a basic formula for
sampling-rate conversion. If Equation (3.24) is calculated at output sam-
pling moments mTo, the output sampling rate is different from the input
rate. Therefore, Equation (3.24) can be rewritten into an equation that
changes the sampling rate [49], so that

y[m] =
∞∑

n=−∞
x[n]

sin(π(mTo − nTi)/Ti)
π(mTo − nTi)/Ti

, (3.25)

where y[m] is the exact value of the time-continuous signal at time t = mTo.
Equation (3.25) shows that for the calculation of one output sample, all
the input samples are required. In practice, however, an output sample is
computed using a set of input samples only, thereby introducing an error
in the output signal. The aim of digital conversion techniques is to replace
the sinc interpolation function by another function of finite length and
which limits at the same time the error in the output signal. Note that
Equation (3.25) is only valid for To ≤ Ti. In the case that To > Ti, the
resulting signal may suffer from aliasing. This can be prevented by filtering
out a part of the high-frequency components of the input signal, depending
on the ratio between Ti and To.

3.3.3 Considerations for SRC implementation

Digital schemes used for sampling-rate conversion (SRC) are increasingly
popular, because the required hardware becomes cheaper as VLSI tech-
nology advances. In digital schemes, Equation (3.25) can be seen as a
convolution of the input stream with a digital filter having an impulse re-
sponse which resembles the sinc function. As stated already, this filter is
not realizable since it is of infinite length. However, there are many tech-
niques to design filters which have a frequency response close to the ideal
low-pass filter as described in Equation (3.21).
Since the input and output sampling frequencies are different, it is difficult
to visualize Equation (3.25) as a digital filtering equation. This is easier
to understand if input and output of the digital filter operate on the same

80 Chapter 3 – Examples of video functions and their expenses

sampling frequency. Equal frequencies are obtained by creating an inter-
mediate frequency which is a multiple of both the input and the output
frequency. Let us assume that the input and output sampling frequencies
are related by ratio K/L. The corresponding conversion scheme is depicted
in Figure 3.10. Initially, the input samples are up-sampled by an integer

H(z)↑K ↓L
x[n] y[m]

fi K·fi K·fi K/L·fi

Figure 3.10: Sampling-rate conversion by means of digital filtering.

factor K. Up-sampling is achieved by simply adding K − 1 zeros between
every incoming sample. As a result, the intermediate sampling frequency
operates at a sampling rate of K · fi. Subsequently, a filter H(z) operating
at the same intermediate frequency, filters out the undesired parts of the
video spectrum. Finally, the sequence is decimated with a factor L. This
implies that the output sampling rate equals K/L times the input sampling
rate.
Implementations relying on the above-mentioned scheme typically have
a fixed filter H(z), a fixed up-sampling factor K, and a variable down-
sampling factor L. Consequently, the implementation is only suited for e.g.
up-scaling and limited down-scaling.

Generally, the implementation of digital Sampling-Rate Conversion (SRC)
can be divided into three categories [50][51]: curve fitting, digital filtering
(combination of interpolation, filtering and decimation) [52], and hybrid
architectures, which are a combination of curve fitting and digital filter-
ing. These three categories can all be modelled according to the block
scheme depicted in Figure 3.10. Let us now briefly address each technique
individually.

• Digital filtering schemes for sampling-rate conversion are becoming
increasingly popular. These implementations actually perform an
up-sampling, followed by filtering and decimation. An example im-
plementation of a digital filtering scheme is a polyphase filter. A
polyphase filter is a sampling-rate converter which combines the up-
sampling, low-pass filtering and decimation into a single function.
The low-pass filter can be fixed, selectable or programmable.

• Curve fitting is a more classical interpolation technique which is often
used in low-cost implementations. Instead of performing up-sampling

3.3 Advanced sampling-rate conversion 81

followed by filtering and decimation, the desired pixel values are deter-
mined by calculation the coefficients of a spline (e.g. linear, quadratic,
cubic or any other n-th order polynomial function), using the original
input pixel values. Subsequently, the output pixel values are derived
by substituting the positions corresponding to the desired sampling
rate. The most simple variant of curve fitting is linear interpolation,
which just takes the weighted average of two neighboring samples.

• Variable Phase Delay (VPD) filters applied in current TV sets, are
basically hybrid implementations, using a two-phase up-sampling fil-
ter followed by a quadratic interpolation [53].

A common disadvantage of the aforementioned techniques is that they give
a disappointing performance for a substantial compression of video and
graphics signals.

Since up- and down-scaling are both desired key features of the converter,
this section discusses a new architecture satisfying this constraint with a
high performance. The key to the solution is that the filter bandwidth
is coupled to the stage having the lowest sampling frequency (e.g. for
up-scaling, this is the input stage). Considering the same solution for com-
pression, the bandwidth of the input signal must be limited in order to
prevent aliasing. The required bandwidth limitation depends on the com-
pression factor. The three SRC categories discussed earlier usually apply
an adjustable or selectable prefilter to limit the bandwidth of x[n] to fo/2,
thereby enabling high-quality compression. Without prefiltering, high qual-
ity is only obtained for L ≤ K.
Conventional SRC implementations aiming at up- and down-scaling lead to
different architectures. In this section, the objective is to map both prop-
erties onto a single architecture. This is achieved by using the concept of
transposition, which is discussed in the subsequent subsection.

3.3.4 Transposition of a sampling-rate converter

In literature [50], it is stated that if the directions of all branches in a sig-
nal flow-graph for a discrete linear time-invariant network are reversed, the
function of the resulting transposed network is the same as that of the orig-
inal network. All branch nodes in the original network become summation
nodes and vice versa. Systems containing up- and/or down-sampling are
in principle time-varying functions. Generalized rules for transposition of
such systems were derived in [54]. The main element pairs which transpose
mutually according to those generalized rules are summarized by:

82 Chapter 3 – Examples of video functions and their expenses

• up-samplers become down-samplers and vice versa;

• an addition becomes a signal split and vice versa;

• constant multipliers and delays remain the same.

Applying the transposition rules to Figure 3.10 leads to the sampling-rate
converter depicted in Figure 3.11. When considering compression, H(z)

x[n] y[m]

fiL·fi L·fiL/K·fi

H(z) ↑L↓K

Figure 3.11: Sampling-rate converter after transposition.

results in a decimating filter for L ≤ K(note that for the non-transposed
case in Figure 3.10, this filter is an interpolation filter). Assume again the
usual case where K is fixed and L is variable. It can be seen that in the
transposed mode, H(z) operates on L · fi. Since L is variable, H(z) oper-
ates on a varying sampling rate. As a result, depending on L, a different
part of the baseband spectrum is filtered out. In other words, an important
property of a transposed SRC is that it inherently prefilters the input signal
according to the compression ratio.

Let us consider an example in which the inherent prefiltering is illustrated.
Assume a decimation factor K = 8. In Figure 3.12, the spectrum of a

H(z)

fo/2 fL/2 = 4fi/2

spectrum of x[n] after upsampling with L=4

H(z)

fo/2 fL/2 = 2fi/2

spectrum of x[n] after upsampling with L=2

Figure 3.12: Filter operation in transposed mode for fixed down-sampling
and a variable up-sampling factor.

3.3 Advanced sampling-rate conversion 83

signal x[n] is shown after up-sampling with factor L = 2 and L = 4. The
up-sampled signals are filtered with H(z). After filtering, the signals are
decimated with a factor 8. It can be seen that a different part of the base-
band spectrum is filtered out, as a result of the choice of the up-sampling
factor L. This is the strength of a transposed filter structure. From Fig-
ure 3.12 we can conclude that a filter H(z) can be designed such that for all
L < K, it is ensured that the filtered signal is bandwidth-limited to fo/2
prior to decimation.

3.3.5 Requirements for transposed filters

Fundamentally, transposition can be applied to any type of SRC implemen-
tation, but this requires careful filter design. This subsection will explain
this in more detail. Filters of the non-transposed type as depicted in Fig-
ure 3.10 are usually designed to comply with the following requirements.

• Sufficient passband flatness.

• Stopband attenuation is below a certain threshold
(e.g. below -60 dB).

• DC input gives a DC output.

Let us consider the last requirement in more detail for both the normal
and the transposed case. For the normal case, the up-sampling leads to
K repetitive spectra at center points n · fi for 1 ≤ n ≤ K and n being an
integer. Knowing that decimation with L will follow, the spectra will fold
back. Let us assume that the filter H(z) operates on frequency fF . To en-
sure that DC input yields DC output, it can be concluded that H(z) must
have spectral zeros at n · fF /K for 1 ≤ n ≤ K/2and n being an integer.
This is easy to achieve, since K was assumed to be fixed.

For a transposed filter, the constraint that a DC input results into a DC
output, the filter H(z) must have spectral zeros at n ·fF /L for 1 ≤ n ≤ L/2
and n being an integer. After decimation, these frequencies fold back to DC.
Since K is a fixed down-sampling factor and L is a variable up-sampling
factor, this is impossible to meet for all L. Therefore, transposed filters
need additional design constraints. If these constraints are not taken into
account, the output will definitively suffer from aliasing. Especially for DC
(DC-ripple) and for low frequencies, the aliasing can become well visible
and can be rather annoying.

84 Chapter 3 – Examples of video functions and their expenses

Experiments have shown that when the DC ripple is below -54 dB, aliasing
is no longer visible on a high-quality monitor. This implies that the re-
quirement DCin = DCout may be relaxed. Instead of having spectral zeros
at n ·fF /L, it satisfies to design a filter with sufficient stopband suppression
at these frequencies.

out

out

T TT T T

coefficients coefficients coefficients coefficients coefficients

in
step

coefficients coefficients coefficients coefficients coefficients

in

step

T T T T T

TRANSPOSE

Figure 3.13: Transposition of an N-taps polyphase filter.

3.3.6 Experiments and results for polyphase filters

A normal and a transposed implementation of an SRC, based on a 6-tap,
64-phase polyphase filter, have been implemented in software. Figure 3.13
portrays a possible architecture of the normal and transposed polyphase
filter [55]. Filter characteristics have been optimized for both the regular
and the transposed mode. The results have been obtained by computer
simulations. For more severe testing, the regular and transposed polyphase
filter have been implemented on a real-time video system. The results of
the transposed algorithm outperforms clearly the existing implementations
in current TV receivers. By switching between transposed and regular
polyphase operation, high-quality up- and down-scaling is possible without
adding an adjustable prefilter.

Figure 3.14 shows the visual results for a up- and down-scaling factor of
2.6. The upper left picture portrays that a normal filter leads to substantial

3.3 Advanced sampling-rate conversion 85

Figure 3.14: Results of transposition of an N-taps polyphase filter.

aliasing in the multiburst and the cross-hatch pattern. It can be seen that
the performance of the transposed filter (upper right) is much better due to
the proper bandwidth limitation. The opposite case is shown in the lower
part for up-scaling. The left picture show up-scaling with the normal filter
and in the right the picture is up-scaled using a transposed filter.

As a result of the scaling of the filter passband, the obtained picture quality
remains high for a large range of up- and down-scaling factors. Extensive
experiments were conducted with up- and down-scaling factors between 1
and 16. Furthermore, since the regular and transposed implementation rely
on the same resources, implementations of both operation modes can be
mapped on the same hardware architecture.

Finally, the suitability for sampling-rate conversion of graphics material
has been examined. The spectral energy distribution of graphics source
material differs significantly from that of video. Without taking extra care,
conversion of graphics material may result in visible ringing around steep
edges. Therefore, new filters have been designed which reduce considerably
the ringing artifacts for graphical images. Also for graphics, the transposi-
tion concept has proven to be convenient to realize high-quality compres-
sion.

86 Chapter 3 – Examples of video functions and their expenses

3.3.7 Conclusions on video scaling

The increasing amount of TV channels and alternative information sources
in a TV system lead to the requirement to display several video and/or
graphics signals in parallel. For the scaling of the display windows of these
sources, high-quality sampling-rate converters are desired.

A generic technique has been presented to obtain high-quality sampling-
rate conversion, both for up- and down-scaling. It has been found that by
transposing the architecture for expansion, a sampling-rate converter can
be made suitable for compression. Since the architecture of a transposed
network is similar to that of the regular version, the implementations of
both types can be combined into a single hardware architecture.
It has been concluded that basically any linear sampling-rate converter can
be transposed. However, some extra design rules have to be applied to
ensure high-quality compression. Especially the DC ripple suppression ap-
pears to be an important design constraint.

In the experiments, a 6-tap 64-phase polyphase filter was applied, which
showed a very satisfactory performance. Particularly for compression, the
transposed structure leading to the inherent prefiltering of the input sig-
nal, has proven to be valuable. A polyphase filter is intrinsically attractive,
because the filter coefficients are freely programmable. Furthermore, the
polyphase filter has shown robustness in performance with respect to vary-
ing image statistics.

3.4 Computational costs of video functions

3.4.1 Estimation model for complexity

The mapping of an algorithm onto a preselected architecture is no straight-
forward process. The optimal architecture depends on choices in the al-
gorithm, e.g. for a high-performance floating point implementation of an
IDCT with a 52-bit precision [56], a different computational platform is
required than for a fast integer implementation with a 32 or even 16-bit
precision [57][58]. On the other hand, some restrictions in the architec-
ture may influence the choice for a particular algorithm. For example, the
bandwidth to external memory may be too scarce for performing a full-
search motion estimation. Instead, a three-Dimensional Recursive Search
(3DRS) block-matching algorithm [59] can be used. Summarizing, it is a
difficult task to compare the performance of functions without considering
the platform onto which they have to be executed. For a good comparison,

3.4 Computational costs of video functions 87

the algorithms of the application have to be optimized for each platform
in order to achieve optimal performance. However, changing the algorithm
implies different functionality, thereby resulting in a comparison of differ-
ent subjects. This is caused by the iterative nature of the design process
as depicted in Figure 3.15.

application / functions

algorithms

design

architecture

design

Figure 3.15: Iterative design process.

The peaking algorithm as described in Section 3.2 is tuned for an application-
specific embedded IP block in a multiprocessor system as described in Chap-
ter 4. Therefore, the number of Operations Per Second (OPS) does not
imply the computational requirements for a software implementation on a
general-purpose CPU. Depending on the architecture and therefore on the
algorithm, the operation count of a function can deviate significantly. To
come to clear insights by means of an example, both the above discussed
sharpness enhancement algorithm and a software-optimized sharpness en-
hancement algorithm will be analyzed in the following subsections. Besides
algorithmic differences of functions, also the operations may require a dif-
ferent number of cycles for execution. Nevertheless, such an evaluation
gives a good impression of the computational requirements when compared
with other algorithms on the same platform. In succeeding subsections,
the analysis of the computational performance is elaborated in more de-
tail. It is assumed that a very simple Harvard RISC processor is used with
a very limited amount of local registers. It is assumed that no stall cy-
cles are present because sufficient bandwidth resources are available and a
sufficient caching hierarchy is provided including prefetching to hide the la-
tency of the memory access operations. Although these assumptions result
in rough estimates only, the order of magnitude gives sufficient information
to formulate the high-level conclusions. Some example calculations are:

r1 = a + b,

where r1 is a variable in a local register and values a and b are read from the
memory. Hence, this function requires 2 read (RD) operations, and 1 add
(ADD) operation, thus in total 3 operations. Consider now the function

z = ax + by,

88 Chapter 3 – Examples of video functions and their expenses

where y is stored in memory and a and b are coefficients for the data x
and y. This functions requires 4 RD, 2 multiplications (MUL), 1 ADD
and 1 store (STR) operation. In total 8 operations. When it is assumed
that all operations can be performed within the same amount of cycles, the
operations per sample (OP/sample) are proportional with the amount of
cycles per sample.

3.4.2 Sharpness Enhancement complexity estimation

The functional blocks in Figure 3.8 divide the sharpness enhancement al-
gorithm of Section 3.2 in tasks which are discussed individually.

• 2-D Peaking filter - The filter consists of a 2-D symmetric FIR fil-
ter with seven taps in horizontal direction and three taps in vertical
direction. Using the symmetry, 20 add (ADD), 8 multiply (MUL)
and 29 read (RD) operations are used to do the filtering. Further-
more, 1 additional MUL, 1 logic shift right (LSR), 1 ADD and 2 RD
operations are used to scale and quantize the output value. Finally,
the result is clipped between -256 and 255 using 2 compare (CMP)
operations. Note that an additional assign operation is required for
each compare if the output value actually exceeds the clipping value.
We assume that this does not hold in most cases and hence do not
add an additional assign operations. In total, the 2-D peaking filter
uses 65 OPs/sample including 1 operation to store (STR) the result.

• Brightness adaptation - This task uses 1 CMP, 2 RD, 0.5 subtract
(SUB) and 1 STR operation, in total 4.5 OPs/sample. The non-
integer values of the SUB operations are determined by using the
probability of the binary result of the CMP operation. In this case
the probability is assumed to be 50 %.

• Clipping prevention control - This task can be subdivided in a
subtask for counting the number of potential clippings per 32 × 32
block, a subtask to update all pixel, line, stripe and block counters, a
subtask to determine the suppression gain dependent on the amount
of potential clippings, and a subtask to do the bilinear transform. For
the counting of the potential clippings, 4 ADD, 4 CMP, 8 RD, 2 AND,
2 LSR and 2 STR operations are necessary. In total 22 OPs/sample.
The subtask to update all counters uses on average 7 CMP, 2 OR,
2 ADD, 6 RD, 4 STR and 2 modulo (MOD) operations. In total 23
operations are used per sample. Note that these operations are only
executed once every block or every stripe and therefore have only lim-
ited impact on the operations per sample. The subtask to determine

3.4 Computational costs of video functions 89

the suppression gain is only executed once per block. Consequently,
the operations per block have to be divided by 32×32 (= block size).
Per block 21 RD, 4 CMP, 6 STR, 8 ADD, 5 MUL, 2 LSR and 1 SUB
operation is executed resulting in less than 0.05 OP/sample. Finally,
the bilinear transfer is applied using 35 operations per block change
(every 32 pixels) and 25 operations every sample. In total, approxi-
mately 26 operations are spent per sample. For the complete clipping
prevention control, 71 OPs/sample are executed on average.

• Dynamic range - This function determines the maximum absolute
difference within a 3 × 3 window around the pixel of interest. The
implementation uses 12 CMP, 22 RD, 15 STR and 1 SUB operation,
thus in total 50 operations per sample.

• Local sharpness control - This task converts the dynamic range
according to a linear function, preceded by clipping, to a suppression
gain. This consumes 4 RD, 2 ADD, 1 MUL, 1 LSR, 2 CMP and 1
STR operation, bringing the total to 11 OPs/sample.

• Adaptive noise reduction - For this task a simple noise measure-
ment algorithm uses the result of the dynamic range measurement.
This requires 40 OPs/sample. The calculation for the suppression
gain occupies 1 absolute operation (ABS), 7 RD, 1 SUB, 2 ADD,
1 MUL, 1 LSR, 2 CMP, and 1 STR operation. For the complete
adaptive noise reduction 56 OPs/sample are necessary.

• Minimum - This task determines the minimum suppression gain,
applies this gain, and provides an adjustable sharpness enhancements
by means of an additional multiplication. The result is then scaled
and clipped. This results in 7 RD, 2 MUL, 6 CMP, 2 STR, 1 ADD,
1 SUB, 1 LSR and 1 DIV operation. In total 21 operations

• Add - Finally the enhancement signal is added to the original sam-
ple and clipped between the original pixel range. This requires 6
operations divided into 2 RD, 1 ADD, 2 CMP and 1 STR operation.

The summation of the total operation budget per sample for an advanced
sharpness enhancement algorithm results in 285 operations. When Standard-
Definition (SD) interlaced video with a 25-Hz frame rate and a resolution
of 832× 576 is processed, the total operation bandwidth equals 3.4 GOPS.
Table 3.1 summarized the total number of operations per sample.

Another complexity metric that is important is the local memory usage
and the bandwidth to the external memory. These metrics can often be

90 Chapter 3 – Examples of video functions and their expenses

Table 3.1: Operations per sample for sharpness enhancement.

Operations per 32 samples
Total/Task

R
D

ST
R

A
D

D

SU
B

A
N

D

O
R

C
M

P

L
SR

M
U

L

D
IV

A
B

S

M
O

D

sample

2-D filter 992 32 672 64 32 288 65
Brightness 64 32 16 32 4.5
adaptation
Clipping 685 330 259 97 97 64 578 98 3 64 71
prevention
Dynamic 704 480 32 384 50
range
Local 128 32 64 64 32 32 11
sharpness
Adaptive 832 352 64 64 384 32 32 32 56
noise
reduction
Minimum 224 64 32 32 192 32 64 32 21
Add 64 32 32 64 6
Total 285

exchanged, dependent on whether processing data is stored locally or in an
external memory. For example, the sharpness enhancement algorithm uses
data from three video lines simultaneously. Some embedded memory could
be used to store two video lines, thereby avoiding multiple reading of data
from the external memory. Obviously, it is also possible to accept the high
memory bandwidth when no buffer memory is provided. Because memory
bandwidth is generally the bottleneck in multimedia processing systems, it
is assumed that embedded line memories are used. As a result, the amount
of embedded memory is 1.8 kByte, including the temporal storage of the
subsampled suppression gains K4(J, K), of the clipping prevention task.

To show the potential large variation of computational complexity of sim-
ilar functions and the influence of the algorithm choice, an alternative
sharpness enhancement algorithm [60] is analyzed that was designed for
a different purpose and for which only small enhancements are required
(see Figure 3.16). This algorithm comprises a simple fixed 2-D filter, a
look-up table (LUT) for non-linear signal adaption such as coring (see Sub-
section 3.2.4), and a gain control to adjust the amount of enhancement.

3.4 Computational costs of video functions 91

+

-1/8

-1/8

0

0

0

0

0

0

1/2

-1/8

-1/8

0

0

0

0
0 0 0 00

0 0 0 00

LUT

F(j,k)

H(j,k)

G(j,k)

2D peaking filter

gainclip

clip

Figure 3.16: Block diagram of an alternative sharpness enhancement algo-
rithm.

• 2-D Peaking filter - The filter consists of a 2-D symmetric FIR filter
with five non-zero valued coefficients. Five RD and one LSL command
are used to read the pixel values and to weight the center pixel with
coefficient values 4. Subsequently, three ADD and one subtraction
(SUB) are necessary to compute the filter output value, followed by a
LSR to normalize the DC component of the signal. Using two CMP
operations, the value is clipped between -128 and 127. In total the
2-D filter uses 13 OPs/sample.

• LUT - The look-up function only requires one ADD and one RD
operation to add the value 128 to the filter output and to read the
table value of this table entry.

• Gain - The value from the LUT is multiplied with a gain value and
subsequently normalized by truncating the six least-significant bits.
Hence, one MUL, two RD and one LSR is required.

• Add - Finally, the result is added to the original signal and clipped,
requiring one ADD, two CMP, and one write.

The summations of the individual contributions results in a total operation
budget of 23 operations per sample. Comparing this with 285 operations
per sample for the sharpness enhancement algorithm outlined in Subsec-
tion 3.2, a difference of more than factor 12 in computation complexity
is shown. Both algorithms perform the function of sharpness enhance-
ment, but they are implemented on a different hardware architecture and
they have different picture quality performance. Although complexity and
performance analysis can be very helpful, the output is only useful when
considering all conditions.

92 Chapter 3 – Examples of video functions and their expenses

3.4.3 Sampling-rate conversion complexity estimation

Similarly, the advanced sampling-rate converter from Section 3.3 is designed
as a processor with dedicated hardware in a multiprocessor system. For this
algorithm, the same analysis is done as for the sharpness enhancement al-
gorithm. The complexity estimation result is depicted in Table 3.2. Unlike

Table 3.2: Operations per sample for advanced sampling-rate conversion.

Operations per samples
Total/Task

R
D

ST
R

A
D

D

SU
B

A
N

D

O
R

C
M

P

L
SR

M
U

L

D
IV

A
B

S

M
O

D

sample

Filtering 7 1 7 2 1 6 24
Phase 1 1 2
computation
Total 26

the sharpness enhancement algorithm, the sampling-rate conversion is ap-
plied to all color components instead of only the luminance. As a result,
the amount of operations per pixel is 52, when the sampling format 4:2:2
is assumed. When SD video is considered with a 25-Hz frame rate and a
resolution of 832× 576, the total operation bandwidth equals 623 MOPS.

With respect to horizontal processing, no significant amount of memory
is used, only 6 pixels to feed the filter taps. However, for vertical process-
ing, the filter taps have to be fed with samples originating from different
video lines. Therefore, 5 line memories are required for a sampling-rate
converter with a 6-tap filter. For both luminance and chrominance this
requires memory of approximately 8 kByte. The total bandwidth require-
ments for writing (1×) and reading (6×) of this local embedded memory is
224 MByte/s.
If high-quality vertical video scaling of interlaced video is required, some
additional signal processing is required for de-interlacing of the input sig-
nal prior to the vertical sampling-rate conversion. For this processing, the
data of two adjacent fields is required. Figure 3.17 portrays how the fields
are used to create the progressive video frame. Note that only those video
lines have to be de-interlaced that are actually used for the filter taps. The
bandwidth at the input of the sampling-rate converter Bi is dependent on
the scaling factor S and the output bandwidth Bo according to:

Bi = 2
1
S
·Bo, (3.26)

3.4 Computational costs of video functions 93

video
line
grid

o p p pe o e

Median

time time

Video line from odd field

Video line from even field

Video line from median filter

Figure 3.17: De-interlacing by means of median filtering.

where S > 1 if expansion is applied and S < 1 when compression is applied.
The factor two represents the bandwidth cost of the de-interlacing. To
create one field, two input fields are required. Consequently, when S =
1 and the output video has a SD video resolution, the input bandwidth
Bi = 64 MByte/s. To be able to read two video fields, one field has to be
stored in memory, requiring a memory space of 3.8 Mbit. Moreover, from
Figure 3.17 it can be noticed that one additional line memory is required
for applying the median filtering, bringing the total to 6 line memories (10
kByte).

3.4.4 Temporal noise reduction

Before calculating the complexity metrics for a temporal noise reduction
algorithm, first the functionality is briefly explained. Figure 3.18 shows
that only the low-pass frequencies are noise-reduced by means of a 2-D
filter. The high frequencies, which remain after subtracting the low-pass
signal from the original signal, are conveyed to the output and are sub-
sequently added to the noise-reduced result. Temporal filtering is applied
by means of a weighted average of the filtered low-pass output signal and
the new input signal. The weighting factors are adapted depending on the
amount of motion in the video signal. When little or no motion is present,
the mixing factor k will be small, thereby yielding only little contribution
from the input signal. When fast motion occurs, the input signal has the

94 Chapter 3 – Examples of video functions and their expenses

Noise reduction
with temporal functionality

in 2D
LP

Filter

abs
1-k

min.dyn
range

LUT
select

sum
abs.diff.

background
memory

LUT

decimateinterpolate

+ +

+

+

k

k
out

-+

-

+

+

+

direct LUT select

smart
control

HF pass-
through

Figure 3.18: Block diagram of a temporal noise reduction function.

main contribution to the output signal, in order to prevent motion blur.
Summarizing, the fundamental filter algorithm comprises an adaptive IIR
filter. The motion is determined by the difference between the previous
and the current picture. A Look-Up Table (LUT) translates the measured
difference into a k-factor. Additionally, to prevent a decrease in overall
picture quality, this algorithm contains functionality to adapt the amount
of noise reduction to the noise level. Two different measurements are ap-
plied to determine this noise level. First, a dynamic-range measurement is
used, similar to the sharpness enhancement algorithm (see Section 3.2.4).
The number of times that the dynamic range does not exceed a certain
threshold within one field or frame, is inversely proportional to the amount
of noise. Secondly, the sum of absolute difference between the low-pass
filtered signal before and after noise reduction, i.e. the input and output
signal of the (k, 1− k)−mixer.

In the following table (Table 3.3) the number of operations per sample
is shown. Note that the block diagram in Figure 3.18 indicates a deci-
mation step before writing into the frame buffer and an interpolation step
after reading from the memory. Because only the low-frequency part of the
signal is stored, down-scaling of the picture can be applied without loosing
information, thereby decreasing the buffer requirements. However, to in-
dicate the complexity of the noise reduction only, this functionality is not
included in the calculations. For a standard-definition video signal with a

3.4 Computational costs of video functions 95

Table 3.3: Operations per sample for temporal noise reduction.

Operations per samples
Total/Task

R
D

ST
R

A
D

D

SU
B

A
N

D

O
R

C
M

P

L
SR

M
U

L

D
IV

A
B

S

M
O

D

sample

2-D LPF 9 1 8 1 5 24
Direct LUT 3 1 1 1 6
select
HF Path 4 2 2 8

Temp. filter 3 1 2 2 8
with k
Smart control 11 6 1 1 6 2 27
Total 73

25-Hz frame rate and a resolution of 832 × 576, the total operation band-
width equals 1 GOPS. Due to the processing in both spatial dimensions,
a dual-line memory is necessary and requires 3.3 kByte of memory. The
bandwidth for writing into and reading from this memory should be suffi-
cient for one video stream (2× 32 MByte/s). Since a large buffer memory
is also required for temporal IIR filtering, a memory capacity of 3.8 MBit
is necessary, e.g. mapped onto an off-chip background memory. This buffer
also requires a throughput rate of 64 MByte/s.

3.4.5 Motion-Compensated frame-rate conversion

For the sharpness enhancement algorithm, the computational requirements
are most noticeable. For other algorithms, the amount of local memory
is the mostly required resource. Motion-Compensated (MC) frame-rate
conversion fits to a third category of algorithms for which the bandwidth
to off-chip memory is the most demanding requirement. Figure 3.19 shows
the functional block diagram of motion-compensated frame-rate conversion.
This function contains several modes to handle different video formats:

• Conversion of 50-Hz to 100-Hz interlaced video,

• Conversion of 60-Hz interlaced to 60-Hz progressive video,

• Conversion of 24-Hz film material (received as a 50-Hz interlaced
video applying a 2-2 pull-down scheme), to 50 or 100-Hz interlaced
video. Motion judder is removed resulting in fluent motion portrayal.

96 Chapter 3 – Examples of video functions and their expenses

MC-100Hz conversion

externalexternal
50/60 Hz

field
memory

frame memory
progress.-scan image

2:1
interlace

spatial
candid’ts

motion
compensation

temporal
candid’ts

vector
field

memory

motion
estimation

fi-based
cache

vertical
zoom

fr-based
cache

progr.
scan

+

100/120 Hz

60Hz 1:1
progr. /

100Hz(120)
2:1 interlace

Figure 3.19: Block diagram of the motion compensated frame-rate conver-
sion function.

• Conversion of 24-Hz film material (received as a 60-Hz interlaced
video applying a 2-3 pull-down scheme), to 60-Hz interlaced or pro-
gressive video. Motion judder is removed resulting in fluent motion
portrayal.

The algorithm uses an 8 × 8 recursive block matching algorithm [59] with
a limited amount of candidate vectors. These candidate vectors point to
predictions in the spatial and temporal surrounding of the block to be es-
timated.

Most operations are performed only once per block, such as retrieving can-
didate motion vectors, bookkeeping of the matching result in the motion
estimator (ME), etc. The operations at pixel rate are limited to the Sum
of Absolute Difference (SAD) calculations in the ME, median filtering for
interlace-to-progressive conversion and composition of the motion compen-
sated result. For the luminance part of the video signal, an estimate of 527
MOPS is required. Because for the chrominance part only temporal filter-
ing is applied, 100 MOPS are required for this part of the signal. The total
of 627 MOPS is significantly less than is required for the peaking algorithm.

The input field memory is necessary to double the field rate by means
of field repetition. For the luminance this consumes 16 and 32 MByte/s
for writing in and reading from the memory, respectively. After motion-

3.5 Conclusion 97

compensated de-interlacing by the proscan block in Figure 3.19, the frame
picture is written in the memory requiring 64 MByte/s memory bandwidth.
After one frame delay, this progressive signal is read again for the recursive
motion estimation and de-interlacing of the subsequent frame picture. Also
this read action occupies a memory bandwidth of 64 MByte/s. In total,
the processing for luminance requires 176 MByte/s. For the chrominance,
no motion-compensation video data is used and the frame-rate conversion
is kept simple by applying picture repetition. This requires a memory
bandwidth of 80 MByte/s, resulting in a total bandwidth of 256 MByte/s.
Comparing this with the aforementioned functions such as sharpness en-
hancement, sampling-rate conversion, and noise reduction, this function
consumes a considerable amount of the total memory bandwidth. Also in
terms of memory capacity, this function is quite expensive, requiring five
field memories.

3.5 Conclusion

The design of future multimedia systems in consumer electronics is a chal-
lenging task due to conflicting requirements such as picture quality per-
formance, sufficient flexibility, sufficient computational performance, and
low system costs. Analyzing the complexity of independent functions is
necessary to make the proper design tradeoffs. For example, consumer-
electronics systems require a strong focus on limited system costs, thereby
trading off different parameters in the design-space. In this respect, the two
algorithms for sharpness enhancement as analyzed in Section 3.4.2, target
another point in the design space. The presented analysis shows a difference
in computational complexity of more than a factor 12. For the computa-
tional’s expensive algorithm, picture quality is most important, while the
implementation only requires the programmability to adapt the processing
to the amount of noise, the sharpness setting, the picture resolution, etc.
Hence, it results in a dedicated hardware solution with programmable reg-
isters for the adaptations. The other sharpness-enhancement algorithm is
intended for some minor sharpness recovery after video processing such as
noise reduction, and is only applied in some special use cases of the system.
Consequently, a simple software implementation is desirable. Clearly, this
results in different algorithm requirements. It can be concluded that an
algorithm can only be defined when the constraints of the design space are
known. For some special cases this leads to extreme freedoms in the design.
For example, if functional feasibility has to be proven within an academic
environment, algorithms can be developed without constraints on the com-
putational complexity, the flexibility, the costs, etc. However, for consumer

98 Chapter 3 – Examples of video functions and their expenses

electronics, the algorithm development is heavily constrained, i.e. archi-
tecture dependent. On the other hand, previous chapters have shown that
the design of an architecture is based on the analysis of the functionality.
This chicken-and-egg problem postulates the codesign of both algorithms
and architecture.

Besides computational resources, also communication resources such as
bandwidth requirements for the communication infrastructure and the nec-
essary memory space are important metrics for the system codesign. For
example, for motion-compensated frame-rate conversion a relatively small
amount of operations per sample is used, provided that elegant algorithms
are adopted. However, the necessary amount of external memory band-
width to perform motion estimation, de-interlacing, and motion compen-
sated frame-rate conversion is significant.

Without further specifying the necessary amount of flexibility and the tar-
geted price point, it can already be concluded that implementation of the
complete video processing functionality in a television system cannot be
achieved on a general-purpose CPU. Applying advanced sharpness enhance-
ment, temporal noise reduction, advanced sampling-rate conversion, and
motion-compensated frame-rate conversion for one main video stream re-
quires about 6 GOPS. However, an important remark here should be made.
As was mentioned in the introduction of this chapter, the design complexity
starts to have a major impact on the total system costs, and hence only
large production volumes can lead to an acceptable price/performance ra-
tio. However, production volume is determined by the market share or
at least by the market volume. Consequently, to increase the production
volume, systems should become more generic, to increase the product port-
folio for which they can be used. Another motivation that may influence
the above-stated conclusion in the future is the ratio between the silicon
area of computational units and embedded memory on a SoC. Because the
relative silicon area of embedded memory in a system grows, the contri-
bution of the computational units in costs decreases. As a result, more
general-purpose computing may be adopted in the SoC to make the sys-
tem more flexible and more transparent for the application programmer,
at only limited additional costs. Notice that this increasing flexibility will
lead to an undesired growth of the power consumption. Hence, the amount
of additional flexibility should still be balanced carefully.

Starting from the requirement for more flexibility and at the same time
sufficient performance at low cost, the following chapter discusses a tele-

3.5 Conclusion 99

vision processor design for high-end TV. It reveals proper tradeoffs and
outlines both the functionality and the system architecture. Obviously, the
presented system is just one solution from a large design space. Therefore,
the Chapter 5, 6, and 7 elaborate on some design issues in general. How-
ever, in all parts of this thesis, tradeoffs between expenses and benefits are
central.

100 Chapter 3 – Examples of video functions and their expenses

Chapter4
Flexible television processor

system

THE VLSI complexity and the corresponding software for implementing
multimedia architectures, including advanced video processing, require

an increasingly large design effort. Chips for consumer-electronic prod-
ucts are currently being designed with 30 Million gates, having a computing
power exceeding 10 GOPS (Giga Operations Per Second) [4]. Furthermore,
the associated firmware after compilation already exceeds one MByte for
TVs. The architecture of conventional TV sets has been introduced more
than half a century ago. Since that time, the functionality that was offered
to the customer has been increased significantly, without fundamentally re-
considering the architecture of the system. Feature extension boxes have
been added to upgrade the conventional system to high-end TV sets cur-
rently available in the consumer market. This chapter presents a recently
developed TV system called the TeleVision Processor (TVP), satisfying the
need for flexible, yet powerful video computing at low cost.

Quod erat demonstrandum
(Greek mathematician Euclid, c.300 BC)
which was to be proved

4.1 Preliminary statements and requirements

The previous chapter has shown examples of signal-processing functions
and the architecture of the conventional high-end TV architecture was dis-
cussed earlier. When standardization of the electronic television was car-
ried out [3], the architecture already showed the traditional standard video

101

102 Chapter 4 – Flexible television processor system

path. It consisted of the demodulator, decoder and the picture control
block with a separate audio path. Since then, an additional Teletext path
was introduced, 50-to-100 Hz conversion (Europe), PALplus decoding (or
EDTV2 in Japan), an additional Picture-in-Picture (PiP), dual-screen, new
sound standards and more recently, digital transmission standards based
on MPEG, have evolved. An evaluations of the conventional solution leads
to the following points (see also the previous chapters).

• From a bird’s eye view, the aforementioned new features can be char-
acterized as an extension of the conventional implementation, result-
ing in a suboptimal structure with respect to memory and flexibility.

• Since each function uses its own memory device and has a dedicated
communication path, memories cannot be reused for alternative pur-
poses if a memory-rich function is switched off.

• Furthermore, the solution is rigid and not flexible for adding new fea-
tures, because the interfaces between the functional blocks are dedi-
cated and specified as required for the actual part of the task graph.
Optimization and fitting of a new feature inside the processing chain
is difficult –if not impossible– because the order of signal-processing
functions is determined by the existing chip sets.

It goes without saying that these restrictions are conflicting with modern
trends in TV applications. In Chapter 1, requirements for the design of
future TV systems were discussed, taking long-term trends into account.
We briefly recapitulate those requirements without discussing them.

Increased diversity in products – The TV is becoming very diverse in terms
of features, requiring a programmable or reconfigurable architecture. New
products such as TV-telephone, TV-VCR, etc. have emerged.
More interfaces – The TV will have communication links to a network and
others (e.g. mobile) devices.
Absorption of PC technology – RISC cores, peripheral devices, SW archi-
tectures, and Operating Systems are gradually adopted and accepted as
standard technology.
Unified memory architecture – Since memory devices continuously become
larger and cheaper, it is desirable to have one uniform shared background
memory.
Flexibility for new standards – New features and standards from interna-
tional bodies have to be realized in a short time frame and require an
extensible and scalable system.
Low system costs – New TV systems are introduced in the highly compet-
itive consumer electronics market.

4.2 Consequences from the requirements 103

Some attempts in the past were made to deal with the fast changing re-
quirements. A detailed overview of several architectures has been presented
in Chapter 2. We will only briefly summarize a few results from literature
here. Fully-programmable multimedia solutions like the Multimedia Video
Processor (MVP) [32] can be very powerful, but are rather expensive for
consumer products, because they are more general than the TV application
domain desires. Moreover, they dissipate more power and occupy a larger
silicon area. A fully-programmable solution that is more tuned toward the
application domain is the Video Signal Processor (VSP). It contains a large
amount of ILP but is difficult to program if the application is more event-
driven or contains many data dependencies. Furthermore, the large amount
of parallelism and the single thread of control introduce a complex schedul-
ing problem that can only be solved with tools and laborious interaction
of the programmer. A recent trend is to use Very Long Instruction Word
(VLIW) processors to boost processing power [26] [34]. However, this does
not offer sufficient parallelism to cover all processing requirements. Sim-
ply increasing the number of functional units would increase the present
scheduling problem for such solutions.

More powerful and yet cost-effective implementations are possible by adapt-
ing the system more closely to the target application domain. As a result,
the processing performance and efficiency can be increased by making use
of the task-level parallelism that is expressed in a functional decomposition
of the application. The grain of the operations within a functional unit is
increased to the level of complete TV tasks or functions like a video scaler,
noise reduction, sharpness enhancement, field rate conversion, etc. It will
become clear at the end that this approach maintains low system costs and
flexibility and programmability is obtained with moderate extra costs. The
task-oriented approach will be developed in the coarse of this chapter. The
next section elaborates on the consequences of the required computational
effort and memory bandwidth that were discussed in the previous chapter.

4.2 Consequences from the requirements

4.2.1 Computational aspects

The previous chapter concluded with an overview of computational re-
quirements of various TV functions. Let us now analyze why the afore-
mentioned processor systems from literature were not directly adopted in
current TV systems, although most requirements would be fulfilled if the
required applications could be implemented on a fully programmable multi-

104 Chapter 4 – Flexible television processor system

media processor. One of the questions to be answered is how much comput-
ing power is involved and should be realized. The previous chapter gives a
detailed examination of state-of-the-art TV image enhancement techniques
and presents fairly realistic estimations of required computing power and
memory expenses. In this section, we summarize the results in Table 4.1.

Table 4.1: Computational costs and memory of various TV functions.

Function Operations Bandwidth Memory/
per Second MByte/sec. Cache

H up/down-scaling 400 MOPS 38–64 samples
V up/down-scaling 400 MOPS 38–96 lines
Filters, Comb filters 200 MOPS 64–128 samples-field
Advanced peaking 650 MOPS 32 lines
Color transient 300 MOPS 48 samples
improvement
Dynamic noise 500 MOPS 64–128 field
reduction
MC-100 Hz 2–4 GOPS 192-256 2–3 fields
Color space 150 MOPS 80 None
Teletext conversion 10 MOPS 48 > field
Adaptive luminance 60 MOPS 32 1 KByte

Table 4.1 shows the intrinsic processing power of several TV functions at
standard-definition (SD) resolution. With respect to operation counting,
additions, multiplications, sample read and writes, etc., are considered as
single (DSP) operations (see the previous chapter). The fourth column
shows the amount of memory or cache required. Here it is assumed that in-
formation can be retrieved or stored by single reads and writes (which is op-
timistic). For a normal TV application with 50-100 Hz conversion, Picture-
in-Picture (PiP), noise reduction and aspect-ratio conversion, the amount
of operations already exceeds 6 GOPS (Giga operations per second). This
is not readily implemented on a general-purpose processor cost-effectively.
Consequently, the use of application-specific coprocessors to increase par-
allelism and local computing power, in combination with general-purpose
processing is unavoidable to keep system costs low.

4.2.2 Off-chip memory considerations

Since memory functions determine a significant part of the system costs,
the access and the amount of external memory are important optimization
parameters in the system design.

4.2 Consequences from the requirements 105

Memory aspects

Due to the trend towards more flexible and re-usable computing and the
success of the PC, the distributed off-chip memory as shown in the conven-
tional TV architecture is not acceptable for future products. Although the
memory requirements of the desired system are optimized, typical mem-
ory sizes would still be 4–16 MByte with a bandwidth in the order of 350
MByte/s. For such memory devices, the synchronous DRAM (SDRAM)
that are used in PCs and related products represents the mainstream mar-
ket, offering the lowest price per Byte. Because the competition in the
PC domain is driven by the highest computational performance, the most
advanced SDRAM memories at this moment in time, such as double-data-
rate SDRAM (DDR SDRAM) and Direct Rambus (Direct RDRAM) de-
vices have been are adopted. For an efficient data transfer, all these devices
should be accessed with bursts of data instead of single data words, due to
the overhead in the addressing. Since multimedia processing often accesses
the data with a regular pattern (e.g. line sequentially), multimedia mem-
ory caching can be used to exploit this so-called locality of data. Using the
low-density static RAM (SRAM) for caching, a high peak bandwidth with
sufficiently low latency can be provided.

Communication aspects

To avoid excessive access to off-chip memory, the processors have small
local cache memories, so that the background memory is not required for
small memory functions. For example, a vertical-filter coprocessor may
have line memories locally, thereby requiring an input and output interface
that stream the video data only once in a line-sequential scanning order.
However, there are exceptions to the aforementioned rule. The caching of
field memories for e.g. MC-100Hz conversion, dynamic noise reduction or
comb filtering is too expensive for on-chip integration as embedded memory
(1 field = 4 Mbit). Instead, these memory functions are integrated in the
large unified memory in the background. As a consequence, the consump-
tion of scarce bandwidth to this memory should be monitored carefully.

Another aspect of the communication architecture is the capability of di-
rect inter-processor communication without necessary access to external
memory. This approach limits the memory access to functional usage.
As a general conclusion, we state that only (sub)systems using large data
structures (e.g. video field/frames), access the background memory. In
the alternative situation where subsystems communicate only large data
packets via the off-chip memory, high-throughput communication between

106 Chapter 4 – Flexible television processor system

multiple processors is required and the architecture needs extremely fast
communication networks with a high bandwidth and a considerable amount
of additional memory. Examples of such systems are given in [26] and [27].

4.3 Analysis of TV applications

In this section, the TV applications are further analyzed with respect to
the timing requirements in order to motivate the design of a new chip ar-
chitecture called the TeleVision Processor (TVP). Prior to discussing the
details, the concepts of graphs and tasks are introduced, as they will be
applied extensively in the system analysis.

A task is a basic TV function, thus a set of closely coupled calculations,
which are executed on a stream of data samples (a video signal). The set
of tasks is well defined for the high-end TV system. Tasks are weakly pro-
grammable, that is, they can be set to different video quality levels with
different resource requirements, but the nature of the function itself cannot
be modified. For example, a filter can be programmed to a smaller length
resulting in a lower quality, thereby reducing local memory usage. This
memory can be reused for other filter tasks. A graph consists of a set of
tasks which should be executed in parallel. The graph represents an appli-
cation in the TV domain, e.g. a main video signal with a Picture-in-Picture
(PiP) in the upper corner.

The first step in coming to a new architecture is to classify the different
tasks into three groups.

• Event-driven tasks (EDT). Examples are user interactions, such as
channel switching and user menu generation, a modem function, etc.
Control tasks are related to the interaction of the system with the
environment.

• Soft real-time tasks (SRT). This group contains tasks having a “soft”
real-time deadline, meaning that a deadline can be missed and is not
critical for the system performance. An example is the decoding of a
Teletext page.

• Hard real-time tasks (HRT). These tasks should not miss their dead-
line, since this would directly lead to system malfunctioning. Typical
hard real-time tasks are most video processing operations, since out-
put pictures have to be displayed at predetermined time intervals
(field rate). Examples are horizontal and vertical sample-rate conver-
sion, sharpness enhancement, noise reduction, etc.

4.3 Analysis of TV applications 107

Hard and soft real-time tasks can be represented in a so-called task graph
as shown in Figure 4.1, which portrays a multi-window application. First,
an input video stream is conveyed through a noise-reduction task. Sub-
sequently, the result is scaled to the resolution of the display. In parallel,
a second video stream is processed by a second noise-reduction task. The
output of this task is scaled down to a PiP resolution before it mixed with
first video stream. As will be explained later, this mixing is achieved in the
background memory. Because the input video streams are not necessarily
synchronous, the memory for mixing is also exploited to synchronize the in-
put video streams. Notice that only one video stream can be synchronized
with the display. Consequently, the writing and reading of the other video
stream into the mixing memory is performed asynchronously. After mixing
of the video streams, field-rate conversion is applied to construct a video
signal with a 100 Hz field rate. Subsequently, sharpness enhancement and
conversion of YUV to RGB color components is applied. All these tasks be-
long to the HRT classification. A third parallel video signal is generated by
the Teletext decoder which generates Teletext pages in a shared memory.
Because the timing of this task is not critical for the system performance
it is classified as a SRT task. However, the reading of the Teletext pages
from the memory and the mixing with the other two video signals is again
performed under real-time constraints (HRT). As shown in the figure, the
three different video windows are displayed on the TV screen. The user
can control the application by, e.g. switching the PiP on and off, changing
the size of the Teletext page, or the positions of the video windows. These
user interactions result in modifications of the task graph or changing of the
parameter settings of the tasks, and are classified as control or event-driven
tasks (EDT).

Input HS VS

Input HS VSNR

Mem

MIX 100
Hz SE matrix

GFX
gen. HS VSMem

MIX Output

 main picture
PiP

GFX
Menu

NR

Mem

Figure 4.1: An example of a task graph.

108 Chapter 4 – Flexible television processor system

The hard and soft real-time tasks, requiring a large computational effort,
are mapped onto more dedicated processor hardware to increase the amount
of parallelism. This approach was adopted to come to a cost-effective sys-
tem design, enabling a large set of 50 to 100 applications with a single chip.
In [13], it was discussed that a fully programmable architecture for a broad
range of TV applications is far too expensive for consumer television. Al-
though the aforementioned application-specific (co-)processors are weakly
programmable and are able to process various tasks that are slightly dif-
ferent, the type of task is fixed, e.g. a sampling-rate converter can perform
aspect-ratio conversion, scaling, geometric corrections or data compression,
but cannot do noise reduction or sharpness enhancement. The system re-
quires an architecture which provides multi-tasking capabilities, because a
plurality of different tasks has to be processed simultaneously by the same
coprocessor.

Let us now summarize the results so far of the analysis of the set of TV
functions and the computational estimations from the previous section and
find implications for the architectural design.

• The required computing power is in the order of 10 GOPS (see Ta-
ble 4.1).

• If all the communication between tasks in a typical task graph is accu-
mulated, several GByte/sec of required bandwidth is obtained. Each
full-color video channel requires 32 MByte/s bandwidth (at 50-Hz
field rate, see Table 4.1).

• The constraints for hard real-time streams must be met under all
conditions. This requires worst-case design of the architecture for
this part of the system.

• One of the disadvantages of current rigid TV architectures is that
signal-processing functions cannot be used in different orders, i.e.
modifying the order of tasks in a task graph (see Section 4.1). Such
task reordering would enable an optimal TV quality setting under all
conditions within the limits of available resources. The new architec-
ture should offer this flexibility, i.e. the feature to construct different
task graphs with the same set of TV tasks. Analysis has shown that
many different graphs exist for common high-end TV applications,
such as PiP, PiP recording, PiP replay, Split screen, with or with-
out 50-to-100 Hz conversion, with or without noise reduction for each
input stream, with or without display aspect-ratio conversion, etc.

4.3 Analysis of TV applications 109

• The resulting quality of the performed video tasks should be scalable
to adapt to the amount of available hardware resources (computing
power and bandwidth). The quality depends therefore on the chosen
task graph. For example, if only one video stream is being processed,
all video functions can be switched to the highest quality level, requir-
ing e.g. the best filters or most advanced processing (computationally
intensive for each task). If two video streams have to be processed,
the same video task can appear twice in the task graph, so that each
TV task is executed at medium quality. This might be acceptable,
e.g. a PiP application does not require the same video quality as
an application with one main video plane. More precisely, the video
streams are processed at the clock rate (64 MHz), but can have four
different pixel rates: 16, 32, 48 and 64 MHz. Each coprocessor can
process a number of streams in parallel, constraint by the following
expression:

1n16 + 2n32 + 3n48 + 4n64

4
≤ 1, (4.1)

where n16 represents the number of streams with 16-MHz pixel rate,
n32 stands for the number of streams with 32-MHz pixel rate, and so
on.

• The system should be capable of processing a minimum of two real-
time SD input video streams, because our aim is a multi-window TV
system. The clocks of the streams are not related (asynchronous), as
they originate from different sources.

Up to this point, primarily signal processing and its requirements were
discussed primarily. Let us now concentrate on the memory which is asso-
ciated with the signal processing. As was discussed in the previous section,
the objective is to use one single unified memory. The most important
motivation for this is twofold. Firstly, a unified memory supports memory
reuse. If functions are switched off, memory can be assigned to other tasks.
For example, PALplus decoding memories can be made available for e.g.
Teletext pages or vertical scaling. The second argument is cost. Clearly,
off-the-shelf large-scale memory components give the lowest system costs.

An experimental system implementation is based on a memory bank of
96-MHz Synchronous DRAMs. For 32-bit words, this gives a theoretical
bandwidth up to 384 MByte/s, which is lower than the maximum require-
ments mentioned in the previous section. However, not all data communi-
cation necessarily occurs via the SDRAMs and can be kept on chip. Only

110 Chapter 4 – Flexible television processor system

the tasks that inherently require complete field memories, such as tempo-
ral noise reduction, access the external memory. Another example that
requires a video frame memory is the synchronization of two independent
video streams as already explained (the mix task in Figure 4.1). Thus, the
two input video streams and the output stream may be independent, i.e.
the rate in which the streams are written and read may be asynchronous.

Since memory bandwidth is a scarce parameter, external memory accesses
are indicated in the task graph: they are modelled as extra inputs and out-
puts to the graph. Furthermore, the decoupling of tasks by a frame memory
results in a decomposition of the task graphs into independent subgraphs
as shown in Figure 4.2. The figure represents a decomposition of the tasks
graph in Figure 4.1 into four subgraphs. The top subgraph generates the
main picture in the background of the TV screen. The second subgraph
produces the PiP. Due to the decoupling of these two asynchronous video
signals by the mixing function, they can be considered as independent task
graphs, i.e. subgraphs. The third subgraph performs the scaling of the
Teletext pages and is decoupled by a frame buffer at the input and a mix-
ing buffer at the output. Finally, the bottom graph outputs the resulting
picture for display.

...

...

... .

Mem Mem

...

Mem

Mem

Mem

Output

...

Video
input 1

Video
input 2

Mem

Mem

Mem Mem

Figure 4.2: Example subgraphs, corresponding to Figure 4.1.

4.4 Architecture design

The application analysis of Section 4.3 and the computational requirements
of Section 4.2 are starting points for designing the architecture. We have

4.4 Architecture design 111

discussed sets of tasks being combined into graphs, and the associated
memory communication. Consequently, the architecture contains principal
modules and their components, and as such, it has a hierarchical structure.
Let us therefore start at the top of the hierarchy.

4.4.1 Top-level architecture

Since the properties of control and the signal processing are totally dif-
ferent, we will define three different subsystems: a control subsystem, a
signal-processing subsystem and a memory subsystem. The control sub-
system, comprising a micro controller with some peripherals, is responsible
for the execution of all control-oriented tasks and some of the soft real-time
tasks. This subsystem is also referred to as the Telecommunication and
Control Processor (TVP). The signal-processing subsystem, called CoPro-
cessor Array (CPA) executes all hard real-time tasks and some of the soft
real-time tasks. The memory subsystem performs the memory functions for
both the system control and signal processing. The nature of these types of
processing is totally different. The control subsystem is based on handling
events. It has to deal with unpredictable events coming from the environ-
ment. Therefore, its memory requests have a random characteristic. The
signal-processing subsystem is characterized by the more regular periodic-
ity of the operations. It sends requests with a more regular periodic to the
memory subsystem. The top-level architecture is visualized in Figure 4.3.

periodic
requests

control subsystem

D$ I$ P1 P2

CPU

signal-processing
subsystem

P3 P4 P5 P6 memory
subsystem

interface SDRAM

random
requests

Figure 4.3: The top-level architecture with separated subsystems.

112 Chapter 4 – Flexible television processor system

The principal design step at the top-level concentrates on the arbitration
between the two types of requests. The difficulty is that different aspects
have to be optimized. In the case of random requests by the micro con-
troller, the latency should be minimized, due to the event-driven character
of the tasks. In the case of periodic requests, the throughput of the system
has to be guaranteed, because all hard real-time tasks are mapped onto the
signal-processing subsystem which is periodic. Thus, in the case of peri-
odic requests we want to design for the throughput that should be obtained.
The latency is less relevant, since it can be hidden if sufficient buffering is
provided. Summarizing, an arbitration scheme is needed which ensures the
throughput for the periodic requests, while minimizing the latency for the
random requests. For our system, we used an arbitration scheme from [61],
that provides a low latency and high-priority access for the micro controller
and guarantees the required bandwidth for the video signal processors.

DRAM1 DRAM2

co-
proc

CPU

D$ I$
co-
proc

...

high-speed programmable
communication network

co-
proc

co-
proc

...MEM
arbiter

Aux

Vin

Vout

Aux

Vin

Vout

altern.
CPU

Figure 4.4: More detailed view of architecture proposal.

A further detailed view on the architecture is portrayed by Figure 4.4.
The above-mentioned subsystems are connected via a bus and a high-speed
communication network. The signal-processing subsystem consists of a
number of programmable coprocessors, interconnected via the high-speed
communication network. The background memory is accessible by both
the coprocessors and the micro controller. A few important system aspects
of the system are highlighted below.

• The coprocessors are weakly programmable and perform typical video
tasks for TV systems. Since all coprocessors concentrate on a differ-
ent type of task, they are much smaller than general-purpose CPU, or
equivalently, they are an order of magnitude more powerful in com-
puting power. The drawback is the restricted use of each coprocessor.

4.5 Signal-processing subsystem 113

• The general-purpose CPU is used for soft real-time tasks and for
event-oriented control. When the CPU is sufficiently powerful, a
number of communication functions (e.g. modem) and Internet ap-
plications can be covered, while the coprocessors are executing video
simultaneously.

• Since it is not known in advance what TV application is chosen, the
connection network should be programmable, so that an arbitrary set
and order of tasks can be chosen.

• The system should be extensible for future coprocessors and/or the
addition of a media processor, as discussed in a previous chapter. For
this reason, a generic interface is added for connecting an external
processor, either weakly programmable or general-purpose. It should
be possible to include the external processor as an extension of the
internal set of available processors.

• Video input can be received and processed without first writing it into
the unified memory. Similarly, processed video can be output directly
via the Video Output unit without memory access. This approach
saves the scarce memory bandwidth to the memory subsystem.

In the subsequent section, the signal-processing subsystem will be addressed
and details for achieving autonomous processing without control by the
micro controller, will be disclosed.

4.5 Signal-processing subsystem

4.5.1 Tasks and task graphs

The tasks to be performed for a complete task graph in a TV set can be
classified globally into two groups: tasks requiring a similar type of signal
processing and tasks which are different from a functionality point of view.
Examples of the first group are horizontal down-scaling for PiP and aspect-
ratio conversion. The required type of signal processing is sample-rate con-
version in both cases. It could be stated that sample-rate conversion is the
primitive task for various typical TV functions. Examples of the second
group where tasks are clearly different, are noise reduction and sharpness
enhancement which are essentially different in most algorithmic aspects.
Using the aforementioned classification, a number of choices can be made
for the new architecture.

114 Chapter 4 – Flexible television processor system

• After functional decomposition, tasks that inherently contain the
same function are mapped on the same processor and are mapped
on a separate processor otherwise.

• Since the tasks are known in advance at design time, each processor
can be optimized for a particular job.

• To allow the mapping of different graphs, a reconfigurable communi-
cation network is added. This means that signal-processing functions
can be used in various orders and can be programmed.

programmable connection network

P1 P2 Pn

co
m

m
un

ic
at

io
n

ar
bi

te
r

&
re

ve
rs

e
ne

tw
or

k

FIFOs
...

FIFOs
...

...

Figure 4.5: Architecture of the signal-processing subsystem.

The result of the architectural choices is that a heterogeneous multiproces-
sor architecture is obtained, which is capable of true task-level parallelism.
The architecture is shown in Figure 4.5. This will now be discussed in more
detail.

First, it can be noticed that all processors are surrounded by FIFO buffers
at their inputs and outputs. The aim is to separate signal processing from
communication, so that the activity of the processors is decoupled from the
communication network. The processors can autonomously perform pro-
cessing without requiring control from a host processor.

4.5 Signal-processing subsystem 115

Secondly, the choice for FIFO buffers is motivated. They have been adopted
because the arrows in the task graphs, called edges, represent streaming
(video) signals, i.e. measurable physical quantities sampled at discrete
points in time and binary encoded. The only identification of the different
samples in the stream is given by the order of the samples. Samples are
produced only once and cannot be lost on the communication channels.
For streams with the aforementioned features, separation of communica-
tion and processing can be well performed with FIFOs.

Third, the architecture is based on a data-flow model as proposed by Kahn
[62] called Kahn process network. Basically, this means that static schedul-
ing is not required. A process or task in the task graph is activated at run-
time when both input data to be processed and output space for storing the
results are available. In the sequel this data-flow model is also referred to
as data-driven processing. The arguments for adopting such Kahn process
network model are as follows.

• When analyzing the tasks in a task graph, it can be found that some
video signals cover the full display, while other signals cover a only a
part of the screen, such as a PiP. When the size or the position of the
PiP changes, the latencies and thus the schedules of the tasks change.
Using a Kahn process network model, tasks become automatically
active depending on the availability of input data and output buffer
space without requiring a static schedule for each possible mode of
operation.

• At some fixed moments in time, a typical video signal does not con-
tain any pictorial data according to the CCIR 601 recommendation
[63] (see Section 4.6.4). During these non-active parts of the video
signal, the coprocessors are idle. Consequently, this so-called “blank-
ing time” can be used for soft real-time (SRT) tasks. The detection
whether a stream is in the blanking time or not is a runtime decision,
since input streams are asynchronous with respect to each other. This
reuse for SRT tasks is easily implemented with a data-flow model.

• A data-flow model is often simpler to implement in comparison with
a static synchronous system, because it can perform runtime activa-
tion of processing task based on local availability of data, without
a static schedule. Note that synchronous systems may potentially
be less expensive since runtime computations are shifted to compile
time. For example, no synchronization mechanisms is needed since
synchronization is guaranteed by the schedule.

116 Chapter 4 – Flexible television processor system

• The concept is better scalable with respect to the addition or re-
moval of processors. It is expected that the data communication of
the future functions will become increasingly dynamic, meaning that
the amount of data bandwidth varies over time. A good example
is a variable-length decoder, which produces and consumes a data-
dependent amount of data.

Let us now discuss briefly how the signals will flow in the data-flow model.
The communication behavior is such that the signal channels can be blocked
locally (blocking semantic), according to the Kahn process network model.
A local processor is stopped when the output FIFOs are full or the input
FIFOs are empty. The decision is performed locally in the shells surround-
ing the processors. Furthermore, the output FIFOs of a sending task must
be blocked when the input FIFOs of the receiving task are full. In order
to be able to do this, the output FIFO has to know which input FIFO
causes the output to be blocked. This requires backward reasoning about
the communication. A special network provides control signals from each
input FIFO of the receiving tasks back to the output FIFOs of the sending
tasks, in order to block a output FIFO when its associated input FIFO
is full. Hence, the special network provides the same connections as the
data-communication network, but in the reverse direction and is therefore
referred to as the reverse network (see Figure 4.5).

Up to this point, resource sharing , that is, the reuse of a processor for
another task was only mentioned but not yet taken into account. For the
model, a one-to-one correspondence between tasks in the graph and pro-
cessors in the architecture has been assumed. In Subsection 4.5.2, resource
sharing will be discussed in more detail.

4.5.2 Processor model

A typical TV function such as scaling, is based on sample-rate conversion.
The same function (e.g. horizontal sampling-rate conversion, HSRC) can
appear more than once in a task graph. For cost reasons, these conversions
will all be executed on the same HSRC coprocessor. For the same reasons,
resource sharing of the communication network can also be provided. Ob-
viously, since the resources have limited speed, the sharing of the resources
has also its limits. Let us elaborate on this by means of an example.

The processor model portrayed by Figure 4.6 has two input ports I(p) and
two output O(p)ports. For example, this could be a temporal noise reduc-
tion coprocessor that needs an input video signal and the filtered result

4.5 Signal-processing subsystem 117

st
at

e 1

st
at

e 2

shared
logic

local
control

1 .. I(p)

1 .. O(p)

fif
o 1

fif
o 2

fif
o 3

fif
o 1

fif
o 2

fif
o 3

fif
o 1

fif
o 2

fif
o 3

fif
o 1

fif
o 2

fif
o 3

st
at

e 3

Figure 4.6: The model of a signal processor.

from the temporal loop as inputs, while the processor has a video output
and a backward channel to memory as outputs. Each input and output port
is connected to three FIFOs, labelled 1-3. When a task is started, a FIFO
is assigned to this task at each input and output port. These assigned FI-
FOs only convey the data corresponding to this task. The maximum data
bandwidth of each input and output port is limited (64 MByte/s) and is
divided into four quanta of 16 MBbyte/s, which can be partitioned over
the parallel tasks. For example, one task could process a 32 MByte/s video
stream together with two other tasks that each process a video stream of 16
MByte/s. Thus, three tasks in parallel, communicating in total 64 MByte/s
of data per input and output port.

Associated with each task, a local memory exists called state space, to
store the state information of the task. Thus, according to the depicted
model, three different state spaces can emerge, where each state space is
assigned to a particular task. As a result, this model can handle maximally
three tasks in parallel (the experimental chip discussed in [13] can perform
one to three parallel tasks, depending on the considered coprocessor). In
the figure, each task on a coprocessor occupies its own input and output
FIFOs. To provide resource sharing of the communication network, these
FIFOs could be shared as well. However this may cause deadlock situations.
In general, a deadlock means that all tasks in the task graph cannot make
any progress according to the data-flow model, while data is still available
that needs to be processed. For the specific example where input and out-
put FIFOs are shared and processing tasks that depend on each other are
executed on the same processor, deadlock may occur.

118 Chapter 4 – Flexible television processor system

high-speed programmable
communication network

coproc1 coproc2 coproc2

task 1

task 3

task 2

mapping of tasks
onto coprocessors

...- data token for task 1
- data token for task 3

deadlock
situation

Figure 4.7: Mapping of three tasks onto two coprocessors, causing a dead-
lock situation.

This is schematically depicted in Figure 4.7. In the figure it is shown
that each input channel of Coprocessor 2 receives the tokens of Task 1 and
3 in a different order. To avoid deadlock, the coprocessors should be able to
reorder the tokens at the input channels. This is most straightforwardly im-
plemented by separating the tokens of each task in separate FIFOs, thereby
preventing the reordering problem.

4.5.3 Communication network

The primary task of the communication network is to provide sufficient
bandwidth for the data streams between the output and the input FIFOs.
A secondary task is to offer arbitrarily programmable connections between
various coprocessors. Thus for every connection in the task graph, a path
is created in the programmable connection network in Figure 4.5 for trans-
port of the data. The path is created using circuit switching.

The network is a so-called Time-Space-Time (TST) network with space
and time switches. The reason to build such a network is to ensure non-
blocking connections between output FIFOs of processors and input FIFOs
of succeeding processors, with a predetermined amount of bandwidth for
each connection. Figure 4.8 shows a space switch at the left-hand side,
making a connection between a2 and b3 and another connection between
a4 and b2. At the right-hand side of Figure 4.8, the same connections are
shown using a time (T-)switch. At the input, a multiplexer is added and

4.5 Signal-processing subsystem 119

fifo1

fifo2

fifo3

fifo4

fifo1

fifo2

fifo3

fifo4

time switch

a1

a2

a3

a4

b1 b2 b3 b4

space switch

a1 a2 a3 a4 a1 a2 a3 a4

b1 b2 b3 b4 b1 b2 b3 b4

s1 s2

s2 s1

time

time

frame frame

a1

a2

a3

a4

b1

b2

b3

b4

Figure 4.8: A space switch (left) and a time switch (right).

a demultiplexer at the output. Using four time slots, the total bandwidth
equals the sum of the bandwidth contributions of the individual channels.
This leads to the TST network as shown in Figure 4.9.

As an example, two paths through the network are indicated. Each path
is programmed by putting the correct code for the three different parts of
the network. A table with four different time slots is used for the time
switches. For example, the x connection is programmed in phase one for
the most left time switch via the correct code at the position labelled with
an x. In this way, bandwidth is allocated corresponding to one phase. The
connection labelled y has twice the bandwidth of one channel, because it
is programmed for two time phases. The programming flexibility ensures
that sufficient bandwidth can be provided for particular stages or signals
in the task graph.

Note that at both the input and output side of the processors, FIFOs
are implemented. With respect to the concept of the data-flow model,
these FIFOs could be combined into a single buffer. However, to decou-
ple the computation (pixel processing) from the communication, FIFOs are
necessary at both the input and output of the coprocessors. Because the
communicated data of multiple tasks on a processors is conveyed over the

120 Chapter 4 – Flexible television processor system

...

x

y

inputs
to

processor
shells...

phase

y
y

x

x

y
y

x

y

outputs
from

processor
shells

x

y

phase

1
2
3
4

1
2
3
4

1
2
3
4

Time TimeSpace

phase

1
2
3
4

1
2
3
4

1
2
3
43

1
2

3

1
2

3

1
2

1
2
3
4

1
2
3

1 2 3

in

out
phase

1
2
3
4

Figure 4.9: A Time-Space-Time (TST) network, ensuring a guaranteed
bandwidth for hard real-time tasks.

switch matrix in a time multiplexed manner, the communication channels
for a particular task are not available at all time phases. Hence, the FIFOs
prevent that the coprocessors can only process a certain task if the corre-
sponding network resources are available. Because this thesis only intends
to discuss high-level architectural issues, it suffice to understand that the
FIFOs can be rather small depending on the number of time phases. For
example, the implemented system uses FIFOs with 32 entries.

Due to the static assignment of processing resources and the guaranteed
communication throughput for all tasks, the behavior and performance of
the system is completely predictable. Hence, it can be determined a priori
whether a particular application can be executed with the available system
resources. This predictability is a major advantage of the presented Tele-
vision Processor system as opposed to systems that arbiter the resources

4.5 Signal-processing subsystem 121

at run-time. For these later systems, the performance of a functional unit
depends on requested shared resources, such as the off-chip memory and a
communication bus, by other functional units. Moreover, these systems are
less robust because the sum of the peak resource usage of the individual pro-
cessing units may exceed the available resources, leading to unpredictable
behavior of the system.

4.5.4 Interaction between controller and processor

The previous subsections discuss the architectural aspects of independent
processors and how to provide these processors with sufficient data by
means of a programmable communication network. In this subsection, we
address briefly the adaptivity of the processing tasks by means of interac-
tion with the controller.

A form of interactive communication is required when a TV function is
made adaptive to the content of the video signal. For example, the noise-
reduction processor measures a significant noise increase, communicates
this property to the CPU, and is subsequently programmed by the CPU to
perform more noise reduction. For this type of event-driven communication,
an interrupt (irq) line to the CPU is used. The signal-processing subsystem
contains a large range of interrupts to cover all possible events. Each inter-
rupt is represented by one bit in a memory-mapped interrupt register. The
CPU receives an interrupt if one of these bits indicates an “irq”by means
of a hardware OR-function. Subsequently, the CPU may read the inter-
rupt registers via the interrupt service routine in order to identify which
event has occurred. The “irq”is then acknowledged by resetting the cor-
responding irq-bit in the memory. This general communication protocol is
visualized in Figure 4.10.

The interrupt mechanism is also used when the processing generates erro-
neous behavior or when signals are not in accordance with specified video
formats. An example of the former case is a coprocessor with hardware
problems deteriorating the video signal and an example of the latter case
is a signal with a varying number of samples per line or lines per frame
caused by substantial timing jitter in the synchronization signals. Since all
interrupts generated by the signal-processing subsystem operate at video
field rate and can be disabled individually, the interrupt rate to the micro-
controller system can be kept sufficiently low. This optimization is advan-
tageous, because interrupts increase the communication overhead (context
switching). Adaptation of the processing is sufficient at field frequency,
since it provides sufficient response-time of the system. This also gives am-

122 Chapter 4 – Flexible television processor system

address space for P1

1 0 0 00 0 0 0

address space for P2

1. set irq bit

signal-processing
subsystem

P2P1 Pn

memory map

2. interrupt CPU

3. read irq bits to
 determine the event

OR

irq bits

control subsystem

P1CPU Pn

4. communicate with
 the corresponding
 coprocessor

Figure 4.10: Communication protocol for interactive processing.

ple time for the microcontroller system to perform other tasks, such as e.g.
modem communication or still-picture decoding.

4.6 Memory

4.6.1 Partitioning of internal versus external memory

In this section we focus on the memory aspects of the architecture in or-
der to pursue a flexible programmable system for TV applications. In
Section 4.5, the signal-processing model was presented and the required
communication for keeping all coprocessors active simultaneously was ex-
plained. It is recalled here that the approach adopted is such that basically
all coprocessors have local memory to avoid unnecessary background mem-
ory access for data packages that require only a small memory space. In
the provided example signal processing task graph, the memory access con-
centrates on creating field/frame delays and alternative significant memory
actions, like signal mixing and synchronization of independent video signals.

4.6 Memory 123

This approach is best illustrated by a few examples. The first example
is the implementation of a vertical video scaler or also known as vertical
sample rate converter (VSRC). The principle of the vertical converter is
that a number of video lines are provided at the input, while a converted
signal having more or fewer video lines is produced at the output. Note that
in this concept, although one complete video signal is required at the input,
a number samples of different neighboring video lines has to be supplied
in parallel. This is because the filter in the converter requires information
of various video lines to compute a new video line at the output. Thus
the computation of one output signal requires several video streams at the
input, corresponding to the number of filter taps (e.g. N). This input
process represents a significant memory bandwidth, i.e. roughly N times
the normal video bandwidth, if the required video lines are mapped into
a background memory. Instead, we propose to insert the required video
lines into a local memory unit that is combined with the vertical converter
computation. The input of the memory unit requires one video signal, and
the output of this unit simultaneously provides the video samples of all
required video lines. The memory unit is organized as a line-based FIFO
which produces a video output after each line delay. It is clear that this
concept saves substantial bandwidth usage to the background memory, be-
cause each video line is read only once although it is required for N output
lines. Since the amount of lines that are required simultaneously is limited,
a local memory is clearly preferable.

The embedding of local memory is only sensible if the required storage
space is not too large. This can be easily recognized for other processing
units. For example, a 100-Hz converter can be seen as a temporal signal
converter that uses field memories to convert a video signal for a temporal
up-conversion towards 100 Hz field rate. Conceptually, the field memories
belong to the temporal converter. Practically, the field memories require a
significant memory capacity and thus silicon area. Additionally, they are
of a size that re-usage of this capacity in case the temporal converter is not
used is highly interesting. For this reason, such large memory functions are
mapped into the background memory.

In this section, we deal with communication aspects of memory process-
ing actions and we discuss several typical TV functions in which memory
access and memory-based processing plays a key role. Finally, bandwidth
budget and limitations are presented.

124 Chapter 4 – Flexible television processor system

4.6.2 Communication between subsystems

As was mentioned in Section 4.4, a cost-effective solution requires one uni-
form background memory which is based on a standard off-the-shelf RAM.
The RAM can be accessed by both the CPU and the coprocessors. An at-
tractive property of the system architecture is that the control-subsystem
and the signal-processing subsystem can be used as stand-alone devices,
because they provide their own control for operation. Both systems are
favorably combined into a powerful full-featured system by a connection
via the memory bus, as depicted in Figure 4.11. This enables communi-
cation between the CPU and the signal-processing subsystem by means of
memory-mapped I/O. One unified memory map is applied in which all pa-
rameter and operation-mode registers of the coprocessors are located. The
CPU can access all the parameter registers to program the coprocessor set-
tings and derive information from the processors and/or the signals being
processed.

unified memory

stand-alone systems
with seperate memories

control subsystem

memory
interface

signal processing
 subsystem

memory
arbiter

memory
interface

...

combined system
with a unified memory

unified memory

control subsystem

memory
interface

signal processing
 subsystem

memory
arbiter

memory
interface

...

unified memory

Figure 4.11: Stand-alone and a combined system with unified memory.

A complication of the centralized memory architecture is the arbitration of
requested access by all processors. The implemented memory arbiter dis-
tinguishes two types of memory requests. One from the micro controller,
requiring high-priority access with a low-latency and one from the copro-

4.6 Memory 125

cessors, requiring a guaranteed throughput. To establish this, the arbiter
slices the memory cycles into groups of e.g. 64 cycles. To guarantee suffi-
cient throughput for the coprocessors, a fixed number of cycles within the
64-cycle time slices is devoted to the coprocessor. For example, let us as-
sume that 54 cycles of each slice are reserved for the coprocessors, leaving
10 cycles for the micro controller. If the memory arbiter receives a sequence
of requests, first the requests from the micro controller are served. However,
if the micro controller has occupied the 10 memory cycles, the priority is
given to the coprocessors. Hence, the requests from the micro controller are
still served, unless outstanding requests from the coprocessor are available.
This straightforward memory arbitration scheme offers a combination of
low latency for the micro controller and a guaranteed throughput for the
coprocessors, but requires a static assignment of the memory bandwidth
budget for the coprocessors.

Since in the architecture proposal a single memory is used, bandwidth lim-
itations can become a serious problem. Some measures have been taken to
relax this so-called von-Neumann bottleneck [25]. As an example, the fre-
quency of the memory bus is twice the frequency of the CPU, whereas the
bus width is equal to the word width of the CPU (32 bits). Furthermore,
coprocessors can be programmed such that memory access can be reduced
at the cost of some quality. Even the video application itself can be modi-
fied for memory reduction at the expense of a picture quality deterioration.
These aspects are discussed in the following subsection.

4.6.3 Memory resources versus quality

The introduction of new TV applications for the system and their corre-
sponding mapping onto the architecture is mainly limited by the computing
power of the resources, the bandwidth of the coprocessors, and the band-
width of on-chip and external memory. Consequently, special attention
should be paid to the architectural design of the communication network.
As was mentioned at the introduction of this section, communication for
video signals via the memory should be limited to large memory functions
only, e.g. the field delays for temporal noise reduction and field-rate conver-
sion. Additional key issues in the design of the communication architecture
that have a direct impact on the memory resources are listed below.

• Local FIFO buffers – These buffers are relatively small and located
at the input and output stage of all coprocessors (see Figure 4.5).
The local FIFOs enable date exchange between coprocessors without
access to the external background memory. This significantly reduces

126 Chapter 4 – Flexible television processor system

the bandwidth requirements of the external memory. This contrasts
with processor systems that communicate all streams via the back-
ground memory.

• Mixing or juggling – The video juggler that mixes video streams to
create e.g. a Picture-in-Picture (PiP), is designed such that it requires
a minimum amount of memory bandwidth. In the background mem-
ory, two field blocks (for interlaced video) are allocated to construct
the composed video frame for later display. These memory blocks are
filled with the odd and even fields of the picture, except for the pixel
positions where another overlapping video window will be positioned.
This unused memory area in the memory is used by a second video
path (corresponding with a different task and signal) to write the
overlapping video window. Consequently, the total amount of data
stored corresponds to one complete picture instead of two. Similarly,
the total required bandwidth approximately equals the bandwidth for
writing one complete stream instead of the sum of the bandwidths of
the individual video streams.

• Bandwidth equalization – This is used to decrease the required peak
bandwidth. Equalization in memory read/write tasks is obtained by
spreading the data transfer of an active video line over the time of
a complete video line including the horizontal blanking. Common
video signals contain 15 % horizontal line blanking, leading to a 15 %
reduction of the peak bandwidth.

The following aspects deal with individual video functions in which mem-
ory can be exchanged against picture quality. This relates to an additional
system aspect which aims at realizing scalable processing power for a trade-
off between computer resources (here memory) and picture quality. Some
examples are given below.

• Vertical scaling – Vertical sample rate conversion at high quality re-
quires that the interlaced input video is converted to progressive video
prior to sample rate conversion. As a result, a memory access is nec-
essary to write interlaced video fields and to read the odd and even
video lines progressively. Subsequently, de-interlacing should be ap-
plied prior to the scaling. After scaling the progressive frames, they
are interlaced again, by removing the odd or even lines before the final
result is communicated to the rest of the system. The memory re-
quirements for such a vertical scaling task are significant. At least one
field memory is necessary and a memory bandwidth of three times
the bandwidth of one single interlaced video stream is required to

4.6 Memory 127

write interlaced and to read progressive video. To save some memory
resources, it is possible to scale the interlaced fields, thus to perform
intra-field processing instead of inter-field processing. This decreases
the picture quality but it saves the memory resources for progressive
reading of video lines.

• Graphics – Graphics generation in the background memory requires
a field or frame memory, depending on the desired quality. When
a field memory is used and the content is read for both odd and
even fields, the amount of memory is reduced at the cost of some
loss in vertical resolution. Since synthetically generated graphics may
contain high spatial frequencies, the use of a frame memory may result
in annoying line flicker when the memory is displayed in interlaced
mode. Moreover, it is also expensive in terms of memory size. For
50-60 Hz interlaced video, a field memory is most attractive, whereas
for field rates higher than 70 Hz, a frame memory could be used for
high-resolution graphics.

There is an important issue that remains after the discussion of the pre-
vious memory function aspects. When mapping a video application onto
the proposed architecture, the application engineer has to evaluate and
balance the total bandwidth of the application considered. This is due
to the hard bandwidth limitation of the memory really applied. For ex-
ample, a dual 16 Mbit SDRAM configuration of 16-bit width per device
running at 64 MHz clock frequency offers a maximum theoretical band-
width of 256 MByte/s. In practice, this will be somewhat lower as a result
of inefficiency of the addressing (see Chapter 5). Thus, for a complete
video application, the memory requirements of the individual video func-
tions have to be added and compared to the achievable practical maximum.
Then a memory budget planning divides the available bandwidth over the
functions and trades-off quality and bandwidth. Also the bandwidth of
the general-purpose computing units has to be considered in the planning.
In the proposed system, a minimum budget is specified for the control
processor CPU to ensure controlled operation of the TV system under all
circumstances, even if the processing would abort due to e.g. a deadlock.
The construction of such a budget and planning is discussed in Section 4.7
using a typical TV application as an example.

4.6.4 Interfacing with the real-time world

The Kahn process network as presented above provides automatic activa-
tion of tasks and synchronization of the communicated data. Moreover, it

128 Chapter 4 – Flexible television processor system

enables the processors to operate in independent clock domains. For ex-
ample, the clock rate at which the data is processed can be asynchronous
with respect to the rate at which the video signal was digitized. How-
ever, in a TV application the display is synchronized to the input signal.
Hence, if a 50-Hz TV set receives a 60-Hz video signal, it might not be
able to display the video because it cannot synchronize to the signal. The
synchronization is achieved with accurate information that indicates the
position of the video signal on the screen. For example, at the input of
the video processing system the digital video signal is accompanied with a
clock signal synchronous to the pixel rate, an H-signal indicating the first
pixel of the video lines, and a V-signal indicating the first lines of a video
picture. However, due to the data-flow model, the notion of time is lost in
the system. The model only guarantees a maintained sequential order of
pixels but cannot relate a pixel position to an absolute moment in time.
Therefore, when going from the real-time domain to the data-flow domain,
special precautions have to be taken so that the relation between the pixel
position and time can be recovered.

blanking

active
video part

Dy
Dx

y0

Start of frame
(rising edge of the V-pulse signal)

Start of lines
(rising edge of the H-pulse signal)

(0,0)

(a) Progressive video

x0

active
video part

y0

Dy
Dxx0

active
video part

y0

Dy
Dxx0

(0,0)

(0,0)

Start of lines
(rising edge of the H-pulse signal)

Start of field
(rising edge of the V-pulse signal)

(b) Interlaced video

Figure 4.12: The blanking and the active part of a video signal for progres-
sive (a) and interlaced (b) video.

We propose an efficient method that maintains the timing information,
when data streams from a real-time environment are converted to a data-
flow environment and/or visa versa. Using a fixed-sized picture format (pix-
els × lines), is the most straightforward approach to maintain knowledge
on the pixel positions without conveying internal synchronization signals.

4.6 Memory 129

Counting pixels is sufficient to determine the exact position of a pixel. Note
that this does not recover the timing. Extracting a fixed-sized picture for-
mat from a video stream is possible, because only a part of a video signal is
used for visible video display. This part is also called the active video part.
Almost 20 % of the pixels on a video line and 10 % of the video lines in a
video frame are not displayed and this is called the blanking . For example,
a CRT display uses this blanking time to reposition the electron beam to
the start of the next video line. Evidently, only the active part of a video
stream is of interest for the processing units. Figure 4.12 shows a part of
the active video signal that is captured for processing. The left-hand side
of the figure shows the capturing in case of progressive video, whereas the
right-hand side shows capturing for interlaced video.

active video line active video line visi.

active video part

V-pulse

H-pulse

y0

x0

Dx

Dy0 y1

0 x1

Figure 4.13: A video signal with H- and V-pulses indicating the active part.

Figure 4.13 clarifies the active part in the one-dimensional representation of
the signal. In the horizontal direction, the active part of a video line starts
x0 pixels after an H-pulse. In the vertical direction, the active part starts
y0 lines after a V-pulse. Because a fixed-sized picture format is required,
x0 + Dx and y0 + Dy (see figure) are constant. The remaining pixels of the
video lines and the remaining video lines of the frame may vary (besides
the right and bottom borders of the active video part in Figure 4.12). Only
the fixed-sized active part is conveyed through the processing systems. The
format may be regarded as the format of a standard signal (for a standard
signal also time-stability constraints are involved). Obviously, the Video
Input Module has to retrieve the fixed-sized active part (Dx × Dy) from
the video stream in all circumstances. A more elaborate overview of how
this is accomplished is described in [14].

130 Chapter 4 – Flexible television processor system

After processing the input video signals by the system, the Video Output
module of the video processing system is responsible for making a tran-
sition from the Kahn process network to the real-time domain. Timing
information and synchronization signals for the display have to be recov-
ered and synchronization with a video signal at the Video Input module
should be maintained if appropriate. For example, a video PC card dis-
playing a 50-Hz PAL or 60-Hz NTSC signal onto a 72-Hz monitor is an
example application where no synchronization is applied. Consequently,
some of the video frames are repeated to display 72 pictures per second,
resulting in video display that suffers from motion judder. This problem
can only be solved by applying motion-compensated frame-rate conversion,
which is an expensive video processing function. However, for TV appli-
cations, synchronization should generally be maintained. This is provided
by the Video Output module which conveys a new output picture, a fixed
delay after the picture was captured by the Video Input module. This is
achieved by communicating the input V-pulse via a programmable delay
to the Video Output module as depicted in Figure 4.14.

data-flow System
data-flow

processing

synchronization
 V-pulse

internal video

Video output
module

Video out

H-pulse out

V-pulse out

Clk out
FIFO

FIFO

FIFO

delay

Video input
 module

Video in

H-pulse in

V-pulse in

Clk in
FIFO

FIFO

FIFO

V-pulse
re-

generate

Figure 4.14: Block diagram of a processing component.

Note that under normal operation, the sequential order of the input pixels
is maintained and that no pixels can be lost in a Kahn process network.
Consequently, for every input V-pulse a picture is also received at the out-
put of the system. Although they may seem trivial, the following issues
have to be covered by the system.

• A V-pulse that precedes an input picture may only be communicated
internally from the Video Input to the Video Output module if the
fixed-sized picture capturing can be guaranteed. Hence, even if ir-
regularities or corruptions in the input signal occur, the Video Input
module has to convey fixed-sized input pictures into the system to

4.6 Memory 131

prevent unpredictable behavior of the system. For example, if a V-
pulse is received at the output while no corresponding picture was
captured, the Video Output module would drain the system, causing
underflow. Similarly, when a picture is captured while the corre-
sponding internal V-pulse is absent, the system will overflow since
the picture will not be output for display.

• When 50-to-100 Hz conversion is applied by the system, one input
V-pulse corresponds to two pictures at the output. Hence, the Video
Output module needs to generate additional synchronization signals
while the original signals remain synchronized with the video signal.

• For correct reproduction of the output signal, the pixel data should
be available for the Video Output module as soon as they need to
be output for display. Even if the data are not yet available due to
e.g. erroneous settings in the software, the Video Output module is
not allowed to skip pixels or to output pixels more than once. Due
to the Kahn process network, this would cause a phase shift between
the active video pixels and the V-pulse which cannot be detected and
hence cannot be recovered.

Some of these issues are hard to prevent. For example, capturing fixed-size
pictures for every input V-pulse cannot be achieved if the input is not con-
nected and the input voltage is determined by noise. However, to deal with
malfunctions both the Video Input module and Video Output module can
perform measurement on the input signal and can communicate its status
to the microcontroller by means of interrupts. Hence, if an input signal
cannot be captured or displayed correctly, this can be signalled. Subse-
quently, the microcontroller can respond to the system by reprogramming
coprocessors. The following items represent some example actions that the
microcontroller can take.

• The video processing system can be reset and the Video Input module
can be programmed to discard its inputs and to generate a blue screen.
Moreover, graphical text can be blended onto the video indicating for
example a missing input signal.

• If an underflow or overflow occurs, the subgraphs as described in Sec-
tion 4.3 can be decoupled in the background memory. This means
that the output of the predecessor subgraph is written into the mem-
ory and the input of the successor subgraph reads this memory data,
asynchronously with respect to each other. Consequently, the speed
of the predecessor subgraph is driven by the input video rate, whereas

132 Chapter 4 – Flexible television processor system

the speed of the successor subgraphs is driven by the output video
rate. Once the signal flow through the system has been stabilized
again, synchronous communication via the background memory can
be established again for optimal picture quality.

• The Video Input module is able to measure the number of pixels
per line and the number of video lines per picture and can make the
results available for the microcontroller. This information can be used
to automatically capture the correct resolution at the correct frame
rate. Moreover, this mechanism can also be used to capture only part
of the input in able to free system resources or to quickly lock the
Video Input module to the input signal.

The above-presented mechanisms only give a overview of the functionality
to make the system more robust, i.e. guaranteed stable operation under
all circumstances, synchronized to the input signal. For a more detailed
description of the Video Input and output modules see [14].

The delay between the Video Input and output module determines the
amount of data that is buffered into the processing system. A small la-
tency of the processing units and a large delay of the internal V-pulse
from the Video Input to the Video Output will require a large data buffer,
whereas a large latency and a small delay of the internal V-pulse requires
little buffering. Obviously, the latency of the total processing system should
be constant to provide a regular video stream for the display. Because the
processing may vary over time, also the latency of the processing changes.
For example, the user may activate a vertical sampling-rate converter to
do aspect-ratio conversion in a widescreen TV set. This will increase the
latency of the processing chain depending on the scaling factor, the order
of the filter, and the position of the video window to be scaled. The varia-
tion in the latency has to be compensated by buffering. With a delay unit
for the internal V-pulse signal (see Figure 4.14), the exact time the Video
Output module receives the V-pulse can be set such that for a maximum
latency application, the buffer requirement is minimal. The application
with the minimum latency will then determine the maximum buffering for
compensation that should be available. This is illustrated in Figure 4.15

The television processor system as presented in this chapter is optimized
for minimal communication requirements. Consequently, a tight coupling
of the tasks on the coprocessors is provided by means of small FIFO buffers.
Even the communication via field or frame buffers in the background mem-
ory for e.g. de-interlacing or field-rate conversion, is synchronized at pixel
granularity. Hence, a read action can track the write pointers with one pixel

4.7 Implementation example of the architecture 133

Video
input

Video
output

data-flow
processing

latency
buffer

Vpulse

minimum latency - maximum bufferingmaximum latency - minimal buffering

constant system latency set by the V-pulse delay

Figure 4.15: Relation between the processing latency and the V-pulse delay.

distance. This means that the transition from the Kahn process network
domain to the real-time domain is particularly critical in such a system.
Just a little too many or few pixels captured or displayed causes an un-
desired phase shift of the video signal with respect to the synchronization
signals which cannot be recovered any more. Hence, the system has to be
robust to all possible signal changes at the input or output. In conven-
tional data-flow systems, robustness for the input signals is provided by
first writing the input video streams into frame buffers. Subsequently, the
video pictures are read and processed by the system. Even if the input sig-
nal is corrupted and only part of a picture is captured and written into the
frame buffer, a complete picture is read for processing. It can be concluded
that the frame buffers decouple the Kahn process network model from the
real-time world. This robust decoupling using a frame buffer is not pro-
vided in the presented system of this chapter. This system features a tight
coupling of the input and output tasks with the remaining video process-
ing tasks by means of small FIFO buffers, thereby saving scarce memory
bandwidth. Consequently, a robust interfacing between the real-time world
and the Kahn process network model should be provided within the input
and output processors. This required special attention for the design of the
Video Input and Output modules.

4.7 Implementation example of the architecture

4.7.1 Introductory system presentation

In this section, we will focus on the functional possibilities of the architec-
tural concept presented in the first part of this chapter. For this purpose,

134 Chapter 4 – Flexible television processor system

we present an instantiation of the architecture in the form of a chip set con-
taining two chips. The chip set was developed for experimental purposes.
One of the chips was commercially released (known as the SAA7430)in a
later stadium, whereas from the other, modules were extracted for alterna-
tive implementation projects.

The purpose of this example is to put the concepts of the first part of
this chapter into practice and to learn from the mapping of video appli-
cations onto such an architecture. At the time of writing of this chapter,
already new instantiations of programmable video architectures are emerg-
ing but they apply similar principles. The scale of operations and functions
progresses with the IC technology.

co-
proc

CPU

D$ I$
co-

proc
...

PI-bus to
mem-bus

mem-bus
to PI-bus

unified
memory

communication network

microcontroller

co-
proc

co-
proc

...MEM
arbiter

Coprocessor array

Figure 4.16: The experimental two-chip digital video platform.

Figure 4.16 shows the hardware architecture of the programmable video
processor chip-set. The system consists of two chips: a micro-controller
which has been presented in [64] and a coprocessor array. The former chip
is for Teletext (TXT), graphics generation, system and chip control and
various communication features. The latter chip executes the necessary
video tasks in weakly programmable hardware. Both ICs are autonomous
units which communicate with each other via a central bus. Internally,
this bus operates according to the Peripheral Interconnect (PI) bus proto-
col [65], whereas the external part of the bus uses a synchronous DRAM
(SDRAM) memory protocol. This enables stand-alone operation of both
ICs, while for the case that both ICs are interconnected, they make use of
one single unified memory.

The novelty of the system for TV applications is the high flexibility in
signal processing. The task graph, i.e. the order of signal processing func-

4.7 Implementation example of the architecture 135

tions through all coprocessors, is programmable by means of a flexible com-
munication network [66]. The processing of data by several coprocessors
is achieved without the need to access the bandwidth-limited memory for
communication purposes. The coprocessors, which are interconnected via
a communication network, are synchronized by means of data-driven pro-
cessing of the pixels [62]. This implies that each task in a task graph or
kahn process network is executed when data is present at the input, and if
storage space is available at the output stage. This run-time synchroniza-
tion mechanism, provides autonomous processing without interference of a
micro-controller or a hardware scheduler. More details can be found in [6].

Let us now discuss how the aforementioned architectural properties are
exploited for flexibility and new features. Two examples are illustrated
briefly. An overview is provided in a following section.

• The two chips share the background memory. This enables the pos-
sibility to assign the available memory space to applications in a dy-
namic way. For example, if extra graphics data are generated for user
control interface, the quality of one of the video applications, such as
vertical scaling, can be scaled down temporarily to release resources.

• The order in which video functions are carried out is programmable
by constructing a task graph. Furthermore, most coprocessors can
execute more than one task at the same time. Consequently, more
than one video input stream can be processed simultaneously. The
tasks that are applied for each stream may be different and/or have
different settings. For example, for two video windows, the noise
reduction can be carried out for the window where it is needed most.

Note that the re-programming of coprocessors requires that specific aspects
need to be covered. Firstly, if task switching is performed within an on-
going task, the processor should store that state or context of the process
required to resume processing from the point where it stopped. Secondly,
the processor should be informed about the data identity, thus the video
stream type that is processed. This can be either communicated by the
control PI bus, or by labelling the data with a data header packet that tells
the origin, destination and nature of the video stream. Thirdly, if processes
are dependent on each other and executed on the same processor, a so-called
deadlock could occur. This is avoided by implementing separate input and
output FIFOs for each possible task on a coprocessor (see Subsection 4.5.2).
Let us now list the video functions of the system.

136 Chapter 4 – Flexible television processor system

4.7.2 Overview of hardware functions

In this section we briefly describe the hardware blocks integrated in the
micro-controller and the video processor chip. The micro-controller con-
tains a 32-bit R3000 reduced instruction set computer (RISC) core for con-
trol of the video coprocessor array, and TV-set control. Moreover, blocks
are integrated for graphics generation, Teletext decoding, and modem func-
tionality for Internet connection. The peripherals in the micro-controller,
as depicted in Figure 4.16, are an interrupt controller and a number of
standard communication modules (UARTs, Infrared support for remote
control, JTAG for testing, etc.). The controller chip also contains an I2C
block for generic control of neighboring chips. Important is the graphics
output processor, which enables pixel-based graphics with a resolution ex-

Table 4.2: Hardware functions in the micro-controller chip.

Category Hardware support
Software R3000 RISC with I- and D-cache,
execution interrupt control, timers, watchdog timer.
Teletext Input for TXT front-end

IC SAA5284.
Control 2 × high-speed UART (230 kbit/s)
communication 2 × I2C, IR connection.
Data Serial Interconnect Bus (SIB)
communication for UCB100H modem IC.
Memory SDRAM controller for a.o. 16 Mbit
connection and 64 Mbit memory devices,

general-purpose ROM interface.
Testing, enhanced JTAG interface, general I/O pins,
miscellaneous software ADC pins.

ceeding conventional TXT images. Finally, an SDRAM memory controller
supports the connection of a large external SDRAM memory for executing
all software tasks and exchanging data with the coprocessor array. Ta-
ble 4.2 gives an overview of the various hardware functions.

The video coprocessor array (see Figure 4.17) performs all video signal-
processing functions of the chip set (see Table 4.3). It contains a set of
coprocessors for TV functions which are typical for a high-end TV set or
set-top box. For video image resizing, it contains a horizontal scaler and a
vertical scaler with de-interlacing capability. This de-interlacing prevents
aliasing artifacts and maintains optimal resolution when using interlaced

4.7 Implementation example of the architecture 137

video signals. The input signal quality may be improved using the inte-
grated adaptive temporal noise reduction, which analyzes both the video
signal noise and the motion. The sharpness may be augmented with the
contrast-adaptive local sharpness enhancement [9].

Coprocessor Array

 High-throughput communication network

NR HS VS SE
3x

input

2x output

color
matrix

GFX
expand

blender

SDRAM
interface

µP
interf.

memory
arbiter

data
pump

...

...

global
contr.

network
arbiter

Central
PI-bus

Figure 4.17: Block diagram of the coprocessor array.

There is also support for mixing several video streams. Firstly, a graphics
blender features “alpha”blending of graphics and full-motion video. Sec-
ondly, a mixer can combine up to three moving video streams. Finally, a
color-space converter transforms YUV to RGB signals. Most coprocessors
are implemented only once, but have capabilities for parallel processing of
multiple tasks. In this flexible approach, each task is independently pro-
grammable, e.g. the scalers can down-scale or up-scale an image to any
size with arbitrary filter coefficients.

4.7.3 Video applications

Because functionalities of TV and PC are merging increasingly, it is likely
that the user-interfaces of these devices are going to show similarities. For
the TV, this implies a multi-window environment with multi-tasking ca-
pabilities. The flexibility of the described system enables this feature and
provides a broad range of applications which are new in a consumer TV
environment. From the previous sections, it can be seen that programming
of an application is straightforward and is limited to programming of the
task graph and the individual setting of the tasks. In the following subsec-
tion, the functionality and the settings of the individual coprocessors are

138 Chapter 4 – Flexible television processor system

Table 4.3: Hardware functions in the coprocessor-array chip.

Category Hardware support
Signal quality Temporal noise reduction,

locally adaptive Y peaking,
Transient Improvement of UV signals.

Scaling Horizontal scaling (up to 3 streams),
vertical scaling (2 streams).

Graphics, mixing Alpha blending, resolution > TXT,
up-conversion of TXT signals,
mixing up to 3 signals.

Video Interfaces 3 YUV inputs, 2 YUV/RGB outputs,
CCIR-656 support.

Memory connection SDRAM controller for a.o. 16 Mbit
to 64 Mbit memory devices.

Testing, JTAG interface,
miscellaneous I2C for stand-alone operation.

described. This description together with a few application examples, gives
an impression of the application possibilities.

Functionality of the video coprocessors

The video coprocessor array (in the sequel mostly referred to as CPA),
performs the computationally expensive regular video processing and con-
tains coprocessors with carefully selected functionalities. Some coprocessors
contain a cluster of video functions, since these functions are always used
together. Flexibility in the processing order of those functions would not
make sense. The following items describe the functionality of the individual
coprocessors.

Vertical sampling-rate converter (VS) for up-scaling and down-scaling of
images in vertical direction to any size. It is based on a 6-tap 32-phase
polyphase filter and has a median filter to perform de-interlacing (optional).
The number of applied filter coefficients is programmable as well as the
magnitude of the coefficients. The de-interlacing is optional. Also pro-
grammable are the scaling factor (-4 .. 64) for down-scaling and up-scaling
and the resolution of the input image. A local memory for eight full-color
video lines is available and can be divided over the several vertical-scaler
tasks which can be executed simultaneously.

4.7 Implementation example of the architecture 139

Horizontal sampling-rate converter (HS) for up-scaling and down-scaling
of images in horizontal direction to any size. This scaler is based on a 6-tap
64-phase polyphase filter and can be switched in a transposed mode. In this
mode, only one single Nyquist filter has to be selected to down-scale the
video pictures to any arbitrary size with high picture quality. The scaling
factor (-64 ..64) for horizontal up-scaling is variable and according to a pro-
grammable parabolic curve as a function of the pixel position. This enables
the commercially available “super zoom”option for aspect-ratio adaptation.
A more detailed description of the sampling-rate employed conversion tech-
nique can be found in [10].

Advanced dynamic noise reduction (NR) to perform temporal noise reduc-
tion, adaptive to the amount of noise and the amount of motion in the
picture. A special low-pass filter ensures that noise reduction is performed
in the frequency area where the human visual system is most sensitive to
the noise, while high-frequency detail is preserved. The strength of the
noise reduction and the motion adaptivity is programmable by means of a
programmable look-up table.

Adaptive sharpness enhancement (SE) for subjective sharpness improve-
ment of the luminance as well as the chrominance. For the luminance
signal, a 2-D high-pass filter is used to create an enhancement signal which
is added to the original (peaking). A large extent of programmable control
logic provides suppression of the enhancement on those places where edges
are absent and noise is visible. Suppression also takes place on image loca-
tions where enhancement would introduce aliasing artifacts and edges are
already sharp, e.g. synthetically generated graphics in the video. A more
detailed overview of the adaptive peaking function is given in Chapter 3.
For the chrominance signal, a non-linear algorithm is implemented that in-
creases the steepness of the edges by means of pixel translations.

Graphics (GFX) with video blending for graphics formats up to 16-bit res-
olution. The formats are converted to a 24-bit RGB format and the video
is converted via a programmable color-space matrix from a YUV 4:2:2 or
4:4:4 format to a RGB or YUV 4:4:4 format. For higher video resolutions,
it is possible to up-convert the GFX by pixel repetition with a factor 1–8 to
limit the CPU load for the GFX generation. This preserves a high graphics
bandwidth and gives subjectively the best picture quality. The fully digital
blending of the GFX into the video is performed with an alpha factor (α),
describing the fraction with which the GFX is blended into the output sig-
nal. For mapping GFX pixels onto the signal components, RGBα, a color

140 Chapter 4 – Flexible television processor system

look-up table (CLUT) is included. This allows the following GFX formats:
CLUT8 (8 bits/pixel), RGBα 4:4:4:4 (α through LUT), RGBα 5:5:5:1 (α
through LUT) and RGBα 5:6:5:0. Furthermore, the blender enables color
keying for the video and/or the graphics.

Input processor for retrieval of three real-time video sources at resolutions
up to HDTV and VGA. The processor supports several signal protocols
for synchronization, e.g. with H- and V-pulse, with active video identifiers
or according to the CCIR-656 recommendations [67]. The digital input
signal may have an 8-bit or 16-bit bus, depending on a programmable
time-multiplex mode. In addition, the input processor may select a cap-
ture window in the video to select the pixels to be processed by the rest
of the system. This could be useful to reduce the bandwidth when only a
part of the video is required for further processing, e.g. in the case that a
part is zoomed in by the scalers.

Output processor to output one or two video signals with similar features
as the input processor. Additionally, the output processor also contains a
multiplex mode to display a 24-bit YUV or RGB signal. Both the input
processor as the output processor have been developed such that synchro-
nization of the video streams is independent from the internal processing
speed. This requirement was achieved by introducing separated clock do-
mains separated by FIFO memories [14]. This video I/O model is basically
asynchronous and yet enables to synchronize a video display to one of the
video sources. This is achieved by applying the data-flow concept for writ-
ing data into FIFO, i.e. the writing is blocked if the FIFO is full to prevent
buffer overflow. The output of the FIFO for display is read with a constant
rate. Hence, if the data is written sufficiently fast into the FIFO also buffer
underflow cannot occur. This requirement is extremely important for con-
structing a well-defined video display signal model with appropriate delays
for the primary and secondary video signals.

A memory input and output port to store, or shuffle video data at multi-
ple positions in the video task graph. It can access a programmable cyclic
memory block in a sequential order and has the additional option to skip
video lines in order to access a progressive frame in an interlaced manner.

An advanced address generator (juggler) to write video data into the mem-
ory at any position with an arbitrary shape, e.g. to create a circular or
alternative shaped Picture-in-Picture (PiP) [68].

4.7 Implementation example of the architecture 141

Table 4.4: Task resources of the coprocessors.

Horizontal scaler 1× < 64Mpixels/s or
2× < 32Mpixels/s or
2× < 16 + 1× < 32Mpixels/s or
1× < 16 + 1× < 48Mpixels/s

Vertical scaler 2× < 32Mpixels/s or
1× < 16 + 1× < 48Mpixels/s

Sharpness 1× < 32Mpixels/s
enhancement
Noise reduction 1× < 16Mpixels/s HQ or

2× < 16Mpixels/s MQ
Color conversion, 1× < 64Mpixels/s
GFX up-scaling,
GFX blending
Video Inputs 2× < 64Mpixels/s
Video Outputs 2× < 64Mpixels/s
Memory Inputs 8 inputs + 12 outputs
Memory Outputs total < 192Mpixels/s

Resource requirements

To create an application, several video tasks as mentioned in Table 4.3
have to be executed in parallel. Because some tasks in the application may
even be similar, some coprocessors should be able to execute more tasks
simultaneously. As a consequence, the data rate in the coprocessors and
the data bandwidth to the memory increases for more complex applica-
tions and is limited by the physical clock rate of the coprocessors (in this
implementation 64 MHz) and the memory. Summarizing, the complexity
of a complete application is limited by the available task resources of the
individual coprocessors and the memory capacity and bandwidth. The task
resources of the available coprocessors are shown in Table 4.4.

The current high-end TV-sets show features like Picture-in-Picture (PiP),
dual-screen and Internet TV. However, these features are just a subset of
the application space which is available with the introduced chip-set. Let
us start with a straightforward example and consider a PiP application.
Figure 4.18 shows the task graph of this application.

Bandwidth analysis
For wide-screen SD signals in the PiP application, the task resources as
mentioned above are more than sufficient. To calculate the memory band-

142 Chapter 4 – Flexible television processor system

Input

Input

HS VS

Mem.

juggle

PiP

juggle

main

Output

Figure 4.18: The task graph of a PiP application.

width, it is assumed that the video data rate is fi = 16 MHz1 . The system
memory device runs at a clock rate of 96 MHz and has a bus width of 32 bits.
For 16-bit pixels, this means a total memory bandwidth of 384 MByte/s.
All communication between the CPU and the coprocessors for control and
e.g. graphics generation, is performed via memory. For this type of mem-
ory communication, a part of the memory bandwidth is reserved and thus
cannot be used for the remaining video processing. Assuming 30 MByte/s
of memory bandwidth for control and communication between the CPU
and the coprocessors, a bandwidth of 354 MByte/s remains for video pro-
cessing. For the simple PiP application, only memory access for the mixing
is necessary, thus the amount of available memory bandwidth is only used
for a small part. This mixing or juggling of the video streams is designed
such that it requires a minimum amount of memory bandwidth.

Memory capacity
In the background memory, two field blocks (for interlaced video) are allo-
cated to construct the frame pictures. These memory blocks are filled with
the subsequent odd and even fields of the picture, except for the pixel posi-
tions where the PiP window is located. This unused area in the memory is
occupied by the second video path to write the PiP window. Therefore, the
total amount of data stored, is equal to the data of one complete picture
and similarly, the total required bandwidth equals the bandwidth for writ-
ing one complete video stream. With 2 Byte/pixel, the amount of memory
becomes 0.98 MByte and the bandwidth becomes 64 MByte/s (reading and
writing).

1For 4:2:0 and 4:2:2 sampling in DTV standards, the luminance sampling rate is
usually 13.5 MHz, but in many television systems 16 MHz is commonly applied to com-
pensate for widescreen displays.

4.7 Implementation example of the architecture 143

Figure 4.19: A multi-window application with video and Internet.

Since the two input video sources are generally not synchronous, the output
image should be synchronized to one of the input video sources by means
of a parameter setting. For the PiP application, the output video signal is
usually synchronized with the input video signal of the main background
picture. As a result, the input video signal of the PiP is written asyn-
chronously into the field memories.

The following two application examples will discuss the budget assignment
of the memory memory resources in more details.

Application example I: Zoomed Multiwindow

A more advanced example of a television application is a PiP with a video
background containing a zoomed-in part of the PiP. The part of the PiP
to be zoomed in on can be selected by the consumer by means of a small
graphics square that can be moved and resized. In addition, an Internet
browser, executed on the CPU, is shown on the display (see Figure 4.19).
For generation of the graphics in the picture, no task resources other than
the CPU and a memory output port are necessary. Therefore, the following
calculations consider the video signal processing only and assume that the
graphics are available in the background memory.

The task graph of the application is portrayed by Figure 4.20 and con-
tains noise reduction (NR), scaling (HS, VS), mixing (juggle), sharpness

144 Chapter 4 – Flexible television processor system

enhancement (SE) and graphics blending prior to picture display. The
lower part of the figure shows that two video streams are processed: one
for the zoomed-in background including noise reduction and one to create
the PiP. After combining the separate video signals in the memory, sharp-
ness enhancement is applied. At the output stage, the video is blended
with the graphics that is generated by the CPU.

Control
processor

subsystem

Background
memory

Coprocessor array

IN NR

MEM

IN HS

VS Juggle

Juggle

MEM

VS

HS

MEM

SE

blend
+

color
matrix

MEM

OUT

IR SIB MIU

ROM

D$ I$
CPU SDRAM

Interface.....

fi

fi

fi fi/C

2fi/Zfi fi

fi/C

fi-fi/C
fi fi

fi = 16 MHz

Figure 4.20: Task graph of the multi-window application with Internet.

Table 4.5 presents an overview of all memory accesses, including the re-
quired background memory capacity and the number of inputs and outputs
to and from memory.

Table 4.5: Background memory requirements for the multi-window appli-
cation.

Connect. Memory Memory
to/from (MByte) bandwidth
Mem (MByte/s)

NR (up-scaling) 1/1 0.49 64
VS (up-scaling) 1/1 <0.98 <96
Juggling (write/ 2/1 0.98 64
read, worst case
graphics 0/1 0.49 32
Total 4/4 2.94 256(218)
(worst case)

4.7 Implementation example of the architecture 145

Bandwidth for NR
First, the noise-reduction (NR) coprocessor accesses the memory to use a
field delay for advanced adaptive temporal Infinite-Impulse-Response (IIR)
filtering. For an SD image of 288 lines × 854 pixels with 2 Bytes/pixel, the
required amount of memory equals 0.49 MByte. For a pixel rate of 16 Mpix-
els/s, the total memory bandwidth for writing and reading is 64 MByte/s.

Bandwidth for scaling
The memory requirements for the access prior to vertical scaling are dif-
ferent. The image is written with 16 Mpixels/s, but is read at 2 × 16/Z
Mpixels/s for inter-field processing, with Z being the up-scale factor. Be-
cause Z > 1, the required memory bandwidth is smaller than 96 MByte/s.
If intra-field processing is used for vertical scaling, the data rate is even
less than 16/Z Mpixels/s. The computation for the amount of buffering is
less straightforward. If inter-field processing is used, a complete field of Lf

lines has to be written in the memory and cannot be overwritten, because
it has to be read out two times. Therefore, the required amount of memory
for progressive video that is up-scaled equals:

Buf inter = 2× Lf

Z
Bl,

where Bl denotes the number of bytes per video line. For intra-field scaling,
buffering is only necessary to compensate for the rate difference between
the writing to and reading from the memory. In this case, the time for
writing one field is equal to the time for reading one field. Writing of the
video lines that will be up-scaled is performed at a higher rate than read-
ing. The maximum distance in the memory between the read and write
pointer is equal to the memory space that has to be buffered for the rate
difference. This maximum distance occurs when the write pointer has just
finished the field. The part of the field that has been read at that time is
1/Z. Therefore, the part that is not read yet equals 1− 1/Z. As a result,
the buffering that is required to deal with the rate difference equals:

Buf intra =
Lf

Z

(
1− 1

Z

)
Bl.

Since it is desired to have a static memory allocation, the maximum buffer-
ing can be found as follows:

d

dZ
(Buf intra) = −Lf

Z2

(
1− 2

Z

)
Bl = 0 ⇒ Z = 2,

Buf intra =
Lf

Z

(
1− 1

2

)
Bl =

Lf

4
Bl.

146 Chapter 4 – Flexible television processor system

For Lf = 288 and Bl = 1708 the amount of required buffering is Buf intra=
0.12 MByte.

Bandwidth for Mixing and Graphics
Finally, the mixing or juggling of the video streams for image composition
is performed. As explained in the previous subsection, the amount of data
stored is equal to one frame and the required bandwidth equals to the
bandwidth for writing one complete video stream. For generation of the
graphics in the background memory, a field or frame memory could be
used depending on the desired quality. When a field memory is used and
the content is read for both odd and even fields, the amount of memory
is reduced at the cost of some vertical resolution. Since synthetically
generated graphics may contain high spatial frequencies, the use of a
frame memory may result in annoying line flicker, when the content of the
memory is displayed in interlaced mode. Therefore, a field memory is most
attractive for 50-60 Hz interlaced video, whereas for field rates higher than
70 Hz and high-resolution graphics, a frame memory could be used.

Bandwidth and memory conclusion
Summarizing, the total amount of applied video memory is less than
3 MByte and the maximum memory bandwidth is 256 MByte/s. This
required bandwidth is only used during the transfer of the active pixels.
During the blanking, no data is transferred, thereby decreasing the average
bandwidth significantly. In order to decrease the peak bandwidth, the data
transfer rate can be equalized over time. To do this, the read and write
tasks of the video processing system have the ability to spread the transfer
of an active video line over the time of a complete video line including the
horizontal blanking. Typical video signals contain 15 % horizontal line
blanking time, so that the total amount of bandwidth can be reduced by
15 %. For this application, this leads to a net total memory bandwidth of
218 MByte/s.

Application example II: Dual screen 100 Hz

This subsection discusses an application where the memory bandwidth
plays the principal role. Since the proposed architecture is mainly lim-
ited by the throughput bandwidth of the coprocessors and the memory, a
large range of resolutions and frame rates can be generated. It may even
provide 50-to-100 Hz conversion, making advanced use of the memory.

Figure 4.21 shows a simple dual-screen application which also provides 50-
to-100 Hz conversion. The total task graph can be divided into several

4.7 Implementation example of the architecture 147

100 Hz interlaced50 Hz progressive50 Hz interlaced

time /
flow-graph position

video
line
grid

IN NR

MEM

VS Juggle

MEM MEM

OUT
fi fi

2fiHS

IN NR

MEM

VS Juggle

MEM

fi
HS

fi

fi /Zh1 2fi /Zh1

fi /Zh2 2fi /Zh2

2fi /Zhv1

2fi /Zhv2

o e o e o eo e o e p p p p

Line from odd field

Line from even field

Line from median filter

Figure 4.21: An example application with 100-Hz conversion.

independent subgraphs, separated by memory accesses. Because temporal
scaling requires the use of field and/or frame memories, this can only be
provided by the intermediate memory accesses. Therefore, it is not possible
to perform temporal scaling within a subgraph. Only spatial scaling with
relatively small local buffering can be applied. The subgraphs that contain
the input processors (IN) should operate at the field rate of the (50 Hz)
input signals, due to the data-driven concept. The bottom part of Fig-
ure 4.21 illustrates the position of the vertical video lines as a function of
time. After temporal noise reduction (NR) and horizontal scaling (HS), the
interlaced fields are written into the memory. In the succeeding subgraphs,
the video data are read from memory again and scaled down in the verti-
cal dimension to obtain the correct aspect ratio of the input images. As
was mentioned in the previous subsection, the vertical scaler may read the
data from the memory in a progressive-scan format to enable high-quality
scaling. The vertical scaling is then applied to progressive video and is in-
terlaced again at the output stage of the scaler. For this mode of operation,
the interlacing at the output is not used and the video is written into the
memory again in a progressive-scan format.

In the bottom part of Figure 4.21, it is shown that all missing lines of
the interlaced fields are filled with video lines from the median filter. If fur-
ther vertical processing of progressive video would be desirable (e.g. 2-D

148 Chapter 4 – Flexible television processor system

sharpness enhancement), it would be obvious to perform it in this sub-
graph. The right-hand side of the figure contains the subgraph that reads
the 50-Hz progressive frames in memory with an interlaced scan to do the
field-rate up-conversion and to create the 100-Hz output signal. The figure
shows a pair of subsequent fields containing both original video lines or
video lines from the median filter. This type of 50-to-100 Hz conversion is
commercially available in some TV sets and known as “digital scan”. Let
us finally consider the memory requirements for this 100-Hz dual-screen ap-
plication. The necessary bandwidth equals 300 MByte/s and the amount
of memory used is 2.94 MByte. These numbers are computed using similar
assumptions as in the previous subsection, and include a 100-Hz graphics
signal (stored in a field memory) in the final picture.

Overview of TV applications

The flexibility of the described system enables a broad range of features
which are new in a consumer TV environment. Examples are given in Fig-
ure 4.22, which provides an overview of the application possibilities. Some
of the features will be discussed briefly here.

CPUdata
convert

TXT
decode

GFX

H,V
scaling

signal
impairement

reduction H, V scaling

Memory for
mixing &

conversion
mixing

blending
signal

enhancement

input 1

input 3
input 2

INTERNET .COM

On Screen Display
(OSD)

INTERNET .COM

On Screen Display
(OSD)

Infra Red
device

UARTS
TXT

acquisition
modem

IF

modem

Figure 4.22: Overview of system features.

The top half of Figure 4.22 shows the application area of the telecom-
munication and control processor (TCP). An infrared (IR) device accepts
user control commands from the remote control. Furthermore, acquisi-
tion and decoding of Teletext information is carried out and data ports

4.7 Implementation example of the architecture 149

such as UARTs are available. New are the integrated modem interface
enabling glueless connection to an existing modem IC and the generation
of pixel-based graphics (GFX). The latter feature also supports Internet
applications as is indicated. The processor also provides control of the spe-
cial video hardware, which is shown at the bottom half of Figure 4.22 and
control of external additional hardware. This programmability is possible,
because the video processing does not require a large cycle budget of the
CPU. Control of the video processing is discussed later in this section. Let
us first focus on the aforementioned features.

In the field of Teletext, On-Screen-Display (OSD) and GFX (graphics)
processing, the TCP has to decode Teletext information and generate the
GFX in the memory, without severe real-time constraints. However, for
GFX refresh rates higher than 10 Hz, the load on the CPU cycle budget
becomes significant. The following features are supported by the hardware:

• high-quality pixel-based 2-D graphics;

• all-page storage for Teletext and programmable fonts;

• integration of GFX with photos or images;

• user-defined GFX environment;

• electronic TV program guide application;

• automatic TV controller with user-dependent setting and support via
messages and menus.

For the modem functionality of the TCP, the real-time constraints are much
more demanding, since the majority of the modem data conversion is exe-
cuted as a SW program on the CPU. This may result in less performance of
the graphics, depending on the application and the software architecture.
The modem extension in the TV system offers a new range of telecommu-
nication features, such as

• fax-message and data-file reception, storage and display;

• Internet connection for a.o. program data retrieval;

• interactive TV communication;

• downloading of photos and images;

• execution of various computer (WinCE) applications.

150 Chapter 4 – Flexible television processor system

In the bottom half of Figure 4.22, the application domain of the video co-
processor array (CPA) is shown. The design of the architecture is such
that video processing can take place without continuous set control. Con-
trol is performed on a periodic basis only (field rate), although control on
interrupt basis is also possible. Video signals are mostly noise reduced at
the input stage in the coprocessor array (bottom left). Furthermore, fully
programmable video scalers can be used for down-scaling or up-scaling of
full-motion video signals. This enables virtually any type of scaling function
with a large dynamic range, which results in a very flexible multi-window
TV. The setting and control may also be defined by the individual user.
The signal quality can be optimized over the several windows. The multi-
signal processing capability is very important for composing pictures of
various size and contents. In all of these modes, the TCP generates the
high-level commands for programming and setting of the CPA coprocessor
hardware, thereby enabling for example:

• aspect-ratio conversions (panorama, side-panel, wide-screen);

• PiP, dual-screen, multi-window (arbitrary sizes, variable shape);

• PiP record and PiP playback;

• mosaic screen for visual channel selection;

• flexible matching to various input/output resolutions;

• high-quality sharpness improvement;

• dynamically moving of video, menu’s and graphics.

Finally, as indicated in the Figure 4.22, graphics and video are blended
in fully digital form. For this purpose, some of the graphics can be up-
converted to a higher resolution, if required. For more details about appli-
cations and the quality of the individual coprocessors, the reader is referred
to [13].

The most flexible and interesting features are enabled by the configura-
tion where both chips are connected to each other with sufficient SDRAM
and the modem function is activated. Whilst looking to a TV program, an
image can be retrieved from the Internet and the TV may signal the com-
pletion of the recovered image to the consumer. If extra memory is needed
temporarily for Internet communication, some memory may be taken from
the video processing (e.g. the quality of the 100Hz conversion), in order
to boost the microcontroller performance. With existing chip sets for TVs,

4.8 Conclusions 151

such a Quality of Service (QoS) feature is unknown to the manufacturer
and the consumer.

It is evident that the chip-set can also be used in other consumer products
than TV sets, such as the display signal part of a set-top box. Generally,
this device features MPEG decoding, electronic programming guide, and
interactivity via telephone for retrieval of a descrambling key. Further-
more, the chip-set could be used as a unified display driver which converts
standard-definition signals or VGA-resolution video to any arbitrary for-
mat required for various display types, e.g. Cathode-Ray-Tubes (CRTs),
computer monitors, plasma/Plasma-Addressed-Liquid-Crystal (PALC) dis-
plays or LCD displays. It can be concluded that the programmable concept
behind the applications and the cost-efficient and modular architecture of
these ICs give a high degree of applicability for various systems in the
consumer market.

4.8 Conclusions

In this chapter we have studied an experimental system architecture offering
new ways of video processing in terms of flexibility and programmability.
The chapter showed a overview of processors and an analysis of video func-
tions that are typical for television systems. We conclude the architectural
discussion on two different levels. In the first subsection, we conclude on
the features and merits of the actual proposal. In the second subsection,
we look back and comment on our system and criticize it in hindsight in a
way similar to the discussion about media processors. The architectures as
presented in the past chapters are not in the actual figures, because imple-
mentations grow old quickly in a fast moving consumer electronics world.
The value is much more in the thinking about architectures and the aspects
of processing in tasks and control together with their memory usage.

4.8.1 Concluding remarks about the proposal

This chapter has presented a chip-set for high-end TV or set-top box, con-
sisting of a microcontroller with a plurality of extensions and a video co-
processor array.

General-purpose computing
The microcontroller consists of a RISC core with a number of peripherals
with the following functions: set control, Teletext and graphics, modem
and low-speed data communication. Further peripherals include the usual

152 Chapter 4 – Flexible television processor system

interfaces such as a serial UART interface and the I2C interface used for
chip control. The architecture of the control chip (referred to as TCP) is a
classical computing architecture with caches and a single bus for commu-
nication. Since graphics are programmable, a peripheral was defined for
this purpose to support the RISC engine. The controller contains a special
bus that forms the interface to the second chip for video processing. This
interface can also be connected directly to an SDRAM and therefore it rep-
resents a memory bus.

Video processing
The video coprocessor array (referred to as CPA) represents a video pro-
cessing architecture with high parallelism, based on a programmable array
of coprocessors and a communication network. Function-specific hardware
coprocessors perform pixel-based processing and are programmable at func-
tional and system level. A switch matrix enables parallel processing of
tasks and enables high communication bandwidth. Since the matrix is
programmable, the order of signal processing tasks can be modified (pro-
grammable task graph) to realize new TV applications. Individual copro-
cessor processing power and performance can be adapted and optimized for
each TV application task graph. The individual coprocessors are able to
process several video signals simultaneously and contain a control unit to
autonomously load the coprocessor settings at the correct locations in the
video streams. This enables programming on a high system level. The co-
processor array contains functional units for horizontal and vertical scaling,
sharpness enhancement, motion-adaptive temporal noise reduction, graph-
ics blending, mixing of video streams and 100-Hz up-conversion. Due to
the programmable registers of the coprocessors and the programmability
of the task graph, the application range not only covers the intrinsic in-
tegrated functions [11], but also aspect-ratio conversions, PiP, a mosaic
screen, pixel-based 2-D graphics for PC-like applications, etc. In fact, the
video processing chip combined with the microcontroller chip enables all
these features in a multi-window TV environment with high quality. As an
example, Figure 4.23 shows the resulting displayed picture of the the TV
application corresponding to the task graph in Figure 4.1.

Combined autonomous subsystems
The implementation was based on two chips that may be used in stand-
alone operation in combination with existing off-the-shelf external SDRAM.
Furthermore, the combination of the two chips results in a highly versatile
package of TV applications in which video processing quality and external
interactive data communication can be interchanged. User-defined inter-

4.8 Conclusions 153

Figure 4.23: Example of a multi-window application.

faces regarding the use of several video windows combined with the display
of side information can be optimized with respect to optimal quality in all
circumstances.

Programmability and reusability
The proposed chip-set enhances both quality and programmability of ex-
isting TV-sets and it may be used in set-top boxes as well. Due to the ever
increasing transistor density of single chips, modules can be integrated or
reused in new technology generations. The programmable communication
structure allows a very broad range of TV function combinations and ap-
plications.

Memory
The architecture uses an external background memory which combines all
large memory functions. This memory is shared with a microcontroller.
Each coprocessor has some local video memory, in correspondence with the
function carried out, to avoid severe memory-bandwidth problems. The
memory bandwidth was discussed for several example applications.

Extensibility
The modularity of the architecture concept allows other advanced functions
to be added easily in the form of new application-specific processors, e.g.
MPEG decoding and 3-D graphics rendering. For consumer systems, it is
possible that the architecture can be used for a number of years to come,
due to its cost-efficiency. As technology progresses and the demand for pro-
grammability increases (e.g. MPEG-4, MPEG-7), the low-complexity and

154 Chapter 4 – Flexible television processor system

irregular processing functions will be implemented in software on advanced
microcontrollers or media processors, so that corresponding coprocessors
will disappear. Combining the proposed platform with such generic pro-
cessors is attractive, because a hardware-software tradeoff can be made.
At the same time, it is expected that new computationally expensive func-
tions, requiring specific hardware support, can be introduced.

Dynamic data processing
A novelty of the architecture is the use of Kahn process networks for video
processing, in combination with application-specific processors. In the con-
cept, processors perform independent processing and data streams are ex-
changed via small local buffers. These buffers can start and stop the pro-
cessors dependent on whether a buffer is full or empty while additional
communication rules avoid deadlock problems. The advantage of this sys-
tem is that video processing functions can be handled as tasks of any length.
Thus video frames of various sizes can be applied in the system without
low-level reprogramming of the hardware. If a task is terminated, processor
hardware becomes available for alternative tasks or otherwise it is stopped,
thereby saving power consumption.

Predictable behavior
By means of the Kahn process network model and the FIFOs at the inputs
and outputs of all coprocessors, the video processing (computation) and
the communication are completely decoupled. Both the switch matrix and
the off-chip memory interface provide a sufficient and guaranteed amount
of communication resources which are statically assigned. Hence, it can be
determined a priori whether a particular application can be executed with
the available system resources. As a result, unpredictable behavior of the
system is avoided under all circumstances, leading to robust operation of
the system.

The TVP was proven in Silicon. Table 4.6 shows the characteristics of
the CPA and TCP chips, while Figure 4.24 shows their layout.

4.8.2 Modifications for future systems

This section aims at compiling a number of aspects of the TVP system
that need to be reconsideration when applied for future video-processing
designs. Naturally, this presentation is performed with hindsight, as tech-
nology continuously moves forward and the latest architecture proposals in
literature for video processing are being presented.

4.8 Conclusions 155

Table 4.6: Chip-set characteristics of the TVP system.

Coprocessor array Telecommunication and
(CPA) control processor (TCP)

Process CMOS 0.35 µm CMOS 0.35 µm
Die size 150 mm2 80 mm2
Clock 64 MHz 48 MHz
Package SBGA 352 SBGA 352
Dissipation 5 W 1.2 W
Transistors 7.1 M 2 M

JTAG, I2C, SDRAM JTAG, 2×UART, 2×I2C, SDRAM
3×Input: Serial Interconnect Bus (SIB)

Interfaces YUV 4:2:2 (< 60 HMz) remote control, general I/O,
2×Output: software AD converter,
YUV 4:2:2/4:4:4 or RGB GFX OUT: RGBα/FB, H/V sync.

Figure 4.24: Layout of the CPA (left) and the TCP (right) chips.

Most of the critical points are well-considered choices that were made dur-
ing the design of this particular system, performing its particular video-
processing functions with a chip that is designed for a CMOS 0.35 µm pro-
cess technology. Much more important than this, the purpose of presenting
these remarks is to serve the learning process for future system design. This
is also fully in line with Chapter 2 where we outlined the drawbacks of com-
puting architectures as we developed the starting position for the design
step made in this chapter. The most relevant modifications or extensions
are listed below.

156 Chapter 4 – Flexible television processor system

Communication and Interconnect
Though flexible with respect to programmability, the communication of
the video processor system (CPA) has its limitations with respect to size of
the interconnect and switching matrix. In the proposal, each coprocessor is
connected to the other coprocessors giving fully programmable interconnec-
tions. But the number of connections grows quadratically with the number
of coprocessors, so that the full switch matrix cannot be maintained in fu-
ture generations. This holds in particular for the case that, due to the ever
increasing integration density, the number of integrated processors will be
in the order of hundred or more. To deal with this complexity, the commu-
nication network should become hierarchical. Thus clusters of coprocessors
intensively communicate on a low level within a cluster, whereas the inter-
cluster communication provided on a higher hierarchical level is limited.
The implementation of such a hierarchical communication infrastructure is
another concern, but to enable scalability towards more complex systems,
the use of networks on a chip as formulated in Chapter 8 would be a logic
step. In Chapter 7, where hierarchical communication is one of the central
themes, busses are used for the implementation of the communication in-
frastructure.

Global external memory
The classical Von-Neumann bottleneck to the external memory has already
been mentioned. The trend towards using large unified external memory in
multimedia and video processing will proceed further in the coming years.
As the number of integrated coprocessors further increases, the memory
bandwidth bottleneck will become more strangling. Consequently, the sys-
tem will need embedded memory. The most straightforward solution is to
implement a memory caching hierarchy. However, a hierarchical communi-
cation infrastructure as suggested above, will lead to a physical distribution
of the embedded memory which makes the architecture more complex.

Small local FIFOs
All coprocessors are separated by FIFO memories that decouple the com-
putation and the communication and that may compensate for the dynamic
behavior of each individual coprocessor. Because the video-processing func-
tions of the system consist merely of regular processing, a relatively tight
coupling between processing tasks is allowed, thereby reducing the required
size of the communication FIFOs. Hence, these FIFOs have a size in the
order of 32 Bytes. For systems with a more dynamic communication be-
havior (e.g. before or after a video scaling function), the data is conveyed

4.8 Conclusions 157

via relatively large buffers located in the external memory. However, since
there is a clear trend towards more irregular and highly data-dependent
processing, more decoupling of the processing tasks is preferred, thereby
requiring larger communication buffers. Three options exist to provide a
solution, depending on the requirements of the buffer. First, the size of the
associated FIFOs at the input and/or output of the coprocessor could be
increased. Secondly, if the size of the buffer resources are preferably allo-
cated at run-time, an embedded memory unit would be connected to the
switch matrix. Subsequently, inter-task communication could be streamed
via the memory unit to provide the buffering. A third option is to im-
plement an embedded cache between the off-chip memory and the switch
matrix. Consequently, if large buffers are located in the off-chip address
space and they would fit into the cache, data in the buffer is consumed
before it is actually stored in off-chip memory (locality of data). Therefore,
also for this third option the communication remains on-chip.

Lacking media processor
The programmability of the system is constrained. The external RISC-
based controller can execute some non real-time tasks, that do not de-
pend on the video processing. To increase the flexibility of the system, it
would be desirable to enable partitioning of an application into hardware
tasks on the coprocessors and multiple software tasks running on a pro-
grammable media processor. Although it is not inconceivable to provide
an adequate solution, extensions in the architecture would be inevitable.
First, a “standard”programmable media processor is not suitable for rela-
tively small-grain multiple tasks that require communication with the hard-
ware coprocessors at high synchronization rates via the small FIFO buffers.
Secondly, the overhead of task switching depends on the state of the pro-
cessor, thereby jeopardizing the predictability of the system. However, the
embedding of a programmable core that is dedicated to a single task (i.e.
not multitasking) is less problematic, since task switching is not required.
Moreover, the operational clock of the CPU can be disabled and enabled to
block and activate the processor, which can be used to implement a Kahn
process network.

From the above-stated remarks we can conclude that the architectural con-
cept has many attractive aspects. However, for future generations featuring
more advanced video processing, some of the architectural elements need
to be reconsidered. For example, the Kahn process network model proved
to be very useful, but the switch matrix and its distributed communication
buffers does not scale properly for a future system. Recently, options have

158 Chapter 4 – Flexible television processor system

been found for a more hierarchical communication network that is scalable
towards more complex future systems. This is combined with a hierarchy of
distributed memories with a shared address space to dynamically allocate
buffers, depending on the required throughput and buffer capacity. The
architecture that is discussed in Chapter 7 partially addresses such an ap-
proach. Although it presents an implementation of a hierarchy with busses,
also networks on a chip could be adopted to offer even more scalability.

Throughout the thesis, the communication aspects of the architecture ap-
pears to be one of the most important concerns and it has also a growing
importance in general. This relates to many aspects, such as the net-
work topology, the communication protocol and buffering. Particularly the
memory is gradually becoming a dominant cost factor. Chapter 5 and 6
address various aspects for using memory efficiently in the video processing
domain.

Chapter5
Off-chip memory

communication

FOR video processing in systems-on-chip, it has become evident that
off-chip memory communication is often a critical part for system per-

formance and cost. Although the performance of general-purpose CPUs
increases with 60 % every year, the bandwidth to the external memory in-
creases with only 20 %. Because the desire for a shared centralized mem-
ory and flexible inter-processor communication further increases this bot-
tleneck, Chapter 5 is devoted to application-specific memory usage and the
bandwidth of data communication. It shows that significant gains can be
achieved when matching the application-specific memory accesses with the
behavior of the memory device. This substantial performance improvement
is realized by introducing a new memory-communication model that incor-
porates the data-dependencies of the video-processing functions. The model
is applicable to general multimedia processing, but this chapter concentrates
in particular on an MPEG decoder as a realistic and worst-case example.

Qui non est hodie cras minus aptus erit
(Ovid, c.43 BC – c.17 AD)
He who is not prepared today
will be less so tomorrow

5.1 Problem statement for off-chip memories

The previous chapters have shown how the requirements for future media
processing systems in the digital TV domain lead to implementations with
a large amount of parallelism, flexibility, and a high computation perfor-
mance. It has also been indicated that flexibility is expressed in the design

159

160 Chapter 5 – Off-chip memory communication

of the communication infrastructure and significantly determines the sys-
tem costs. Consequently, if a large amount of flexibility is required, the com-
munication network may become the bottleneck in the design. Particularly
the communication via off-chip memory is an important point of attention.
An increasing amount of off-chip memory resources, such as memory band-
width and memory capacity, results in wider data and address buses. This
directly translates into more pins for the media processing chip, thus more
power dissipation, a more expensive chip package, a larger printed-circuit-
board (PCB) footprint, and a more complex PCB design with more layers.
Due to the growing demand for more off-chip memory resources, this point
in the communication infrastructure increasingly impacts the system costs.
This system bottleneck was already recognized at an earlier stage in the
design of general-purpose computing systems. Moore [69] predicted that
the transistor density of systems on chip would double every 18 months.
This has become particularly noticeable in the computer market where
the performance of the CPU has increased proportionally with the number
of integrated transistors on chip. Hennessy & Patterson [70] showed the
performance increase of CPUs by measuring the performance of micropro-
cessors that were developed in the last decades. The performance is defined
as the time that is necessary to execute a well-defined benchmark set [71].
Unfortunately, the performance of off-chip memory communication has not
evolved at the same speed as the CPU performance. For example, Fig-
ure 5.1 [70] showns that the CPU performance increases 60 % per year,
whereas external memory bandwidth improves only with 20 % and latency
is improved (reduced) with only 7 %. Concluding, there is an increasing
gap between computational power and off-chip memory bandwidth.

For media processing in consumer systems, this performance gap between
computation power and off-chip memory resources is also noticeable. How-
ever, the latency problem can be solved by using efficient pipelining and
prefetching techniques [72]. This is possible due to the high level of spatial
locality, meaning that references of data in the memory result with a high
probability in subsequent references of data elements at neighboring mem-
ory addresses.

Because off-chip memory bandwidth is the most critical part of the com-
munication infrastructure, this chapter will focus on reducing the off-chip
memory bandwidth. Current data mapping into the memory is performed
without application knowledge of the data. We have found that this leads
to substantial inefficiencies and waste of scarce memory bandwidth. One
of the main new elements in the chapter is that knowledge of the media

5.1 Problem statement for off-chip memories 161

CPU
60%/year

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

1

10

100

1000

P
er

fo
rm

an
ce

Performance Gap:
(grows 40% / year)

Processor

DRAM
latency 7%/yr
BW 20%/yr
cap. 60%/yr

-Memory

Figure 5.1: The performance increase of external memory compared to the
performance increase of CPUs.

application is exploited to reduce the memory bandwidth. The reduction of
the bandwidth is used to improve the performance of the architecture as a
whole, because more video processing parallelism is enabled with the same
architecture. In order to optimize the bandwidth usage of the memory, we
have developed a practically feasible model of the memory read and write
access procedure. In this model, we have included statistics of the data
requests, such as the data-block sizes, their locations in the memory, etc.
These statistics enable us to optimize the mapping of data onto the ad-
dress space of the memory, so that the data bandwidth for memory access
is minimized. We will show that the potential improvement is in the order
of 30-40 %, which is considerable.

The chapter is subdivided as follows. First an outline of the memory
technology, used for the main-stream off-chip memory devices, is given
in Section 5.2, including a survey of promising new memory technologies.
Subsequently, Section 5.3 discusses an MPEG decoder example for optimiz-
ing the mapping of pictorial data onto the physical memory space, thereby
improving the bandwidth efficiency. Another dimension for optimization
is to modify the video-processing algorithm or the memory architecture.
Because we want to limit the scope of this thesis and because this other
dimension for optimization is very application specific, it is not discussed
in this chapter. However, the interested reader is referred to Appendix B,
where an example is shown for an MPEG decoder. Moreover, Appendix
C presents a technique to improve the efficiency by changing the memory
interface.

162 Chapter 5 – Off-chip memory communication

5.2 Memory technology

Because memory functions determine a significant part of the system costs,
the memory bandwidth and capacity are important optimization parame-
ters in the system design. A system architecture with distributed off-chip
memory such as shown in Figure 1.3 is not acceptable in future products.
Such an approach requires more pins for the System-on-chip (SoC), thus
increases costs. In distributed off-chip memory architectures, a more com-
plex communication network is necessary to enable communication between
processors and the multiple memory interfaces. To create a cost-efficient
solution, one uniform off-chip memory, based on a standard off-the-shelf
RAM is more beneficial. For a good understanding of memory size and
bandwidth requirement let us first consider applied memory technologies
in more detail.

Word line (RW select)

Bit line
(RW select) C

Storage
Capacity

Vss Word line (RW select)

Bit line Bit line

Vss

Vdd

DRAM SRAM

Figure 5.2: Memory cell of a DRAM and an SRAM.

With respect to the principle of a memory cell, we can distinguish static and
dynamic random access memories (RAM). The memory cell of static RAM
contains six transistors representing a latch. The dynamic RAM contains
only one transistor and is therefore much smaller. However, it is based on
the charging of a capacity. Because a capacity always has leaking currents,
it has to be refreshed frequently. A small capacity can be charged and dis-
charged much faster than a larger capacity, thus smaller memory structures
obtain a higher speed. However, due to the leakage, a small capacity has to
be refreshed more frequently. Consequently, the capacities have to comply
a minimal size, thereby making it impossible to make the DRAM as fast
as an SRAM. Because current processor systems require a large amount
of memory, DRAM is generally used for external background memory. For
high-speed embedded memories and caches, the faster SRAM are used. The
conventional DRAM is asynchronous, meaning that the input and output
signals are not gated with a clock. With synchronous DRAM (SDRAM),

5.2 Memory technology 163

all the interface signals are gated with a clock to optimize the timing for
high bandwidth access to a large memory space. A similar but specialized
version is the synchronous graphics RAM (SGRAM), which has a standard
32-bit interface, contains various special access features, and is used for
video memory. However, this type of memory does not represent the main-
stream market and is therefore more expensive. The increasing demand
for more memory bandwidth requires the use of more sophisticated mem-
ory devices such as double-data-rate synchronous DRAM (DDR SDRAM)
or Direct Rambus DRAMs (RDRAM). Because DDR SDRAM currently
represent the lowest price per byte, which is an important parameter in
the high-volume consumer products, it dominates the main-stream market
for the coming years. The main addition of DDR SDRAM with respect to
regular SDRAM is the transfer of data on both the rising and falling edge
of the clock signal. Hence, the data throughput is doubled.

5.2.1 Prospects of emerging RAMs

The continuing memory-technology improvements has led to VLSI sys-
tems comprising ever growing memory capacities with smaller memory
cells, higher speed, and greater ease of use. Hence, the improvements
provide great benefits for system designs. The standard DRAM has in-
creased its memory-chip capacity to 1 Gbit through the use of high-density
1-T cells (one-transistor one-capacitor cells). On the other hand, SRAM
has achieved an extremely high speed for memories with a smaller capac-
ity. However, apart from developments of these type of memories, break-
throughs in other types of memory technology have been established. For
example, the market for flash memories has expanded because of their non-
volatility feature, even though they contain a relatively small memory-chip
capacity. Another important technology innovation is the use of embed-
ded DRAM for a system-on-chip. Although these DRAMS have occupy
an larger silicon area compared to standard DRAM, the speed has sig-
nificantly improved and approaches the performance of SRAM. Table 5.1
shows how embedded DRAM trades-off the speed of SRAM and the capac-
ity of standard DRAM memories [73].

Even more revolutionary type of memories such as ferro-electric RAM
(FeRAM) and magnetic RAM (MRAM) are reported. Although their per-
formance is promising, these new technologies are still in their infancy.
They include all the advantages of the existing memories such as speed
and capacity and in addition feature a nonvolatile behavior. Consequently,
they could replace the use of DRAM, SRAM and flash memory by one
MRAM memory device. This could potentially simplify the memory hier-

164 Chapter 5 – Off-chip memory communication

Table 5.1: Comparison between standard DRAM, SRAM, and embedded
DRAM using similar process technology.

Standard SRAM Embedded
DRAM DRAM

Feature size 0.18 µm 0.175 µm 0.175 µm
Area / 8 MByte 50.8 mm2 3 mm2 19.3 mm2

Throughput / data line 208 MByte/s 50 MByte/s 128 MByte/s

archy in systems-on-chip and could reduce the interface for programming
the on-chip flash memory. Because these MRAM devices are just evolving,
the remainder of this section will be limited to the mature DRAM-based
memory devices.

5.2.2 Functioning of SDRAM-based memories

Dynamic memory cells consist of one transistor and one capacitor which
can be charged or discharged, depending on the binary value it should rep-
resent. These DRAM cells are contained in an array of column address
lines and row address lines, which can be separately addressed. Moreover,
the memory device consists of several of such arrays, called memory banks,
and can be addressed with separate bank address lines (input pins BA0
and BA1). With the Row Address Strobe (RAS) line, the Column Address
Strobe (CAS), the Chip Select (CS), and the Write Enable (WE), com-
mands can be issued like select row, read from a column address, write to
a column address, etc. Figure 5.3 shows the block diagram of the DDR
SDRAM architecture.

control
logic

bank 0
memory

array

bank 0
memory

array
bank 0

memory
array

bank 0
memory

array

page registers
& I/O gating

bank -
address
decoder

bank -
address
decoder

DDR
I/O

data
bus

address
register

address
lines

command
decoder

mode
register

Clock

command
lines

RAS
CAS
WE
CS

Figure 5.3: Block diagram of a DDR SDRAM.

5.2 Memory technology 165

DRAM-based memories provide a burst-access mode, enabling access to a
number of consecutive data words by giving a single read or write com-
mand. Because the reading of dynamic memory cells is destructive, the
content in a row of cells in the memory bank is copied into a row of static
memory cells (the page registers). Subsequently, read and write access to
this copied row is provided. The result after the required accesses in the
row has to be copied back into the (destructed) dynamic cells, before a
new row in the memory bank can be accessed. These actions of copying
data into the page registers and back, are referred to as row-activation and
precharging, respectively. During the copying, which takes considerable
time, the associated memory bank cannot be accessed for data transfer.
To prevent the loss of precious bandwidth, a multiple-bank architecture is
used, where each bank can be accessed alternatingly. Hence, a bank can be
accessed while other banks are activated or precharged. Furthermore, high
throughput is achieved by dividing the device into stages using pipelining
(at the expense of increased latency). When a memory row is activated,
random access of the columns within the page registers can be performed.
In each bank, only one row can be active simultaneously, but during the
random access of the page registers, switching between banks is allowed
without a penalty. Therefore, with a four bank device, four rows (one in
each bank) can be addressed randomly.

Another important operational aspect of DRAM memories is the burst-
oriented access to obtain a high bandwidth performance. This means that
a number of consecutive data words are transferred to or from the memory
by giving only one read or write command. Note however, that several
commands are necessary to precharge a bank, to activate a row, and finally
to issue a read or write command, i.e. three command-input cycles. Note
furthermore that the data rate at the output is higher (DDR) than the
rate at the input (command rate). Therefore, to exploit the available data
bandwidth, the read and write accesses have to be burst oriented. Typi-
cally, the burst length used for DDR SDRAM devices is eight data words.

In the following section it will be shown how both the organization into
memory banks and the burst-oriented behavior lead to efficiency concerns
in the memory usage. Without going into more details it is concluded that
the memory-bank architecture, requires a bank-interleaved access pattern
for optimal efficiency of the throughput. Moreover, Section 5.3 shows how
the burst-oriented access results in considerable transfer overhead. More
details on the motivation and reasoning behind these access-dependent per-
formance issues are elaborated in Appendix A.

166 Chapter 5 – Off-chip memory communication

5.3 Video-data storage in SDRAM memory

The previous section briefly outlined the architecture and operation of the
SDRAM-based memory devices. It presented the internal organization into
rows, columns and memory banks, and explained the burst-oriented ac-
cesses for high data throughput. Let us now take one step back and ap-
proach the memory usage from the application point of view, starting with
a definition of the problem.

The architecture of present advanced video processing systems in consumer
electronics generally contain various processor modules that communicate
with an off-chip SDRAM memory (see Figure 5.4). For example an MPEG
decoder requires a background memory to store reference pictures for pre-
diction of successive video frames. When a large variety of processors desire
communication with a standard off-chip memory configuration, a commu-
nication bottleneck will be materialized.

Synchronous DRAM

bank 2 bank 3bank 0 bank 1

Consumer Video Processing System

DSP CPUASIP1 ASIP2 ASIP = Application Specific IP
DSP = Digital Signal Processor
CPU = Central Processing Units

Figure 5.4: Consumer system architecture.

Let us focus on the bandwidth problem. In recently developed systems,
this problem was solved by communicating to several memory devices in
parallel. Currently, the smallest available double-data-rate synchronous
DRAM (DDR SDRAM) has a 64-Mbit capacity with a 16-bit data bus
or smaller, providing a peak bandwidth of 0.53 GB/s [74]. However, sig-
nificantly more bandwidth is required for media applications, such as si-
multaneous High-Definition MPEG decoding, 3-D graphics rendering and
field-rate conversion. The Imagine processor [72] features four memory con-
trollers with a 32-bit data bus each. The Emotion Engine processor [37]
contains a dual 16-bit memory bus at 800 MHz, providing 3.2 GB/s with
32 MByte in Direct Rambus DRAMs (RDRAM). However, this solution of
parallel memory devices introduces more memory capacity than required
by the system, leading to a lower cost efficiency. For the above-mentioned

5.3 Video-data storage in SDRAM memory 167

systems, 256 Mbit of SDRAM memory is the minimal available capacity
which is more than required by most consumer systems. In this section we
focus on the reduction of the memory bandwidth, thereby contributing to a
reduction of parallel memory devices. This is important because the use of
parallel memory controllers leads to high systems costs such as, increased
power dissipation, substantially larger silicon areas, and more expensive
chip packages.

In the presented study we will concentrate on MPEG decoding as a pi-
lot application. This application features block-based video processing and
memory access. Such memory access to optimize bandwidth was already
addressed in [75], where a mapping of fixed-size video data units into the
memory is proposed. That work is related to analyzing the application
software model only, without considering data dependencies such as the
set of requested data-block memory transfers including their probability of
occurrence. In this section, we determine an optimal mapping of the video
into the memory by analyzing the actual memory accesses, so that data
dependencies are taken into account. To design a memory system that can
be reused for future memory technologies, we assume that a burst stop
command is not available and burst interruption is not allowed. For the
next generation DDR-2 SDRAM, these burst-interruption features are not
provided to improve its potential speed performance.

5.3.1 The concept of data units

The increasing demand for more memory bandwidth requires the use of
sophisticated memory devices like DDR SDRAM or RDRAM. To obtain
high performance, these devices use two main features: the burst-access
mode and the multiple-bank architecture. The burst-access mode enables
access to a number of consecutive data words by giving a single read or
write command. The multi-bank architecture provides the means to hide
the time that is necessary to activate a row and to precharge it when all
read and write actions in that row are performed. Let us now concen-
trate on the consequences of the burst-access mode, using the previously
described SDRAM architecture. To optimize the utilization of the memory-
bus bandwidth, data can only be accessed at the grain size of a data burst
(e.g. eight words). As mentioned before, we assume that burst interruption
is not allowed. If the memory configuration provides a 64-bit bus and is
programmed for a burst length of eight words, one data burst contains 8×64
bits = 64 bytes of data. These data bursts represent non-overlapping blocks
in the memory which can only be accessed as an entity. In the remainder
of this chapter, these blocks are referred to as data units. Figure 5.5 shows

168 Chapter 5 – Off-chip memory communication

data units located in: Bank 0 Bank 1
Bank 2 Bank 3

pixels

video
lines

Figure 5.5: Video pixels mapped onto data units, each located in a partic-
ular memory bank.

an example how the pixels of a video picture are mapped onto data units
in the memory. Each rectangle in the picture represents one data unit.
A required group of pixels for processing may be partly located in several
data units and requires the transfer of all corresponding data units. Hence,
significantly more pixels than required are transferred. For example, Fig-
ure 5.6 indicates the transfer overhead for memory access to a macroblock
in MPEG. In the sequel we call these extra pixels pixel overhead . This
overhead becomes particularly noticeable if the size of the data units is
relatively large compared to the requested group of pixels.

Macroblock

data unit
transferred data
incl. overheadrequested

data block

overhead

Figure 5.6: Memory access of a macroblock including the transfer over-
head.

5.3 Video-data storage in SDRAM memory 169

This section describes the partitioning of data units into memory banks
and determines the optimal dimensions of the data units to minimize the
pixel overhead, thereby increasing the bandwidth efficiency. The optimiza-
tion includes statistical analysis of the data to be accessed. A mapping
of video data units into the memory was already proposed in [75]. How-
ever, this paper proposes to analyze the video-processing algorithm only
without considering data dependencies such as the set of requested data
blocks including their probability of occurrence. For example, the type of
data blocks that are fetched for motion compensation in an MPEG decoder,
strongly depends on the motion-estimation strategy applied by the encoder.
In this thesis, we determine an optimal mapping of the video into the mem-
ory by measuring and analyzing the actual memory accesses, so that data
dependencies are taken into account. Another consideration that is impor-
tant for bandwidth efficiency is the organization into memory banks, which
is provided in all modern memory devices. It will become clear that both
aspects contribute to a substantial improvement of the available memory
bandwidth. Given the earlier-explained memory bottleneck, this leads to
an overall performance improvement of the architecture.

Determine the optimal data-unit size

Let us now determine the best choice for the size of the data unit from
the memory properties as mentioned in the previous section. Among other
factors, it depends on the size of the burst length. To minimize the pixel
overhead, the data units are preferred to be small. However, if the burst
length is too small, the time that elapses after accessing all four banks does
not exceed the minimal required row cycle time tRC (see Appendix A) and
causes some waiting cycles in which no data is transferred over the bus.
Apparently there is a tradeoff between bus utilization and pixel overhead.
To determine the minimal burst length BL for which a full utilization of
the bus bandwidth can be achieved, the number of data words transferred
within 2 × tRC (twice the cycles due to DDR output) is divided by the
number of banks, thus:

BL ≥ 20/4 (5.1)

Since the burst length is a multiple of two, due to the double data rate
and because the burst length can only be programmed for the values 2, 4
or 8, the burst length is set to BL = 8. Because this value is larger than
the determined lower bound of 5 (see Equation (5.1)), it is not required
to interleave all four banks before the first bank is accessed again. Note
that access to three successive banks occupies 3× 8 cycles, thereby already
exceeding tRC .

170 Chapter 5 – Off-chip memory communication

128 pixels

32 lines

64 bytes

1 byte

Bank 0 Bank 1 Bank 2 Bank 3

Figure 5.7: Mapping of 64× 1 adjacent pixels onto data units.

5.3.2 The mapping of pixels into the memory

Let us discuss a few examples for data unit dimensions and the correspond-
ing pixel overhead. For this purpose, we assume a system that requires a
64-bit bus SDRAM configuration to provide sufficient bandwidth. Conse-
quently, the data units in the memory contain 64 bytes. For the mapping of
pixels, several options can be recognized. The most straightforward way is
to map 64 successive pixels of a video line into one data unit as depicted in
Figure 5.7. The figure shows how each consecutive block of 64 pixels is in-
terleaved in the banks in both horizontal and vertical direction. If for such
interleaved mapping the pixel data is sequentially read or written (given
by the application), the memory banks are accessed alternately. However,
when a data block of 16 × 16 pixels is requested from the memory, the
amount of data that needs to be transferred is much larger. If the data
block is horizontally positioned within one data unit, 64 × 16 pixels are
transferred. If the data block overlays two data units in horizontal direc-
tion, the amount of transferred data is 128 × 16, resulting in an excessive
700 % pixel overhead. Figure 5.8 shows a much more appropriate mapping
of pixels onto the memory for this data-block request. Blocks of 16 pixels
from 4 video lines are stored in a single data unit, resulting in less pixel
overhead when accessing a data block of 16 × 16 pixels. However, when a
data block of 128 × 1 is requested, Figure 5.7 provides a better mapping
strategy.

Let us now discuss the effect of storing interlaced video frames. For several
applications in a multi-media system, it is necessary to read the video data
both progressively and interlaced, e.g. for frame prediction and field pre-
diction in MPEG decoding. However, when subsequent odd and even lines
are mapped onto the same data unit, it is not possible to access only odd

5.3 Video-data storage in SDRAM memory 171

64 pixels
16 bytes

4 byte

32 lines

Bank 0 Bank 1 Bank 2 Bank 3

Figure 5.8: Mapping of 16× 4 adjacent pixels onto data units.

or even lines without wasting memory bandwidth. Therefore, the odd and
even lines are positioned in different banks of the memory. As a result, the
data units are interleaved in the memory when the vertical size is larger
than one. The resulting mapping strategy for data units of 16× 4 pixels is
shown in Figure 5.9. For this mapping, the 16× 4 pixels are not adjacent.

64 pixels
16 bytes

2×4 byte

Bank 0 Bank 3Bank 2Bank 1

32 lines

one
data unit

Figure 5.9: Mapping of interlaced video onto memory data units.

Four line pieces of 16×1 which are interlaced in the video frame are mapped
onto one data unit. Note that for retrieval of data blocks with progressive
video lines, the size of the smallest data packet to be accessed as an entity
has become eight lines high (two vertically adjacent data units), whereas
for access to data blocks with interlaced video, the size is four lines (one
data unit).

For efficient access of interlaced video data, the mapping of odd and even
video lines into odd and even banks is toggled after four units in vertical
direction (a reversal of the bank parity when looking to the global checker-
board pattern in Figure 5.9). In the first group of 16 video lines, the odd

172 Chapter 5 – Off-chip memory communication

16 bytes

Bank 3Bank 2Bank 1Bank 0

4 byte

4 byte

16 odd
lines

16 even
lines

Figure 5.10: Decomposition into mappings for separate video fields.

lines are mapped onto bank 0 and 2, while the even lines are mapped onto
bank 1 and 3. In the following 16 video lines (two checkerboard blocks
lower), the odd lines are mapped onto bank 1 and 3 and the even lines are
mapped onto bank 0 and 2. For progressive video this gives only a minor
difference, but for interlaced video, this results in addressing of all banks
instead of only odd or even banks. This is shown in Figure 5.10 where the
mapping of Figure 5.9 is decomposed into separate video fields. The left
part of the figure shows only one column of data units from Figure 5.9.

Concluding all above-mentioned system aspects from the previous exam-
ples in this section, the optimal mapping strategy depends on the following
parameters (see Figure 5.11 for the definition of the size parameters).

M

data unit

N

requested data block

Bx

By

x

y
m

n

Figure 5.11: Definition of the size parameters.

• The dimensions of the requested data blocks, Bx × By. MPEG-2 de-
coding contains a large variety of different data-block accesses: due
to interlaced and progressive video, field and frame prediction, lumi-
nance and chrominance data and due to the sub-pixel accurate motion
compensation (all these processing issues are addressed in the MPEG
standard).

5.3 Video-data storage in SDRAM memory 173

• The interlace factor of the requested data blocks.
Progressive data blocks require accesses in pairs of data units in ver-
tical direction. Consequently, the smallest data entity to access is two
data units. Hence, the calculations are slightly different for progres-
sive and interlaced video.

• The probability of the data-block occurrence, P (Bx ×By).
For example, if only 16 × 1 data blocks are accessed (100 % proba-
bility), the optimal data-unit dimension will also be very much hori-
zontally oriented. Obviously, the probability of each data-block type
depends very much on the application. Moreover, it depends on the
implementation. For example, if the color components in an MPEG
decoder are multiplexed before storage in the reference memory, some
data-block types for chrominance and luminance are equal, thereby
increasing their probability.

• The probability function of data-block positions, PBx×By(m, n).
For this function, the position parameters m = x mod M and n =
y mod N , where M is the horizontal data-unit size and N the ver-
tical data-unit size. Thus (x, y) are the global coordinates of the
requested data block, and (m, n) denote the local coordinates within
the corresponding data unit. If a requested data block is aligned with
the boundaries of the data units, it overlays the minimum amount
of data units, resulting in the minimum pixel overhead. Data blocks
that overlay many data units cause significant pixel overhead. Note
that the 16× 16 macroblock grid for MPEG and the high probability
of the zero-motion vectors have a positive influence on reducing the
pixel overhead.

The last two parameters indicate that the statistics of the memory access
are considered, because all requested data blocks (e.g. location and usage
frequency) are retrieved with varying probability. The probability function
introduced in this section will be inserted into an architecture model which
is discussed in the next subsection.

5.3.3 Architecture model for simulation

To measure the statistics as indicated in the previous subsection, an
MPEG-2 decoder was modelled including the main-memory interface that
transfers data to and from the SDRAM memory when requested by the
decoder. The interface between the MPEG-2 decoder and the memory
interface is defined as follows:

174 Chapter 5 – Off-chip memory communication

void transfer(
boolean read, // a read (TRUE) or write transfer
integer Bx, // horizontal data-block size
integer By, // vertical data-block size
boolean interl, // interlaced (TRUE) or progressive
integer x, // horizontal data-block position
integer y, // vertical data-block position
integer line, // horizontal size of a video line
u char *mem,// pointer to the memory
u char *buf) // pointer to the read/write buffer

The implementation of the interface translates the input parameters to a
set of corresponding data-unit addresses in the memory. Depending on
the state of the memory banks, arbitration is provided between read and
write requests from the MC unit, and the Video Output unit (VO) that
displays the data. Subsequently, the memory interface translates all data-
unit requests to memory commands and schedules the memory commands
to satisfy all timing parameters for an optimal data-bus utilization. In
addition, the memory interface generates function calls to the communi-
cation analyzer. The communication analyzer as depicted in Figure 5.12
analyzes the requests and updates the statistics which were mentioned in
the previous section into a database. After decoding of a representative set
of bitstreams, the optimal data-unit dimensions can be calculated from the
statistics in the database.

communication analyzer:
 data block dimensions
 position probability
 interlace factor
 occurence probability

SDRAM

main memory interface

MPEG-2 decoder

Data
minimize

o

Optimal M,N

y

DCT VLD Q MC

y

y

y

VO

Figure 5.12: Multimedia architecture model including an MPEG decoder
for simulation.

The optimal data-unit dimensions are calculated by minimizing the pixel
overhead as function of the data-unit dimensions. The pixel overhead ōi

5.3 Video-data storage in SDRAM memory 175

for interlaced data-block requests is calculated as:

ōi(M, N, Vi) =

∑
Bx×By∈Vi

P (Bx ×By)H(M, N, Vi)

∑
Bx×By∈Vi

P (Bx ×By) ·Bx ·By

− 1, (5.2)

with

H(M, N, Vi) =
M−1∑
m=0

N−1∑
n=0

PBx×By(m, n) ·M ·N · (5.3)

(
1 +

⌊
Bx + m− 1

M

⌋)
·
(

1 +
⌊

By + n− 1
N

⌋)
,

where Vi is the set of possible requested data blocks Bx ×By, P (Bx ×By)
the probability of the data block, M the horizontal size of the data unit
and N the vertical size of the data unit (see Figure 5.11 for the definition of
the parameters). The numerator in Equation (5.2) represents the amount
of transferred data including the pixel overhead. The denominator repre-
sents the amount of requested data without the pixel overhead. Probability
PBx×By(m, n) is equal to the probability that the upper left corner pixel
of a requested data block Bx ×By is positioned at any location (x, y) that
satisfies the following condition: x mod M = m AND y mod N = n.

For progressive data-block requests, the data has to be partitioned into
two interlaced data-block requests. Therefore, the overhead calculation for
progressive data-block requests is slightly different. Vi becomes Vp in Equa-
tion (5.2) and H(M, N, V) in Equation (5.3) is defined as:

H(M, N, Vp) =
M−1∑
m=0

2N−1∑
n=0

PBx×By(m, n) ·M ·N · (1 +
⌊

Bx+m−1
M

⌋)· (5.4)

(
2 +

⌊dBy/2e+ bn/2c − 1
N

⌋
+

⌊bBy/2c+ dn/2e − 1
N

⌋)
.

When a system that uses a combination of progressive and interlaced video
has to be considered, the set of requested data blocks has to be separated
into a set of interlaced data blocks and a set of progressive data blocks.
Subsequently, Equation (5.2) has to be applied with both Equation (5.3)
and (5.4). Thus

ō(M, N, V) = ōi(M, N, Vi) + ōp(M, N, Vp), with V = Vi ∪ Vo. (5.5)

176 Chapter 5 – Off-chip memory communication

Note that Equation (5.5) is a non-weighted sum of averages, because each
individual term covers only a part of the overall occurrence probabilities
(thus already statistically weighted). For example, if the occurrence ratio
between interlaced and progressive data-block requests is one over three,
the value of ōi is only one quarter of the actual pixel overhead for interlaced
data-block requests.

5.3.4 MPEG decoding as application example

As mentioned in the previous subsection, we modelled an MPEG-2 decoder
as a pilot application. In our simulations, we consider the reading of data
for motion-compensated prediction of macroblocks (MBs), the writing of
reconstructed MBs and the reading of data for display.

Reading of prediction data

Let us consider the sets Vi and Vp that are used for prediction of the MBs.

Vp = {(16× 16), (17× 16), (16× 17), (17× 17), (16× 8), (18× 8),
(16× 9), (18× 9)}

Vi = {(16× 16), (17× 16), (16× 17), (17× 17), (16× 8), (18× 8),
(16× 9), (18× 9), (17× 8), (17× 9), (16× 4), (18× 4),
(16× 5), (18× 5)}

The numbers 2p +1 for the luminance data blocks originate from the desire
to enable sub-pixel accurate motion compensation. For the chrominance,
the components CrCb are multiplexed in the horizontal direction. Each
odd sample is a value Cr, and each even sample is a value Cb. Therefore,
the sub-pixel accurate motion compensation of chrominance data blocks
may result in the numbers 2p ± 2 for the horizontal direction. The proba-
bility function of the position of a requested block Bx × By that satisfies
the condition x mod M = m AND y mod N = n was measured during
decoding a representative test-set of MPEG-2 bit streams. Figure 5.13
and 5.14 show two examples of measured probability functions of the po-
sitions. Figure 5.13 shows high probabilities at the corner positions. At
these positions, a progressive block of 17 × 17 is aligned with boundaries
of the 8 × 8 data units and occurs when the block has a zero-motion vec-
tor (or half-pel). Apparently, zero or very low-speed motion macroblocks
(MBs) have a high occurrence probability. If data blocks are aligned with
the boundaries of the data units, the amount of pixel overhead is minimal.
Consequently, the high probability of zero-motion has a positive effect on
the transfer bandwidth. Figure 5.14 shows the position probabilities of an
interlaced 18×4 block. From the zero probability of the odd horizontal po-

5.3 Video-data storage in SDRAM memory 177

0 1 2 3 4 5 6 7 7
6

5
4

3
2

1
0

0.0

2.5

5.0

7.5

10.0

probability
[%]

horizontal position
modulo 8

vertical position
modulo 8

Figure 5.13: Example of probability function for luminance of P17×17(n,m)
from set Vp with (M,N) = (8, 8).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3
2

1
0

0.0

1.0

2.0

3.0

4.0

5.0

probability
[%]

horizontal position
modulo 16

vertical position
modulo 4

Figure 5.14: Example of probability function for chrominance of
P18×4(m,n) from set Vi with (M,N) = (16, 4).

sitions, it can be concluded that it concerns a chrominance block in which
the Cr and Cb samples are multiplexed in the horizontal direction. Because
the requested block contains interlaced video, the probabilities of the odd
vertical positions are very similar to the probabilities of the even vertical
positions.

178 Chapter 5 – Off-chip memory communication

Besides the probability function of the positions, also the probability of
occurrence of all block types is measured (see Table 5.2). Note that the
amount of block requests for luminance is equal to the amount of block
requests for chrominance. Furthermore, the table shows that the blocks
of {(16× 16), (17× 16), (16× 17), (17× 17)} from set Vi are absent. This
indicates that no field-based decoding is carried out by the MPEG decoder.
Hence, only frame-based pictures are used. Since most commercially avail-
able MPEG encoders perform coding of frame-based pictures only, this is a
realistic measurement. Because the motion vectors for the luminance and

Table 5.2: Example probability of occurrence, P (Bx × By), of a set of
data-block requests for motion-compensated prediction.

Luminance Luminance Chrominance Chrominance
frame predict. field predict. frame predict. field predict.

block prob. block prob. block prob. block prob.
type [%] type [%] type [%] type [%]
∈ Vp ∈ Vi ∈ Vp ∈ Vi

16× 16 1.59 16× 8 2.28 16× 8 12.95 16× 4 7.85
17× 16 3.12 17× 8 6.84 18× 8 4.47 18× 4 6.24
16× 17 4.75 16× 9 3.06 16× 9 4.05 16× 5 6.16
17× 17 14.86 17× 9 13.50 18× 9 2.86 18× 5 5.43

Total [%] 24.32 25.68 24.32 25.68

the chrominance in a MB are equal (apart from scaling), the probability
of each chrominance block type can be computed from the probabilities
of the luminance block types. However, this is not true for all applica-
tions. Hence, the occurrence probability of all block types was measured
to generalize our optimization approach in this paper for all applications.

Writing of the reconstructed data

In an MPEG decoder application, the reconstructed pictures are written
in memory for output display, or as reference pictures to predict new pic-
tures using motion compensation. This writing is done on MB basis and
consumes part of the memory bandwidth. Also for this kind of block-based
access, the pixel-overhead considerations as discussed above are valid. How-
ever, the access for writing reconstructed pictures is very regular. The MBs
of the pictures are written sequentially from left to right and from top to
bottom at fixed grid positions of 16 × 16. Consequently, the probability
function of the positions can be determined easily. Let us assume that the

5.3 Video-data storage in SDRAM memory 179

16×16 grid of the MBs is always aligned to some boundaries of the M ×N
grid. With this restriction, the following probability function holds:

P(16×16∈Vp)(m, n) =

{
1

dM
16
e·dN

16
e , m mod 16 = 0 ∧ n mod 16 = 0

0 , elsewhere
, (5.6)

with m = x mod M AND n = y mod N . Because the bitstreams in the
test set only contain frame pictures, the written MBs are only contained
in the set Vp. Because the occurrence probability is a relative measure, it
depends on the amount of data requests for the prediction. This is deter-
mined among other factors by the amount of field and frame predictions,
the structure of the Group Of Pictures (GOP), the amount of forward,
backward and bi-directional predicted MBs in a B-picture, etc. However,
experiments have shown that the final results as presented in Section 5.3.5,
are not very sensitive for minor differences of these individual aspects and
are more or less similar for scenes that are encoded with any realistic en-
coder.

Reading of data for display

Besides the reading of prediction data and the writing of MBs, also reading
of video data for display has to be taken into account. In contrast with the
previous memory accesses, the reading of video data for display is performed
line-wise instead of block-based. Conversion of the block-based data in
memory into line-based data is another factor that influences the mapping
strategy. To optimize the mapping strategy as a function of the pixel
overhead calculated with Equations (5.2)-(5.5), the requests for display of
the video have to be included into the data set. For the dimensions of the
requested data for display, the following options are considered:

• reading of video lines by means of block transfers, thereby accepting
a significant penalty in memory bandwidth;

• usage of embedded video-line memories in the architecture to convert
data blocks into video lines.

For the first option, line-based requests are used with data blocks of size
M×1 and are added to the set of data blocks. However, actually transferred
are blocks of size M × N . It is easy to derive that the pixel overhead for
such transfers equals

o(M, 1, {(M × 1)}) =
M ×N −M × 1

M × 1
= (N − 1) · 100%. (5.7)

180 Chapter 5 – Off-chip memory communication

The probability function of the position depends on the data-unit dimen-
sions by:

P(M×1∈Vi)(M, N) =
{

1
N for m mod M = 0,
0 elsewhere. (5.8)

Because the ratio between requests for writing the output MBs and reading
for video display is fixed, the probability of occurrence for the line-based
requests can be calculated as follows:

P (M × 1 ∈ Vi) =
16× 16
M × 1

· P (16× 16 ∈ Vp). (5.9)

When video-line memories are embedded, the size of the requested data
blocks is M ×N with the following probability function of the position:

PM×N∈Vp(m, n) =
{

1 for m mod M = 0
∧

n modN = 0,
0 elsewhere, (5.10)

with m = x mod M AND n = y mod N . The probability of occurrence is:

P (M ×N ∈ Vp) =
16× 16
M ×N

· P (16× 16 ∈ Vp). (5.11)

It is also possible to have a combination of the above-described options.
For example, an MPEG decoder may use data units of 16×4 pixels instead
of 32× 2, thereby reducing the pixel overhead for block-based accesses. In
this case, embedded video-line memories for N = 2 are used to convert the
blocks into video lines. Consequently, the pixel overhead for reading video
lines is not zero, but much smaller than the 300 % resulting from the case
without video-line memories.

Overall occurrence probabilities

Table 5.3 shows the occurrence probability of each block type, considering
all memory requests performed by the MPEG-2 decoder. The table results
from using a decoder that performs line-based requests for the output dis-
play data and has a mapping of 16 × 4 pixels into data units. Note that
the occurrence probability of the memory access for display is significant.
Although it is much higher than the occurrence probability of the write re-
quests for reconstructed MBs, the amount of data that is requested is equal.
This is caused by the relation between the data-block size of M × 1 ∈ Vi

for display of the video and 16× 16 ∈ Vp for writing the constructed MBs.
Equation (5.9) shows that the size of the requested data-blocks times the
occurrence probability is constant, thus:

M × 1 · P (M × 1 ∈ Vi) = 16× 16 · P (16× 16 ∈ Vp).

5.3 Video-data storage in SDRAM memory 181

Table 5.3: Example probability of occurrence, P (Bx × By), of a set of
data-block requests for the complete MPEG decoding.

prediction data-block requests
block type prob. [%] block type prob. [%]

16× 16 ∈ Vp 0.21 16× 8 ∈ Vi 0.30
17× 16 ∈ Vp 0.41 17× 8 ∈ Vi 0.89
16× 17 ∈ Vp 0.62 16× 9 ∈ Vi 0.40
17× 17 ∈ Vp 1.94 17× 9 ∈ Vi 1.76
16× 8 ∈ Vp 1.69 16× 4 ∈ Vi 1.02
18× 8 ∈ Vp 0.58 18× 4 ∈ Vi 0.80
16× 9 ∈ Vp 0.53 16× 5 ∈ Vi 0.81
18× 9 ∈ Vp 0.37 18× 5 ∈ Vi 0.71

write MB requests
16× 16 ∈ Vp 5.12

output read requests
M × 1 ∈ Vi 81.85

Total [%] 11.46 88.54

It can be concluded that the pixel overhead is not merely determined by
the occurrence probability of the data-block requests, but also by their
size. However, the size may have an impact on the utilization of the data
bus. As shown in Section 5.3, the scheduling of all memory commands
is constrained by several timing parameters. Relatively small data-block
requests (< 3 data units), will result in a decreased memory efficiency.
Although memory command scheduling for small data block requests is
beyond the scope of this paper, it can be concluded that a large amount
of small data-block requests for display has a negative influence on the
utilization of the memory bus.

5.3.5 Model simulation results

We have simulated the architecture of Figure 5.12 based on an SDRAM
interface for determining an optimal mapping of the video into the mem-
ory with the objective to minimize the overall memory bandwidth. The
mapping is optimized for reducing the transfer overhead by measuring and
analyzing the actual memory accesses, so that data dependencies are taken
into account. Another issue that is important for bandwidth efficiency is the
organization into memory banks, which is provided in all modern memory
devices. The proposed mapping strategy increases the memory efficiency,
thereby contributing to a decreased memory-bandwidth requirement.

182 Chapter 5 – Off-chip memory communication

The experiments, which were conducted with a large test-set of bitstreams,
were performed for architectures featuring a 32-bit and a 64-bit memory
bus and for architectures with and without line-memories for conversion of
block-based storage to line-based output. For each architecture configura-
tion, the measured statistics were stored in a database for off-line calcula-
tion of the optimal data-unit dimensions. Subsequently, Equations (5.2)-
(5.5) were applied to calculate the average pixel overhead for a given di-
mension (M, N) of the data units. The tables below show the simulated
bandwidth numbers for various data-unit dimensions.

Table 5.4 shows the final bandwidth results for 32-Byte data units, where
the requests for video display are line-based. The values in the tables are
relative to the total data that was actually requested by the application
excluding the transfer overhead. Therefore, 100 % equals 253 MByte/s for
25-Hz High-Definition video. From the table it can be concluded that the
mapping of 32×1 results in the smallest pixel overhead. If the reading from
memory for display of the video is (M × N)-based, the optimal data-unit
dimensions have a more vertical preference.

Table 5.4: Bandwidth results for 32-Byte data units and line-based re-
quests for output.

data unit requested1 transferred1

dimensions data [%] data [%]
(32× 1) 100 100 + 58
(16× 2) 100 100 + 65
(8× 4) 100 100 + 126
(4× 8) 100 100 + 269

1 100 % equals 253 MByte/s for 25-Hz High-Definition video.

Table 5.5 shows the model simulation results for (M ×N)-requests for dis-
play as indicated in Equation 5.10 and 5.11. For this scenario, the 8 × 4
mapping outperforms the 32× 1 mapping. Table 5.6 and 5.7 show the re-
sults for 64-Byte data units. For these systems, the usage of 32 × 2 and
16 × 4 pixels as data units provide the optimal solution using line-based
and (M ×N)-based reading for display, respectively.

Apart for the optimal choices of block size, there is another important con-
clusion. All tables show that the penalty for applying arbitrary block sizes
as is done in current practical systems is significant, considering that 100 %

5.3 Video-data storage in SDRAM memory 183

Table 5.5: Bandwidth results for 32-Byte data units and (M ×N)-based
requests for output.

data unit requested transferred
dimensions data [%] data [%]

(32× 1) 100 100 + 58
(16× 2) 100 100 + 32
(8× 4) 100 100 + 27
(4× 8) 100 100 + 40

Table 5.6: Bandwidth results for 64-Byte data units and line-based re-
quests for output.

data unit requested transferred
dimensions data [%] data [%]

(64× 1) 100 100 + 123
(32× 2) 100 100 + 102
(16× 4) 100 100 + 144
(8× 8) 100 100 + 282

Table 5.7: Bandwidth results for 64-Byte data units and (M ×N)-based
requests for output.

data unit requested transferred
dimensions data [%] data [%]

(64× 1) 100 100 + 123
(32× 2) 100 100 + 69
(16× 4) 100 100 + 46
(8× 8) 100 100 + 53

represents a large value (e.g. 250 MByte/s) in bandwidth. A careful con-
sideration of their efficiency is therefore no luxury. In recent proposals for
multimedia computing architectures (e.g. [76][26][77]) video data is written
line by line into the address space. This can be regarded as block-based data
units with a vertical size of one (N = 1). For such systems, the results of
the first row in the tables apply. Hence, the system with 64-Byte data units
consumes a factor of 2.23 more memory bandwidth than requested. Note
that we assume systems without burst interruption and access to memory

184 Chapter 5 – Off-chip memory communication

by means of 64-Byte data entities. The proposed mapping with the optimal
data-unit dimension reduces the amount of memory bandwidth for such a
system with 35 %. For systems with 32-Byte data units, the bandwidth
reduces with 20 % (see Figure 5.15). For high-definition MPEG decod-
ing, these numbers result in a reduction of 195 MByte/s and 80 MByte/s,
respectively. This substantial performance improvement corresponds with
a bandwidth magnitude of a complete function or application such as the
display of a secondary standard-definition channel or the addition of an
advanced 2-D graphics application. Moreover, the presented results can
also be exploited to reduce the continuously growing gap between required
computational power and memory bandwidth.

0
100
200
300
400
500

600

bandwidth
[Mbyte/s]

requested
data traditional

mapping optimal
mapping

64-byte
data units

32-byte
data units

35%
20%

Figure 5.15: Obtained bandwidth gain of the proposed mapping strategy.

5.4 Concluding remarks

From video processing in SoCs it has become evident that off-chip mem-
ory communication is often the most critical part for system performance.
Although the performance of general-purpose CPUs increases with 60 % ev-
ery year, the bandwidth to the external memory increases with only 20 %.
Partly, this can be solved by advances in technology that enable the embed-
ding of an increasing amount of memory. However, from the application
point of view the amount of necessary memory space also grows. Where
analog TV systems required only a limited amount of memory for functions
like Teletekst, current high-end TVs consume many MBytes of memory for
temporal noise reduction, frame-rate conversion, flat-screen processing and
rendering of several video sources together with graphical information onto
a single display. Hence, the design of both embedded and off-chip memory
remains a critical part of the system design.

5.4 Concluding remarks 185

Section 5.2 has explained that access to the data in SDRAM-based mem-
ories is provided in burst mode, resulting in a relatively large communi-
cation granularity. Furthermore, the addressing of data in the rows and
columns of memory banks is constrained by the timing parameters of the
internal memory operations. Consequently, the performance of the these
memories such as the effective data bandwidth and latency, depend on the
mapping of data onto the memory addresses and the order in which the
data is accessed. Conventional systems apply a linear mapping, meaning
that consecutive memory addresses coincide with the scanning order of the
video pictures, i.e. from left to right and from top to bottom. Hence,
the pixels of a video line are typically located sequentially in a memory
row. However, if the order of data access is different than the scanning
order, e.g. block-based access, the memory behavior becomes inefficient. It
can be concluded that the mapping of the pictorial data into the memory
should be optimized to the access statistics of the requested data accesses.
This section has presented a memory communication model to optimize the
mapping of video data onto the burst-oriented data entities in the memory.
A novelty of this model is that it even takes the data-dependencies of the
applications and the statistics of the data requests into account. Section 5.3
shows how this optimization is achieved by means of an example MPEG
decoder. The results show a reduction of the total memory bandwidth with
35 %, corresponding to 195 MByte/s for high-definition MPEG decoding.

Apart from optimizing the mapping of pixel data into the memory, it is
also possible to modify e.g. the application algorithm, thereby modifying
the calculation model for further optimization. Hence, Appendix B shows
how the memory bandwidth for high-definition MPEG decoding can be
reduced with 100 MByte/s by writing the output of the MPEG decoder
twice into the memory. Another example improvement in which the opti-
mization model is modified is presented in Appendix C. In this example,
the alignment grid of the memory transfers is refined by implementing a
different the memory interface.

It can be concluded that the main achievement for optimal memory com-
munication is to finding the best match between the characteristics of the
data requests and the translation into the physical addressing of columns,
rows, and memory banks. The following chapter discusses some additional
bandwidth reduction techniques that are tuned to both the application
and the memory configuration. However, because these techniques concern
different functionality than the memory, they are discussed in a separate
chapter.

186 Chapter 5 – Off-chip memory communication

Chapter6
Communication bandwidth

improvement

MEMORY bandwidth to the external memory devices(s) is an impor-
tant and scarce resource in systems-on-chip. Apart from using the

memory at high efficiency to optimize bandwidth utilization, complemen-
tary techniques can be applied to further reduce the memory bandwidth.
This chapter discusses some of these techniques which are transparent for
the application. First, a straightforward embedded compression technique
is presented, followed by a section on a video-specific cache that exploits
the two-dimensional locality of video. Because the MPEG-2 decoder from
Chapter 5 represents one of the most critical functions for memory access,
it is again adopted as an example function. The last section of the chapter
reflects a collage of several discussed techniques, such as double writing (Ap-
pendix B), embedded compression (Section 6.1), and caching (Section 6.2).
It shows that most techniques are complementary and can be used in combi-
nation, potentially resulting in tremendous memory bandwidth reductions.

Rem tene, verba sequentur
(Cato, c.234 BC – c.149 BC)
Keep to the subject and
the words will follow

6.1 Embedded compression

The previous section discussed how burst-oriented memory communication
is required for efficient memory communication, even though it results in
an overhead of data transfer. This section will show how this constraint is
exploited to make embedded compression feasible for reduction of memory

187

188 Chapter 6 – Communication bandwidth improvement

bandwidth. Moreover, it explains how the calculation model as presented
in Section 5.3 is extended for the communication of compressed video data.

6.1.1 Related work in compression

Although many compression techniques have been introduced, their usage
for reducing the data bandwidth of the memory is not trivial. For example,
a problem in computer systems is that the throughput of an application
can degrade significantly when the working space of that application does
not fit in the main memory. This results in an increased number of memory
page faults so that the background memory on hard disk is accessed more
often. As a possible solution, Roy et al. [78] implemented a concept of
compressed memory pages to reduce the amount of disk accesses for the
computer system. Although this offers a valid solution to decrease the num-
ber of disk accesses, the compressed memory pages need to be decompressed
and written back into the memory when they are requested by the appli-
cation. This process consumes extra memory access, so that the potential
memory-bandwidth reduction is influenced in a negative way. Moreover, it
will be shown later that a large grain size of compressed data packets such
as the proposed memory pages, does not result in bandwidth reduction.
Another application for embedded compression is presented in [79]. This
approach applies lossless compression to relatively large data packets of 1
Kbyte in a high-complexity memory-controller chip to increase the mem-
ory capacity and is mainly intended for general-purpose computer servers.
This functionality is located between the main memory and a large cache
memory. When data is accessed at a small granularity (¿1 KByte) the
compression gives a penalty in bandwidth. However, due to the relatively
large-grain data packets between the memory and the cache there may be
sufficient net gain. In this paper, we concentrate on stream-based media
processing with the objective to develop an inexpensive solution without
the need for substantial cache memory.

Lossless compression has been studied primarily for reducing the required
memory space. Its use for memory bandwidth reduction is not straightfor-
ward, because compression techniques are usually applied to a group of pix-
els to exploit correlation. For example, when nine MBs are encoded as one
entity [80], the entity has to be partially decoded before the value of a cer-
tain pixel can be determined. For retrieval of an arbitrary data block in the
picture, several compressed data entities may have to be decoded because
they all contain part of the requested data block. Obviously, this does not
help in the reduction of the memory bandwidth. On the other hand, many
publications can be found on the reduction of necessary memory space in

6.1 Embedded compression 189

an application. For example, in [81], a simple embedded Differential Pulse
Code Modulation (DPCM) technique is applied for memory reduction in
an high-definition MPEG decoder. Although this paper presents the mea-
surement of bandwidth to derive the utilization of the memory bus, it does
not further analyze the reduction in bandwidth. Van der Schaar et al. [82]
proposed similar low-cost compression algorithms without bandwidth op-
timization and showed later [83] that the obtained compression factor only
partially aids in bandwidth reduction. In this Chapter, we quantify results
on the feasibility of low-cost compression schemes (e.g. [84]) for reduction
of the memory communication. Furthermore, we propose an optimization
technique to find all feasible compression factors that reduce the bandwidth
between the memory and the video processing. This reduction, which can
be as high as 67 % for a compression ratio of four, can be exploited to
enhance the system quality, reduce costs and/or add extra functionality.

6.1.2 Feasibility of bandwidth reduction

Let us consider an example that shows why embedded compression for
bandwidth reduction is not easily obtained. For this, we have adopted an
MPEG-2 decoder as an example video function that requires access to the
main memory. For the motion-compensated prediction in this coding stan-
dard, so-called reference frames (I and P) are stored in memories to provide
the correct video data for either motion estimation/compensation. These
reference frames are usually stored in an external background memory,
leading to an increase of the memory communication. The architecture of
the aforementioned video codecs usually includes various processors, which
are communicating with a shared external SDRAM memory (Figure 6.1).

Synchronous DRAM

bank 2 bank 3bank 0 bank 1

Video Processing System

DSP CPUASIP1 ASIP2

compressdecompress

ASIP = Application Specific IP
DSP = Digital Signal Processor
CPU = Central Processing Units

Figure 6.1: A video system with embedded compression.

190 Chapter 6 – Communication bandwidth improvement

data entity
transferred data
incl. overheadrequested

data block

overhead
Macroblock

Figure 6.2: Memory access of a macroblock including the transfer over-
head.

Chapter 5 has shown that access of the motion-compensated prediction
data results in a transfer overhead, because more pixel data is transferred
than is actually required for the decoding process. This is visualized in
Figure 6.2. If for example, groups of 16 × 8 pixels are clustered as data
entities, 78 % more data is transferred than was strictly required for the
decoding process. Consequently, a compression ratio of 1.78 is necessary
to accomplish the break-even point and even more for a net bandwidth
reduction. However, when using an SDRAM-based memory, an overhead
is already present due to burst-oriented storage. Table 6.1 indicates this
overhead, dependent on the size of the communicated data bursts. For
these numbers, the shape of the data entities, referred to as data units,
are optimized for minimum transfer bandwidth. The bandwidth percent-
ages show the transfer bandwidth relative to the bandwidth that is strictly
required for the decoding. In the sequel of this subsection we call these
numbers the relative transfer bandwidth (RTB). Since the data-burst size is

Table 6.1: RTB requirement for data units with increasing sizes and the
optimal dimensions.

size optimal requested transferred data
[Bytes] dimension data [%] ō · 100 %

16 (16× 1) 100 117
32 (8× 4) 100 127
64 (16× 4) 100 146
128 (16× 8) 100 178

6.1 Embedded compression 191

given by the architecture, compression becomes more feasible, i.e. only the
additional overhead due to compression needs to be compensated. For ex-
ample, if data units of 16× 8 (128 bytes) are compressed into 64-Byte data
bursts, the RTB increases from 146 % to 178 %. Therefore, the break-even
compression ratio equals 1.78/1.46 = 1.22, which is feasible.

Up to this point, we discussed the properties of an SDRAM memory that
result in block-based (bursts) storage of data and therefore increase the
bandwidth requirement significantly. Furthermore, we have explained how
this block-based storage can be exploited to reduce the bandwidth require-
ment by means of compression. However, the suitability of compression
schemes is bounded by the constraints we have developed so far. Firstly,
we found that the burst size determines the size of the compressed data
entity. Secondly, the data must be easily accessible at regular address po-
sitions, thereby leading to a fixed compression ratio. Hence, this leads to
fixed-sized input data units (data-units size S) and output blocks (data-
burst size B). Let us now discuss a compression algorithm that satisfies the
aforementioned constraints, presented by Bayazit et al. [84]. This technique
is based on an adaptive DPCM algorithm, which can achieve a 50 % mem-
ory compression ratio with no distinguishable loss of visual quality. The
paper describes the independent compression of one data block consisting of
one luminance block of 16×2 samples and two chrominance blocks of 8×1
samples, thus 48 bytes in total. Because our system assumes separate stor-
age of the luminance and chrominance data, it is required to independently
compress luminance and chrominance components. This requirement does
not limit the suitability of the algorithm and no performance degradation
is expected for this reason. Another difference for the applicability of the
proposed algorithm is the size of the data units. Data units of 48 bytes are
rather small for obtaining sufficient compression. Section 6.1.4 will show
that most suitable data-unit sizes for 32-Byte data bursts (B = 32) are
S = 64 Bytes (and larger). For larger data bursts the most suitable size
is even larger. Consequently, the algorithm will be able to exploit more
correlation when applied for our purpose.

The experiments as described in the above-mentioned paper show that the
compression scheme was not matched to the size of the memory bursts. The
48-Byte data blocks were compressed with a factor 1, 1.33, 1.6, and 2, re-
sulting in compressed data entities of 48, 36, 30, and 24 Bytes, respectively.
Because the sizes of these data entities do not match with the alignment grid
of the data bursts, these compression ratios lead to sub-optimal solutions;
i.e. more data bursts are transferred to access a compressed data entity.

192 Chapter 6 – Communication bandwidth improvement

The results of the experiments show a bandwidth reduction of 12.5 % for
a compression ratio of two. The corresponding results on picture qual-
ity show a degradation of 0.97 dB for a MP@ML MPEG-2 video decoder,
when decoding a high-quality 9−Mbps bitstream. For a bitstream that was
coded at 4 Mbps, the quality degraded with only 0.34 dB. Subjective tests
revealed high-quality video with imperceptible artifacts. For our system we
target to decorrelate larger data blocks and hence an even better picture
quality can be expected. Moreover, the results in the next section will show
a significantly higher bandwidth reduction than in [84].

6.1.3 Bandwidth Calculations

In our experiments we again used the implementation of an MPEG-2 de-
coder to statistically analyze the behavior of the data communication, sim-
ilar to the experiments as described in Subsection 5.3.4. To derive the
memory bandwidth, the calculation model as proposed in [85][15] is used.
The calculated result from this model represents the transfer bandwidth
relative to the bandwidth that is strictly required for the decoding (RTB).
However, in this model, embedded compression is not considered. Conse-
quently, the size S of a data unit is assumed to be equal to the data-burst
size B (S = B). In the following, we extend the above-mentioned model for
the use of embedded compression. For this purpose, we introduce the com-
pression ratio cS , where S stands for the data-unit size. The value of the
compression equals the ratio between the data-unit size and the data-burst
size, thus:

cS =
S

B
. (6.1)

Below, we list the parameters on which the calculations for the RTB depend,
including the compression ratio cS :

• the dimensions of the requested data blocks, Bx ×By;

• the dimensions of the data units, (M, N);

• the interlace factor of the requested data blocks;

• the probability function of their occurrence, P (Bx ×By);

• the probability function of their positions, PBx×By(m, n);

• the compression ratio, cS .

For the bandwidth calculation, the set of possible data-block requests V has
to be divided into a subset of progressive data block requests Vp and a subset

6.1 Embedded compression 193

of interlaced data block requests Vi, such that V = Vi∪Vp. This separation
is necessary because the calculations for both contributions are slightly
different. We denote the average RTB of progressive data-block requests by
ōp(M, N, Vp) and for interlaced data-block requests by ōi(M, N, Vi). Both
contributions are already probability-weighted, so that the total average
RTB is:

ō(M, N, V) = ōi(M, N, Vi) + ōp(M, N, Vp). (6.2)

To achieve the minimal bandwidth requirements for a given application,
the dimensions of the data units (M, N) are optimized.

As mentioned earlier, we again consider an MPEG-2 decoder as an ex-
ample for our experiments. For this application the set of data blocks is:

Vp = {(16× 16), (17× 16), (16× 17), (17× 17), (16× 8), (18× 8),
(16× 9), (18× 9)}

Vi = {(16× 16), (17× 16), (16× 17), (17× 17), (16× 8), (18× 8),
(16× 9), (18× 9), (17× 8), (17× 9), (16× 4), (18× 4),
(16× 5), (18× 5)}

The large variety of data-block requests is caused by the MPEG standard
and depends on field/frame prediction, luminance/ chrominance data and
the sub-pixel motion-compensation accuracy. In our experiments, we con-
sider the reading of prediction data for motion compensation, the writing
of the motion-compensated result, (16×16) ∈ Vp, and the reading for inter-
laced display of the video, (M ×N) ∈ Vi. For the last aspect, it is assumed
that the display unit contains line memories to read the block-based data
units of (M × N) ∈ Vi and to display the video lines sequentially. To ac-
quire representative results for an average MPEG-2 bitstream, a large set
of test bitstreams is used to derive the optimum data-unit dimensions.

To determine P (Bx × By), the numbers of occurrences of each type of
data-block is measured at the memory interface, thereby feeding one of the
data dependencies into the model. The probability function of the posi-
tions of the data blocks PBx×By(m, n), is defined as the probability that
the upper-left corner pixel of a requested data block Bx ×By is positioned
at any location (x, y), satisfying the condition: (x mod M = m) AND
(y mod N = n). Hence, a low-complexity bookkeeping of the occurrences
at position (x mod M, y mod N) is used to determine PBx×By(m, n). This
probability function highly depends on the dimensions of the data units.
Large differences may occur in the result, due to the 16 × 16 MB grid for
MPEG and the high probability of the zero-motion vectors. For example, if
(M, N) = (32, 2), the probability that (x mod 32 = 0) AND (y mod 2 = 0)

194 Chapter 6 – Communication bandwidth improvement

is relatively high. However, for data-unit dimensions that are not aligned
with the MB grid, e.g. (M, N) = (12, 5), the probability function of the
positions of the data-blocks is totally different (see both examples in Fig-
ure 6.3).

(a)

M=32

N=2

x mod 32 =0

(b)

M=12

N=5

x mod 12 =0
x mod 12 =4

x mod 12 =8
x mod 32 =16

Figure 6.3: 32× 2 (a) and 12× 5 data units (b) overlaid on a MB grid.

At this stage, we have discussed the parameters that are necessary for the
calculations and can derive the RTB. For the set of interlaced data-block
requests, the following equation applies:

ōi(M, N, Vi) =

∑
Bx×By∈Vi

P (Bx ×By)H(M, N, Vi)

cS ·
∑

Bx×By∈Vi

P (Bx ×By) ·Bx ·By

, (6.3)

with

H(M, N, Vi) =
M−1∑
m=0

N−1∑
n=0

PBx×By(m, n) ·M ·N ·
(

1 +
⌊

Bx + m− 1
M

⌋)
·
(

1 +
⌊

By + n− 1
N

⌋)
,

The summation in the numerator of Equation (6.3) represents the amount
of transferred pixels including the overhead, whereas the summation in the
denominator represents the amount of pixels that is strictly required for the
decoding without the overhead. cS indicates the compression ratio. Note
that the calculation without cS resembles the amount of transferred pixels

6.1 Embedded compression 195

relative to the amount of pixels that is strictly required for the decoding.
Since this is directly proportional to the bandwidth, the equation with cS

points to the effective bandwidth relative to the bandwidth that is strictly
required for decoding without compression. The RTB calculation for the
set of progressive data-block requests is similar to Equation (6.3) but Vi

becomes Vp and H(M, N, V) is defined according to:

H(M, N, Vp) =
M−1∑
m=0

2N−1∑
n=0

PBx×By(m, n) ·M ·N · (1 +
⌊

Bx+m−1
M

⌋)·
(

2 +
⌊dBy/2e+ bn/2c − 1

N

⌋
+

⌊bBy/2c+ dn/2e − 1
N

⌋)
.

6.1.4 Extraction of feasible solutions

In this subsection we derive the memory bandwidth by adopting the above-
mentioned calculation model. The model exploits 64-Byte, 32-Byte, and
16-Byte data bursts, thus B = 64, B = 32, and B = 16, respectively. The
method to determine systematically the optimal data-unit configurations
for minimum bandwidth, comprises of the following steps:

• determination of the optimal data-unit configuration without using
compression (in this case data-unit size S equals burst size B);

• determination of the optimal data-unit dimensions for an incremental
value of the compression ratio;

• pruning of the non-feasible data-unit configurations.

Step 1 - The RTB results without compression are presented in Table 5.4.
The optimal dimensions (MB, NB) for a data-unit size S = B, are defined
formally by:

(MB, NB) =
(∃(m,n) : m ∈ [1..B], n ∈ [1..B] :

↓ ō(m, n, V) ∧m · n = B) , (6.4)

where ↓ denotes the minimum and V is the set of requested data blocks. For
example, the minimum RTB for 64-Byte data units equals ō(MB, NB, V) =
146 %.

Step 2 - The optimal data-unit dimensions are determined for increasing
compression ratio. Note that the compression ratio cS is given by cS = S/B.
Thus, for a fixed data-burst size (e.g. B = 64) the data-unit size is incre-
mentally increased from the size of the data burst up to four times the burst

196 Chapter 6 – Communication bandwidth improvement

size. This resembles an incremental increase of the compression factor. For
each S ∈ (B..4B] the optimal data-unit dimensions are determined by:

(MS , NS) =
(∃(m,n) : m ∈ [1..S], n ∈ [1..S] :

↓ ō(m, n, V) ∧m · n = S) . (6.5)

Applying the optimal dimensions (MS , NS) for each S results in the mini-
mum RTB value ōt(MS , NS , V). Figure 6.4 shows these values for B = 64
as function of the data-unit size. Because most solutions do not result in
less data transfer than in the case without compression, they have been re-
moved for an improved visualization of the results. Consequently, all shown
solutions satisfy the following equation:

ōt(MS , NS , V) < ōt(MB, NB, V) with S ∈ (B..4B]. (6.6)

60

80

100

120

140

160

64 80 96 112 128 144 160 176 192 208 224 240 256

re
la

tiv
e

tr
an

sf
er

ba
nd

w
id

th
 [%

]

data unit size S [bytes]

Figure 6.4: Minimal RTB for B = 64 as function of the data-unit size S.

Hence, incorrect dimensioning of the data-units can result in a sub-optimal
solution or may even increase the memory bandwidth requirements.

Step 3 - In the third and final step, pruning of the found solutions can
be applied. This pruning means in Figure 6.4 that, when starting at the
left side and going to the right, only those solutions are adopted that give
a lower RTB than the previously selected point. This means that all solu-
tions with a larger compression ratio than other solutions while having less
bandwidth-reduction gain, are removed. Since the picture quality as func-
tion of the compression ratio is generally a monotonic decreasing function,
it can be concluded that the removed solutions have a lower picture quality
than the remaining solutions while consuming more bandwidth. After the

6.1 Embedded compression 197

pruning process all remaining solutions satisfy the following condition:(
∀ōt(MS1

,NS1
,V),ōt(MS2

,NS2
,V) : S1 ∈ (B..4B],

S1 < S2 5 4B : ōt(MS1 , NS1 , V) > ōt(MS2 , NS2 , V)).
(6.7)

The remaining data-unit configurations represent feasible solutions and are
shown in Figure 6.5 for B = 64. The label at each point indicates the opti-
mal data-unit dimension giving the result. This picture enables a tradeoff
between compression ratio and bandwidth reduction. Note that data units
of 16×8 reduce the relative transfer bandwidth from 146 % to 89 %. Up to
this compression ratio the amount of RTB decreases more or less linearly
per unit of compression. For cS > 2, the gain of compression is saturating.
Furthermore, because for the bending point cS = 2 the data-unit dimen-
sions are powers of two, this configuration is also particularly attractive
from an implementation point of view.

60

80

100

120

140

160

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

(19,4)

(16,5)
(22,4)

(23,4)

(16,6)

(13,8)
(18,6)

(16,7)
(15,8)

(16,8)
(19,8)

(20,8)

(22,8)
(24,8)

(26,8)
(27,8) (30,8)

(16,4)

(18,4)

(18,8)

(32,8)
(28,8)

re
la

tiv
e

tr
an

sf
er

ba
nd

w
id

th
 [%

]

compression ratio cS

Figure 6.5: Feasible data-unit configurations for compression into 64-Byte
data bursts.

40

60

80

100

120

140

compression ratio cS

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 3.75 4

re
la

tiv
e

tr
an

sf
er

ba
nd

w
id

th
 [%

]

(8,4)

(9,4)
(13,3)

(10,4)
(11,4)

(12,4) (13,4)

(14,4)
(15,4)

(16,4)
(18,4)

(19,4)
(16,5)

(22,4)
(23,4)

(16,6)
(18,6)

(16,7)
(15,8)(16,8)

Figure 6.6: Feasible data-unit configurations for compression into 32-Byte
data bursts.

198 Chapter 6 – Communication bandwidth improvement

20

40

60

80

100

120

re
la

tiv
e

tr
an

sf
er

ba
nd

w
id

th
 [%

]

compression ratio cS

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

(8,2)
(9,2)

(5,4)
(7,3)

(11,2)
(6,4)

(13,2)

(7,4)
(10,3)

(8,4)
(9,4) (10,4)(11,4)(12,4)(13,4)(14,4)(15,4)

(16,4)

(9,3)

Figure 6.7: Feasible data-unit configurations for compression into 16-Byte
data bursts.

Figure 6.6 and Figure 6.7 show the results for compression into 32-Byte
and 16-Byte data units, respectively. Notice that the graphs all look very
similar. All figures show an attractive design point at cS = 2. For this
compression ratio, the optimal data-unit dimensions are aligned with the
MB grid in both horizontal and vertical direction, thereby enabling memory
requests with low overhead at relatively high probability. However, also the
size of the data unit is an important parameter for feasibility. A data unit of
16×8 can easily be compressed with a factor two, while maintaining a high
picture quality. For data units of 8× 4 this is less straightforward. Given
the previous benefits, we have performed the picture-quality assessment as
outlined in the next subsection for cS = 2 and data bursts of B = 64.

6.1.5 Picture quality assessment

From the results presented above, it can be concluded that embedded com-
pression is feasible for reduction of the memory bandwidth. However, these
numerical results do not quantify the picture quality. Therefore, this sub-
section discusses some experimental results of a low-complexity compres-
sion scheme. The considered MPEG-2 decoding system represents a system
that can measure the performance under worst-case conditions. This sys-
tem applies both line-based and block-based accesses, while the order of
accessing the picture data can be random. Additionally, any signal degra-
dation caused by the lossy compression/decompression stage, is amplified
due to the recursive nature of MPEG decoding (motion-compensated pre-
diction loop). To test extreme cases, MPEG-2 bitstreams are used with a
group-of-pictures (GOP) comprising one intra-coded picture followed by 14
pictures that are recursively predicted from the previous picture (IPPPP...).
As a result, the quantization-error signal that is caused by the embedded

6.1 Embedded compression 199

compression/decompression stage propagates 14 times through the MPEG
decoding loop. Furthermore, the used video sequences contain highly de-
tailed textures with slow smooth motion to maximize the visibility of the
quantization error. The adopted compression algorithm divides the video
signal into a DPCM-based lossless part and a lossy bitstream that can be
truncated at any position, thereby enabling a scalable compression ratio
without the necessity of a bitrate controller [86][87]. Figure 6.8 shows a
peak signal-to-noise ratio (PSNR) plot of such a bitstream at 9-Mbps bi-
trate. The figure shows that the quality of the signal tends to drift away
from the intrinsic MPEG decoder quality. The average PSNR difference
is about 1 dB, whereas PSNR differences of more than 2 dB are measured
for the last recursively predicted picture of the GOP. However, it has been
found that the PSNR loss is rather content dependent and is not necessar-
ily correlated with the subjectively perceived picture quality. For example,
the experiments show that the PSNR loss caused by the embedded com-
pression reduces for smaller bitrates of the bitstreams. Unfortunately, the
effect of the embedded compression on the perceptual quality is more visible
for such low bitrate sequences. This can be explained by the uncorrelated

P
S

N
R

 [d
B

]

9 Mbps, GOP: N=15, M=1

34

36

38

40

42

no compression

with compression

frames
0 5 10 15 20 25 30

Figure 6.8: PSNR : 9-Mbps bitrate and worst-case GOP structure.

39

41

43

45

47
4 Mbps, GOP: N=12, M=3

no compression

with compression

P
S

N
R

 [d
B

]

0 5 10 15 20 25 30
frames

Figure 6.9: PSNR : 4-Mbps bitrate and typical GOP structure.

200 Chapter 6 – Communication bandwidth improvement

character of quantization noise from the MPEG coding, which is inherently
more present in low-bitrate bitstreams. This is shown in Figure 6.10, where
a part of the picture is enlarged containing considerable quantization noise
from the MPEG coding. The picture is coded at 9-Mbps and contains high-
contrast details which are difficult to encode with a high quality.

�

Figure 6.10: Quality degradation from embedded compression due to
MPEG quantization noise.

To evaluate the picture quality for more practical MPEG bitstreams, sev-
eral experiments were conducted with typical bitstreams at 4-Mbps and
a more realistic GOP structure. With these bitstreams, the error propa-
gates only four times through the decoding loop. Even though the earlier-
mentioned experiments have shown a lower subjective picture quality for
lower bitrates, no perceptual loss in quality could be observed. Figure 6.9
shows some typical results of the experiments of which the average PSNR
difference is about 0.5 dB.

With future work, we expect to further enhance the picture quality by
optimizing the applied compression algorithm. Bayazit et. al [84] obtained
a 0.34 dB loss for a compression factor two and smaller 48-Byte data units,
but their results were all based on typical GOP structures (no worst case)
and less critical test material.

6.1 Embedded compression 201

6.1.6 Conclusions

Many current multimedia systems intended for applications such as e.g.
MPEG coding and 3-D graphics rendering, feature double-data-rate (DDR)
SDRAM having a bus width of up to 64-bit. These expensive memory
configurations are adopted to obtain sufficient communication bandwidth,
which is demanded by the continuous increase of computational power.
This section shows the feasibility of embedded compression for reducing
the critical bandwidth bottleneck.

Our experiments with a conventional MPEG-2 decoder (with B = 64)
without compression show that the amount of data transferred to and from
the memory is 146 % of the data that is strictly required for the decoding,
using the optimal mapping of groups of pixels (data units). However, in
most currently used systems, a straightforward linear mapping of 64 × 1
pixels into data bursts is applied, resulting in a relative transfer bandwidth
of even 223 % [15]. Due to the trend of increasing memory hierarchy, the
size of the data bursts grows, leading to even more transfer overhead. For-
tunately, larger blocks can be decorrelated more efficiently, which makes the
use of embedded compression for memory bandwidth reduction increasingly
attractive.

Another important observation is that compression does not lead to reduc-
tion of the memory bandwidth for all compression factors. The block-based
storage of compressed data entities, may even lead to an increased band-
width. Moreover, it has also been found that certain data-unit sizes offer
less bandwidth reduction than others, while giving less picture quality. It
can be concluded that the compression ratio and the data-unit dimensions
have to be carefully matched with the size of memory data bursts. Hence,
a selection of attractive data-unit sizes and corresponding compression fac-
tors has been reported.

For consumer applications, a low-cost compression scheme is required to
reduce bandwidth without sacrificing visual picture quality. For a compres-
sion factor four, a bandwidth reduction is established of 58 % for 64-Byte
data bursts. For a compression ratio of two, the bandwidth reduces with
39 %. Summarizing, the optimal grouping of pixels into data units de-
creases the relative memory bandwidth of the MPEG decoder from 223 %
to 146 % and the embedded compression accounts for a further reduction to
89 %, thereby gaining a total bandwidth reduction of 60 %. A side benefit
of using an embedded compression scheme with a fixed compression ratio is
that it reduces the required memory size proportionally to the compression

202 Chapter 6 – Communication bandwidth improvement

ratio. Thus, the three picture memories in MPEG decoding are halved for
a compression factor two.

The proposed techniques for reducing the bandwidth bottleneck of external
memory can be generalized to a broad class of block-based video process-
ing applications. When adopting embedded compression for decoding of
high-definition video pictures, the bandwidth reduction is as high as 142
or 212 MByte/s for a compression ratio of two or four, respectively. Since
this substantial improvement in memory bandwidth is guaranteed, it can
be exploited easily for reducing the system cost, to improve the picture
quality, or to extend the system functionality.

6.2 Caching

The previous subsection has discussed a low-complexity embedded com-
pression scheme to reduce the memory bandwidth. A major advantage of
the technique is the guaranteed reduction of the memory bandwidth. How-
ever, due to the fixed compression factor this approach cannot be achieved
without loss of picture quality. This subsection discusses caching as an-
other technique to reduce memory traffic of the MPEG decoder. A key
difference with embedded compression is that caching is completely trans-
parent for the MPEG decoder, i.e. the cache can be omitted without loss of
functionality. Another difference is the obtained picture quality. Caching
maintains the full picture quality, whereas embedded compression intro-
duces small visual losses. A drawback of caching is that the bandwidth
reduction cannot be guaranteed under all circumstances, although in gen-
eral large bandwidth savings are achieved.

The main intriguing problem to solve is the potential gain in memory band-
width and the associated costs. This section analyzes a similar MPEG
decoding application as with embedded compression to determine the ar-
chitectural requirements for the cache. Consequently, the cache implemen-
tation can be balanced to achieve a high performance at an acceptable
design complexity.

Prior to discussing our experiments with caching, we briefly summarize
a few concepts and techniques for video-specific caching. The principle of
a cache is based on temporal or spatial locality of data. Temporal locality
means that frequently accessed data is buffered locally (in the cache) near
the processing engine. Spatial locality means that adjacent data items have
high probability of being accessed successively. Hence, a complete data

6.2 Caching 203

unit as described in Section 5.3, is buffered in the cache by means of a
single efficient transfer. For the location of the data units in the cache,
we can distinguish set-associative caches and direct-mapped caches. In a
set-associative cache, each data unit in the memory can be stored in several
locations (i.e. cache lines) of the cache. Consequently, each data request re-
quires to search all entries in the cache that qualify for a possible location.
In addition, when the cache is full, it provides the flexibility to replace
that data in the cache that is least relevant. In a direct-mapped cache,
each data unit can be associated with exactly one cache line and thus it is
not required to search through the cache. Although this implementation
is less complex than set-associative caches, it does not offer the flexibility
of selecting the least relevant data for replacement. Consequently, its per-
formance will generally be poorer. To optimize the performance for such
a cache, it is necessary to derive a suitable relation that associates a data
unit in the higher-level memory to one of the cache lines. Basically, this
means that the probability should be minimized that an accessed cache
line is replaced before it can potentially be accessed again. This relation is
straightforward for general-purpose processing and is well-known for CPUs.
In this chapter, we reuse the newly introduced data dependency concept
of the previous chapter. When using caches, this leads to the novel idea of
exploiting the two-dimensional locality of video data. Without going into
details, we want to explore the most important design parameters, such
as the potential performance and the associated cost. The details on the
implementation of video-specific caches and the mapping of data units onto
cache lines can be found in Appendix D.

6.2.1 Experimental results for MPEG decoding

As stated above, we want to determine the gain in bandwidth reduction
and the cost of the video cache. Up to this point, we know how to construct
a cache for video-processing functions. However, to determine the perfor-
mance potential and the cost of an effective cache, we need to properly
dimension the following design parameters:

• associativity of a cache,

• optimal data-unit dimensions,

• cache size,

• relation for associating data with a cache lines, and

• replacement strategy.

204 Chapter 6 – Communication bandwidth improvement

As a case study, we explored the design of a cache for a motion-compensation
unit in an MPEG decoder. The following constraints are used to limit the
case study for this chapter:

• Since writing of the reconstructed macroblocks and reading of video
data for display can be achieved without transfer overhead (see Sec-
tion 5.3), a cache to exploit the spatial locality is not required. Hence,
these memory transfers are directly conveyed to and from the back-
ground memory without accessing the cache.

• Data from the higher-level memory can be accessed by means of
64-Byte data bursts which can only be accessed as an entity. The
size of the cache lines is matched to this burst length.

• The motion-compensation unit requests only that data that is strictly
required for the decoding (no overhead). The bandwidth of these
data-block requests are used as a reference to measure the actual
bandwidth efficiency. Hence, the requested data bandwidth is con-
sidered to be 100 %.

• Timing issues are not included in the simulation model.

The design of a cache depends on the architecture of the higher-level mem-
ory and the functional processing unit. The background memory constrains
the size of the cache lines, the size of the tags, etc. The functional unit that
uses the cache determines the total cache size, the number of sets, the 2-D
spatial dimensions of the cache sets, the replacement strategy, etc. Even if
all such memory-system parameters and application parameters are known,
the design space is still too large for complete exploration. Therefore, for
each set of experiments in this section we will fix those parameters that are
expected to be independent.

Cache associativity

In a set-associative cache, each data unit can be associated with several
cache lines. This provides the flexibility to replace the least relevant data
in the cache. A direct mapped cache does not offer this freedom, but it can
be implemented with a lower complexity. Instead of searching through the
cache for a requested data unit, a fixed relation associates the memory ad-
dress of a data unit to a unique location in the cache. For MPEG decoding,
several independent video buffers are adopted to separately store the lumi-
nance and chrominance pixels of both forward and backward pictures. For
a direct-mapped cache, care has to be taken that data units from different
video buffers but at the same pixel locations are not associated with the

6.2 Caching 205

same cache line. This would replace valuable cache data. As a solution, we
can separate the video buffers by means of separate subsets in the cache
(see Appendix D), or we can increase the amount of set-associative cache
lines.

With the following experiment, we investigate the performance difference of
subsets for forward/backward reference frames and luminance/chrominance
data instead of more set-associative cache lines. For each simulation, the
data units contain 16 × 4 pixels (64 bytes), the size of the subsets for lu-
minance are 2× 8 cache lines (32 pixels × 32 video lines) and 2× 4 cache
lines for chrominance.

• Simulation 1 - Forward and backward reference pictures for lumi-
nance and chrominance have different subsets, four in total. For
the chrominance, the subsets are twice as small in vertical direc-
tion compared to the subset for luminance. The cache is two-way
set-associative. Consequently, the size of cache is 6 kByte.

• Simulation 2 - Forward and backward reference pictures have dif-
ferent subsets, but no distinction is made between luminance and
chrominance. Instead, a four-way set-associative cache is used. Con-
sequently, the effective set size for chrominance is twice as large as
for Simulation 1. Therefore, the size of the cache is 8 kByte.

• Simulation 3 - Luminance and chrominance data are associated with
different subsets, but no distinction is made between forward and
backward reference pictures. Instead, a four-way set-associative cache
is used. The cache size is 6 kByte.

• Simulation 4 - No distinction is made between forward and backward
reference pictures, nor between luminance and chrominance. Instead,
an eight-way set-associative cache is used. Hence, an 8-kByte cache
is used.

Figure 6.11 shows that all simulations of the above-defined experiment re-
sults in a bandwidth reduction between 1.56 % and 32.23 %. Therefore, it
can be concluded that due to the regular behavior of video processing, the
use of a direct-mapped cache (using subsets) for different streams, instead
of set-associative caches, results in similar performance. However, with
increasing associativity, the cache always improves its performance. Note,
that it is more beneficial to have separate subsets for Y and UV components
instead of separate subsets for forward and backward reference frames. Al-
though the size of the cache in Simulation 3 is only 6 kByte due to the

206 Chapter 6 – Communication bandwidth improvement

31.2

31.4

31.6

31.8

32

32.2

32.4

Sim.1 Sim.2 Sim.3 Sim.4

re
la

tiv
e

ba
nd

w
id

th
re

du
ct

io
n

[%
]

Figure 6.11: The results of four different simulations, indicating the perfor-
mance difference between a direct-mapped cache and a cache
with more set-associative cache lines.

smaller subset size for the chrominance, it outperforms the 8-kByte cache
of Simulation 2. A drawback of set-associative caches is the more complex
design due to the additional compare operations, which are required to
search through all cache lines that can be associated with a data unit.

To limit the amount of experiment for design-space exploration, all follow-
ing experiments will be performed without subsets to determine the upper
bound of performance. For a final design, it can be easily verified whether
subsets can be implemented for cost reduction without performance losses.

Optimal data-unit dimensions

Another design parameter that needs to be optimized is the shape of the
data units, i.e. the data blocks that are stored in the cache lines. From the
previous chapter, we have learned that data units of 16 × 4 result in the
minimal bandwidth. However, when a cache is added to the system, this
might be different. For example, if the cache performance is significantly
better for data units of 32×2, this may influence the final result. Figure 6.12
shows the result of an experiment where the data-unit size is changed. For
the experiment we assume that the amount of associativity does not have
a large impact on the results. Therefore, we performed all simulations
with a full-associative cache. Hence, the amount of associativity is equal
to the cache size divided by the cache-line size (64 Byte). The figure shows
that for the tested bitstreams the optimal data-unit dimensions is 16 ×
4 for all cache sizes. It results in the largest bandwidth reduction for
the used MPEG bitstreams. Note that this does not imply optimality.
Figure 6.13 zooms in on the results of an 8-kByte cache. The upper figure
shows that the performance of the cache (hit rate) decreases for increasingly

6.2 Caching 207

re
la

tiv
e

da
ta

ba
nd

w
id

th
 [

%
]

relative data bandwidth without cache [%]
relative data bandwidth with 256-byte cache [%]
relative data bandwidth with 0.5-kbyte cache [%]
relative data bandwidth with 1-kbyte cache [%]
relative data bandwidth with 2-kbyte cache [%]
relative data bandwidth with 4-kbyte cache [%]
relative data bandwidth with 8-kbyte cache [%]
relative data bandwidth with 16-kbyte cache [%]
relative data bandwidth with 32-kbyte cache [%]
relative data bandwidth with 64-kbyte cache [%]

data-unit dimensions
64x1 32x2 16x4 8x8 4x16

100

150

200

250

300

350

400

450

Figure 6.12: Data bandwidth reduction as function of the data-unit dimen-
sions.

vertically-oriented data units. The bottom figure portrays that for the
tested bitstreams, a minimal data bandwidth is required for 16 × 4 data
units, when no cache is applied. Moreover, the lower figure shows that
the addition of a cache reduces the bandwidth consumption, particularly
for more horizontally-oriented data units. However, as already concluded
before, the 16 × 4 data-unit remains optimal for the tested bitstreams. It
is interesting to note that traditional systems writing the video data in line
scanning order from left to right and top to bottom, benefit most from
caching. The data burst to and from memory for these systems can be
considered to contain data units of 64 × 1 pixels. Hence, if these systems
use 64-Byte data bursts and do not feature burst interruption, the data
bandwidth for motion compensation is 457 % of the data bandwidth that
is strictly required. When applying the 8-kByte cache as described above,
the data bandwidth reduces to 205 %, which provides a substantial gain of
55 %.

208 Chapter 6 – Communication bandwidth improvement

re
la

tiv
e

ba
nd

w
id

th
re

du
ct

io
n

[%
]

re
la

tiv
e

da
ta

ba
nd

w
id

th
 [%

]

data-unit dimensions

0

200

400

600

800

1000

1200

64x1 32x2 16x4 8x8 4x16 2x32 1x64

10
20
30
40
50
60

hit rate of the cache [%]

relative data bandwidth with 8-kbyte cache [%]
relative data bandwidth without cache [%]
relative requested data bandwidth [%]

Figure 6.13: Cache performance as function of the data-unit dimensions.

Cache size

For the following experiments, we will concentrate on data-unit dimensions
of 16× 4 pixels. Although Figure 6.12 shows the results for different cache
sizes, it does not give much insight in the relation between the cache size
and cache performance. Therefore, we conducted simulations to measure
the influence of an increasing cache size and plotted the relative data band-
width (see Figure 6.14). For very small cache sizes (< 512 Bytes) reuse of
transfer overhead cannot be exploited due to the small lifetime of the data
in the cache. Because the size of the cache is even smaller than the size of a
macroblock, data that could be reused is already replaced when requested
for the second time. From 512 to 2048 Bytes, the cache clearly exploits the
spatial locality in horizontal direction. Because motion vectors of adjacent
macroblocks are generally highly correlated and show a consistent behav-
ior, the reuse of data in the horizontal direction is limited. Therefore, the
bandwidth reduction saturates between an 8 to 16-kByte cache size. Be-
yond the size of a 16-kByte cache, complete stripes of macroblocks can
be contained in the cache. Consequently, also the vertical spatial locality
can be exploited in the cache. Up to a cache size of 64 kByte, which is

6.2 Caching 209

0

50

100

150

200

250
64 12

8
19

2
25

6
38

4
51

2
76

8
1

k
2

k
2

k
3

k
4

k
6

k
8

k
12

 k
16

 k
24

 k
32

 k
48

 k
64

 k
96

 k
12

8
k

19
2

k
25

6
k

38
4

k
51

2
k

cache size [bytes]

relative requested data bandwidth [%]
relative data bandwidth without cache [%]
relative data bandwidth with cache [%]

re
la

tiv
e

da
ta

ba
nd

w
id

th
 [%

]

Figure 6.14: Cache performance as function of the cache size for standard-
definition video.

equivalent to a memory containing 60 video lines, an increasing amount of
vertical spatial locality is exploited. After this point, the influence of an
increasing amount of cache memory is small. Note that the size of a cache
exploiting the vertical spatial locality depends on the horizontal resolution
of the picture. The adopted experiments where all performed on standard-
definition (SD) picture material. Consequently, to exploit vertical spatial
locality for high-definition (HD) video we expect the required cache size to
be 1920/720=2.67 times as large. The experimental result in Figure 6.15

50
75

100
125
150
175
200
225
250

64 12
8

19
2

25
6

38
4

51
2

76
8

10
24

15
36 2
k

3
k

4
k

6
k

8
k

12
 k

16
 k

24
 k

32
 k

48
 k

64
 k

96
 k

12
8

k
19

2
k

25
6

k
38

4
k

51
2

k

cache size [bytes]

relative requested data bandwidth [%]
relative data bandwidth without cache [%]
relative data bandwidth with cache [%]

re
la

tiv
e

da
ta

ba
nd

w
id

th
 [%

]

Figure 6.15: Cache performance as function of the cache size for high-
definition video.

210 Chapter 6 – Communication bandwidth improvement

acknowledges this. Note that the cache size for exploiting the horizontal
spatial locality in an HD video stream is similar to the size for SD. Thus a
3 to 4-kByte cache would be sufficient. Figure 6.15 also shows that there
is an upper bound on the potential bandwidth reduction. Even with an
unlimited cache size, the bandwidth does not decrease much further than
100 % of the bandwidth that is strictly required for the motion compensa-
tion. Apparently, the actually requested data hardly contains any temporal
locality. Only the transfer overhead is reused. Consequently, we can con-
clude that caching for motion compensation in an MPEG decoder is only
beneficial for decreasing the transfer overhead. Hence, for MPEG decoder
systems with a 90 % memory efficiency or higher, caching is not very useful
for reduction of the memory bandwidth.

For the MPEG decoder system that is considered in this thesis, a modest
4-kByte cache is sufficient to regain the memory bandwidth of the transfer
overhead in horizontal direction. However, even for such a small cache, a
full-associative implementation is not very practical due to its high design
complexity.

150

155

160

165

170

175

180

8x2 4x4 2x8 1x16

re
la

tiv
e

da
ta

ba
nd

w
id

th
 [%

]

set dimensions [data units]

full-associative 4-kByte cache four-way set associative cache

Figure 6.16: Relative data bandwidth of a 4-kByte full-associative and four-
way set-associative cache as function of spatial arrangement
of the cache lines.

Complexity reduction

The following experiment is conducted to reduce the complexity of the
cache by reducing the amount of cache-lines that can be associated with
each data unit. Instead, we can associate the cache lines with the data

6.2 Caching 211

units depending of their spatial position in the picture. Figure 6.16 shows
how the performance of a 4-kByte cache decreases when a four-way set-
associative cache is used instead of a full-associative cache. Moreover, its
shows how different spatial arrangements of the cache lines in a set (for
more details see appendix D) lead to different cache performances. When
a set of 2× 8 data units is provided, equivalent to a set size of 32 pixels by
32 lines, the performance is comparable to the full-associative cache. The
bandwidth increases only slightly from 159 % to 160 %.

To bring this simplification even one step further, the experiment of Fig-
ure 6.11 was reproduced for a 4-kByte cache to determine the influence
of using a direct-mapped cache instead of a four-way set-associative cache.
The new results are very similar and present a bandwidth reduction between
30.13 % and 31.48 %. Applying the direct-mapped cache of Simulation 1
with 3-kByte memory, the bandwidth reduces from 233 % to 163 % of the
data bandwidth that is strictly required for motion compensation.

Replacement strategy

Finally, the influence of the replacement strategy is investigated. The least-
recently-used (LRU), the least-recently-written (LRW), and the largest
Manhattan distance are evaluated. Both the LRU and the LRW perform
better than the largest Manhattan algorithm. No difference in performance
could be noticed between the LRU and LRW. Therefore, we propose to
adopt the LRW algorithm due to its low complexity.

6.2.2 Conclusions

Experiments were conducted to design a cache for a motion-compensation
unit of an MPEG-2 decoder. In these experiments, only the prediction data
read from the reference frames are conveyed via the cache. The higher-level
memory is assumed to have an SDRAM behavior. Hence, data can only
be accessed at an alignment grid. Moreover, due to the burst access of the
memory and the width of the communication network, data can only be
accessed as entities of 64 bytes (burst interruption is not provided). The
experiments reveal that data units with a dimension of 16 pixels by 4 lines
are optimal for the tested bitstreams, independent of the size of the cache.
Moreover, it can be concluded that a cache of 3-4 kByte reduces the band-
width from 233 % to 159 % of the data bandwidth that is strictly required
for the motion compensation. This corresponds with a cache performance
(hit-rate) of 1-(159/233)=32 %. To further reduce the bandwidth, vertical
spatial locality should be exploited, requiring a cache of 48 to 64 kByte for

212 Chapter 6 – Communication bandwidth improvement

SD video and about 128 kByte for HD video. Such a cache size reduces the
relative transfer bandwidth to more or less 100 %, providing a hit-rate of
more than 55 %.

For the experiments that were conducted for MPEG decoding at main
profile - main level (MP@ML), several 25-Hz standard-definition MPEG
bitstreams were decoded containing 732 video frames. In total 479 MByte
(excluding the overhead) of video data was processed for motion compen-
sation. Using these numbers, an average bandwidth of (479 MByte / 732
frames) × 25 Hz = 16.36 MByte/s is required. All experimental results
presented are relative to this bandwidth requirement. Therefore a direct-
mapped 3-kByte cache, reducing the relative bandwidth from 233 % to
163 %, saves 11.5 MByte/s for motion compensation during decoding of a
standard-definition video sequence. The experiments with high-definition
video reveal a reduction of even 80 to 100 MByte/s, depending on the used
bitstream.

Due to the regular access behavior of the motion-compensation unit, a
direct-mapped cache shows almost equal performance compared to the set-
associative variants. However, the different video streams for forward and
backward prediction data and luminance and chrominance data, require
independent caches, or separate subsets, as explained in Subsection D.2.
Because for motion compensation the chrominance prediction data is gen-
erally twice as small in the vertical direction as the luminance prediction
data, the subsets for chrominance can be twice as small without significant
loss of the cache performance.

The experimental results furthermore show that only the transfer over-
head contains temporal locality. Therefore, MPEG decoder systems with
a high bandwidth efficiency do not gain much from caching. It can also be
concluded that SDRAM-based memory interfaces that do not feature burst
interruption, can benefit significantly from caching, particularly if the video
data are not very efficiently mapped onto the memory space. For example,
if the video data are sequentially written into the memory in a scanning or-
der from left to right, line by line, the relative transfer bandwidth is 457 %
of the data bandwidth that is actually requested. In such a case, a small
cache reduces the bandwidth to a slightly more than 200 %, resulting in a
bandwidth gain of at least 55 %.

Apart from reduction of the bandwidth to the higher-level memory, an ad-
vantage of caching is the fixed-sized data-burst requests to the background

6.3 Combined techniques 213

memory for the transfer of data (the cache misses). For systems that fea-
ture burst interruption, the memory interface is more complex and more
critical to design, due to the more advanced memory-command scheduling.
Let us clarify this statement. Burst interruption often leads to some loss in
unutilized data-bus cycles and results in a higher probability of bank con-
flicts (see Subsection 5.2.2). Thus, for systems featuring efficient memory
communication, caching can be used to simplify the memory controller of
the background memory and to relax its memory-command scheduling.

6.3 Combined techniques

In this last section of the chapter we show how a collage of the following
techniques can be combined in an MPEG decoder architecture that is again
used as an example:

• block-based storage of video data into memory bursts (Subsection 5.3);

• a block-to-line buffer for line-based access of data that is stored block
wise;

• double writing of reconstructed output pictures to optimize the video
storage separately for motion-compensated prediction and for video
display (Appendix B);

• embedded compression (Subsection 6.1);

• caching (Subsection 6.2).

Because the third technique is beyond the scope of the thesis, it suffices to
understand that the reconstructed output of the MPEG decoder is writ-
ten twice into the background memory: once with an optimal mapping
for block-based reading to do motion-compensated prediction, and once for
line-based reading by a display unit. Although the double writing of the
output requires additional memory traffic, the amount of transfer overhead
for reading reduces significantly, leading to a net bandwidth gain. A more
detailed elaboration on this technique is presented in Appendix B.

As a reference implementation, we use a traditional MPEG-2 decoder sys-
tem with line-based storage of the video data, without caching, and with-
out embedded compression (see Figure 6.17). A separate video-out unit
for display reads the video lines sequentially from the memory and does
not contain any buffer memory that could be used to convert block-based
data access to line-based output for display. We assume a 64-bit bus and

214 Chapter 6 – Communication bandwidth improvement

a burst length of 8 words, i.e. 64-Byte data bursts. These bursts cannot
be interrupted. For the experiments, a representative set of SD bitstreams
(720×576 @ 25 Hz) is used, containing 732 frames in total. Let us now dis-

System on chip

MPEG-2
decoder

DDR II
SDRAM

MMI

Figure 6.17: Reference MPEG-2 decoder system.

cuss all possible architectural options that result from the above-mentioned
techniques. At this point, it should be clear that the applicability of these
techniques depends on the well-known tradeoffs between cost, flexibility,
picture quality, etc. We can combine caching and embedded compression,
implement a block-to-line buffer in the video output unit, etc. To determine
the optimum for each architectural option, we need to determine the trans-
fer bandwidth for writing of the reconstructed macroblocks, the reading
for display, and the read access for prediction. For reading of display data
and writing of reconstructed macroblocks, the bandwidth requirements are
straightforward. These actions consume the bandwidth of one video stream
without any overhead due to the sequential access pattern. Thus, for 25-Hz
standard-definition video the bandwidth for writing and for display equals
720 ·576 ·1.5 ·25 = 16 MByte/s. Also the combinations with double writing
of the reconstructed output video to optimize separately for prediction and
display, and the use of a block-to-line buffer can easily be derived, since
they do not depend on the data content. By contrast, the bandwidth for
reading of the prediction data is very data dependent, so that it has to be
measured. Concerning the data-dependent bandwidth reduction techniques
for prediction data, we can distinguish four different combinations:

• without cache and without embedded compression;

• with cache and without embedded compression;

• without cache and with embedded compression;

• with cache and with embedded compression.

The results of the measurements are presented in Table 6.2. The numbers
in the table only show the measured average bandwidth numbers. However,

6.3 Combined techniques 215

Table 6.2: Transfer bandwidth for MPEG decoding.

Access data unit requested req./transf. P/B-pics.
function (M ×N) [Bytes] ratio [%] ratio [%]
Reading for (64× 1) 457 38/62
prediction (32× 2) 478871794 300 39/61
without cache, (16× 4) 233 40/60
no compression (8× 8) 253 40/60
Reading for (64× 1) 205 37/63
prediction (32× 2) 478871794 170 37/63
with cache, (16× 4) 158 38/62
no compression (8× 8) 188 37/63
Reading for (128× 1) 418 38/62
prediction (64× 2) 478871794 256 37/63
without cache, (32× 4) 181 40/60
compression (16× 8) 163 37/63

(8× 16) 207 39/61
Reading for (128× 1) 139 38/62
prediction (64× 2) 478871794 112 38/62
with cache, (32× 4) 101 37/63
compression (16× 8) 109 40/60

(8× 16) 151 36/64

as a function of time these bandwidth numbers for MPEG decoding vary
dynamically. For example, I-pictures do not require any memory traffic of
prediction data and because B-pictures are bi-directionally predicted, they
generally require more bandwidth than P-pictures. If the decoder system
contains sufficient buffering and can perform the decoding at a sufficiently
high speed, the dynamics in the memory bandwidth can be smoothed out,
e.g. I-pictures are decoded at high speed whereas for B-pictures the de-
coding is performed slowly to lower the memory bandwidth. However, in
more practical systems, the decoder is designed for the average required
throughput and with minimal buffer requirements. In such a case, the
dynamical behavior of the memory bandwidth has to be studied for worst-
case situations. Therefore, the last column in the table shows how much
of the transfer bandwidth is consumed for P-pictures and how much for
B-pictures. Within such pictures the bandwidth of data communication
still changes dynamically. Hence, systems that cannot smooth out these
dynamics, need to be analyzed with respect to the memory bandwidth at
an even smaller granularity, e.g. at slice level. Without going into this
level of detail for all architectural options, Figure 6.18 shows an example
histogram of the memory traffic at slice level for decoding of B-pictures in
a SD-resolution video sequence. The numbers are based on data units of

216 Chapter 6 – Communication bandwidth improvement

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

data traffic [kByte]

n
u

m
b

er
 o

f
sl

ic
es

 [
%

]

requested data
transferred data without caching
transferred data with a 6-kByte cache

Figure 6.18: Histogram of the data traffic for decoding of an high-definition
MPEG-2 slice.

(64× 1). Note that the worst-case memory traffic for a slice is:

720/16 · (64× 1) · (2× 17 + 2× 9) · 2 = 300 kByte,

where 720/16 denotes the number of macroblocks in a slice, 2 × 17 the
number of data units that might be used to retrieve a luminance block of
17× 17, 2× 9 indicates the number of data units for a multiplexed chromi-
nance block of 18×9, and the factor 2 indicates the bi-directional prediction.
Although the measured worst-case memory traffic for a slice is 158 kByte,
there is a small probability that the memory traffic becomes almost double
of that (300 kByte). Therefore, if the decoder system does not contain
any speed margin and buffering, the communication infrastructure has to
be dimensioned for this theoretical maximum throughput. Note that the
cache considerably reduces the average data traffic for motion-compensated
predictions. However, although the probability of the theoretical maximum
throughput is reduced when applying a cache, it cannot become zero.

To discuss the worst-case bandwidth conditions at picture level, Table 6.3
shows the average transfer bandwidth to the higher-level memory for de-
coding of the B-pictures. The table shows the results for all possible archi-
tectural options. Rp in the table denotes the reading for prediction. The
parameters W and Rd denote the writing of reconstructed macroblocks
and the reading for display, respectively. For all options we have assumed
64-Byte memory bursts that cannot be interrupted and can only be accessed
at a 64-Byte alignment grid. Architectural Option 1 represents a hypothet-

6.3 Combined techniques 217

Table 6.3: Options with different combinations of bandwidth reduction
techniques (compression factor = 2, cache size = 4 kByte).

architectural access BW total
options type [MByte/s] [MByte/s]

Rp 20
1 without overhead W 16 52

Rd 16
reference architecture Rp 93

2 writing in (64× 1) W 16 124
Rd 16

no cache, no compression Rp 60
3 write in (32× 2), W 16 107

no block-to-line buffer Rd 31
no cache, no compression Rp 46

4 write in (64× 1) and (16× 4), W 16 77
no block-to-line buffer Rd 16
no cache, no compression Rp 46

5 write in (16× 4), W 16 77
with block-to-line buffer Rd 16
with cache, no compression Rp 42

6 write in (64× 1), W 16 74
no block-to-line buffer Rd 16
with cache, no compression Rp 32

7 write in (64× 1) and (16× 4), W 16 63
no block-to-line buffer Rd 16
with cache, no compression Rp 32

8 write in (16× 4), W 16 63
with block-to-line buffer Rd 16
no cache, with compression Rp 52

9 write in (64× 2), W 8 75
no block-to-line buffer Rd 16
no cache, with compression Rp 32

10 write in (128× 1) and (16× 8), W 8 48
no block-to-line buffer Rd 8
no cache, with compression Rp 32

11 write in (16× 8), W 8 48
with block-to-line buffer Rd 8
with cache, with compression Rp 28

12 write in (128× 1), W 8 44
no block-to-line buffer Rd 8
with cache, with compression Rp 21

13 write in (128× 1) and (32× 4), W 8 36
no block-to-line buffer Rd 8
with cache, with compression Rp 21

14 write in (32× 4), W 8 36
with block-to-line buffer Rd 8

218 Chapter 6 – Communication bandwidth improvement

ical architecture that is able of transferring only the data that is strictly
required for decoding and display without any overhead. The second option
shows the result for the reference architecture which is a traditional system
that does not provide any of the bandwidth reduction techniques and stores
the video data line-based into the memory. For this system, the transfer
overhead results in a total bandwidth consumption of 124 MByte/s. All
other architectural options apply the data-unit dimensions that result in
the minimal memory bandwidth. Option 3 only applies block-based stor-
age, thereby reducing the total bandwidth for B-pictures to 107 MByte/s.
Option 4 shows the bandwidth results for B-pictures when using the double
writing technique as described in Appendix B. Note that B-pictures only
require writing of the display data because B-pictures are not further used
as reference. Consequently, this technique is particularly suitable to reduce
the peak bandwidth, i.e. the memory bandwidth for B-pictures. The same
bandwidth result is obtained by using Option 5. Here, a block-to-line buffer
in the display unit is used to transfer the block-based data for line-based
display. As opposed to Option 4, this solution is more expensive in terms
of silicon area due to the buffer, but for P-pictures Option 5 consumes
less memory bandwidth. Option 6, 7, and 8 are similar to Option 3, 4,
5, respectively, extended with a cache for motion-compensated prediction.
Again, Option 9, 10, and 11 are similar to Option 3, 4, 5, respectively, but
now extended with embedded compression. Option 12, 13, and 14 are again
similar to 3, 4, and 5, but now extended with both caching and embedded
compression. In these configurations, we assume that caching is done in the
compressed domain. Consequently, the effective size of the cache is doubled
leading to an additional performance gain. Option 13 and 14 feature all
presented techniques and reduce the bandwidth of the reference architec-
ture from 124 MByte/s to an astonishing 36 MByte/s, a notable reduction
of more than 70 %.

This chapter has shown that when a careful analysis of the video mem-
ory traffic is made, substantial reduction of the scarce memory bandwidth
can be obtained. We have presented a number of options to be considered
for achieving a large reduction. Table 6.3 shows that the external memory
bandwidth is scalable by selection of the architecture options, depending on
the desired bandwidth, constraints from the architecture, and the picture
quality. For example, if the architecture is predetermined (this happens
regularly), then only a subset of the architectural options may be feasi-
ble. Once the possible options are known, a suitable mix of the presented
bandwidth-reduction techniques can be chosen.

Chapter7
System study on MPEG-4

decoding

FROM The main observation from this thesis is that communication is
the most critical part in the design of future systems which are become

increasingly software oriented due to the demand for more programmabil-
ity. The rationale on what functionality of an application is implemented in
hardware, software, or a hybrid mixture of hardware and software depends
on many technical and non-technical arguments. This chapter describes the
process of hardware-software partitioning by means of an MPEG-4 decoding
example and discusses a suitable architecture called Eclipse. For under-
standing of its concepts, we start with discussing the potential use of com-
munication networks from existing media processing systems and discuss
their novelties and shortcomings. Subsequently, the chapter discusses the
adopted concepts to address the communication problem with an adequate
amount of flexibility for future consumer systems. Then, the functionality
and the characteristics of each task in the MPEG-4 decoder is presented,
leading to hardware-software partitioning. The chapter concludes with a
system proposal for a heterogeneous system.

Facilius per partes in cognitionem totius adducimur
(Seneca, c.4 BC – c.65 AD)
We are more easily led part by part
to an understanding of the whole

7.1 Introduction into hybrid systems

Chapter 1 through 6 have presented the challenges for the design of video
processing functions into multimedia systems for consumer devices such as

219

220 Chapter 7 – System study on MPEG-4 decoding

digital television and set-top boxes. They discuss the tradeoff between sys-
tem costs on one hand and sufficient flexibility on the other hand. Clearly,
there is a trend for an increasing amount of software in SoC solutions. Con-
sequently, future multimedia systems will contain an increasing amount of
programmable media processors and some dedicated hardware to consider-
ably accelerate the performance of the system at relatively low cost. Hence,
the design strategy of a new product starts with adopting a flexible platform
of programmable processor cores, followed by tuning of the architecture and
extending it with application-specific hardware units. Although the system
as described in Chapter 4 offers a flexible solution with high computation
performance, the presented implementation does not execute an application
with a mixture of tasks hardware and software that intercommunicate with-
out going to the off-chip memory. It only executes functions in hardware
and software that are clearly separated in distinct subsystems. For flexible
hardware-software partitioning of fine-grain inter-communicating tasks, the
system requires a mixture of CPUs and application-specific hardware that
can highly interact. Moreover, a single communication bus or switch matrix
as described in Chapter 4 becomes rather complex for the communication-
intensive application that we target for. Hence, it is the aim of this chapter
to analyze a versatile application that requires hardware-software (HW-
SW) partitioning with high flexibility, for a system that features an effec-
tive concept for high-throughput communication.

As a representative application for a realistic future system, we discuss
MPEG-4 decoding due to its characteristic properties. MPEG-4 is the first
coding standard that particularly addresses the trend of converging televi-
sion and computer technologies and comprises a very diverse set of compu-
tational tasks within one standard, leading to a versatile System-on-Chip
(SoC). High-throughput stream-oriented data processing is combined with
highly data-dependent irregular processing with complex control flows and
requires an integral design of both the hardware and the software. Video
and still-texture coding, 3-D wire-frames, animations, VRML-like descrip-
tions of the scene, and interactivity are combined with 3-D video rendering
(and 3-D rendering of MPEG-4 audio).

To determine the critical issues for an MPEG-4 decoder system and to
learn from the past, Section 7.2 reports on existing or proposed LSI imple-
mentations of media processors. Moreover, it will work towards the concept
of a novel communication infrastructure to meet the high-throughput re-
quirement, combined with flexibility at reasonable costs. Subsequently,
Section 7.3 presents the adopted design template and indicates how the

7.2 Analysis of various MPEG-4 architectures 221

platform architecture can be extend and tuned for the application. Prior to
discussing the actual HW/SW partitioning, Section 7.4 gives an overview
of the functionality of an MPEG-4 decoder. Then, Section 7.5 outlines
the analysis of the processing tasks within the decoder to categorize the
tasks by different processing characteristics. In the successive step made
in Section 7.6, each task is partitioned for implementation in hardware or
software, depending on its category. To show how the partitioning is ap-
plied for the adopted design template, Section 7.6 illustrates an example
implementation. Finally, Section 7.7 draws some conclusions and provides
an outlook towards future research.

7.2 Analysis of various MPEG-4 architectures

This section discusses the concept of some existing or proposed media pro-
cessing systems that could potentially be adopted for our targeted MPEG-4
decoder. For the aim of this chapter we will particulary discuss the charac-
teristics of the communication infrastructure, because this is an important
criteria for its applicability in the MPEG-4 decoder system. Also we will
deal with the amount of flexibility and the amount of parallelism. The
first system represent the television processor system (TVP), which was
thoroughly discussed in Chapter 4. The secondly discussed system is the
TMS320C6x, a popular and powerful Texas Instruments media processor.
This media processor consists of a VLIW architecture and does not have
a global communication infrastructure as compared to the other systems.
However, because the mapping of MPEG-4 decoding onto the processor has
been reported, it remains an interesting system to consider. The thirdly
evaluated system is the extended M-PIRE, a flexible system that is dedi-
cated for MPEG-4 encoding and decoding [88]. The fourth system, Imagine,
is a highly parallel media processor [72]. Finally, we discuss the system as
finally applied for our targeted MPEG-4 decoder.

• TVP – As mentioned before, the TVP system as described in Chap-
ter 4 is particularly efficient in terms of parallelism. This is mainly
caused by its dedicated processors. Nevertheless, this system provides
an adequate amount of flexibility. The task graph can be programmed
and the Kahn process network enables execution of functions inde-
pendent of resolution, frame rate, regularity of the processing, etc.
and without the necessity of constructing static schedules for all pos-
sible modes of operation. However, the presented implementation
only features communication between tasks on a CPU and dedicated
hardware by decoupling them via large buffers in off-chip memory

222 Chapter 7 – System study on MPEG-4 decoding

and therefore limits the flexibility. Moreover, the switch matrix does
not scale properly towards more complex and dynamic video process-
ing functions such as MPEG-4 decoding. This requires a hierarchical
communication network as will be explained later.

• TMS320C6x – Budagavi et al. [89] presented a Simple Visual Pro-
file and a Core Visual Profile MPEG-4 decoder on the low-power
TMS320C54x and TMS320C6x, respectively. A straightforward com-
parison between the Core and Main Visual Profile, of which the latter
is required for our application, shows a factor of 21 increase for the
required decoding throughput in macroblocks/second, assuming an
optimal utilization of the DSP. Extrapolating this number results
in a required performance of 33,000 MIPS, without considering the
increasing complexity that is required for grayscale alpha shape, in-
terlaced video and sprite decoding. Bauer et al. [90], show an even
higher MIPS requirement for the implementation on a DSP. Although
a fully programmable system offers maximal flexibility, it lacks the
computational performance compared to dedicated hardware. Par-
allelism can only be exploited at instruction level and the process
technology of VLSI limits the speed for sequential processing. Be-
cause the TMS320C6x consists of a single VLIW processor, it does
not contain a global communication infrastructure.

• Extended M-PIRE – Although an implementation in software re-
sults in maximal flexibility, we concluded that the required computa-
tional power is nowadays not sufficient for real-time decoding of high-
definition video. To solve this problem, Berekovic et al. [91] proposed
some extensions by adding function-specific blocks into the data path
of a RISC processor. Their proposal addresses the instruction-level
parallelism (ILP), which gives a partial solution to achieve an suit-
able performance density (i.e. the performance per unit area and
per unit power). A shared-memory system architecture, containing
multiple processors to address task-level parallelism, could offer a so-
lution to further increase the computational power. An example of
such an approach is outlined by Berekovic et al. [92]. They propose
an MPEG-4 codec, which is an extended version of the M-PIRE sys-
tem [88]. It integrates the above-mentioned modified RISC core as
Stream Processor for mainly bitstream parsing and variable-length
coding, two DSPs for audio and acoustic echo cancellation, and a 64-
bit dual-issue VLIW Macroblock Engine for all the block-based video
processing. To relax the tremendous communication requirements be-
tween the Stream Processor and the Macroblock Engine, they added

7.2 Analysis of various MPEG-4 architectures 223

a shared dual-port memory to interconnect both processors, next to
a central AMBA AHB bus [93] to off-chip memory. This system is
fully programmable and seems a very flexible solution. Although the
processors are fully optimized for the MPEG-4 function, the system
still offers all the programmability and thus flexibility by means of the
software implementation. However, for high-definition video decod-
ing of bitstreams based on the Main Visual Profile, the computational
performance is still insufficient. To boost the performance, we pro-
pose to increase the amount of effective parallelism to an even higher
level. Moreover, the communication network of the M-PIRE to con-
nect the multiprocessor arrangement is based on a AMBA AHB bus
which does not offer sufficient bandwidth performance for our high-
throughput application.

Stream Register File

Micro
Controller

128-bit, 2.67 GB/s

32 GB/s

A
LU

 C
lu

st
er

 7

A
LU

 C
lu

st
er

 0

A
LU

 C
lu

st
er

 1

A
LU

 C
lu

st
er

 2

A
LU

 C
lu

st
er

 3

A
LU

 C
lu

st
er

 4

A
LU

 C
lu

st
er

 5

A
LU

 C
lu

st
er

 6
Imagine
Stream
Processor

from
SRF

N
et

w
or

kNetwork
Interface

Host
Processor

Host
IF

Streaming Memory System

SDRAM SDRAM SDRAM SDRAM

in
te

rc
lu

se
r

ne
tw

or
k

to
SRF

CU+ + + x x /

Figure 7.1: Block diagram of the Imagine media processing system with
its hierarchical communication infrastructure.

• Imagine – Just as the M-PIRE, the Imagine is a fully programmable
multiprocessor system [72] [94] (see Figure 7.1). The Imagine does

224 Chapter 7 – System study on MPEG-4 decoding

not contain any heterogeneous specializations, but instead consist of
a homogeneous structure of eight parallel arithmetic clusters and is
in that sense more flexible. Each arithmetic cluster contains eight
functional units that are controlled with VLIW instructions, thereby
enabling parallel operation of all functional units within a cluster.
Due to the generic character and the high amount of parallelism, it
is hard to efficiently utilize all this parallelism, leading to inefficient
computational performance. However, the system comprises a novel
communication approach. It consists of a communication infrastruc-
ture with three hierarchical levels to optimize the data bandwidth.
The communication for a sequence of VLIW instructions, performing
a task within an arithmetic cluster, is kept local by means of a local
register file (level 1), and only the final results of the task are streamed
to a larger shared register file (level 2). Only the streams that cannot
be stored in the on-chip memory, such as the reference pictures of
an MPEG-2 encoder, are communicated to off-chip memory (level-3).
Thus, the hierarchical approach prevents exhaustive communication
to the bandwidth-limited off-chip memory. Moreover, this efficient ap-
proach is scalable toward more complex future systems. The natural
hierarchy in applications by means of operations, tasks, and functions
can be exploited by such systems with hierarchy in the communication
infrastructure. Thus, to scale the system for more complex applica-
tions, additional levels of communication hierarchy may be added.

Table 7.1: Novelties of the various systems.

System Novelties
- TVP - data flow communication instead of static scheduling

- guaranteed communication throughput and latency, mak-
ing the system fully predictable

- TMS320C6x - fully programmable for maximal flexibility but lacks pro-
cessing power

- M-PIRE - heterogeneous mixture of application-specific pro-
grammable hardware for flexible yet powerful processing

- Imagine - hierarchical communication infrastructure to improve data
locality

- fully programmable with a large amount of parallel general-
purpose operations (ILP)

- single thread of control

The aim of this chapter is to analyze a highly versatile MPEG-4 decoder
that requires hardware-software (HW-SW) partitioning for a system that

7.2 Analysis of various MPEG-4 architectures 225

features an effective concept for high-throughput communication. There-
fore, we have adopted an architecture template that combines the novelties
of the above-mentioned systems as indicated in Table 7.1. The adopted
architecture provides a heterogeneous mixture of dedicated processors as
contained in the TVP system, together with programmable media proces-
sors as provided by the M-PIRE. Hence, this heterogeneous mixture of
subsystems provides an adequate amount of flexibility. In addition, it fea-
tures the Kahn process network for easy programming, similarly to the
TVP system. To provide an effective and high-throughput communication
network, the adopted architecture template inherits the hierarchical com-
munication concept of the Imagine. Section 7.3 gives an overview of the
adopted architecture template.

7.2.1 Grain size of parallelism and the amount hierarchy

The previous subsection has discussed various media processor architec-
tures and presented the novel aspects that are combined for our MPEG-4
decoder system. However, at this point it may be difficult to comprehend
the reasoning behind this architecture. Therefore, this subsection elabo-
rates on the concept of the hierarchical communication infrastructure.

Chapter 2 has explained how programmable digital signal processors showed
an increase of the amount of parallelism by going from a processor with
single-instruction-single-data (SISD), to single-instruction-multiple-data
(SIMD), instruction-level parallelism (ILP), and finally to task-level paral-
lelism (TLP). Each type does not replace the successive type of parallelism,
but rather adds an additional hierarchical level to the system. Conse-
quently, currently deployed systems [77][95][96][6] comprise multiprocessor
and coprocessor architectures with all types of parallelism. These systems
typically contain special-purpose hardware to further increase the perfor-
mance density (i.e. the application throughput per unit area and per unit
power). Basically, this means that not all levels of the hierarchy are pro-
grammable.

To design a system with a large amount of parallelism with a high through-
put communication network, it is most important to provide a proper bal-
ance between the granularity of the parallel functional units and its cor-
responding level in the communication hierarchy. For example, Bove and
Watlington [97] presented an architecture in which task-level parallelism is
provided with processors containing a large amount of relative fine-grain
functions. All functional units were interconnected by means of a large
crossbar. Although this is a flexible approach, the bandwidth requirement

226 Chapter 7 – System study on MPEG-4 decoding

of the communication network increases significantly for complex applica-
tions, requiring an expensive communication structure to solve the band-
width bottleneck. Using more coarse-grain functional units [77] to increase
the computational performance is usually undesirable, because the special-
purpose character of coarse-grain functions limits the reuse for different
applications and different platforms.

Alternatively, a hierarchical communication infrastructure offers an effec-
tive solution. For example, the above-mentioned coarse-grain functional
units are replaced by a subsystem containing its own communication net-
work, together with fine-grain functional units. Consequently, this subsys-
tem can be programmed to perform a particular function, e.g. sharpness
enhancement. With the higher-level communication network, several tasks
or functions can perform e.g. all the video processing of a TV. To tradeoff
the effective parallelism, the communication efficiency, and the amount of
flexibility, the following design choices should be made:

• a flexible (programmable) versus hardwired interconnection of the
functional units at each hierarchical level, e.g. a VLIW media pro-
cessor or a dedicated noise-reduction function;

• the amount of parallel functional units at each level;

• the number of hierarchical levels;

• the deployment of communication memory in the hierarchy (see next
subsection).

Properly balancing these design parameters will combine the benefits of
flexible fine-grain functional units with the communication efficiency of
coarse-grain functions.

7.2.2 Memory in hierarchy communication

Apart from different hierarchical levels in the communication infrastruc-
ture, the deployment of embedded memory into this communication in-
frastructure is another point of attention. Typically, computer and media
architectures contain a hierarchical memory infrastructure going from small
high-speed memories, locally embedded near the central processing units,
to relatively slow and large memories located off-chip. Patterson and Hen-
nessy [98] describe the classical techniques for hierarchy by means of caching
and virtual memory paging. In such an approach, the content in the mem-
ory at higher levels in the hierarchy represents a superset of the content
in the lower memory levels (assuming memory coherency). Consequently,

7.3 Processor system overview 227

all data that is communicated to and from the lowest memory level will be
visible in all levels of the memory hierarchy. Bandwidth requirements and
memory latency are only decreased when variables are reused (temporal lo-
cality) within the memory space that is contained at a lower memory level.
However, for streaming applications the reuse of data is limited, thereby
making a cache less effective. Instead, it is more appropriate to apply an
alternative approach of exploiting memory hierarchy. For this approach,
the streaming data is stored at a separate space in the memory hierar-
chy, depending on the size of the required memory size and the required
bandwidth. For example, the frame buffers for picture reordering and the
storage of reference pictures for MPEG decoding are mapped in external
SDRAM memory, whereas the zig-zag scan memory is mapped onto a lo-
cally embedded SRAM memory. This approach offers the ability to limit
the bandwidth requirements for relatively slow memories, but to use its
large storage capacity to store large chunks of data. The communication
of fine-grain data packets, e.g. DCT blocks or video lines, can be kept
on-chip and hence, are never exposed to higher levels of the hierarchical
communication infrastructure.

It can be concluded that streaming applications often require a different
approach of exploiting memory hierarchy than caching. However, the de-
signer should carefully consider this per individual case. For example, al-
though MPEG decoding is considered a streaming application, the zig-zag
scan and quantization tables are accessed for each DCT block (temporal
locality) and this property can be well exploited by means of a cache.

7.3 Processor system overview

The purpose of this section is to outline a suitable processor architecture
for MPEG-4 decoding, called Eclipse. With the term “suitable”we mean
that all required architectural elements, such as communication, processing,
control, are sufficient for the following MPEG-4 application. Therefore, this
section serves as an bottom-up view for solving the design problem. The
next section will discuss the MPEG-4 application and acts as a top-down
approach for obtaining a useful architecture. In Section 7.6 both views will
be combined into a single proposal.

Let us discuss the architecture template for implementing the MPEG-4
decoder. The template is based on the functional hierarchy that is in-
herently present in video processing functions. It distinguishes fine-grain
operations (e.g. operations of a VLIW processor), tasks (e.g. a DCT), and

228 Chapter 7 – System study on MPEG-4 decoding

functions (e.g. 3-D graphics rendering). The hierarchy is expressed by the
way these distinct functionalities communicate. Fine-grain operations in-
tercommunicate within the task boundaries via e.g. hardwired operations
or the internal data paths of a CPU. Tasks communicate within the bound-
ary of functions via e.g. a centralized memory bus or a dedicated data path.
In other words, the communication grain size matches with the grain size
of the functionality. Figure 7.2 shows the conceptual block diagram of the
architecture template which contains a two-level communication network,
each with its own set of processors.

off-chip
memory

fine-grain
proc. 1

embedded
memory

coarse-grain
processor 1

coarse-grain
processor 2

fine-grain
proc. 2

fine-grain
proc. 3

low-level comm. network

high-level comm. network

Figure 7.2: Conceptual block diagram of the two-level system architecture.

To allow autonomous and asynchronous operation of the processors, com-
munication between the processors is achieved via buffers. These buffers are
mapped onto cost-efficient shared memories to maximize flexibility. Thus,
for processors at the highest hierarchical level, the buffers requiring large-
size data packets are located in off-chip memory. For the low hierarchical
level, the buffers are stored in the embedded SRAM memory. The following
summarizes the advantages of hierarchical communication.

• As already discussed, it enables efficient communication.

• It separates the control of each part in the hierarchy. For example,
the details of an MPEG decoder implementation can be hidden within
the low-level communication infrastructure, whereas integration of
the MPEG decoder in a total system can be applied independently.

• It gives the ability to optimize the design for each part of the architec-
ture. For example, communication between fine-grain operations can
be implemented with hardwired connects, whereas high-level commu-
nication can be implemented with a data bus for flexible routing of
the data, controlled by software. Note that separately trading-off flex-
ibility, cost, performance etc. for each part of the system, generally
results in a heterogeneous systems.

7.3 Processor system overview 229

Like in Chapter 1, also for the system that is described in this chapter,
many design parameters are fixed due to specific constraints. For exam-
ple, to prevent legacy problems, a common bus specification including the
communication protocol, is adopted for the high-level communication net-
work. To allow loosely-coupled independent operation of all processing
units in the higher communication level, i.e. in a Kahn process network,
communication is provided via large buffers. Consequently, these commu-
nication buffers are located in off-chip memory. Control of the high-level
processor units is performed in software on a host processor, because this
offers maximum flexibility while the relative low synchronization rate does
not require much computational effort for this task. This control software
configures the high-level processors, schedules the tasks, and provides the
synchronization for communication. Non-preemptive multi-tasking can be
provided at the rate of communication packets, e.g. after processing a com-
plete video picture from a media stream, a picture can be processed from
another stream.

Because this chapter is mainly focussing on HW/SW partitioning at task
level, i.e. the design issues within a function, we will more concentrate on
the architecture of the lower hierarchical communication level. As stated
before, this part of the system can be designed differently and indepen-
dently, due to the separation property of the hierarchical architecture tem-
plate. To give an overview of the characteristics and features of this system
part, we will separately discuss the following items: the grain size of compu-
tation and communication, synchronization, multitasking capabilities and
task scheduling, embedded programmable processors, and runtime recon-
figuration of the task graph.

7.3.1 Grain size of computation and communication

At the second level of the two-level communication hierarchy, coarse-grain
processors such as a graphics renderer, a media processor, and an MPEG de-
coder engine communicate and synchronize at the size of video pictures via
off-chip memory. At the lower level, tasks such as DCT transformation, Mo-
tion Compensation and Estimation (MC/ME), Variable Length Encoding
and Decoding (VLE/VLD), etc., communicate via relatively small buffers
which are located in a shared on-chip memory.

The granularity at which the data communication is synchronized is rel-
atively small. Thus, little data is written into the communication buffer
by a producing task before it is released for reading by a consuming task.
Therefore, only small communication buffers are required which can be im-

230 Chapter 7 – System study on MPEG-4 decoding

plemented locally on the chip. By using a centralized shared local memory,
the system can adapt the sizes of the individual communication buffers at
run-time, depending on the dynamic behavior of the implemented function.

The communication traffic that is generated by small-grain processing units
is exposed to the low-level communication network, except for the commu-
nication to large memory buffers. Because the low-level communication is
kept local on the chip, the cost for its flexibility is limited. Let us discuss
an example for high-definition MPEG-2 decoding. For this example, four
processing units are defined as follows:

• C1 - variable-length decoding (VLD);

• C2 - run-length decoding, inverse scan, and inverse quantization;

• C3 - inverse discrete-cosine transform (DCT);

• C4 - motion-compensated prediction and reconstruction.

C4CPU

arbiter

local
memory

C1 C2 C3 C4

high-level bus

low-level bus

190 94

10 2 26 26 188 188 2188 188

Figure 7.3: Signal flow through MPEG-2 decoder processing units, includ-
ing data transport bandwidths (MByte/s) for HDTV signals.

Figure 7.3 depicts schematically how the data flows through the processing
units. Starting as an MPEG bitstream, the data is conveyed from a CPU
to processing unit C1 via the shared memory. According to the MPEG
standard [7], the maximum bit rate at this point is 80 Mbit/s. Subse-
quently, the variable-length decoded output is transported to processing
unit C2. The denoted 26 MByte/s data bandwidth for this data traffic
was determined experimentally by means of measurements. In addition,
2 MByte/s of bandwidth is required for transport of meta data such as the

7.3 Processor system overview 231

motion vectors. The output of the inverse quantization consists of 12-bit
coefficients. For simplicity, we assume that these coefficients are packed
into 16-bit scalars, thereby introducing a 33 % overhead. Hence, a coef-
ficient bandwidth of 188 MByte/s is required. Next, inverse DCT is per-
formed. Similarly, the 9-bit output is conveyed in 16-bit scalars. Finally,
the decoder output is reconstructed by adding the motion-compensated
prediction. Note that the data traffic for prediction and the reconstructed
output is communication via the high-level communication bus to off-chip
memory and is not exposed on the low-level bus. The total bandwidth
requirement for the low-level communication bus serving this function is
10 + (2 × 2) + (2 × 26) + (4 × 188) = 818 MByte/s. The communication
bandwidth on the high-level bus remains equal to the case when a rigid
dedicated MPEG decoder would have been adopted. We can conclude that
the high-level communication requirements are determined at functional
level, whereas flexibility is provided at task-level.

7.3.2 Synchronization

The chosen architecture template contains hardware for the low hierarchical
level to support Kahn process networks [62][99], enabling data-driven pro-
cessing. To provide a scalable architecture template, all processing units
provide autonomous operation without external control. Therefore, the
communication control is distributed over the processing units. For exam-
ple, each processor unit provides its own data synchronization, start and
stops its processing tasks, etc. Due to the data-driven processing, activa-
tion of the tasks and synchronization of the data is performed at runtime
by the hardware, thereby providing abstraction from these issues to the
programmer. Moreover, the dedicated synchronization network in the ar-
chitecture enables synchronization of arbitrary-sized data packets (e.g. on
single pixels or a DCT block) independent of the buffer size.

Implementation of buffer synchronization

A communication buffer in the shared memory can be observed as a FIFO
in which the producer writes data and the consumer reads data. Both the
producer and the consumer autonomously maintain some bookkeeping on
the read and write pointers in the FIFO. To implement the typical FIFO
behavior, cyclic addressing of the pointers is established. This is concep-
tually shown in Figure 7.4. Because both the producer and consumer task
have the knowledge on access points A and B, synchronization can be pro-
vided easily. The essence of this proposal is as follows. If the consumer
requests a buffer window that exceeds the producer access point A, the

232 Chapter 7 – System study on MPEG-4 decoding

empty space

granted window
for consumer

space
 filled
 with data

granted window
for producer

A B

Figure 7.4: Data communication via a cyclic FIFO buffer.

request is not acknowledged because insufficient data for reading is avail-
able. In the TVP system that was discussed in Chapter 4, the absence of
data causes the processor to block, i.e. a blocking read. However, in the
Eclipse system the processor is not blocked. Instead it tries to see whether
another task that is mapped onto the processor can be started (see next
subsection on multitasking). If the producer requests a buffer window that
exceeds the consumer access point B, the request is not acknowledged due
to insufficient free memory space in the FIFO buffer. Also in this situation,
the processor will try to progress with other tasks, instead of a blocking.

The novelty of this synchronization mechanism is that it separates the
synchronization from the communication [100]. Thus synchronization by
means of requesting and clearing a buffer window still allows to access the
window byte-by-byte or even in a random order. Moreover, any buffer size
or window size can be applied. This is an important feature, because the
grain size of communication together with the buffer sizes mainly determine
the allowed dynamical behavior of the processors.

7.3.3 Multitasking

Hardware sharing is provided in the architecture by its multitasking ca-
pabilities [101], i.e. to simultaneously reuse hardware resources for similar
tasks. The main implications of multitasking are the need for task schedul-
ing and task switching on each processing unit. Each processing unit is
autonomous and responsible for control of its own multitasking.

Task scheduling for fine-grain tasks

The task scheduler decides when, which, and how often a processor unit
should execute each task to attain sufficient progress. Typically, the work-
load of a task is data dependent and can vary dynamically. Consequently,

7.3 Processor system overview 233

the scheduling is performed at runtime to manage the highly data-dependent
workload effectively (e.g. for variable-length decoding). Because the task-
switching rate for the relative fine-granular tasks is too high for runtime
scheduling in software, this control function is performed by dedicated hard-
ware. The scheduling algorithm is based on a round-robin scheme, extended
with a weighting scheme for different resource requirements of the tasks.

Task switching and state saving

If the task scheduler decides to stop a current task and to subsequently
start another task on the processing unit, a task switch needs to be per-
formed. The state of a running task needs to be saved when a task switch
is performed. If in a later stage the original task resumes execution, the
state information needs to be recovered before proceeding its processing.

For some specific functions, tasks become stateless after processing a data
packet. For example, if a DCT task has performed the transform of a com-
plete DCT block, its state becomes void. By forcing the task scheduler
to perform a task switch at these stateless moments, no state saving is
required. Even though not all tasks are as simple as this example, it can
be concluded that task switching is best performed at moments where the
state is minimal.

7.3.4 Programmable processors

On both hierarchical communication levels, a DSP, media processor, or
general-purpose processor can be included. Moreover, the architecture tem-
plate allows to connect such a general-purpose processor to both levels of
the hierarchical communication infrastructure. This is implemented by
means of a special coprocessor connection that is often provided by the
general-purpose processor and is used to access the second-level communi-
cation network. To allow a high-frequency and low-latency access from the
CPU to the local embedded memory, the CPU has a private (and physically
short) path to this memory to prevent stall cycles on the CPU. A dedicated
arbiter for the local memory guarantees the throughput for all processing
units and provides a low-latency access for a general-purpose processors.
This is schematically depicted in Figure 7.5.

Because the embedded memory potentially has to serve several processor
units and CPUs, it comprises static RAM. This minimizes the need for lo-
cal buffering near the dedicated processor units and provides a low-latency
access for the CPUs. During normal stream processing, the CPU can main-

234 Chapter 7 – System study on MPEG-4 decoding

TM-CPU

I$ D$

 arbiter

fine-grain
proc. 1

fine-grain
proc. 2

fine-grain
proc. 3

local
memory

SLS

DDR
SDRAM

coarse-
grain

proc. 1

high-level comm. network

low-level comm. network

coarse-
grain

proc. 1

low-latency
access port

sync.
unit

synchronization
network

Figure 7.5: Block diagram of a system containing a general-purpose pro-
cessor with a connection to both levels of the hierarchical com-
munication network.

tain a high peak bandwidth for a couple of cycles until its register file is
filled up. Subsequently, CPU cycles will be necessary for computations on
the data. On a coarser timescale, there will be significant periods of time
where the CPU is not at all involved with processing tasks, depending on
other responsibilities of the CPU. Therefore, we can expect large variations
in the processing rate of tasks that are mapped in software on a CPU. Con-
sequently, if the processing units and the CPUs are tightly coupled with
small communication FIFOs, the dynamical behavior of the CPU is passed
over to the remaining chain of processing units. Hence, the throughput
performance of all processing units needs to be dimensioned for the peaks
of the dynamical behavior. Fortunately, the shared memory architecture
enables the allocation of more communication buffering for the tasks in
software, thereby smoothing the dynamical behavior of the data communi-
cation.

The synchronization and task switching of the software tasks is imple-
mented somewhat differently than for the dedicated processing units. The
main objective is to achieve this control without a significant cycle penalty
for the CPU. Simply implementing the synchronization of relatively small
granular data packets by means of interrupts would be highly inefficient.
Therefore, an additional“sync. unit”of dedicated hardware checks the sta-
tus for a set of tasks that run on the CPU. When there is enough workload

7.3 Processor system overview 235

for a set of tasks, it signals the CPU to start processing these tasks. As a re-
sult of this solution, the CPU is responsible for its own task scheduling and
synchronization for this set of tasks in software. Hence, part of the commu-
nication control for CPUs is implemented in dedicated hardware, whereas
the remaining part is implemented in software on the corresponding CPU.

7.3.5 Programming of the configuration

A programmable host processor is required to configure the available pro-
cessor units. This involves several tasks. First, it programs the task graph
by means of buffer allocations and assignment of the associated pointers.
Secondly, it programs the settings for the distributed task scheduling and
the arbiter for the local embedded memory. Moreover, the host processor
initiates each general-purpose processor to load the executable code of its
application-specific tasks. Subsequently, the system can execute the appli-
cation by enabling the tasks in the distributed schedulers.

Apart from static configuration of the system, it is also required to re-
configure at run time. To establish this, the configuration manager is able
to block a specific task at a specific location in the stream. At run time,
depending on the data in the bitstream, tasks are being inserted and/or
deleted. An efficient way to perform configuration changes is to first block
a producing task, wait until the consuming task empties the FIFO and then
reprogram both the producer and consumer tasks.

A simple example how this can be used for the MPEG-4 decoding is as
follows. It is possible to allocate new buffers and corresponding decoding
tasks, when new visual objects appear in the MPEG-4 stream. Similarly,
the buffers and decoding tasks can be released when the objects disappear.

7.3.6 Processor system wrap-up

The local buffer requirements are determined by grain size of communi-
cation, i.e. buffersize ∝ the bandwidth × the synchronization period. The
presented synchronization concept for the autonomous processor units en-
ables that the application programmer and the processor designers are not
concerned with difficult scheduling issues, data synchronization, and buffer
management.

The system offers easy tradeoffs between flexibility, cost and performance
and effectively provides hierarchical communication for stream-oriented
processing, which contains little temporal locality. Moreover, it provides

236 Chapter 7 – System study on MPEG-4 decoding

Table 7.2: Properties of the adopted architecture template.

Hierarchical Related Hierarch. Examples and descriptionaspect issue level

Computation

heterogeneity
high- and dedicated hardware

low-level general-purpose processor: MIPS
media processor: TriMedia

multi-tasking

high-level centralized control by a host CPU
at coarse-grain by multi-threading

low-level
distributed control in hardware
by the autonomous processors
at fine data-grain and high-rate

Communi-

two-level high-level inter-function communication

cation

hierarchy
coarse-grain synchronization

low-level inter-task communication
fine-grain synchronization

dynamic

high-level

run-time task scheduling

data-flow

by software
data synchronization by software
centralized control by a host CPU

low-level

run-time task schedule
by hardware
data synchronization by hardware
autonomously control
by each processor

data
high-level coarse grain to limit

granularity
context switching

low level fine grain to limit
on-chip buffer size

configuration high- and allows run-time reconfiguration at
low-level controllable locations in the stream

Memory

high-level to reduce transfer overhead
cache to reduce latency
hierarchy low-level to enable prefetching

to reduce latency

hierarchy high-level
storage of e.g. video pictures and

with distinct

coarse-grain communication buffers

address

located off-chip

spaces low-level

storage of small data structures,
task state, and fine-grain
communication buffers
located on-chip

7.4 Decoder functionality 237

data-flow communication as proposed by Kahn [62], similar to the system
as described in Chapter 4. Hence, the architecture enables execution of
functions independent of resolution, frame rate, regularity of the process-
ing, etc. and without the necessity of constructing static schedules for
all possible modes. Another important achievement of this architecture is
the mixture of dedicated hardwired processing units, fully programmable
CPUs, and any hybrid combination. For this arrangement of processing
units, the control for synchronization and scheduling is fully distributed
over the processing units to make them autonomous and hence scalable to-
wards more complex designs. Obviously, this makes it particularly suitable
for unconstrained hardware-software partitioning. More detailed descrip-
tions on the implementation details of the architecture can be found in
[21][22][101][102], which show the feasibility of the system for dual high-
definition MPEG-2 decoding. Table 7.2 summarized the properties of the
adopted architecture template.

7.4 Decoder functionality

Let us now work from the application point of view down to the archi-
tecture. The MPEG-4 standard is constructed as a toolbox of functional
features e.g. shape. Without the shape tool, the decoder is not capable of
decoding shaped video objects. The toolbox approach allows selection of a
subset of tools that is adequate for the targeted application. To guarantee
compatibility between encoders and decoders, MPEG-4 specifies Profiles,
each containing a different set of tools. Hence, a decoder that is compliant
with a certain Profile can decode all bitstreams that are encoded using the
corresponding set of tools. The toolbox concept allows the standard to be
extended for future coding concepts. Moreover, it enables the standard to
deploy complete new applications or to improve existing ones. Thus un-
like MPEG-2 (digital television), MPEG-4 does not target a major “killer
application”[103]. Within a Profile, also a set of Levels have been defined
which restrict the computational complexity. For example, Level 2 of the
Main Visual Profile allows 16 visual objects at CIF resolution, whereas
Level 4 allows 32 objects at HD resolution. The objective of this section
is to select a suitable Profile-Level combination to enable derivation of the
system requirements.

From a technical point of view, an MPEG-4 system can be described as
a layered model, which is depicted in Figure 7.6. Not all layers of this
model are covered by the MPEG-4 standard; i.e. the Transport layer and
Composition/Rendering have been left out explicitly. However, interfaces

238 Chapter 7 – System study on MPEG-4 decoding

between the Transport and Synchronization layers and between the Decod-
ing and Rendering layers are specified.

In order to analyze our MPEG-4 application, Sections 7.4.1 through 7.4.3
outline the particularities of the various MPEG-4 layers, while scene-graph
and resource management are discussed in Sections 7.4.4. As a starting
point of the mapping of an MPEG-4 decoding system onto the architec-
ture, Section 7.4.5 and 7.4.6 elaborate on the application domains including
suitable MPEG-4 Profiles and Levels.

Presenter

Compositor / Renderer

TransMux / Delivery / Synchronization Layers

Decoding layer

Transport stream

Figure 7.6: Simplified view of the MPEG-4 decoding system layered model.

7.4.1 TransMux, Delivery, and Synchronization Layers

The TransMux (Transport Multiplexing) layer offers transport services,
while only the interface on top of this layer is specified by MPEG-4. The
choice in transport protocol is left to the end user, and allows MPEG-4 to be
used in a wide variety of operation environments. In the Delivery layer, the
MPEG-4 TransMux streams are demultiplexed into separate Elementary
Streams (ESs) according to the DMIF (Delivery Multimedia Integration
Framework) specification (part 6 of the standard). The subsequent layer of
the model in Figure 7.6 consists of the Synchronization Layer. The main
part of this layer concerns the timing aspects within the model. Each ac-
cess unit (smallest data entity with timing information) that is received
may contain a decoding and composition time stamp, indicating the in-
tended decoding time and composition time of the associated data. The
TransMux, Delivery, and Synchronization Layers mainly concern stream
parsing and management, and can be classified as event-driven processing.

Architectural essence

This type of processing is highly irregular and contains only a limited
instruction-level parallelism (ILP). Moreover, the rate of control is rela-
tively low.

7.4 Decoder functionality 239

7.4.2 Object decoding

The middle layer of the model in Figure 7.6 consists of the Object Decoding
Layer. This layer contains the tools to decode the elementary streams from
the Synchronization layer. The visual objects such as video, still textures,
meshes, face and , etc. may be combined or separated into one or more ESs
[104]. The audio objects are coded in separate elementary streams. Object
Descriptors are used to relate ESs to media objects within a scene. Object
descriptors (OD) themselves are conveyed in one or more ESs, since it is
possible to add and discard streams (and objects) during the coarse of an
MPEG-4 session. Similarly, the scene description (BIFS - Binary Format
for Scene Description) [105] is also contained in an ES, allowing to modify
the spatio-temporal layout of the presentation over time. Besides the scene
description, the BIFS also contains a rich set of graphics operations.

In order to discuss the properties of the Decoding Layer, we need to go
into somewhat more detail of some decoding tools. Especially the Visual
decoding tools are of interest, because the most computationally expensive
tools (e.g. Video and Still Texture decoding) of an MPEG-4 system can be
found in this layer. For the Visual as well as the Audio decoding tools, two
different classes of processing can be defined. Firstly, bitstream processing,
which typically contains no parallelism and has a high control complexity.
Examples of this are VLD and arithmetic decoding (within Shape and Still
Texture decoding). Other tasks operate on macroblocks, have low control
complexity and a large degree of data parallelism. Examples of this are
inverse DCT, inverse quantization, and motion compensation. Further-
more, these kinds of tasks require a high data bandwidth. Most of these
block-oriented functions are very similar to those in e.g. MPEG-2, and
consequently might be reused over applications.

Architectural essence

The elementary streams that contain the BIFS and the ODs are decoded
and used in the composition/rendering layer to construct the final output to
be presented. Therefore, the BIFS and OD decoders can be seen as merely
parsers, which have a sequential behavior, a complex control structure (data
dependencies), and typically requiring irregular data access.

7.4.3 Rendering & composition and presentation

The top layer of the model consists of composition and rendering. Here the
final scene, consisting of various audio-visual objects, is composed. Ren-
dering of objects as described in the BIFS takes place in this layer. The

240 Chapter 7 – System study on MPEG-4 decoding

output of this layer drives the presentation devices (displays, speakers).
Whether buffering is required between composition/rendering and presen-
tation depends on the implementation of the composition/rendering. If the
architecture provides the capability to output streams with constant frame
rate, synchronized with the presentation devices, additional buffering is not
required. Only the format of media objects and the BIFS are standardized,
so that MPEG-4 does not depend on the presentation devices.

Architectural essence

Functions like rendering and composition are characterized by their need for
high data bandwidth and irregular data access. However, both instruction-
and task-level parallelism can be exploited considerably for these functions.

7.4.4 Scene-graph and resource management

In principle, there are two different BIFS nodes. The first type of node is
used to create objects in the scene or to refer to ESs associated with media
objects. The actual description of these objects is extracted from the ob-
ject decoder and is conveyed via the composition buffer. This type of node
is found in the Graphics Profile. The second type of node is used to build
the scene structure and to describe scene updates and user interactions.
These are called “scene graph elements”, and are found in the Scene Graph
Profiles. The audio, visual, and Graphics Profiles are called Media Profiles
as they govern the media elements in the scene.

The scene-graph manager contains the functionality that is necessary to
convert the decoded scene-graph description into signals that control the
visual renderer, i.e. to compose the final scene. Hence, the scene-graph
manager performs the following tasks (not necessarily in this order):

• parsing of the decoded scene graph description (BIFS nodes),

• building up a geometric representation of the 3-D scene,

• updating the 3-D scene with temporal behavior (e.g. animation, scene
updates), and

• generating visual renderer API calls to draw the scene.

Resource management comprises the control of the available resources in
the different layers of Figure 7.6. The resource manager is responsible for
the following tasks.

7.4 Decoder functionality 241

• Configuration of the synchronization layer – The number of packe-
tized ESs depends on the input bitstream. Therefore, the resource
manager performs runtime configuration of the synchronization layer.

• Allocation of the required buffer resources – The buffer-size informa-
tion is conveyed via the corresponding ES descriptor within an OD
and hence is extracted by the resource manager.

• Configuration of the required decoders – Similar to the buffer resource
requirements, the type of decoder is conveyed via the ES descriptors.
This information is used by the resource manager to configure the
available decoders, e.g. the video-object-plain decoder, still texture
decoder, and mesh decoder.

Architectural essence

The scene-graph and resource management is event-driven processing and
does not require severe computations. Many different routines are executed
via data-dependent conditions at a relative low rate.

7.4.5 Application domain for the target architecture

With the architecture depicted in Figure 7.2, the MPEG-4 decoder is tar-
geted for mid-range to high-end media processors for Digital TV and set-top
boxes. Therefore, digital TV (DTV) broadcast is the most important ap-
plication domain. Beyond DTV, MPEG-4 addresses far more applications
of which many are still in a research phase. On the other hand, in the mo-
bile (wireless multimedia communications) and Internet (combined text,
graphics, video, and audio) area significant effort has already been spent in
the integration of MPEG-4 technology.

The integration of Internet into consumer electronics such as TV, set-top
boxes, and game consoles positively influences the introduction of MPEG-4
into the set-top box and TV world. Current stationary digital television
standards [106] are based mainly on MPEG-2 compression and multiplexing
techniques. Because of an increasing demand for higher interactivity and
a mixture of natural and synthetically (graphics) generated video in this
field, a migration toward MPEG-4 will be considered. The MPEG standard
allows for a compatible insertion of MPEG-4 multimedia elements into a
conventional MPEG-2 transport stream. Thus, an evolutionary path from
MPEG-2 to MPEG-4 should be feasible.

242 Chapter 7 – System study on MPEG-4 decoding

Table 7.3: Characteristics of some MPEG-4 Visual Profiles @ Levels.

Simple Profile @ L3 Core Profile @ L2 Main Profile @ L4
a 352× 288 (CIF) 352× 288 (CIF) 1920× 1088 (HD)
b 4 8 32
c 396 792 16320
d 396(=CIF) 792(=2×CIF) 16320 (=2×HD)
e 11880 (= 30-Hz CIF) 23760 (= 30-Hz 2×CIF) 489600 (= 30-Hz 2×HD)
f not supported not supported 65280
g 384 2000 38400
h not supported binary binary, gray

a = typical Visual Session size
b = maximum number of objects
c = maximum number of macroblocks per video object plain
d = maximum amount of reference memory [macroblocks]∗
e = maximum number of macroblocks/sec
f = maximum sprite size [macroblocks/s]
g = maximum bitrate [kbit/s]
h = shape

Architectural essence

The studied MPEG-4 decoder has to be mapped on mid-range to high-end
media processors for Digital TV and set-top boxes. Therefore, high-quality
digital TV (DTV) broadcast is the most important application domain.

7.4.6 Desired selection of Profiles and Levels

To feature the necessary tools for digital TV broadcast, the Main Visual
Profile is most likely to become the de-facto Profile. Besides the coding of
progressively scanned rectangular video, this Profile also features interlaced
video, sprite objects, grayscale alpha shape coding, and scalable textures,
which enlarge the complexity of the system substantially.

To anticipate future requirements, the architecture is dimensioned to pro-
cess HD pictures, which is comprised by Level 4 (L4) of the Main Visual
Profile. In order to give an impression on the high complexity required for
Main Visual Profile, compared to Profiles typically suitable for mobile or
internet applications (Simple or Core Visual Profile), Table 7.3 summarizes
some characteristics of these Profiles at their highest Levels [107]. For the
graphics part of the MPEG-4 standard, the Simple 2-D Profile is sufficient
for the intended application. For the Scene Description, we comply the
Simple Profile.

7.5 Analysis of the functions 243

7.5 Analysis of the functions

7.5.1 Decoder framework

After having presented the functions in the previous section, let us now
consider the task graph of the application and decompose the functions
into tasks that have distinct characteristics. Subsequently, we propose a
HW/SW partitioning to derive the underlying architecture components.

Resource manager

...

OD
decoder

scene graph
manager

audio
decoder

VOP
decoder

still texture
decoder

sprite
decoder

bitstream

memory

visual
renderer

audio
renderer

presentation
devices

parse/
entropy
decode/
demux

memory

decoder
buffer

decoder
buffer

decoder
buffer

decoder
buffer

delivery
mechanism

sync

TransMux

FlexMux

composition
buffer

composition
buffer

composition
buffer

composition
buffer

composition
buffer

composition
buffer

Figure 7.7: Task graph of the MPEG-4 decoder functionality.

Figure 7.7 shows the task graph of the complete MPEG-4 decoder sys-
tem. The delivery mechanism comprises the TransMux, the Delivery and
the Synchronization layers as described in Section 7.4.1. The output of this
block conveys elementary streams (ESs) that are written in separate decod-
ing buffers. Subsequently, the appropriate decoder instantiations decode
the ESs and write their output into the composition buffer. To configure
the synchronization layer and the decoders and to allocate the buffers, the
resource manager extracts the necessary information from the ODs. To

244 Chapter 7 – System study on MPEG-4 decoding

finally present the audio-visual scene, the scene-graph manager interprets
the scene-graph description and the ODs and subsequently controls the
rendering.

7.5.2 MPEG-4 processing task properties

To come to a partitioning of the functionality in HW and SW, we separate
the MPEG-4 decoder functions into tasks with self-contained functionality
and clear interfaces. Table 7.4 shows an overview of these tasks, including
their processing characteristics. As explained in Section 7.2.1, the amount
of parallelism, the throughput, the flexibility and the complexity of control
are related. However, it only discusses observations on system level and
has to be made explicit to come to a feasible HW/SW partitioning. More-
over, the partitioning may also depend on non-technical reasons such as the
design capabilities, and the design time to influence the time-to-market.

Key to the task-properties table

The first columns of the table are self explaining, therefore we focus on the
right-hand side.

• Column 4 – Note that parallel processing can be applied for parallel
task graphs, but can also be applied to increase the throughput of a
sequential task graph, using pipelining. Therefore, the fourth column
in Table 7.4 indicates the throughput requirements of the tasks.

• Column 5 – However, this is not sufficient to determine the par-
titioning, since pipelining in order to increase the throughput can
only be applied for stream-based processing with a low control com-
plexity (indicated in the fifth column). Note that decision branches
disrupt the pipelining, particularly if they are data dependent. Al-
though solutions like branch prediction and speculative execution do
exist, they are not straightforward for hardware implementation. For
similar reasons as pipelining, parallel execution of instructions as pro-
vided in VLIW or superscalar architectures can be used to improve
the throughput. Although not explicitly shown in the table, tasks
that contain ILP and may exploit pipelined or parallel execution of
instructions are suitable for implementation on a VLIW architecture.

• Column 6 – The reusability of tasks has two aspects. First, a task
can be reused over several applications within the same system. For
example, a DCT transform can be used for (de)compression schemes
like MPEG-1/2/4 and H.26x. Secondly, tasks can be reused over more

7.5 Analysis of the functions 245

than one design. A hardware DCT implementation may be preferred
since this is most efficient and used in many cases.

Table 7.4: Properties of the MPEG-4 decoding tasks that determine the
mapping onto HW or SW.

function ta
sk

s∗
∗

p
ar

al
le

li
sm

∗
(c

ol
um

n
3)

th
ro

u
gh

p
u
t

(c
ol

um
n

4)

co
m

p
le

x
it
y

of
co

n
tr

ol
(c

ol
um

n
5)

re
u
se

ov
er

ap
p
li
ca

ti
on

s
(c

ol
um

n
6)

ar
ch

it
ec

tu
re

(c
ol

um
n

7)

Delivery a sequential low low low RISCmechanism
OD decoder sequential low medium low RISC
Scene-graph c sequential low high low RISCmanager
Resource d sequential low low low RISCmanger

Audio decoder ILP & TLP medium low medium DSP /
Media proc.

Parse/entropy sequential medium high low RISCdecoder/demux
Still Texture g ILP & TLP low medium low Media Proc.
decoder h sequential low high low RISC
VOP decoder, i sequential high high low RISC
sprite decoding j ILP & TLP high low high dedicated

Renderer, k sequential medium medium high DSP /
Media proc.

sprite warping l ILP & TLP high low high dedicated
∗ ILP = Instruction-Level Parallelism, TLP = Task-Level parallelism
∗∗ a = transport protocol, transport stream demultiplexing,

synchronization processing
c = BIFS parsing, 3-D geometric scene reconstruction,

rendering command generation
d = (re)configuration of the hardware, memory management
g = DC prediction, ZeroTree decoding, inverse quantization,

inverse Discrete Wavelet Transform
h = arithmetic decoding
i = Variable Length Decoding, Context-based Arithmetic Decoding
j = up/down sampling, inverse scan, inverse quantization,

inverse DCT, padding, VOP reconstruction
k = BIFS browser, geometry, lighting
l = rasterizer set-up, rasterization

246 Chapter 7 – System study on MPEG-4 decoding

The hardware should still offer sufficient flexibility to enable its use in
all desired applications. Moreover, if a CPU is already available in the
system with sufficient resources, the additional hardware design requires
more effort and can be a valid reason for a software implementation.

7.5.3 Hardware/software partitioning

Strategy

Let us now briefly discuss the choices of HW/SW partitioning for each part
of the MPEG-4 decoder that is depicted in Figure 7.7. To minimize the
design effort, the default approach is to implement a task in SW, unless
this significantly decreases the performance density and thus the system
costs.

A. Delivery, OD decoder, scene-graph and resource manager

For the delivery mechanism, the OD decoder, the scene-graph manager, and
the resource manager, the choice is straightforward. For these tasks, the
computational requirement as well as the amount of parallelism is limited,
thereby making these tasks very suitable for a general-purpose processor.

B. Audio

Audio decoding requires a medium throughput. For 6-channel audio, the
decoded stream has a bandwidth of 0.5 MByte/s. Compared to video, the
audio signal processing has a higher precision. Moreover, standards such
as MPEG and DVD contain an increasing amount of different audio coding
schemes, which are normally not active concurrently. Therefore, a software
implementation on a DSP or a media processor is most suitable.

C. Still textures

For Still Texture decoding a similar reasoning holds. In contrast with video
decoding, there are no hard real-time constraints and therefore it requires a
lower bandwidth. Furthermore, Still Texture decoding is MPEG-4 specific,
and therefore not reusable, i.e. the utilization of a hardware implementation
would be poor. It can be concluded that also this task can be performed
in software. Because this concerns a special-purpose task with a signifi-
cant amount of parallelism that can be exploited with a SIMD or VLIW
architecture, we have chosen a TriMedia [26] media processor.

7.5 Analysis of the functions 247

shape decoder

CAD

context
calculation

current
bab mem

down
samp

up
samp

reference
bab memory

VLD Inv.
scan

Inverse
AC&DC

prediction

MB stripe
memory

Inv.
quant

Inv.
DCT

VOP
reconstr

up
samp padding

reference
VOP memory

de-
mux

16

157
16

16

16

16

27 49

362

500 31394

353357362362 313

SW implementation

HW implementation

memory

Context-based arithmetic decoder

Variable Length Decoder

Binary alpha block

CAD

VLD

bab

Figure 7.8: Block diagram of Video Object Plane decoder, including data
transport bandwidths (MByte/s).

D. Video object planes and sprites

For Video Object Plain (VOP) and sprite decoding as shown as a sin-
gle block in Figure 7.7, the mapping is less straightforward because this
functionality consists of a diverse set of tasks, shown in Figure 7.8 as a
fine-grain block diagram. The numbers near the communication channels
represent the bandwidth of the data transport for MPEG-4 Main Visual
Profile @ L4 (HD: 1920 × 1088 @ 30 Hz, see Section 7.4.6). Because the
memory requirements are mainly determined by the large bandwidth num-
bers, only these numbers are shown. Part of the functionality consists of
entropy decoding (VLD, CAD), which is mainly sequential processing with
complex control. These properties make an implementation that matches
a RISC-like architecture very attractive. However, because the bitstream
is non-word aligned with a high throughput requirement, some hardware
acceleration for e.g. bit manipulations and the keyword lookup is desired.
An example implementation is presented by Berekovic, et al. [108]. The
remainder of the functionality contains a significant amount of ILP and
TLP. Moreover, the computational requirements are high, particularly for
HD resolution. Note that the VOP decoding requires memory access to an
off-chip memory at high bandwidth.

248 Chapter 7 – System study on MPEG-4 decoding

E. Rendering

The bottom row in Table 7.4 represents the rendering and composition of
all objects into the final scene. This process is controlled by the scene-
graph manager as shown in Figure 7.9. This scene-graph manager operates
as a BIFS browser, analog to a familiar VRML browser. The output of the
browser can operate at the level of the OpenGL application programmer
interface (API). However, this standardized API does not cover all func-
tionality that is required for rendering of video objects from an MPEG-4
decoder. For that purpose, we propose that OpenML [109] is used as a
more suitable API specification. This API also considers the YUV color
space, interlaced video, audio, synchronization of audio/visual object, etc.
The OpenML function calls are used by the geometry and lighting func-
tionality in the renderer to create a 3-D geometric representation of the
visual scene. Both the BIFS browser and geometry and lighting tasks are
mapped onto a media processor, which contains ILP and includes floating
point operations. After conveying the 3-D geometric model by means of
vertices, the setup of the rasterizer converts the model into a large set of
polygons for rasterization. This setup task within the renderer requires a
significant amount of computational power, and increases the communica-
tion bandwidth when going from a vertices-based input to a polygon-based
output. The final rasterization stage of the renderer accesses all pixel-based
input data from the composition buffers and reconstructs the final visual
scene. Since this task performs two-dimensional filtering of all polygons
on pixel bases, it is most demanding in terms of computation and memory
communication. To provide sufficient computational resources, both the
rasterization and its setup are best performed with a dedicated hardware
pipeline.

7.6 Mapping proposal

In this section we map the functions onto the overall system-architecture
template as presented in Section 7.2, including the architecture of the sep-
arate processors in the system.

Figure 7.10 shows an implementation proposal. The numbers near the
connections to the communication network represent the bandwidth of the
data transport for MPEG-4 Main Visual Profile @ L4 (HD: 1920× 1088 @
30 Hz, see Section 7.4.6). Because the memory requirements are mainly de-
termined by the large bandwidth numbers, only these numbers are shown.
Memory inefficiency, as described in Chapter 5 is not included. Moreover,
the bandwidth indications are based on the worst-case MPEG-4 bitstreams,

7.6 Mapping proposal 249

Transform2D
(transformation)

group

Shape
(geometry object)

Image
Texture

Movie
Texture

Bitmap
(rectangle geometry) Appearance

VOP
decoder

3D mesh
decoder

still texture
decoder

OD
decoder

BIFS
decoder

TV
scene-graph

manager

Geometric
transformations

and lighting

Triangle
setup Rasterization

Scene graph

Object
description

Object
description

3D

Ope
nM

L
Renderer

video

still picture

Object
description

Object
description

Figure 7.9: The MPEG-4 rendering process, controlled by the scene-graph
manager.

the bandwidth numbers for rendering are typical, since the worst-case num-
bers for this function can be almost unlimited.

A. Hierarchy

The two-level hierarchical architecture can be clearly recognized in Fig-
ure 7.10. All functions that require a large memory capacity or that com-
municate large data packets are connected to the off-chip memory. The
functions that only use a relatively small memory size and communicate
via small buffers, are connected to the high-level communication structure,
which is embedded in the system. Note that it is also possible to connect
functions to both networks. As shown in the figure, separate I/O modules
are included to write the input MPEG-4 bitstream into the memory and
to output the decoded audio and video signals. Besides streaming of video
data from the memory to the display, the Video Out module also converts
a YUV 4:2:0 signal to a 32-bit RGB signal.

250 Chapter 7 – System study on MPEG-4 decoding

DDR
SDRAM

BAB
scaling

context
calc

SRAM

bitstream
In

Audio
DSP

Media CPU
(VLIW)

D$ I$

3D GFX =3D graphics
DDR SDRAM =double-data-rate

synchronous dynamic RAM
SRAM =static RAM
BAB =binary alpha block
CAM =context addressable memory
MCE = motion compensation /

estimation

Video
Out

iScan
AC/DC
predict
iQuant
iDCT

up-
sampling

MCE

padding

91032D$ I$

Audio
Out

3D GFX

rasterizer
set-up

rasterization

600190

4040

1600

1800

SRAM140

60

RISC
CPU

D$ I$

670500173250

bit
manipulate

keyword
lookup
CAM

Figure 7.10: Architecture implementation of the MPEG-4 decoding system,
including data transport bandwidths (MByte/s).

B. RISC core

The delivery mechanism in Figure 7.7 is performed by the RISC core. It
parses the MPEG-4 bitstream from the off-chip memory, processes it, and
writes the output ESs back into the decoder buffers (off-chip memory). Be-
sides the delivery mechanism, the RISC also provides the OD decoding,
the resource management, and the scene graph management. Finally, the
RISC performs the tasks for parsing, demultiplexing, and entropy decod-
ing of the visual objects. The connection of the RISC core to the local
embedded memory is provided by means of a dedicated coprocessor con-
nection of the RISC. Note that the RISC does not have a cache memory for
this connection. The absence of this cache can be justified by giving first
priority access of the RISC to the local memory to guarantee low latency.
A more detailed study is necessary to prove the feasibility to execute all
above-mentioned tasks within the cycle budget of a single RISC core. Al-
though the outcome of this study may show the requirement for more than

7.6 Mapping proposal 251

one RISC, it should be noted that many powerful MIPS (e.g. PR3940)
RISC cores are relatively inexpensive (e.g. 5.5 mm2 consuming less than
200 mW).

C. Dedicated hardware

For VOP decoding and sprite decoding, dedicated hardware modules are
provided. The context-based arithmetic decoder (CAD) which is performed
by the RISC core, parses the input bitstream, retrieves the context infor-
mation from the shape decoder hardware module (via a communication
buffer in local memory), and writes the output Binary Alpha Block (BAB)
into a buffer in local memory. The BAB is subsequently read by the shape
decoder module, and is used to calculate the context value. To do this
calculation, the hardware module also reads reference BABs from off-chip
memory and writes the newly calculated BAB back to the same memory.
For the VOP decoding, the RISC core provides the variable length decod-
ing and conveys the output stream to a hardware module that features
a pipeline with inverse scan, AC/DC prediction, and inverse DCT. Some
space in the local memory is used for AC/DC prediction (see Figure 7.8),
which results in an additional input and output port of this hardware mod-
ule to the local memory. The output of the hardware module is streamed
to another hardware module that provides the motion-compensated VOP
reconstruction and the padding process. To store the reconstructed out-
put and to retrieve the motion-compensated prediction data, considerable
off-chip memory bandwidth is consumed. Another important architectural
aspect is the requirement for all VOP processors to provide multitasking
capabilities, because a Main Visual Profile bitstream may contain up to
32 independent video objects. The multitasking capabilities described in
Section 7.3 are provided in the architecture template.

D. Media processor

To provide Still Texture decoding, a very-long-instruction-word (VLIW)
processor is embedded. This function only requires a connection to the
off-chip memory, because both the input bitstream and the output image
are stored there. However, because also the rendering process is partially
mapped onto the VLIW core, this processor is connected to a second-level
communication network too. Similar to the RISC connection, the VLIW
uses a special coprocessor connection without cache.

Besides Still-Texture decoding, the media processor also establishes the
software tasks of the rendering functionality, i.e. BIFS browsing, geome-

252 Chapter 7 – System study on MPEG-4 decoding

try, and lighting. The total data bandwidth for visual rendering to off-chip
memory is very large and highly dependent of the implementation. For ex-
ample, Berekovic et al. [110] presented an image rendering coprocessor for
MPEG-4 systems that contains an external local memory for autonomous
rendering of two video objects and a background picture. Although they
consider Standard-Definition (SD) video, the bandwidth requirements are
higher than for the visual renderer presented here. This is mainly caused
by the additional transfer of all visual objects from the shared memory to
the local memory (reading and writing of three SD pictures). The access
to this local memory is included in their results. Moreover, their band-
width calculations assume a 4:2:2:4 sampling format, whereas we assume
a 4:2:0:4 sampling format. For our bandwidth estimations, we assumed
a bandwidth-friendly tile-based rendering algorithm. Experimental results
already proved the feasibility of such an implementation.

E. Composition of the hierarchical communication network

Because the rendering functionality and the MPEG-4 decoding function-
ality do not share the same computational resources and only have inter-
communication via the off-chip memory, the communication networks can
be separated to reduce the complexity of the two-level network. However,
for flexibility it is also attractive to have a single second-level communi-
cation network with one shared embedded memory. This would enable
the implementation of additional tasks for the VOP decoder in software,
thereby anticipating for future extensions.

7.7 Conclusions

When compared to other existing coding standards like MPEG-2 and H.26x,
MPEG-4 targets a much broader set of applications, with an accompanying
increased number of more complex algorithms as well as coding modes. This
extended functionality requires a flexible and extensible platform. How-
ever, the computational complexity of MPEG-4 applications exceeds that
of state-of-the-art media processors, especially for Profiles suitable for dig-
ital TV broadcast. Another observation is that the increasing demand to
combine audio-visual material with (advanced) graphics within the appli-
cation domain of TV and set-top boxes enhances the complexity of these
systems severely. From these observations, together with the demand for
a low-cost solutions in the competitive domain of consumer electronics, it
can be concluded that hardware support is essential.

7.7 Conclusions 253

For the required combination of flexibility and a high computation perfor-
mance, a hierarchical communication infrastructure is desired. This allows
to tradeoff flexibility and performance at any stage in the hierarchy, while
keeping the data bandwidth locally nearby the processing units. Besides a
two-level hierarchical communication infrastructure, the adopted architec-
ture template allows a mixture of dedicated hardware and programmable
CPUs that can interact at relative small data granularity. Moreover, the
systems provided communication according to Kahn process networks and
offers multitasking capabilities for easy programming. These novelties en-
able effective partitioning of applications into hardware and software, with-
out undesired constraints from the architecture.

For the adopted architecture template, an effective HW/SW partitioning
was performed based on an MPEG-4 application analysis for aspects like
amount of parallelism, throughput requirements, the control complexity
and the reuse potential. This analysis resulted in a feasible mapping of
the MPEG-4 decoding application onto the architecture template. From
this mapping study, it can be concluded that sufficient flexibility can be
provided without raising the required bandwidth to the off-chip memory.

Since the functionality of the MPEG-4 decoder that is mapped onto pro-
cessing units can be considered as a superset of many other DCT-based
coding standards, the MPEG-4 decoder can be designed for encoding and
decoding MPEG-1/2 and Motion JPEG formats as well. In fact, the archi-
tecture template has already been exploited to perform MPEG-2 encoding
and decoding. The mapping study of the MPEG-4 decoder demonstrates
the flexibility and extensibility of the media-processing platform.

254 Chapter 7 – System study on MPEG-4 decoding

Chapter8
Conclusions

FOR many already existing video processing systems, the architecture
and the video algorithms are designed independently. This thesis ad-

vocates the combined design of video processing algoritms and their corre-
sponding architecture. For this reason, we have explicitly coupled design
aspects such as bandwidth, programmability, etc., with an analysis of the
video processing algorithms. The first section recapitalizes the most impor-
tant conclusions of the individual chapters. Secondly, a section is devoted
to an example state-of-the-art system design for the television domain. Sub-
sequently, we present a novel design approach which results from the con-
clusions of the first section and use an example system that features similar
functionality as the state-of-the-art system from the second section. Fi-
nally, we discuss the most important trends that impact the system design
in future and emphasize the relevance of architectural analysis of the video
processing functions.

Longum iter est per praecepta,
breve et efficax per exempla
(Seneca Philosophus, c.4 BC – c.65 AD)
The way is made long through rules, but
short and effective through examples

8.1 Recapitalization of the individual chapters

Chapter 1 shows the growing need for more flexibility and programmabil-
ity in video processing subsystems and more reuse of the design. Unfortu-
nately, this generally leads to most costly solutions and a low computational
efficiency. Yet at the same time, video functions keep on growing in com-
plexity and require therefore more computational resources.

255

256 Chapter 8 – Conclusions

Chapter 2 presents a concise but relevant overview of computing archi-
tectures, which provide the most important input for the rest of this thesis.
The overview of various processor systems briefly outlines ways for improv-
ing parallelism in video architectures and also discussing the associated
control issues. The presented media processors have revealed the following
primary aspects: computational power, communication and memory.

Chapter 3 addresses a detailed discussion of the resource requirements
of several video-processing functions in the TV domain. The emphasis is
on determining the computational complexity, memory bandwidth and the
amount of memory. With respect to these architectural requirements, we
have analyzed several video functions. The primary conclusion of this chap-
ter is that implementation of the complete video-processing functionality in
a television system cannot be achieved cost-effectively with general-purpose
hardware. Instead, the requirement for low costs in consumer electronic do-
main and the strong heterogeneous nature of the video processing tasks lead
to application-specific solutions. Finally, it is concluded that the design of
the video processing algorithms and their architecture are interdependent
and require an integral design approach, thus a codesign.

Chapter 4 presents a recently developed experimental TV chip set, proven
in Silicon. This chapter serves as a clear design example that satisfies the
requirements and analysis of the first three chapters. The key to the sys-
tem is providing powerful video computing at low cost and at the same
time introducing adequate programmability. Executing approximately 10
operations billion per second while dissipating 5 Watt, results in a power
performance of 5 mW/MOPS for the CPA. The system features flexible
ordering of video functions with optimization via programmable key pa-
rameters and on-chip inter-processor communication. The architecture is
actually the first in the TV domain that applies a Kahn process network
for the video processing functions.

Chapter 5 concentrates on the optimization of off-chip memory access
for video processing functions in a system-on-chip. Generally, this part
of the system causes a system bottleneck with respect to communication
bandwidth and power dissipation. Up till now, multimedia architectures
assume a transparent shared memory with unlimited bandwidth and a full
efficiency. However, with many video processing tasks running in paral-
lel, this assumption is not valid and actually yields considerable efficiency
losses. Chapter 5 provided an example that shows an MPEG decoder, in
which significant gains can be achieved when matching the application-

8.2 State-of-the-art system design 257

specific memory accesses with the behavior of the memory device. The
results show that the total memory bandwidth reduces with 35 %, corre-
sponding to 195 MByte/s for high-definition MPEG decoding.

Chapter 6 discusses embedded compression and video-specific caching
as additional bandwidth-reduction techniques that are tuned to both the
application and the memory configuration. Both techniques show that
application-specific system optimizations considerably reduce the required
system resources. For the MPEG-2 decoder function a memory bandwidth
reduction of 40 % and 32 % was achieved with limited costs for compression
with a factor 2 and a 3-4 kByte cache, respectively.

Chapter 7 provides a second architecture example in this thesis, where a
set of video processing applications is mapped onto a heterogeneous multi-
processor system. This architecture applies a hierarchical communication
network to offer scalability and reuse for future generations and to improve
the communication throughput. It offers more local processor to processor
communication via a shared embedded memory, thereby preventing exhaus-
tive communication to the shared off-chip memory. Secondly, FIFO buffers
for on-chip communication are mapped onto a centralized memory, so that
larger effective buffer sizes are implemented, allowing more dynamic behav-
ior of the processor system. Thirdly, a special synchronization unit enables
the system to integrate fully programmable processors, thereby offering a
heterogeneous mixture of DSPs, CPUs, and application-specific processors.

8.2 State-of-the-art system design

In the course of this thesis (Chapters 3, 4 and 7), it has become clear
that conventional TV architectures with hardwired functions cannot fulfill
the flexibility and programmability requirements of a future TV system.
Recent more complex system-on-chip solutions contain the complete video
processing chain between tuner output (CVBS) and RGB processing. Schu
et al. [111] have presented a system that performs motion-adaptive de-
interlacing and up-conversion including special cinematic source processing,
picture-in-picture, split screen, 3-D spatial-temporal picture enhancement
techniques, adaptive luminance peaking, transient improvement for both
luminance and chrominance, as well as color decoding and all necessary
A/D and D/A conversions.

Simultaneously with this SoC development of the TV processing chain,
set-top boxes for digital reception of the TV signals from satellite, terres-

258 Chapter 8 – Conclusions

trial or cable contain an increasing amount of functionality. Apart from
MPEG decoding, such a system also contains picture enhancement and
processing algorithms for e.g. noise reduction, dual video inputs for picture-
in-picture or split screen, graphics rendering, sharpness improvement, etc.
Thus, high-quality video processing from the conventional TV broadcast-
ing environment is combined with digital TV decoding. Also for the audio
functionality and the system interfaces, the commonality between TV and
set-top box systems is large. This merging trend, which is visualized in
Figure 8.1, becomes even more true for digital and hybrid TV sets that are
currently being developed.

Front-end:
digital satellite
digital terrestrial
digital cable
analoge

MPEG
source
decode

Back-end:
drivers for
flat-screen
and CRT

picture impairment:
noise reduction
deblocking

secondary channel:
Picture-in-Picture
split screen

GFX rendering

multi-layer video
composition

standard TVset-top box

picture
improvement:
100/120 Hz
sharpness ++

color decode:
PAL
NTSC
SECAM

Figure 8.1: Merging of set-top box and TV systems.

For example, chip makers1 offer hybrid solutions for set-top box or TV
systems with an impressive list of features, indicating the large amount
of TV functions enclosed. These solutions can handle conditional access
for up to two digital transport streams, A/V decoding for up to two SD
or one HDTV MPEG-2 programs, decoded from the IEEE-1394 interface,
LAN or an attached IDE DVD drive, acquisition of up to two CCIR-656
based video sources, temporal noise reduction, temporal-spatial video im-
provement such as Digital Reality Creation or Digital Natural Motion, his-
togram modification, black-stretch, luminance and chrominance transient
improvement, blending up to five video and one graphics image for an ana-
log S-video or CVBS output, multi-channel audio processing and output
via an IEEE-1394 interface, decoding of image files or audio content from
a MemoryStick or MultiMediaCard, and a USB connection. Such multi-
functional platforms featuring a large set of functions are applicable in a set
of different products. The reusability is attractive from a manufacturing

1Philips Electronics has released a commercially available chip under the name
PNX8525

8.2 State-of-the-art system design 259

point of view. The development costs and fixed production costs (e.g. cost
of a mask set) can be distributed over a potentially high volume. Moreover,
generic hardware solutions enable reuse of design and therefore further de-
crease development costs of the hardware.

Memory controller

C-bridge

External SDRAM

M
em

or
y

m
an

ag
em

en
t

in
te

rf
ac

e
bu

s

TM
VLIW
CPU

TriMedia
C-Bridge

MPEG-2
video decoder

Advanced image
composition
processor

Video input
processor

Memory-based
scaler

MPEG
system processor

Interrupt controller

Audio I/O

Sony Philips
Digital I/O

Transport stream
DMA

General-purpose
I/O

Synchronous
serial interface

T
riM

ed
ia

P
I b

us
Universal asynchronous

receiver/transmitter
(UART)

ISO UART

Reset

MIPS bridge

MIPS
(PR3940)

CPU

Interrupt controller

Enhanced JTAG

Clocks

IC debug

CPU debug

Universal serial bus

F
as

t
P

I b
us

M
IP

S
P

I b
us

IEEE 1394 link layer controller

Fast C-Bridge

MIPS C-Bridge

High-performance
2D rendering engine

Expansion bus interface
unit PCI/XIO

Inter-integrated circuit

Cyclic redudancy check
DMA

C-bridge
DMA

Crossover bridge
Direct memory access

PI
PCI

Peripheral interconnect
Peripheral component interconnect

XIO Extended I/O

Figure 8.2: Block diagram of the Viper system.

Requirements for the previously discussed hybrid set-top box / TV sys-
tem demand a high level of flexibility, together with a high computational
performance at low costs. As a result, there is a clear trend towards sys-
tems offering high parallelism combined with a flexible infrastructure to
enable communication between all included functional units. For exam-
ple, a system implementation called the Viper [112] as shown in Figure 8.2,
represents a fully interconnected system containing two communication net-
works: one costly high-throughput point-to-point bus and one scalable and
low-cost tristate bus for low-throughput communication and peripheral con-
trol. The latter communication network is subdivided into three different
segments to cluster the peripherals that require a different cost-performance
tradeoff. Most functional units are not implemented for general-purpose
processing. They are dedicated for special-purpose video processing, such
as a 2-D image renderer, a 2-D sampling-rate converter for scaling, an

260 Chapter 8 – Conclusions

MPEG decoder, etc. This large amount of dedicated functional units re-
sults in a large computational performance for the domain of digital TV
and set-top boxes. Moreover, it provides sufficient flexibility for reasonable
silicon costs: 35 million transistors within less than 110 mm2 of silicon in
0.18µm CMOS technology, consuming 4.5 Watts on the average.

Unfortunately, all video processing units in the system of Figure 8.2 are
connected to the off-chip memory by means of one central memory con-
troller. Communication between the processing units can only be achieved
via this off-chip memory, thereby introducing a bottleneck in the com-
munication network. As was concluded in Chapter 7, the architecture of
complex systems as discussed above require a hierarchical communication
infrastructure and a corresponding hierarchical memory architecture. In
the following section we will present a hierarchical approach to effectively
deal with the system complexity.

8.3 Future system design

In this section we attempt to combine all insights from the thesis to derive
a template for future system design. As explained throughout the chap-
ters we commence with the application. To determine the main changes in
the final system architecture with respect to traditional systems, we first
distinguish the main differences from an application point of view, i.e. the
differences in characteristics of the functions (see Table 8.1).
From Chapter 7 we have learned that a hierarchical communication in-
frastructure can be adopted to effectively deal with the large amount of
complexity in computation and communication of future SoCs. This is
achieved by matching the hierarchy of the communication infrastructure to
the natural hierarchy of the video processing applications. Such hierarchy
enables the partitioning into subsystems with independent optimization of
their architecture and provides locality of data processing for efficient com-
munication. Figure 8.3 shows an example of a system-level architecture for
a future system. From the figure we can recognize many of the following
system aspects.

• The architecture is hierarchical, i.e. three different levels can be dis-
tinguished.

• At the lowest hierarchical level, clusters of processing elements may
consist of both homogeneous structures with multiple DSPs, but can
also contain a heterogeneous mixture of DSPs, CPUs and application-
specific hardware blocks (ASIP). These ASIPs can be dedicated hard-

8.3 Future system design 261

Table 8.1: The main differences between the characteristics of future and
traditional applications.

Traditional video functions Future video functions
- Mainly pixel processing - heterogeneous mixture of pixel pro-

cessing and control based processing
- Low-complexity processing loops

without data-dependent branches
and operations

- Complex control with many data-
dependent branches and operations

- Mainly hard-real time processing - Both hard-real time and soft real-
time processing

- Constant resource requirements - Dynamical behavior of the resource
requirements

- Predictable system behavior
straightforwardly implemented

- Predictable behavior under hard
real-time constraints; not easily im-
plemented

- Limited temporal processing, result-
ing in a low latency

- Memory intensive temporal process-
ing, resulting in a large latency

- Relatively few communication and
computation resources

- Significantly more communication
and computation resources

ware or highly programmable processing units that are dedicated for
a particular processing task.

• The number of hierarchical levels may be different per subtree. For
example a subtree may comprise a single CPU or ASIP (a leaf), but
may also consist of another communication infrastructure with sev-
eral processing elements. This gradually leads to networks of com-
putational units on a chip. To generalize the the interconnect of this
hierarchy of computational units, a network on chip that is scalable
toward more complex systems should be adopted, as we will see later.

• The highest level contains an interface to off-chip memory.

Let us now take a future TV set as an application for mapping onto the
above-described system template. This is conceptually shown in Figure 8.4.
The figure distinguishes three hierarchical levels, indicated by the grey lev-
els. The hierarchy in the communication network is schematically indicated
by the connecting lines. Later we will explain that these lines represent a
sophisticated network and do not necessarily imply a traditional communi-
cation bus. Table 8.2 shows the main video functionality of the system.
The partitioning of the TV application into a hierarchical structure as de-
picted in Figure 8.4, satisfies the following criteria.

262 Chapter 8 – Conclusions

co
m

m
un

ic
at

io
n

ne
tw

or
k

co
m

m
un

ic
at

io
n

ne
tw

or
k

communication
network

...

o
ff

-c
h

ip
m

em
o

ry

M1

Mk

M2

...

M1

Mk

M2

...
ASIP2

.

communication
network

M1 M2 Mn
...

ASIP

CPU

...

ASIP1 DSPm DSP1 DSP2 DSPm
...

communication
network

M1 M2 Mn
...

DSP1 CPU1 ASIP...

communication
network

M1 M2 Mn
...

ASIP

M1 M2 Mp
...

Figure 8.3: A Future multimedia system, featuring hierarchical communi-
cation and a heterogeneous mixture of processing units.

• Primitive tasks that can be shared by different functions are im-
plemented as an independent subsystem. For example, the motion-
estimation block for the display-dependent picture improvement can
be used for inverse filtering of the motion-blur in LCD-based TVs,
but can also be applied to do 50-to-100 Hz conversion, or to generate
subfields for Plasma-based TVs.

• Locality of data is maximized by clustering functions in a subtree that
mainly intercommunicate within the subtree. For example, the block
denoted as ”BAB scaling, context calculation”, only communicates
within the VOP/sprite decoder.

• Tasks or functions of which the position in the task graph is not
fixed, should be implemented as separate subsystems. For example,

8.3 Future system design 263

TV application

MPEG 1/2/4 decoding

st
ill

-t
ex

tu
re

 d
ec

.
M

P
E

G
-4

,
JP

E
G

,
JP

E
G

 2
00

0
in

te
rla

ce
-t

o-
pr

og
re

ss
iv

e
co

nv
er

si
on

vi
de

o/
gr

ap
hi

cs
re

nd
er

er

display-dependent
picture improvement

pi
ct

ur
e-

ra
te

 c
on

ve
rs

.

image compositor

V
O

P
/s

pr
ite

 d
ec

od
er

off-chip
memory

level 3level 2level 1

digital
noise

reduction

analog
noise

reduction

host CPU,
application SW,
GUI, HW drivers

USB

PCI

IDE

general-
purpose IO

tr
an

sf
or

m
de

co
de

r

w
av

el
et

de
co

de
r

en
tr

op
y

de
c.

de
-in

te
rla

ci
ng

m
ot

io
n

es
tim

at
io

n
ge

om
et

ric
tr

an
sf

or
m

s

ra
st

er
iz

er
 s

et
up

ra
st

er
iz

er

re
so

lu
tio

n
en

ha
nc

ed
sp

at
ia

l u
p-

sc
al

in
gLCD

inverse motion-
blur filtering

motion
estimation

temporal
interpolation

ho
riz

on
ta

l
sc

al
er

ve
rt

ic
al

 s
ca

le
r

m
ix

er
/b

le
nd

er

tra
ns

po
rt-

st
re

am
 d

em
ux

O
D

 d
ec

od
in

g,
sc

en
e-

gr
ap

h
m

an
ag

em
en

t BAB scaling
context calc.

iScan,
AC/DC predict,

iQ, iDCT

upsampling,
MC, padding

RISC-like
entropy dec.

Figure 8.4: Partitioning of a TV application for mapping onto a hierar-
chical system-architecture template.

264 Chapter 8 – Conclusions

Table 8.2: Overview of the main video functionality of a future TV.

Functionality Description
Host CPU A CPU to control and execute the application, generate a

graphical user interface (GUI) by means of the GFX renderer,
and execute driver software for hardware abstraction.

Interconnections Interfaces to for example a hard disk drive (HDD), PCI bus,
USB peripherals, etc.

MPEG
decoding

MPEG-1/2/4 source decoding of video from a tuner, a DVD
player, or from the Internet (IP/TCP).

Noise
reduction

Removal of the transmission impairments, e.g. analog broad-
cast noise or quantization noise from digital source coding.

Image
composition

Scaling and mixing of several video streams or still pictures,
to provide e.g. aspect-ratio conversion, Picture-in-Picture,
multi-layer video blending, etc.

Rendering The mapping video objects onto the display memory. For
example, the projection of pictorial content in a 3-D world
onto a 2-D screen, according to a 3-D description from the
application.

Still-texture
decoding

Decoding of still pictures that are used for graphics rendering
(e.g. gaming), MPEG-4 decoding, or to enable photograph
display from a digital photo camera.

Interlace-to-
progressive
conversion

Generates progressive video that is required for high-quality
video processing in the vertical direction, e.g. vertical scaling
and picture-rate conversion.

Picture
improvement

Picture quality improvement, e.g. 50-to-100 Hz conversion
for CRT, subfield generation for Plasma display, PixelPlus
(Philips proprietary resolution enhancement), or Digital Re-
ality Creation (Sony proprietary resolution enhancement).

the interlace-to-progressive conversion can be applied directly after
decoding so that all further processing, such as scaling, blending, and
picture enhancement, is performed on a progressive format for maxi-
mum picture quality. However, as a drawback more system resources
are required to process the double amount of video lines. Hence,
it can also be attractive to perform the interlace-to-progressive con-
version at the final stage, just before the 50-to-100 Hz conversion.
Similar reasoning also holds for the motion-estimation block within
the image composition subsystem.

• Hardware sharing of ASIPs for multitasking is limited to reduce the
complexity. The cost of an ASIP for future systems in terms of silicon

8.3 Future system design 265

area is mainly determined by its state memory, of which the size is
proportional to the amount of concurrent tasks. Moreover, for mul-
titasking with real-time requirements, the throughput of the ASIP
needs to be raised. Consequently, multitasking of the ASIP for hard-
ware sharing does not gain much in silicon area but rather increases
the complexity of the system. Note that the above-given guideline
does not discourage hardware sharing of non-real time tasks, or tasks
for different functions that do not execute simultaneously. For exam-
ple, the motion-estimation block in the picture-rate converter can be
used for temporal interpolation (CRT or Plasma-based display) and
for inverse motion-blur filtering (LCD-based display), but is never ap-
plied simultaneously. Furthermore, still-texture decoding can be used
by the MPEG-4 decoder and the graphics renderer, but is not time
critical. Therefore, the still-texture decoding tasks can be performed
after each other.

• Another criterium for partitioning is the amount of communication
resources required for a subtree. For example, the highest commu-
nication network in the Figure 8.4 (level 3) connects 13 subsystems.
Depending on the communication infrastructure the number of sub-
systems may be too high. As a solution, this hierarchical level can be
subdivided into two separate subsystems, connected to an additional
fourth level. However, this may be conflicting with the previously
denoted criteria. For example, the highest level could be subdivided
in a front-end processing part and a back-end processing part. How-
ever, this would be problematic because the still-texture decoder is
a shared subsystem for both MPEG-4 decoding (front-end process-
ing) and graphics rendering (back-end processing). Thus the network
depth should be balanced with video-specific requirements.

At this point, we discussed the hierarchical partitioning of an application.
As a next step we can define the corresponding communication infrastruc-
ture. Although the hierarchical structure provides scalability for through-
put, it should also be scalable with respect to the physical length of the
wires. Thus the lay-out design of the wires on the chip should not impact
the timing of the overall system (timing closure). Moreover, besides the
scalability issue also predictability of the system is an important require-
ment. Due to the growing complexity of SoCs and the diverse nature of
future applications, this is becoming a difficult problem. Particularly for
real-time systems such as a TV system, predictability can only be achieved
by providing throughput and latency guarantees. Such guarantees make the
system more predictable and enable independent design of the subsystems,
because their communication do not affect each other. Both the scalability

266 Chapter 8 – Conclusions

and predictability issue can be solved by networks on a chip (NoC) consist-
ing of routers and interconnections as shown in Figure 8.5 [113].

MPEG 1/2/4 decoding

still-texture dec.
MPEG-4, JPEG,

JPEG 2000

tra
ns

po
rt-

st
re

am
 d

em
ux

O
D

 d
ec

od
in

g,
sc

en
e-

gr
ap

h
m

an
ag

em
en

t

VOP/sprite decoder

B
A

B
 s

ca
lin

g
co

nt
ex

t c
al

c.

iS
ca

n,
A

C
/D

C
 p

re
di

ct
,

iQ
,

iD
C

T

up
sa

m
pl

in
g,

M
C

, p
ad

di
ng

R
IS

C
-li

ke
en

tr
op

y
de

c.

Memory Memory

Memory Memory Memory

Memory Memory Memory Memory

tr
an

sf
or

m
de

co
de

r

w
av

el
et

de
co

de
r

en
tr

op
y

de
c.

router

router router

router

Figure 8.5: The future TV system with a network on chip for hierarchical
communication.

For the implementation of the routers, we can distinguish circuit switching
and packet switching. Circuit switching means that a physical point-to-
point connection is established by control signals that configures the setting
of the routers. For packet switching the control signals for the routers are
coded into the header of each data packet.

For the design network, the amount of physical interconnections between
the routers depends on the bandwidth requirements and the latency con-
straints of the connected functional blocks. Therefore, a traditional com-

8.4 Concluding statement 267

munication bus or a switch matrix may still be satisfactory for a part of
the hierarchical communication network in the system. In Figure 8.5 each
node of the hierarchical communication infrastructure contains only one
router. Consequently, between any two functional units in the system only
one possible communication path exists. To guarantee sufficient commu-
nication resources, it is also possible to provide multiple routers per node.
Such an approach enables the routing of data between any two functional
units, via several possible communication paths at the cost of more com-
plex routers and more wires.

When taking a bird’s eye view on the above-discussed example, the ar-
chitecture of high-performance multimedia video processing is becoming
gradually mature as it increasingly reflects the nature of the underlying
processing that takes place. Levels of granularity in computing and mem-
ory are also interconnected at distinct levels. This concept will lead to an
architecture that can be well matched to the complexity of the tasks to
be performed. By applying this approach, the cost efficiency of the sys-
tem design can be optimized for the application area at hand and requires
codesign of the system architecture and its functionality.

8.4 Concluding statement

For future design of consumer electronic systems, the main important start-
ing point is that cost will remain a driving factor. It has become clear that
the focus of design effort will shift towards the communication and memory
part of the system. Solutions can be offered to make the product broader
applicable by means of scalability. The developed solutions still require
proper dimensioning of the infrastructure, synchronization of processing
tasks, and so on, and once again, they depend heavily on the video func-
tions that need to be executed. This means that the architectural analysis
of the embedded video processing functions is indispensable in order to
realize cost-efficient designs of SoCs.

268 Chapter 8 – Conclusions

AppendixA
Operation of SDRAM-based

memories

SDRAM-based memories represent the main-stream market of stand-alone
memory devices. Because these devices significantly impact the overall
system cost, this appendix is dedicated to the operation of these devices.
Dynamic memory cells consist of one transistor and one capacitor which
can be charged or discharged, depending on the binary value it should rep-
resent. These DRAM cells are contained in an array of column address
lines and row address lines, which can be separately addressed. Moreover,
the memory device consists of several of such arrays, indicated as memory
banks and can be addresses with separate bank address lines (input pins
BA0 and BA1). With the Row Address Strobe (RAS) line, the Column
Address Strobe (CAS), the Chip Select (CS), and the Write Enable (WE),
commands can be issued like select row, read from a column address, write
to a column address, etc. Figure A.1 shows the block diagram of the DDR
SDRAM architecture.

DRAM-based memories provide a burst-access mode, enabling access to
a number of consecutive data words by giving a single read or write com-
mand. Because the reading of dynamic memory cells is destructive, the
content in a row of cells in the memory bank is copied into a row of static
memory cells (the page registers). Subsequently, read and write access to
this copied row is provided. The result after the required accesses in the

269

270 Appendix A – Operation of SDRAM-based memories

control
logic

bank 0
memory

array

bank 0
memory

array
bank 0

memory
array

bank 0
memory

array

page registers
& I/O gating

bank -
address
decoder

bank -
address
decoder

DDR
I/O

data
bus

address
register

address
lines

command
decoder

mode
register

Clock

command
lines

RAS
CAS
WE
CS

Figure A.1: Block diagram of a DDR SDRAM.

row has to be copied back into the (destructed) dynamic cells, before a
new row in the memory bank can be accessed. These actions of copying
data into the page registers and back, is referred to as row-activation and
precharging, respectively. During the copying, which takes considerable
time, the associated memory bank cannot be accessed for data transfer.
To prevent the loss of precious bandwidth, a multiple-bank architecture is
used, where each bank can be accessed alternatingly. Hence, a bank can be
accessed while other banks are activated or precharged. Furthermore, high
throughput is achieved by dividing the device into stages using pipelining
(at the expense of increased latency). When a memory row is activated,
random access of the columns within the page registers can be performed.
In each bank, only one row can be active simultaneously, but during the
random access of the page registers, switching between banks is allowed
without a penalty. Therefore, with a four bank device, four rows (one in
each bank) can be addressed randomly.

A.1 Memory commands

To explain the usage of SDRAM devices for media processing, this section
discusses the memory commands to control the above-outlined memory ar-
chitecture. Important to know is that SDRAMs provide burst access to
obtain a high bandwidth performance. This means that a number of con-
secutive data words are transferred to or from the memory by giving only
one read or write command. Note however, that several commands are
necessary to precharge a bank, to activate a row, and finally to issue a
read or write command, thereby requiring three command-input cycles.

A.1 Memory commands 271

Note furthermore that the data rate at the output is higher (DDR) than
the rate at the input (command rate). Therefore, to exploit the available
data bandwidth, the read and write accesses have to be burst-oriented.
The length of the burst is programmable and determines the number of
consecutive column locations that are accessed for a given read or write
command. Burst lengths of 1, 2 or 4 data words or the length of the full
page can be programmed for single-data-rate (SDR) SDRAM devices. For
current DDR SDRAM devices, the possible burst lengths are limited to 2,
4, or 8 data words. For the DDR-2 SDRAM standard under development,
the burst length will most probably be fixed to a burst length of 4. Once
a burst length is programmed, the memory rows are divided into succes-
sive units equal to the burst length. When a read or write command is
issued, only one of these burst units is addressed. The start of a burst
may be located anywhere within the units, but when the end of the unit is
reached, the addressing is re-initialized to the first word in the burst unit
and subsequently continues until the complete burst is transferred. Start-
ing a burst at another position than the beginning of a burst unit, is called
critical word first access. For example, if the burst length is four, the two
least-significant (LSB) column address bits select the first column to be
addressed within a unit. Thus if the binary value of the these bits is 00 the
sequential order of word access in the burst unit is 0, 1, 2, 3. If the value of
the bits is 01, the order is 1, 2, 3, 0. If the value is 10, the order is 2, 3, 0,
1. And finally, if the value of the LSBs is 11, the sequential order is 3, 0, 1, 2.

The burst length can be programmed in the mode register by means of
a load mode register command. Since reprogramming of the mode reg-
ister takes 4 to 6 cycles and requires precharging of all banks, the burst
length is usually only set once at initialization and remains equal during
operation. Once a read or write burst has been started, it can be stopped
with an explicit burst stop command or it may be interrupted by another
read or write command. This enables to program a burst length of BL =
8 and read for example only six words. Also such a partial burst access can-
not exceed the burst-unit boundaries. Moreover, due to timing constraints
memory device may still need more cycles than the length of a short data
burst. Hence, short data bursts usually lead to efficiency penalties. As a re-
sult, the burst-oriented access either causes transfer overhead when not all
data in burst unit is required or decreases the effective memory bandwidth.
However, stopping or interrupting a data burst is a particular interesting
feature for the SDR SDRAM for which a full-page burst length can be
programmed. It enables to access the row at any column position and to
stop it when the end of the requested data is reached. Critical-word-first

272 Appendix A – Operation of SDRAM-based memories

Table A.1: Memory command for SDRAM memories

desl - Ignore command: When the Chip Select (CS) input is high,
all inputs are neglected and the internal status is held.

nop - No operation: As long as this command is input, address
and data input are neglected and internal status is held.

act - Row active: This command selects a bank and activates an
addressed row by means of the address lines BA0 and BA1,
and by A0 through A11 respectively.

pre - Precharge selected bank: This command starts a precharge
operation for a selected bank.

pall - Precharge all banks: This command starts a precharge op-
eration for all banks. This command is useful for refreshing
of the device because all banks need to be precharge before
a refresh command.

read - Column address strobe (CAS) and read command: This
command starts a read operation from a selected column
in the page registers of a selected bank.

reada - Read with auto-precharge: This command starts a read op-
eration. After completion of the read operation, precharge
is automatically executed. This command is equivalent to
a read command followed by a pre command in the same
bank.

write - Column address strobe (CAS) and write command: This
command starts a write operation from a selected column in
the page registers of a selected bank.

writea - Write with auto-precharge: This command starts a write op-
eration. After completion of the write operation, precharge
is automatically executed. This command is equivalent to
a write command followed by a pre command in the same
bank.

bst - Burst stop in read operation: This command stops a burst
read operation and is disabled when auto-precharging is ap-
plied. It is not applicable for a burst write operation. More-
over, this operation is not available for DDR-2 SDRAM.

ref/self - Refresh: This command starts a refresh operation. There
are two types of refresh operation.

mrs/emrs - Mode register set / Extended mode register set: The DDR
SDRAM has a mode register and an extended mode register.
These are used to program the mode of operation, e.g the
burst length.

A.2 Timing constraints 273

access does not re-initialize the addressing during the transfer, since the
boundaries of burst unit in this case is the beginning and the ending of the
complete memory row. In the next generation DDR-2 SDRAM standard
which is under development, stopping or interrupting a data burst is not
allowed. This decision was taken by the standardization committee to in-
crease the potential speed performance. Consequently, transfer overhead
may severely decrease the overall performance. Table A.1 summarizes the
complete list of memory operations that can be issued by means of the
command lines.

A.2 Timing constraints

To understand how certain data-block transfers can be performed efficiently,
this section will discuss the most important timing parameters of DDR
SDRAM devices. Table A.2 shows the meaning of these parameters. Some
of them are a combination of parameters that can be found in the IC spec-
ification and depend on the CAS latency and the burst length. The CAS
latency, tCL, is a parameter that is used to define the delay between the
start of a read command (rising clock edge) and the moment in time that
the data from that read command becomes available at the outputs. The
CAS latency is expressed in terms of clock cycles and is determined by
the speed grade of the device and the clock frequency that is used in the
application. This parameter is programmed into the mode register, once
after power up. For Table A.2, the burst length is assumed to be BL =
8 and the CAS latency is chosen such that the device enables the highest
possible clock frequency. As explained before, it is necessary to frequently
refresh a dynamic RAM. Before a refresh command is issued, all banks
in the device need to be precharged. When the refreshing is finished, all
banks are precharged and may be activated. The DDR SDRAM can be
refreshed by means of an automatic refresh command or by means of a
self refresh command. For the first method, a refresh command has to be
issued explicitly satisfying the maximum refresh period. In the self refresh
mode, the clock signal is disabled, and the device remains refreshed until
this mode is left. Refreshing the memory consumes only limited memory
cycles (0.5 % of the cycle budget) and is therefore neglected in perfor-
mance measurements throughout this chapter. Figure A.2 shows how the
parameters of Table A.2 influences the timing of the device commands. To
access a data unit in the memory, first a row-activate command also called
Row Address Strobe (RAS) has to be issued for a bank to copy the ad-
dressed row into the page (static-cell registers) of that bank. After a fixed
delay tRCD (RAS to CAS delay), a read or write command also called

274 Appendix A – Operation of SDRAM-based memories

Table A.2: Legend of timing parameters (minimal latency).

tCL = CAS latency - time between read command and first output data
tRC = minimal time between subsequent row activates within the same

bank
tRAS = minimal time between a row activate and a precharge on the same

bank
tRCD = minimal time between a row activate and a column access (read

/ write) in the same bank
tRRD = minimal time between row activates in different banks
tRP = minimal time between a precharge and a row activate on the same

bank (precharge time)
tRPD = minimal time between a read command and a precharge
tWPD = minimal time between a write command and a precharge
tRWD = minimal time between a read command and a write command

in the same bank
tWRD = minimal time between a write command and a read command

in the same bank
tCCD = minimal time between a read / write command and a subsequent

read / write command in different bank
tREF = minimal time between a refresh command and the next activate

command
tREFC = maximal refresh period

Note:
tRPD = half the burst length (BL/2)
tWPD = half the burst length (BL/2) + time between the write com-

mand and the first data input (tDQSS) + write recovery time
(tWR or tDPL)

tRWD = half the burst length (BL/2) + the smallest integer number
of cycles larger or equal to the CAL latency, e.g. tCL = 2.5
→ 3 (dtCLe)

tWRD = half the burst length (BL/2) + time between the write com-
mand and the first data input (tDQSS) + internal write to
read command delay (tWTR).

Column Address Strobe (CAS) for the same bank can be issued to access
the required data units in the row. When all required data bursts in the
row are transferred, the corresponding bank can be precharged, which takes
tRP time. The time from row-activate command until the precharge may
not be less than the tRAS , which is the minimum time a row is active. The
precharging is required to prepare the bank for the subsequent row address-
ing in the same bank. Hence, the minimal time between two subsequent

A.2 Timing constraints 275

001122334455667788990011223344556677889900112233445566

R C R C
0 0 1 1

01234567
01234567

a a

P P

tCL

01234567

tRC

0 1

tRAS

tRCD

tRRD

R
0

tRP

reading writing

C
0

01234567

tDQSS

C
0

tRWD

C
0

tWRD

a

tRPD

clock

command
 bank

bank 0 data
bank 1 data
bank 2 data
bank 3 data

auto precharge
 bank

Note: P is precharge
R is activate row command
C is read or write command
Ca is column command followed by an auto-precharge
tRC is minimal row cycle time
tRAS is minimal row active time
tRP is precharge time
tRCD is minimal RAS to CAS delay
tCL is CAS to data latency

Figure A.2: Timing diagram of a typical DDR SDRAM device.

row-activate commands is the row-active time plus the precharge time tRP ,
i.e. tRC = tRAS + tRP . This so-called row cycle time is typically 10 cycles
for current DDR SDRAMs (see Figure A.2).

The clock numbers are indicated twice because both positive and nega-
tive clock transitions are used to access data. The memory commands are
provided at each positive clock transition only. The bottom of the figure
shows how four bursts of eight data words are read by four successive ac-
cesses, each in a different bank. Obviously, the elapse time between the
first data word from the first bank until the last data word from the fourth
bank, consumed 32 double-data-rate (DDR) cycles and is equivalent to 16
single-data-rate (SDR) input cycles. At this point in time both bank 0
and bank 1 have exceeded the the row cycle time tRC , a new row-activate
command can be issued immediately for those banks, without wasting valu-
able memory-bus cycles. It can be concluded, that interleaved access of the
memory banks provides optimal utilization of the memory-bus bandwidth.

276 Appendix A – Operation of SDRAM-based memories

Table A.3: Worst-case timing parameter values in cycles for maximum
throughput.

tRC =10 tWPD =8
tRAS =7 tRWD =7
tRCD =3 tWRD =6
tRRD =3 tCCD =1
tRP =3 tREF =12

tRPD =4 tREFC =1117

The values of the most important timing parameters from Table A.2 are
shown in Table A.3. The values are given in clock cycles. Note that the
actual data rate is twice the clock frequency. For example, during the row
cycle time tRC , 20 data words can be transferred.

AppendixB
MPEG decoding with

reduced memory access

This appendix proposes to slightly modify the MPEG decoding algorithm
to further reduce the off-chip memory bandwidth on top of the bandwidth
reduction achievement as shown in Chapter 5. For this modification, we
assuming that for cost efficiency no embedded buffer memory in the output
unit is used (see Table 5.5 and 5.7). As explained in Chapter 5, the burst
access mode of SDRAM-based memory leads to an overhead of data trans-
fer when accessing stored pictorial data. Bursts of data can be considered
as non-overlapping blocks of data that can only be accessed as an entity.
The previous subsection shows how pixel data can be mapped optimally
into these burst entities, dependent on access characteristics of the appli-
cation, e.g. the size and shape of the requested data block and its position
in the picture.

Summarizing the required memory accesses for MPEG decoding, we distin-
guish three different video-data streams. First, motion-compensated pre-
diction of pictures in MPEG. This stream requires the access of block-based
data, which may be located at any position in the picture and is therefore
not necessarily aligned with the data units in the memory (see Figure 5.11).
The second stream writes the reconstructed macroblocks into the memory.
These accesses are nicely aligned with the data units and do not cause any
overhead. The third stream reads the video line by line from the memory

277

278Appendix B – MPEG decoding with reduced memory access

for display. Figure B.1 shows a block diagram of an MPEG decoder, in-
cluding the accesses to the memory. Intuitively, it can be noted that the
optimal shape (dimensions) of the data units for minimal transfer over-
head are similar to the shape of the requested data blocks. For block-based
accesses, the shape of the data units should also be block oriented. For
line-based accesses, the data units are preferably horizontally oriented.

+

Motion
compenstion

Reference
pictures

Inverse
DCT

Output Video

writing of
macroblocks

Video out
unit

Reading for
display

Inverse
quantization

Zig-zag scan

Run length
decoding

Variable length
decoding

Input bitstream

Reading for
prediction

Figure B.1: Block diagram of an MPEG decoder with indicated memory
access.

Note that the block-based reading for prediction and the line-based read-
ing for display are contradicting with the optimization of the data unit
dimensions. To determine the influence of the individual memory accesses
to the overall bandwidth requirements, we outline the results of the pre-
vious subsection (Table 5.7) in somewhat more detail. Table B.1 shows
the bandwidth requirements of the different memory streams for the total
MPEG decoding process with data bursts of 64 Bytes. In this case it is
assumed that the decoder system does not contain embedded memory for
conversion of block-based data units that are transferred for display into a
line-based output. The bottom four rows in the table show that data units
with dimensions (32 × 2) result in minimum bandwidth requirements. If
data units of (16×4) are used, the line-based reading for display will result
in an overhead of 300 %, while the overhead for reading the prediction data
will be minimal. If data units of (32×2) are used, the line-based reading for

279

display is achieved with no more than 100 % transfer overhead. However,
the reading of data blocks for prediction is much less efficient.

Table B.1: Transfer bandwidth for MPEG decoding for various data-unit
dimensions.

Access data unit requested transferred req./transf.
function (M ×N) [Bytes] [Bytes] ratio [%]

(64× 1) 2187744576 457
Reading for (32× 2) 478871794 1436512832 300
prediction (16× 4) 1116667456 233

(8× 8) 1210167168 253
(64× 1) 455362560 100

Writing of (32× 2) 455362560 455362560 100
macroblocks (16× 4) 455362560 100

(8× 8) 455362560 100
(64× 1) 455362560 100

Reading for (32× 2) 455362560 910725120 200
display (16× 4) 1821450240 400

(8× 8) 3642900480 800
(64× 1) 3098469696 223

total (32× 2) 1389596914 2802600512 202
(16× 4) 3393480256 244
(8× 8) 5308430208 382

As an alternative solution, we propose to write the reconstructed mac-
roblocks twice into the memory; one time for prediction and one time for
display. Secondly, we propose to optimize the dimensions of the data units
for each storage stream separately to reduce their individual transfer over-
heads that are caused during reading. Although the double writing of the
reconstructed data causes additional data transfer, the transfer overhead
for reading of the prediction data is reduced significantly, resulting in a net
reduction of transfer bandwidth.

Following this for prediction, we store the reconstructed macroblocks in
data units with dimensions (16× 4). For display we store the macroblocks
in data units with dimensions (64 × 1). Table B.2 shows the results. The
relative bandwidth requirement has reduced from 202 % (Table B.1) to
178 %. Note that the reading for prediction and the reading for display
consume minimal transfer bandwidth. Unfortunately, the transfer band-
width for writing of the reconstructed macroblocks has doubled.
These numbers show the worst-case behavior because we assume that all

280Appendix B – MPEG decoding with reduced memory access

Table B.2: Transfer bandwidth for MPEG decoding with double writing.

Access requested transferred req./transf.
function [Bytes] [Bytes] ratio [%]
Reading for 478871794 1116667456 233
prediction
Writing of 455362560 910725120 200
macroblocks
Reading for 455362560 455362560 100
display
Total 1389596914 2482755136 178

output data also has to be stored as reference data for prediction. This is
the case for MPEG bitstreams that only contain I and P pictures. However,
most commercially available MPEG encoders also use B pictures to achieve
a higher performance (the product of compression ratio × picture quality).
For example, the bitstreams we used for the experiments have the following
sequence structure: I B P B P B P B I B

For such a sequence only half of the data has to be stored as reference
data for prediction (only I and P pictures). As a result, the total request /
transfer ratio further reduces to 163 %. Another commonly used sequence
structure contains two B pictures in between the reference pictures, thereby
even further reducing the bandwidth requirements.

Although the aforementioned solution writes the decoded data twice in
separate frame memories, the required memory size does necessarily in-
crease proportionally. For the conventional decoder, where the decoded
data is only stored once, slightly more than three frame memories are used.
In our proposed decoder implementation, four frame memories are needed
instead of three, even though half of the output data is written twice. Thus
50 % more data is written, whereas only 33 % more memory is required.
This is caused by the inefficient use of the three frame memories in the
conventional decoder.

Comparing a conventional MPEG decoder and a newly proposed decoder,
the reading for prediction, the writing of the decoded result and the reading
for display are scheduled in the three or four frame memories, respectively.
For the schedules as shown in Figure B.2 and B.3, the following considera-
tions are taken into account.

281

• Reading for display and reading for prediction can be performed si-
multaneously in the same frame memory.

• Reading for display and writing of the reconstructed macroblocks can
be performed simultaneously in the same frame memory. Both actions
scan the picture in the memory from the left to the right and from
the top to the bottom. The read action should be performed before
the data is overwritten by the write action.

For the figures, the following glossary of symbols applies:

W (n) - writing of the reconstructed macroblocks with n as the input
frame number;

Wp(n) - writing of block-based reference data for prediction with n as
the input frame number;

Wd(n) - writing of line-based video data for display with n as the input
frame number;

Rp(n) - reading for prediction with n as the input frame number;
Rd(n) - reading for display with n as the input frame number.

time [frame]

I(1) P(2) B(3) B(4) P(5) B(6) B(7) P(8) B(9) B(10)

W(1) Rp(1)

Rd(3)

Rp(1) Rp(1) Rp(5) Rp(5) Rp(5) Rp(5) Rp(5)

Rd(2)
Rp(2)

Rd(1)

Rp(8)

Rd(5)

Rp(2) Rp(2) Rp(2)Rp(2) Rp(8)

Rd(4) Rd(6) Rd(9)Rd(7)

input picture
types [I,P,B]

frame
memory1

frame
memory2

frame
memory3

W(3)

W(2)

W(4)

W(5)

W(6)
W(7)

W(8)

W(9)
W(10)

Rd(2)

Figure B.2: Schedule for accesses in the frame memories for a conven-
tional MPEG decoding system.

From left to the right, the figures show a specific read or write action in the
frame memories for successive frame periods. To evaluate the validity of
these schedules, the following observations can be made. First, the figures
show that at every frame period a picture is written (necessary for subse-
quent reading for display). Secondly, every frame period a picture is read
for display. As a third observation, it is shown that for every P-picture,

282Appendix B – MPEG decoding with reduced memory access

time [frame]

I(1) P(2) B(3) B(4) P(5) B(6) B(7) P(8) B(9) B(10)

Wd(1)

Wp(1) Rp(1) Rp(5)Rp(1) Rp(5) Rp(5) Rp(5) Rp(5)

input picture
types [I,P,B]

Wd(2)

Wd(3)
Rd(1)

Wp(5)

Wp(2) Wp(8)

Rp(1)

Rp(2)Rp(2) Rp(2) Rp(2) Rp(2) Rp(8)Rp(8)

Wd(4)
Rd(3)

Wd(5)
Rd(4)

Rd(2)
Wd(6)

Rd(6)
Wd(7)

Rd(7)
Wd(8)

Rd(5)
Wd(9)

Rd(9)
Wd(10)

frame
memory2

frame
memory3

frame
memory4

frame
memory1

Figure B.3: Schedule for accesses in the frame memories for the new pro-
posed system.

prediction data is read from the previously written I- or P- picture. Simi-
larly, for every B-picture, prediction data is read from the two previously
written I- or P-pictures. And finally, for the newly proposed decoder (Fig-
ure B.3) decoded data is written twice for I- and P-pictures and only once
(for display) for B-pictures. The schedule of Figure B.3 shows that with
four frame memories, we are able to perform the double writing action in-
side the MPEG decoder and only have 30 % extra memory capacity, even
though 50 % more data is written.

AppendixC
Refinement of the access

alignment grid

This appendix discusses another option to influence the optimization model
as discussed in Section 5.3. In Appendix B, the application algorithm was
modified to provide a different memory access pattern. This appendix pro-
poses to change the memory interface for addressing the data.

As explained in Chapter 5, the granularity of the data units is determined
by the width of the bus and the burst length, which is typically programmed
at configuration time. These data units can only be accessed as an entity.
For example, a burst length of eight and a 64-bit wide bus result in data
units of 64 bytes. To meet the high bandwidth requirements in Systems-on-
Chip, memory bus widths become larger. However, main-stream memory
devices typically have 4, 8 or 16-bit data busses. Therefore, most systems
include a memory configuration of several memory devices in parallel as
shown in Figure C.1.

C.1 Single addressable memory

In conventional systems, all SDRAM devices typically share the same ad-
dress lines and the data bus of each device (16-bit busses in the picture)
is combined to a 64-bit wide data bus. As a consequence of the widening
bus trend, the granularity of the data entities that can be accessed also

283

284 Appendix C – Refinement of the access alignment grid

Media Processing System

DSP CPUASIP1 ASIP2
ASIP =
Application
Specific IP

SDRAM
A

SDRAM
B

SDRAM
C

SDRAM
D

64-bit
data bus

16-bit
data bus

address
bus

Figure C.1: Traditional SoC with a memory configuration comprising four
parallel SDRAM devices.

increases. At least one word is accessed simultaneously, i.e. 8 bytes.

Figure C.2 shows how the memory addresses increment by eight for a mem-
ory map comprising a 64-bit wide memory configuration. This coarse-grain
data access may have significant impact on the efficiency of memory trans-
fers as outlined in Chapter 5. Figure C.3 shows an example of the organi-
zation of pictorial data in the above-mentioned memory configuration. For
this example, the memory addresses sequentially increase when scanning
the picture from the left to the right, and from the top to the bottom. To
access a data block of 80 bytes (20 pixels from 4 different video lines) 128×4
bytes are accessed resulting in a transfer overhead of 540 %. Particularly
for accessing small-grain data blocks, the transfer overhead increases signif-
icantly for increasing data-burst sizes. Although the size of the data bursts
is inherent to the bus width and the burst length, part of the overhead is

memory
addresses

0x000
0x008
0x010
0x018
0x020
0x028
0x030
0x038
0x040
0x048
0x050
0x058

word 0
word 1
word 2
word 3
word 4
word 5
word 6
word 8
word 9
word 10
word 11
word 12

A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D
A B C D

Figure C.2: The memory map of a 64-bit wide memory configuration.

C.2 Separately addressable memory 285

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

data segment
of interest

Video
lines

Video pixels

0x0000 0x0008 0x0010 0x0018

Figure C.3: Transfer overhead for a requested data block from a traditional
memory configuration.

caused by the discrete locations of the data bursts. Memory accesses can
only be applied at the alignment grid of the data bursts. For Figure C.3,
the overhead would only be 270 % (instead of 540 %) if the 64-Byte trans-
fers could start at the beginning of the requested data block.

To reduce the memory bandwidth, part of the transfer overhead can be
reused with a local cache memory by exploiting this overhead data for sub-
sequent data-block accesses (spatial locality of data). However, in such a
system, the cache performance could be improve further when the start lo-
cation of the data burst was not necessarily aligned with the 64-Byte mem-
ory grid. It would enable the system to capture that data in the transfer
overhead that has a high probability of reuse for subsequent data-block ac-
cesses, i.e. a high cache-hit potential. Although the access of a data burst
at arbitrary positions in the column would be optimal, any refinement in
the alignment grid would improve the bandwidth efficiency.

C.2 Separately addressable memory

As mentioned before, most SoC contain a memory configuration with a
shared address bus (see Figure C.1). However, by having multiple ad-
dress busses, each device can be addressed differently while still providing
the same total bandwidth. This subsection proposes a memory controller
which provides different addressing for several memory devices to refine the
alignment grid although the amount of bytes within a data burst remains
equal. Part of the address lines are still shared by all memory devices such
as the bank address lines and the row address lines. For the remaining part

286 Appendix C – Refinement of the access alignment grid

of the address bus the SoC provides separate address lines for each memory
device. The corresponding memory configuration is shown in Figure C.4
This proposal provides more flexibility in addressing to reduce the transfer

Video Processing System

DSP CPUASIP1 ASIP2
ASIP =
Application
Specific IP

SDRAM
A

SDRAM
B

SDRAM
C

SDRAM
D

64-bit
data bus

16-bit
data bus 15-bits

address bus

Figure C.4: SoC with a memory configuration comprising four parallel
SDRAM devices, each having shared and dedicated address
lines.

overhead and to control the memory location of the transfer overhead (for
improvement of cache performance). The amount of non-shared address
lines determines the granularity of the data entities and the amount of
concurrent data entities. For the above-shown example configuration, four
concurrent data entities are accessed, each containing 16 bytes. To access
the data block of 20 pixels from 4 different video lines in the system of
Figure C.4, 64× 4 bytes are accessed (see Figure C.5) device B, C and D
are addressed equally, but device A is addressed at the preceding memory
space. Due to the finer alignment grid, only one data burst (per device)
per row (64 bytes in total) is sufficient to access the requested data block
whereas two data bursts per row were required in Figure C.3. Moreover,
the location of a part of the overhead can be selected. In this case a selec-
tion can be made between the column in front of the requested data block
or behind the requested data block. This flexibility can be exploited to
improve the cache performance.

Obviously, the use of multiple address busses obviously adds cost to the
design. This holds in particular when the memory is located off-chip. Mul-
tiple address busses require more pins on the chip device (more expensive
device package) and increase the power. However, when only the column
address lines are shared, only a relative small number of address lines need
to be implemented for a multiple times. For example, for memory devices
that have 256 columns within a row, only 8 address lines are implemented

C.2 Separately addressable memory 287

A D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D

A B C D A B C D A A B C D

A B C D A B C D A D A B C D

A B C D A B C D A D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

B

B

B

D

C

C

C

B C

Video
lines

0x0000 0x0008 0x0010 0x0018

Video pixels

Figure C.5: Transfer overhead for a requested data block from the sepa-
rately addressable memory configuration.

a multiple times. Besides the additional address lines, also a small part
of address generation in the memory controller needs multiple implemen-
tations. However, for a system with separate column address lines only,
this additional complexity is very small. Note that the additional costs for
multiple address busses are only considerable for off-chip memory. For SoC
with embedded DRAM, the additional costs are negligible.

288 Appendix C – Refinement of the access alignment grid

AppendixD
Video-specific caching

Section 6.2 discusses caching as a technique for reduction of the memory
bandwidth, while maintaining the picture quality. The discussed video-
specific optimization as discussed in Section 6.2 assumes some basic knowl-
edge of caching and its applicability for video processing, which is explained
here.

D.1 Basics of caching

From the earliest days of computing, programmers have desired unlimited
amount of high-speed memory. Von Neumann [25] indicated a memory
bottleneck because one single operation in a CPU requires at least two
memory fetches, i.e. one to load the instruction and at least one for ac-
cessing the operand data. Patterson [98] extrapolated the development
of programmable processors and off-chip memories, using Moore’s law. He
indicated an ever increasing performance gap between the CPUs and its ex-
ternal memory. The performance of general-purpose CPUs increases with
60 % every year whereas the latency to off-chip memory reduces with only
7 % every year.

Although external memories (SDRAM) have a large capacity, they are
relatively slow, and hence offer a limited data bandwidth and a larger la-
tency than SRAM-based memories. Moreover, as explained in Section 5.3,
the data can only be accessed efficiently on a coarse grain of data pack-
ets. This system bottleneck will continuously increase with the advancing

289

290 Appendix D – Video-specific caching

technology. Patterson and Hennessy [70] describe how large memory sizes
and fast memory access can be exploited both using memory hierarchy.
The first and lowest level close to the processor is a relative fast mem-
ory. These memories are more expensive per bit than the slower memories
and thus are usually smaller. How higher the memory level, the slower
and the bigger they become. In common practice, the low-level memories
are implemented with SRAM (static random access memory) whereas the
higher-level off-chip memories are implemented with DRAM (dynamic ran-
dom access memory). In computer systems, an even higher level is often
implemented by means of an magnetic disk. The goal of a hierarchical
memory system is to present the user with as much memory as possible
in the cheapest technology, while providing access at the speed offered by
the fasted memory. In such a caching system, the memory content on a
level close to the processor is a subset of the memory content at a level
further away. The highest memory level contains all data stored. The prin-
ciple of caching is based on the locality property of data. In [70], systems
distinguish two types of locality.

• Temporal locality (locality in time): if an item is accessed, it is likely
to be accessed again soon.

• Spatial locality (locality in space): if an item is accessed, nearby items
with similar addresses are likely to be referenced soon.

If the addressing of subsequent accesses are randomly located in the mem-
ory address space, the locality of reference is poor. Hence the cache per-
formance will be poor. However, if the access pattern is very deterministic,
efficient caching can be implemented.

Let us now define some terms that will be used in the remainder. If the
data requested by the processor appears in to be in the cache, this is called
a hit . If the data is not found in the cache, the request is called a miss.
Consequently, the hit rate is often used as a measure of the performance of
the memory hierarchy, representing the fraction of the memory references
that was actually present in the cache. Now let us start with a simple cache
to explain the basics. First, how do we know if a data item is in the cache?
And secondly, if it is, how do we find it? If each memory word can go in
exactly one place in the cache, we will know to find it if it is in the cache.
The simplest way to assign a location in the cache for each word in the
memory is to assign the cache location based on the address of the word
in memory. This cache structure is called direct mapped , and is usually
simple to implement. Traditionally, almost all direct-mapped caches use
the modulo operation. Thus (cache address) = (memory address) modulo

D.1 Basics of caching 291

(size of the cache). As we will see later, this relation that associates data
in the higher-level memory to a certain cache location is different for video-
specific caches. Although direct mapping results in a unique cache location
for each memory word, each cache location does not correspond to a unique
location in the memory. The existence of a word in the cache is proven by
means of an additional tag field for each cache location. The tag contains
the address information required to identify whether a word in the cache
corresponds to the requested word. The tag only needs to contain the upper
portion of the address, corresponding to the bits that are not used as an
index in the cache. Figure D.1 shows how the lower three bits of a memory

02...331 ...
memory address

=

Hit

Data

Valid Tag Data

data unit
size

1516 ...

cache size

8k
entries

64 bits

Figure D.1: A basic cache implementation using a tag field for comparison.

address are not used because they address individual bytes within one cache
location. In the sequel of this appendix, one cache location is referred to as
a cache line. Thus for the example as depicted in the figure, one cache line
contains a 64-bit word, assuming that individual words can be transferred
from main memory. The adjacent 13 bits are used to identify a unique
position in the cache whereas the remaining bits resemble the number of
possible memory locations that map onto the same cache line. Hence, the
value of these bits is stored in the tag field of the cache to identify the exact
memory location. If a cache line is empty, e.g. when the processor starts

292 Appendix D – Video-specific caching

up, we need to know that the tag should be ignored for such entries. This is
accomplished with the so-called valid bit , which indicates whether a cache
line contains a valid address. Figure D.1 shows that a FALSE valid bit in
a selected cache line results in a FALSE value at the hit output, meaning
that the requested data is not contained in the cache. To determine the
size of the cache, the number of cache lines is multiplied with the num-
ber of bits for the cache line, for the tag, plus one bit for the valid. Thus
for the above-depicted example, the cache is 8 k ×(64+16+1) = 846 kbits.

Up to this point, we have only discussed a simple placement scheme: One
block can go in exactly one place in the cache. Such type of cache is called
a direct mapped cache. There is actually a whole range of schemes for plac-
ing blocks. For example, it is also possible to place a block in any location
in the cache instead of one unique location. Such a scheme is called full-
associative, because a block in memory may be associated with any entry
in the cache. To find a given block in such a cache, all the cache lines
in the cache must be searched because a block can be placed in any one.
Commonly, such a scheme is implemented by simultaneously comparing the
memory address tags with all tag entries in the cache. These comparators
significantly increase the hardware cost, effectively making full-associative
placement only practical for caches with small numbers of cache lines. In
between the direct-mapped and the full-associative placements, there is a
so-called set-associative placement. Such a cache consists of sets, where
each set operates as a direct-mapped cache. However, each data unit can
associated with each set. For example, a four-way set-associate cache con-
sists of four sets. Thus, a data unit in the background memory can be
mapped in one of four sets. Within the set, the data unit is associated with
only one of the cache lines. Summarizing, with an 4-way set-associative
cache, each data unit can be stored in four different cache lines in the
cache.

D.2 Caching of 2-D video data

As mentioned above, the principle of caching is based on the locality prop-
erty of data. However, does this property also hold for video data? Let us
discuss an example. When applying video filtering in horizontal direction
with dedicated hardware, indeed the same data samples are used to cal-
culate successive pixels, i.e. for a six-tap filter each sample is used in the
calculation of six different pixels. For each new filtered output pixel one
new input pixel is read in the filter taps and replaces the least-recently read
pixel of the six. This reading of the pixels is done in a sequential order.

D.2 Caching of 2-D video data 293

The temporal locality is very high since each sample is used six times in
a row, directly after each other. For vertical filtering and many more ex-
amples, a similar reasoning holds. The usage of memory for the filter taps
limits the data traffic between the lower-level memory (integrated in the
filter functionality) and the higher-level memory to a minimum, i.e. each
pixel is read only once. However, it is still debatable to call these local
integrated memories a cache. In this appendix we define a memory close
to the processor to be a cache, if it is transparent for the processor, i.e. the
system without the cache is still operational and has the same functional
behavior. For the above-mentioned filter function this does not apply. The
filter operations apply local addressing of the embedded memories or use
hardwired connections to the memory cells to access the data instead of
addressing the global address space.

Typical examples that require data-dependent access to a large memory
space are MPEG encoding and decoding, field-rate conversion, and motion-
compensated de-interlacing. In all these examples, the accessed memory
locations are determined by means of calculated motion vectors. For ren-
dering of video textures in a three-dimensional space, the accessed memory
locations depend on the geometric transformations. Only for a few func-
tions, such as block-based motion estimation, there is some temporal local-
ity, because there is a probability that the same data will be accessed for
matching successive blocks. However, for the majority of video functions,
the temporal locality is limited. Video data appears to be hardly reused,
so that caching is not suitable. On the other hand, there is usually a large
amount spatial locality. For example, if a macroblock (MB) for MPEG
decoding is read for prediction, the probability is large that the adjacent
macroblock on the right side is read successively. This property can be ex-
ploited with a cache by means of prefetching to reduce the average latency
of a memory request. Unfortunately, the bandwidth which is the critical
parameter in streaming application, is not reduced.

As was discussed in Chapter 5, DRAM-based memories are accessed in
burst mode, leading to transfer overhead. Due to the spatial locality of
streaming applications, this transfer overhead often contains part of the
data that is requests successively. Consequently, caching can be used to
reduce this overhead. In the following section we gradually modify a cache
to improve its applicability for video-data access. For example, the address
of memory addresses is replaced by addressing via pixel coordinates and a
picture address offset. Furthermore, data sets inside the cache are regarded
as two-dimensional memory spaces.

294 Appendix D – Video-specific caching

D.2.1 Associating cache lines within the set of a cache

The main difference between a conventional cache and a cache for streaming
video is the concept of two-dimensional data, i.e. there is not a one-to-one
mapping of spatial locality in pictures and spatial locality of data in the
memory space. For 2-D data, a relation exists between the coordinates of
pixels (px, py) and the physical memory addresses A. If data is written
sequentially into the memory in a scanning order of the picture from left
to right and top to bottom, an address location A is calculated by

A = picture offset + py × line width + px, (D.1)

where the ’picture offset’ is an address pointer to the start of the picture,
and the ’line width’ is the width of a video line in units of bytes. Due to
this mapping, spatial locality of pixels in the picture does not necessarily
mean that this locality is also present in the memory and hence is there-
fore not exploited by a “standard”cache. For the mapping as defined by
Equation (D.1), two adjacent pixels in the vertical direction are linewidth
bytes located apart from each other.

05 ...31 ...

convert

cache
addressing

cache size

picture offset

coordinates
splitter

picture offset
pixel
addressing

location
within a 2-D

data unit

pixel
coordinates

2-D data-unit
coordinates

cache line
coordinates

cx cy

picture offset

py px

dx dy

tag

Figure D.2: Association of memory addresses with cache-line coordinates.

To understand the mapping of video data into sets of a cache, we first in-
troduce the concept of 2-D sets. As mentioned before, the mapping of data
within a set is equivalent to a direct-mapped cache. A 2-D set is a two-
dimensional arrangement of cache lines that can be addressed by means of
2-D coordinates. Conventionally, a cache-line address c is associated with
memory address A according to:

D.2 Caching of 2-D video data 295

c = (A) modulo (set size)

In a 2-D set, the associating is done according to:

cx = px modulo (horizontal set size), and
cy = py modulo (vertical set size).

Construction of the corresponding tag is less straightforward. For a con-
ventional 1-D cache, the tag is simply calculated as follows:

tag = A / (set size)

However, for the 2-D cache set this is not sufficient, since the positions
of pixels in the picture are not related to a memory address. Therefore, it

00 01 10

0

1

cache set

00000

00001

00010

00011

00100

memory

00000 00001 00010 00011 00100 00101 00110 00111

cx coordinate

c y
co

or
di

na
te

pxcoordinate

p y
co

or
di

nt
at

e

11

Figure D.3: Addressing of a two-dimensional cache set.

is required to include an offset address that indicates the start of a picture.
Figure D.2 shows a schematic address translation that maps pixel data of
a picture onto cache lines. First, the pixel coordinates are split into coordi-
nates of the 2-D data units as discussed in Chapter 5, and a separate 6-bit
address to access the individual bytes within the data units. Secondly, the
picture offset and the data-unit coordinates are converted to a tag and co-
ordinates that address the cache lines within the cache set. Conceptually,

296 Appendix D – Video-specific caching

this scheme can be considered as depicted in Figure D.3. The figure shows
how the modulo operation divides the picture is into adjacent blocks of 4×2
data units. Moreover, it shows how these data units map onto the cache
lines which are addressed by coordinates. Notice that a tag consists of two
parts. One part addresses the corresponding block of 4×2 data units. The
second part comprises the picture offset, which is similar for all cache lines.
To reduce the space for storing the tags, the picture offset can be isolated
from the tag and stored once per set.

32 pixels

2

16 pixels64 pixels
1 line

64×1 mapping 32×2 mapping 16×4 mapping

4

Figure D.4: Equal set coverage for different cache line dimensions in a
two-way set-associative cache.

The 2-D size of a cache set in pixels and video lines depends on the dimen-
sions of the data units and the amount of horizontal and vertical data units.
This is depicted in Figure D.4, where equally-sized sets contain different
amount of data units in horizontal and vertical direction. The width and
height of a set is determined by the spatial locality of successive memory
accesses, whereas the dimensions of the data units is mainly determined by
the dimensions of the requested data blocks (see Subsection 5.3.2).

D.2.2 Two-dimensional set-associative caching

The previous subsection has presented the concept of 2-D sets and has
shown how the cache lines can be associated with the pixel data. Figure D.5
shows some examples of a direct-mapped 2-D cache, a 2-way set-associative
2-D cache, and a full-associative 2-D cache, where the sizes of the depicted
caches are equal, i.e. eight cache lines. For the direct-mapped cache ex-
ample, the picture is divided into adjacent blocks of 4 × 2 data units, as
discussed before. If the cache contains more sets of cache lines, e.g. a 2-
way set-associative cache, each data unit can be associated with one cache
line per set. Consequently, when accessing a data unit in the memory, the
system will search in two cache lines for availability of the data unit. In

D.2 Caching of 2-D video data 297

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

00 01 10

0

1

Direct mapped

11

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

Search

0 1

 two-way set associative

ta
g

ta
g

Search

ta
g

ta
g

ta
g

Full associative

Search

0

1$
line

$
line

$
line

$
line

$
line

$
line

$
line

$
line

$
line

$
line

$
line

$
line

$
line

Figure D.5: Equally-sized set-associative caches with different amount of
cache lines per set in horizontal and vertical direction.

case of a full-associative cache, all cache lines have to be searched to check
the availability of the data unit.

The previous subsection already explained that set-associative caches are
more complex that direct-mapped caches, due to the compare operations
to search through all cache lines that can be associated with a data unit.
However, the drawback of a direct-mapped cache is that written data can
only replace the content of one cache line, even if it contains valuable data.
In set-associate caches a data unit to be placed in cache can be associated
with more cache lines, thereby enabling replacement of the least useful data
in cache. Figure D.6 shows how a set-associative cache is implemented to-
gether with the address translation unit. This translation unit addresses the
cache lines of each cache set by means of coordinates (cx,cy). Subsequently,
the tag of these cache lines is compared with the tag of the requested data
unit. If one of the comparisons is successful, it routs the content of the
corresponding cache line to the cache port and reports a cache hit.

D.2.3 MPEG-specific caching

The mapping of pixel data onto cache sets as discussed in Subsection D.2.1
is limited to its use for storing one video picture. However, many functions
exist that reference several pictures in the background memory. For exam-
ple, if a cache is used by a motion-compensation unit in an MPEG decoder,
prediction data can be referenced in a previous picture and a next picture.
In such situations, a direct-mapped cache will mix the cache data of one of
the reference pictures by accessing the other picture and vice versa. As a
solution, we can increase the amount of sets to provide more cache lines that
correspond with the same pixel coordinates. Alternatively, we can partition
the sets of the cache into subsets, where each subset may contain a differ-

298 Appendix D – Video-specific caching

===

05 ...631 ...

cache index /
tag splitter

Address

Data unit
size

tag y

0 cx

cy

1

1

0

=

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

va
lid

ta
g

Hit

m
ux Data

4-way
set associative

cache
x

Figure D.6: Implementation of a four-way set-associative cache.

ent picture offset. This enables a less costly direct-mapped cache without
the cache content mixing problem. An example of such a cache implemen-
tation for a motion-compensation unit in an MPEG decoder, is depicted
in Figure D.7. In this cache, the references with different ’picture offset’
address pointers will be associated with different 2-D subsets. The example
in the figure shows subsets for referencing a forward reference picture and a

Direct mapped cache

0 ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

0

1

00 01 10 11 00 01 10 11

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

ta
g

forward luminance ref picture backward luminance ref picture

forward chrominance ref picture backward chrominance ref picture

Figure D.7: An example direct-mapped cache for multiple video streams.

D.3 Replacement strategy 299

backward reference picture separately for luminance and chrominance data.
Figure D.7 furthermore shows that the partitioning into subsets even allows
unequal sizes. Because the chrominance data in an MPEG decoder is twice
as small in vertical direction as the luminance, the size of the correspond-
ing subset can also be twice as small. Also in the horizontal direction, the
two color components are twice as small, but here it is assumed that two
color components are located in the same picture memory where each CrCb

duplet is located in subsequent bytes of the memory. Hence, in horizon-
tal direction the size of the subset for chrominance is equal to the one for
luminance.

D.3 Replacement strategy

Up till now, we have discussed the mapping of the global address space
onto the cache sets. However, we did not discuss in which of the sets the
data are written in case of a set-associative cache. The choice for this is
determined by the so-called replacement strategy. As long as one or more of
the associated cache lines in sets indicate invalid content, data can be stored
without overwriting other valuable cache data. Otherwise, the replacement
strategy determines the cache line of which its content will be replaced.
Many replacement strategies have been proposed in the literature. For the
case of MPEG decoding we have evaluated the following basic replacement
strategies.

• Least recently used (LRU) – This algorithm is the most popular one.
It requires bookkeeping of the sequential order in which data in the
cache is used. For example, in an eight-way set-associative cache, a
data unit can be associated with eight different cache lines. Hence,
each cache line contains three bits to indicate the sequential order
in time in which the eight cache lines are accessed. Thus, for such a
cache each cache line consists of a tag, a valid bit, three LRU bits and
a 64-Byte data buffer (if one cache line = 64 bytes). After each cache-
line access, all associated eight 3-bit counters are updated. This LRU
algorithm exploits temporal locality and assumes that the probability
of accessing data that was already accessed before, decreases when in
the mean time other memory location are accessed. Another well-
known replacement policy that is quite similar is the Least frequently
used (LFU) algorithm. [114].

• Least recently written (LRW) – This is a more simple replacement
strategy [115] that is very similar to the LRU algorithm with the
exception that it only measures the time from the first time it was

300 Appendix D – Video-specific caching

accessed. Because the first access of a data unit always start with a
cache miss, the algorithm only needs to consider data that is copied
from the memory into the cache. LRU assumes that the probability
of reusing data is maximal after each re-access, even if it was already
accessed several times before. As opposed to LRU, LRW assumes that
the probability of reuse continuously decreases after it was written
in cache, even after re-accessing this data. For the MPEG decoder
function this might be a valid assumption, since temporal locality is
limited. Furthermore, the spatial distance between prediction data
for successive macroblocks continuously increases after it was accessed
the first time. For the implementation of LRU, the cache lines that
are associated with the same memory address are basically used as
a FIFO. After data is written in the cache line, a pointer indicates
the set which contains this most-recently written data unit. For each
new data unit, the pointer is cyclically incremented. Consequently,
the data that was written least recently is overwritten. This algorithm
only requires a pointer for each set of cache lines that are associated
with the same memory address and requires only one pointer update
per cache write. Thus, an eight-way set-associative cache contains
one pointer per eight cache lines.

• Largest Manhattan distance – The above-mentioned replacement poli-
cies are based on the temporal locality property. Another class of
replacement strategies is more based on the spatial locality property.
The largest Manhattan distance is an example replacement strategy
of such a class. The cache lines with the largest Manhattan distance
is defined as:

|dref
x − dcl

x |+ |dref
y − dcl

y |, (D.2)

with (dref
x , dref

y) the coordinates of the data unit in the picture and
(dcl

x , ccl
y) the coordinates of the data units in a cache line to be com-

pared. This algorithm intuitively fits well to a motion-compensation
unit which accesses data according to a motion vector. However, a
drawback of this replacement policy is the distance calculations ad-
ditional to the comparison as used for LRU.

Summarizing, the following results have been adopted for the experiments
in Chapter 6. The LRW strategy was chosen as the best replacement
strategy for our MPEG decoder system. However, it was shown that a
direct-mapped cache offers similar performance as the more complex set-
associative cache, so that finally a replacement strategy was required. The
cache will be organized into two-dimensional cache data sets to associate

D.3 Replacement strategy 301

with two-dimensional data units. The optimal dimensions of the data units
and size of the cache data sets will be discussed in Chapter 6.

302 Appendix D – Video-specific caching

References

[1] M.W. Maier, and E. Rechtin, The Art of Systems Architecting, p. 2,
CRC Press LLC, 2002.

[2] E. Rechtin, Systems Architecting, Creating & Building Complex Sys-
tems, p. xiv, Prentice-Hall, Inc., 1991.

[3] F.J. Bingley, “A half century of television reception,” Proc. of the
IRE, vol. 50, pp. 799–805, May 1962.

[4] P. Lippens et al., “A video signal processor for motion-compensated
field-rate upconversion in consumer electronics,” IEEE Journal of
Solid-State circuits, vol. 31, no. 11, pp. 1762–1769, Nov. 1996.

[5] J. Veerhoek and A. Stuivenwold, “Economy picture-in-picture
processor,” Philips woldnews, www.semiconductors.philips.com
/news/publications/lists/worldnews/7/3/, vol. 7, no. 3, pp. 3.27, July
1998.

[6] P.H.N. de With, E.G.T. Jaspers, J.L. van Meerbergen, A.H. Timmer,
and M.T.J. Strik, “A video display processing platform for future TV
concepts,” IEEE Trans. on Consumer Electronics, vol. 45, no. 4, pp.
1230–1241, Sept. 1999.

[7] Standard, ITU-T Rec.H.262 — ISO/IEC 13818-2, 1995.

[8] Joint Final Committee Draft of Joint Video Specification, ITU-T Rec.
H.264 — ISO/IEC 14496-10 AV, Sept. 2002.

[9] E.G.T. Jaspers and P.H.N. de With, “A generic 2D sharpness en-
hancement algorithm for luminance signals,” in Proc. of 6th Int.
Conf. Image Processing and its Applications, July 1997, vol. 2, pp.
269–273.

303

304 References

[10] J.G.W.M. Janssen, J.H. Stessen and P.H.N. de With, “An advanced
sampling rate conversion technique for video and graphics signals,”
in Proc. of 6th Int. Conf. Image Processing and its Applications, July
1997, vol. 2, pp. 771–775.

[11] E.G.T. Jaspers, P.H.N. de With and J.G.W.M. Janssen, “A flexible
heterogeneous video processor system for TV applications,” IEEE
Trans. on Consumer Electronics, vol. 45, no. 1, pp. 1–12, Febr. 1999.

[12] E.G.T. Jaspers, and P.H.N. de With, “Architecture of embedded
video processing in a multimedia chip-set,” in Proc. of IEEE Int.
Conf on Image Processing, ICIP’99, Oct. 1999, vol. 2, pp. 787–791.

[13] E.G.T. Jaspers and P.H.N. de With, “Chip-set for video display of
multimedia information,” IEEE Trans. on Consumer Electronics,
vol. 45, no. 3, pp. 706–715, Sept. 1999.

[14] E.G.T. Jaspers, B.S. Vissers, and P.H.N. de With, “Synchronization
of video in distributed computing systems,” in Proc. of the SPIE
– Visual communications and Image Proc. 2000, VCIP 2000, June
2000, vol. 4067-3, pp. 1430–1440.

[15] E.G.T. Jaspers and P.H.N. de With, “Bandwidth reduction for video
processing in consumer systems,” IEEE Trans. on Consumer Elec-
tronics, vol. 47, no. 4, pp. 885–894, Nov. 2001.

[16] E.G.T. Jaspers, Patent Application – Method for storing data ele-
ments, PHNL020138.

[17] E.G.T. Jaspers, Patent Application – Address space, bus system,
memory controller and device system, PHNL020098.

[18] E.G.T. Jaspers and P.H.N. de With, “Compression for reduction of
off-chip video bandwidth,” in Proc. of the SPIE – Media Processors
2002, Jan. 2002, vol. 4067-3, pp. 110–120.

[19] E.G.T. Jaspers and P.H.N. de With, “Embedded compression for
memory resource reduction in MPEG systems,” in Proceedings of
IEEE Benelux Signal Processing Symposium, SPS-2002, March 2002.

[20] P.H.N. de With, E.G.T. Jaspers, A.H. Timmer, and J.L. van Meer-
bergen, “A flexible heterogeneous video processing architecture for
powerful HQ TV applications,” in IEE Proc. Int. Conf. Image Pro-
cessing and its Application, July 1999, vol. 1, pp. 122–126.

References 305

[21] M.J. Rutten, J.T.J. van Eijndhoven, E-J. D. Pol, E.G.T. Jaspers,
et al., “Eclipse - heterogeneous multiprocessor architecture for flex-
ible media processing,” in Proc. of the workshop on Parallel and
Distributed Computing in Image Processing, Video Processing, and
Multimedia, PDIVM’2002, April 2002.

[22] M.J. Rutten, J.T.J. van Eijndhoven, E-J. D. Pol, E.G.T. Jaspers, et
al., “Eclipse - heterogeneous multiprocessor architecture for flexible
media processing,” IEEE Design & Test of Computers, vol. 19, no.
4, pp. 39–50, July/Aug. 2002.

[23] E.B. van der Tol and E.G.T. Jaspers, “Mapping of MPEG-4 decoding
on a flexible architecture platform,” in Proc. of the SPIE – Media
Processors 2002, Jan. 2002, vol. 4674, pp. 1–13.

[24] E.G.T. Jaspers, et al., “System-level analysis for MPEG-4 decoding
on a multi-processor architecture,” in Proc. of the workshop on Paral-
lel and Distributed Computing in Image Processing, Video Processing,
and Multimedia, PDIVM’2002, April 2002.

[25] J. Backus, “Can programming be liberated from the von Neumann
style? a functional style and its algebra of programs,” Communica-
tion of the ACM, vol. 21, no. 8, pp. 613–615, Aug. 1978.

[26] S. Rathnam and G. Slavenburg, “Processing the new world of inter-
active media,” IEEE Signal processing Magazine, vol. 15, no. 2, pp.
108–117, March 1998.

[27] S. Purcell, “The impact of Mpact 2,” IEEE Signal processing Maga-
zine, vol. 15, no. 2, pp. 102–107, March 1998.

[28] R.J. Gove, G.J. Hewlett, and D.B. Doherty, “The MVP: A single-
chip processor for advanced television applications,” in Proc. of the
Int. Workshop on Signal Processing of HDTV, VI, Oct. 1994, vol. 6,
pp. 479–487.

[29] S. Rathnam, and G. Slavenburg, “An architectural overview of the
programmable multimedia processor, tm-1,” in Proc. of COMP-
CON’96, Digest of papers, Feb. 1996, pp. 319–326.

[30] D.W. Wall, “Limits of instruction-level parallelism,” in Proc. of the
4th Int. Conf. on Architectural Support for Programming Languages
and Operating System (ASPLOS), April 1991, vol. 26, no. 4, pp. 176–
188.

306 References

[31] G.M. Amdahl, “Validity of single-processor approach to achieving
large-scale computing capability,” in Proc. of AFIPS Conf., 1967,
vol. 30, pp. 483–485.

[32] R.J. Gove, “The multimedia video processor (MVP): an architecture
for advanced dsp applications,” in Proc. of the 5th int. conf. on Signal
Processing Appl and Technology, Oct. 1994, vol. 1, pp. 854–859.

[33] H.J.M. Veendrick et al., “A 1.5 GIPS signal processor (VSP),” in
Proc. of IEEE Custom Integrated Circuits Conf., CICC’94, May 1994,
pp. 95–98.

[34] V. Easwar, G. Campbell and R. Natarajan, “Multimedia system on
a chip for set-top box applications,” in Digest of Technical Papers of
IEEE Int. Conf. on Consumer Electronics, June 1999, pp. 356–357.

[35] E. Roza, “Systems-on-chip: what are te limits?,” Electronics &
Communication Engineering Journal, vol. 13, no. 6, pp. 249–255,
Dec. 2001.

[36] K.A. Vissers et al., “Architecture and programming of two genera-
tions video signal processors,” Microprocessing and Microprogram-
ming, vol. 41, no. 5-6, pp. 373–390, Oct. 1995.

[37] M. Oka and M. Suzuoki, “Design and programming the emotion
engine,” IEEE Micro (USA), vol. 19, no. 6, pp. 20–28, Nov. 1999.

[38] F.M. Raam, et al., “A high bandwidth superscalar microprocessor
for multimedia applications,” in Digest of Technical Papers of the
IEEE Int. Solid-State Circuits Conf, ISSCC, Feb. 1999, pp. 258–259.

[39] A. Kunimatsu et al., “Vector unit architecture for emotion synthesis,”
IEEE Micro, vol. 20, no. 2, pp. 40–47, March-April 2000.

[40] H. Tago, et al., “Importance of cad tools and methodologies in high
speed cpu design,” in Proc. of Asia and South Pacific Design Au-
tomation Conf., ASP-DAC2000, Jan 2000, pp. 631–633.

[41] M Suzuoki, et al., “A microprocessor with a 128-bit cpu, tne floating-
point mac’s, four floating-point dividers, and an MPEG-2 decoder,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 11, pp. 1608–1618,
Nov. 1999.

[42] A. Fosenfeld and A.C. Kak, Digital Picture Processing, vol. 1, pp.
237–250, Academic Press, 2nd edition, 1982.

References 307

[43] W.K. Pratt, Digital Image Processing, John Wiley & Sons, Inc., 2nd
edition, 1991.

[44] R.H. Wallis, “An approach for the variant restoration and enhance-
ment of images,” in Proc. Symp. Current Mathematical Problems in
Imange Science, Nov. 1976.

[45] J.D. Fahnestock and R.A. Schowengerdt, “Spatially variant contrast
enhancement using local range modification,” Optical Eng., vol. 22,
no. 3, pp. 378–381, 1983.

[46] Chen and V.-H. Tsai, “Moment-preserving sharpening,” Computer
Vision, Graphics and Image Processing, an Int. Journal, vol. 41, pp.
1–13, 1988.

[47] T.-L. Ji, M.K. Sundareshan, and H. Roehrig, “Adaptive image con-
trast enhancement based on human visual properties,” IEEE Trans.
Medical Imaging, vol. 13, no. 4, pp. 573–586, Dec. 1994.

[48] R.C. Gonzalez, Digital Image Processing, chapter 2, Addison-Weslay
Publishing Company Inc., 1992.

[49] A. Luthra and G. Rajan, “Sampling-rate conversion of video signals,”
SMPTE Journal, vol. 100, pp. 869–879, Nov. 1991.

[50] L.B. Jackson, Digital Filters and Signal Processing, Kluwer, 1986.

[51] A.V. Oppenheim and R.E. Schafer, Discrete Time Signal Processing,
Prentice-Hall Inc., Englewood Cliffs, NY, 1968.

[52] R.W. Schafer and L.R. Rabiner, “A digital signal processing approach
to signal interpolation,” Proc. of the IEEE, , no. 6, pp. 692–702, June
1973.

[53] A.H. Nillesen, “Non-integral delay circuit,” United States Patent,
vol. US 5,349,548, Sept. 1994.

[54] T.A.C.M. Claasen and W.F.G. Mecklenbräuer, “On the transposition
of linear time-variant discrete-time networks and its application to
multirate digital systems,” Philips Journal of Research, vol. 33, pp.
78–102, 1978.

[55] A.J. Dalfsen, J.H.C.J. Stessen and J.G.W.M. Janssen, “Sample rate
conversion,” European Patent Application, vol. EP-A 96203035.9,
Oct. 1996.

308 References

[56] B.G. Lee, “A new algorithm to compute the discrete consine trans-
form,” IEEE Trans. Acoustics Speech and Signal Processing, vol.
ASSP-32, no. 6, Dec. 1984.

[57] N.I. Cho and S.U. Lee, “Fast algoritm and implementation of 2-D
discrete cosine transform,” IEEE Trans. on Circuits and Systems,
vol. 38, no. 3, pp. 297–304, 1991.

[58] et al. E. Krishnan, “Design of a 2d dct/idct applicaton specific vliw
processor supporting scaled and sub-sampled blocks,” in Proc. of the
16th Int. Conf. on VLSI Design, Jan. 2003.

[59] G. de Haan, W.A.C. Biezen, “Sub-pixel motion estimation with 3-D
recursive search block-matching,” Signal Processing Image Commu-
nication, vol. 6, no. 3, pp. 229–239, June 1994.

[60] C. Hentschel and D. La Hei, “Effective peaking filtering and its imple-
mentation on a programmable architecture,” in Digest of Technical
Papers of IEEE Int. Conf. on Consumer Electronics, June 2000, pp.
56–57.

[61] K.S. Hosseini and A.D. Bovoloupus, “A simple and efficient bus man-
agement scheme that supports continuous streams,” ACM - Trans
on Computer Systems, vol. 13, pp. 122–140, May 1995.

[62] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information Processing 74, pp. 471–475, Aug. 1974.

[63] CCIR, Recommendation 601-2, Encoding parameters of digital tele-
vision for studios.

[64] O. Steinfatt, P. Klapproth and H. Tichelaar, “Tcp: A next generation
for tv control processing,” in Digest of Technical Papers of IEEE Int.
Conf. on Consumer Electronics, June 1999, pp. 354–555.

[65] OMI/PI-Bus specification, OMI 324: PI-Bus Rev. 0.3d, 1994.

[66] J. Leijten, Real-time Constrained Reconfigurable Communication be-
tween Embedded Processors, Ph.d. thesis, Eindhoven univ. of Tech-
nol., Eindhoven (NL), Nov. 1998.

[67] CCIR, Recommendation 656, Interfaces for digital component video
signals in 525-line and 625-line television systems.

References 309

[68] S. Mietens, P.H.N. de With, and C. Hentschel, “Implementation of
a dynamical multi-window tv system,” in Proc. of the 22nd Symp.
on Information and Communication Theory in the BENELUX, May
2001, pp. 139–146.

[69] G. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38(8), pp. 114–117, April 1965.

[70] J.L. Hennessy and D.A. Patterson, Computer Architecture a Quanti-
tative Approach, p. 374, Morgan Kaufmann, 2nd edition, 1996, ISBN
1-55860-372-7.

[71] www.specbench.org.

[72] B. Khailany et al., “Imagine: Media processing with streams,” IEEE
Micro, vol. 21, no. 2, pp. 35–46, March-April 2001.

[73] K. Itoh, T. Watanaba, S. Kimura, and T. Sakata, “Reviews and
prospects of high-density ram technology,” in Proc. of the 2000 Int.
Semiconductor Conf., CAS 2000, Oct. 2000, vol. 1, pp. 13–22.

[74] B. Davis, T. Mudge, B. Jacob and V. Cuppu, “DDR2 and low latency
variant,” in Proc. of the Workshop on Solving the Memory Wall
Problem, June 2000, www.ece.neu.edu/wall2k.html.

[75] H. Kim and I.C. Park, “Array address translation for SDRAM-based
video processing applications,” in Proc. of the SPIE – Visual Com-
munication and Image Processing, ICIP, June 2000, vol. 4067, pp.
922–931.

[76] S. Rixner, et al., “Memory access scheduling,” Computer Architecture
News, vol. 28, no. 2, pp. 128–138, May 2000.

[77] S. Dutta, D. Singh and V. Mehra, “Architecture and implementation
of a single-chip programmable digital television and media processor,”
in Proc. of the IEEE Workshop on Signal Processing Systems, SiPs
99, Design and Implementation, Oct. 1999, pp. 321–330.

[78] S. Roy, R. Kumar and M. Prvulovic, “Improving system performance
with compressed memory,” in Proc. of Int. Parallel and Distr. Proc.
Symposium - IPDPS, April 2001.

[79] R.B. Tremaine et al., “Pinnacle: IBM MXT in a memory controller
chip,” IEEE Micro, vol. 21, no. 2, pp. 56–68, March-April 2001.

310 References

[80] P.H.N. de With, P.H. Frencken and M. v.d. Schaar-Mitrea, “An
MPEG decoder with embedded compression for memory reduction,”
IEEE Trans. on Consumer Electronics, vol. 44, no. 3, pp. 545–555,
Aug. 1998.

[81] J. Tajime, et al., “Memory compression method considering memory
bandwidth for HDTV decoder LSIs,” in Proc. of IEEE Int. Conf. on
Image Processing, Oct. 1999, vol. 2, pp. 779–782.

[82] M. v.d. Schaar-Mitrea and P.H.N. de With, “Novel embedded com-
pression algorithm for memory reduction in MPEG codecs,” in Proc.
of the SPIE – Visual Commununication and Image Processing, ICIP,
Jan. 1999, vol. 3653-2, pp. 864–873.

[83] M. v.d. Schaar-Mitrea and P.H.N. de With, “Near-lossless embedded
compression algorithm for cost reduction in DTV receivers,” IEEE
Trans. on Consumer Electronics, vol. 46, no. 4, pp. 923–933, Nov.
2000.

[84] U. Bayazit, L. Chen, and R. Rozploch, “A novel memory compression
system for MPEG-2 decoders,” in Digest of Technical Papers of IEEE
Int. Conf. on Consumer Electronics, June 1998, pp. 56–57.

[85] E.G.T. Jaspers and P.H.N. de With, “Bandwidth optimization for
video-based consumer systems,” in Digest of Technical Papers of
IEEE Int. Conf. on Consumer Electronics, June 2001, pp. 72–73.

[86] R.J. van der Vleuten, “Low-complexity lossless and fine-granularity
scalable near-lossless compression of color images,” in Proc. of the
IEEE Data Compression Conference, April 2002, p. 477.

[87] R.J. van der Vleuten, Device and Method for Compressing a Signal.

[88] Stolberg, H. J., et al., “The M-PIRE MPEG-4 DSP and its mac-
roblock engine,” in Proc. of the IEEE Int. Symp. on Circuits and
Systems, ISCAS2000, May 2000, vol. 2, pp. 192–195.

[89] M. Budagavi, et al., “MPEG-4 video and image coding on digital
signal processors,” Journal of VLSI Signal-Processing Systems for
Signal, Image, and Video Technology, vol. 23, no. 1, pp. 51–66, Oct.
1999.

[90] S. Bauer, et al., “The MPEG-4 multimedia coding standard: Al-
gorithms, architectures and applications,” Journal of VLSI Signal-
Processing Systems for Signal, Image, and Video Technology, vol. 23,
no. 1, pp. 7–26, Oct. 1999.

References 311

[91] M. Berekovic, et al., “Instruction set extensions for MPEG-4 videos,”
Journal of VLSI Signal-Processing Systems for Signal, Image, and
Video Technology, vol. 23, no. 1, pp. 27–49, Oct. 1999.

[92] M. Berekovic, et al., “Multicore system-on-chip architecture for
MPEG-4 streaming video,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 12, no. 8, pp. 688–699, Aug. 2002.

[93] (1999) AMBA Specification Rev. 2.0 ARM Ltd.,
http://www.arm.com.

[94] S. Rixner, et al., “Media processors using streams,” in Proc. of the
SPIE – Media Processors 1999, Jan. 1998, vol. 3655, pp. 122–134.

[95] D.C. Wyland, “Media processors using a new microsystem architec-
ture designed for the internet era,” in Proc. of the SPIE – Media
Processors 2000, Jan. 2000, vol. 3970, pp. 2–15.

[96] S. Sudharsanan, et al., “Image anv video processing using majc 5200,”
in Proceedings of 7th IEEE Int. Conf. on Image Processing, Sept.
2000, vol. 3, pp. 122–125.

[97] V.M. Bove and J.A. Watlington, “Cheops: A reconfigurable data-flow
system for video processing,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 5, no. 2, pp. 140–149, April 1995.

[98] Patterson, D. A. and Hennessy, J. L., Computer Organization &
Design, The Hardware/Software Interface, Morgan Kaufmann Pub-
lishers Inc., 2nd Ed., San Francisco, CA, USA, 1998.

[99] E.A. Lee, and T.M. Parks, “Dataflow process networks,” Proc. of
the IEEE, vol. 85, no. 5, pp. 773–801, May 1995.

[100] O.P. Gangwal, et al., “A scalable and flexible data synchronization
scheme for embedded hw-sw shared-memory systems,” in Proc. on
the 14th Int. Symp. on System Synthesis, Oct. 2001, pp. 1–6.

[101] M.J. Rutten, J.T.J. van Eijndhoven, and E-J. D. Pol., “Robust media
processing in a flexible and cost-effective network of multi-taksing
coprocessors,” in Proc. of the 14th Euromicro Conf. on Real-time
Systems, Euromicro RTS 2002, June 2002, pp. 223–230.

[102] M.J. Rutten, J.T.J. van Eijndhoven, and E-J. D. Pol., “Design of
multi-tasking coprocessor control for eclipse,” in Proc. of 10th Int.
Symp. on Hardware/Software Codesign, CODES 2002, May 2002, pp.
139–144.

312 References

[103] F. Pereira, MPEG-4: Why, What, How and When?,
http://leonardo.cselt.it/icjfiles/mpeg-4 si/2-overview paper/2-
overview paper.htm.

[104] C. Herpel, and A. Eleftheriadis, “MPEG-4 systems: Elementary
stream management,” Signal Processing Image Communication, vol.
15, no. 4-5, pp. 299–320, Jan. 2000.

[105] Signès, J. and Fisher, Y. and Eleftheriadis, A., “MPEG-4’s binary
format for scene description,” Signal Processing Image Communica-
tion, vol. 15, no. 4-5, pp. 321–345, Jan. 2000.

[106] ETS 300 744,, “Digital video broadcasting (DVB), framing structure,
channel coding and modulation for digital terrestrial television,” in
European Telecommunications Standards Institute, March 1997.

[107] R. Koenen, Profiles and levels in MPEG-4: Approach and overview,
http://leonardo.cselt.it/icjfiles/mpeg-4 si/11-Profiles paper/11-
Profiles paper.htm.

[108] M. Berekovic, et al., “A multimedia RISC core for efficient bitstream
parsing and VLD,” in Proc. of the SPIE – Multimedia Hardware
Architectures, Jan. 1998, vol. 3311, pp. 131–141.

[109] S. Howell, “Openml v1.0 specification,” in http://www.khronos.org,
July 2001.

[110] M. Berekovic, et al., “Architecture of an image rendering co-processor
for MPEG-4 systems,” in Proc. 2000 Int. Conf. on Application-
Specific Systems, Architectures, and Processors, July 2000, pp. 15–24.

[111] M. Schu, et al., “System-on-silicon solution for high quality con-
sumer video processing - the next generation,” IEEE Transactions
on Consumer Electronics, vol. 47, no. 3, pp. 412–419, Aug. 2001.

[112] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor
soc for advanced set-top box and digital tv systems,” IEEE Design
& Test of Computers, vol. 18, no. 15, pp. 21–31, Sept.-Oct. 2001.

[113] E. Rijpkema, et al., “Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip,” in Proc. of
the Design Automation and Test conference, DATE’03, March 2003.

[114] L. Donghee, et al., “Implementation and performance evaluation of
the lrfu replacement policy,” in Proc. of the 23rd Euromicro Conf.,
EUROMICRO’97, Sept. 1997, pp. 106–111.

References 313

[115] E.R. Altman, et al., “A nove methodology using genetic algorithms
for the design of caches and cache replacement policy,” in Proc. of the
Int. Conf. on Genetic Algorithms, ICGA’93, July 1993, pp. 392–399.

314 References

Summary

IN consumer electronics, applications such as television, Internet, games,
and mobile communication, combined with the strong desire for con-

nectivity, requires a flexible yet powerful media-processing solution. Such
a system enables simultaneous execution of very diverse tasks, ranging
from stream-oriented processing to highly data-dependent irregular process-
ing. Cost-effective implementations in the consumer domain, can only be
achieved by carefully matching the algorithms and the architecture within
the boundaries of many constraints, such as cost, power consumption, scal-
ability towards future products, flexibility to adopt future features, etc.
The balancing of these constraints is a complex multi-dimensional problem.
This thesis concentrates on this problem by exploring an integral design ap-
proach for all algorithms and the associated architecture on which they are
executed.

From analyzing the trends in the television domain, it has become clear
that, the complexity and the diversity of processing tasks increases con-
tinuously, more flexibility is required, and reuse of design is necessary for
cost reduction. Although a fully programmable solution seems attractive,
a rough inventory of the functionality in a mainstream analog television
receiver shows that a solution with video-processing functions, performing
several billion of operations per second, is not readily implemented on a
general-purpose computer system, while providing a sufficiently high per-
formance density (i.e. the performance per unit area and per unit power).
However, a fully dedicated solution with hardwired functions, which gener-
ally offers two orders of magnitude performance-density improvement, lacks
the flexibility to enable e.g. sharing of resources, scalability over a larger
product range, and the embedding of future functions.

Having presented the design problem, we elaborate on the developments
in multimedia and video computing architectures and present a chrono-
logical selection of programmable Systems on a Chip (SoCs) showing the

315

316 Summary

increase in parallelism. Starting with a general-purpose processor, paral-
lelism is increased thereby making a tradeoff between costs and the amount
of application-specific hardware. It is explained that the control of the par-
allel and flexible hardware can be decomposed hierarchically, going from
the application, to functions, to tasks, and finally fine-grain operations. To
actually gain some insights in system architecting, we discuss a flavor of
example video processing systems and indicate their merits and shortcom-
ings for future designs.

In order to define a new architecture for television systems, we estimate
the required resources, such as computational performance, memory usage,
and communication bandwidths. For understanding these estimates, typi-
cal video processing algorithms for sharpness enhancement and scaling are
discussed thoroughly. From an application point of view, it becomes clear
that a video processing function may be implemented with different algo-
rithms, depending on e.g. the required picture quality and the degree of
flexibility. From an architectural point of view, aspects such as the speed
of the processors, the available memory, compliancy with standardized in-
terfaces, protocols, etc., influence the algorithmic choices. An example
about sharpness enhancement shows that algorithms for signal-processing
functions may differ significantly, depending on the requirements and con-
straints. We conclude that only an integral design approach of algorithms
and the architecture, and the use of a heterogeneous multiprocessor system
are inevitable for a cost-efficient system.

Then we present a new architecture proposal for a high-end television
system, called TeleVision Processor (TVP). The system provides a pro-
grammable task graph so that the order of video functions can be altered
dynamically. This allows the dynamic transition between different fea-
tures in a TV set such as moving Picture-in-Picture with arbitrary shapes,
zooming-in of a user-selected picture region, and picture quality improve-
ment on selected video signals. Instead of statically scheduling the hardware
for each mode of operation, the system features a Kahn process network,
which means that the hardware is activated by the communication infras-
tructure if data for processing and memory space for the output is available.
Another novelty of the system is the clear separation of the communication
and the functional computations, thereby realizing independent behavior
of each coprocessor. The presented system consist of two chips: a micro-
controller chip with peripherals to perform event-oriented tasks and tasks
that are less time critical, and a coprocessor array chip for powerful video
processing with high parallelism.

Summary 317

Due to the continuous integration of increasingly complex functionality
on a SoC, off-chip memory remains a costly part of the design. Particu-
larly, the desire for a shared centralized off-chip memory induces a memory
bandwidth bottleneck. In order to reduce the required bandwidth, we have
studied existing memory devices and constructed a realistic model for the
memory communication. For this model, we introduce the concept of data
units containing the video data. In a next step, the selection of pixels con-
tained by each data unit is optimized for efficient memory communication.
These selections of pixels depend on the memory requests of the specific
video application. Experimental results from an MPEG-2 decoder imple-
mentation indicate a 35 % reduction of the memory bandwidth for SDRAM
devices. On top of this optimal memory usage, we introduce additional
memory bandwidth reduction techniques. First, a straightforward embed-
ded compression technique is presented showing a memory-bandwidth re-
duction of almost 40 %. Second, a study on function-specific caching shows
that a moderate direct-mapped cache of 3 kByte reduces the bandwidth
for high-definition MPEG-2 decoding with more than 30 %. The main dif-
ference between the first and the second bandwidth reduction technique, is
that the first maintains picture quality whereas the second ensures a guar-
anteed bandwidth reduction.

The afore-mentioned TVP system has a programmable communication in-
frastructure that does not scale to complex applications requiring a high
number of processing units. This observation leads to a hierarchical design
of the communication infrastructure and the memory architecture. We
propose a close match of this hierarchical design with the hierarchy that
is enclosed in video processing applications. Consequently, communication
occurs locally near the functional units and only globally between clusters
of functional units. Moreover, the hardware can be controlled indepen-
dently at each level of the hierarchy. This hierarchical approach is a central
theme of the so-called Eclipse system that is discussed for implementation
of MPEG-4 decoding. This system consists of a high-level communication
network of coarse-grain functional units in conjunction with an off-chip
memory, and a second-level communication network that comprises an em-
bedded on-chip memory. The second-level communication network contains
a heterogeneous mixture of dedicated coprocessors, and allows the embed-
ding of fully-programmable processors. Hence, part of the decoder tasks
can be performed by dedicated hardware, whereas other tasks are executed
in software. Similarly to the TVP system, the Eclipse system features data-
flow communication for easy programming and ordering of functions.

318 Summary

For many already existing video processing systems, the design of the ar-
chitecture and the included video functions are performed more or less
independently. The main differentiating contribution of this thesis is the
codesign of the video processing algorithms and the corresponding system
architecture. This results from explicitly coupling design aspects such as
bandwidth, programmability, etc., with the analysis of the video processing
functions. The thesis concludes with a future outlook in which a multimedia
system is presented, featuring hierarchical communication and a heteroge-
neous mixture of processing units ranging from ASIPs, DSPs to CPUs. For
this hierarchical communication infrastructure, the clustering of functional
units at various levels is in accordance with the natural hierarchy of the
video functions.

Samenvatting

Architectuurontwerp van video-
bewerkingssystemen op een chip

OP het gebied van consumentenelektronica openbaart zich een tendens
waarin applicaties zoals televisie, Internet, spelcomputers en mobile

communicatie naar elkaar toe groeien. Ook tekent zich een wens af voor
het onderling verbinden van consumentenapparaten. Deze trends leiden
tot een vraag naar een flexibel en krachtig mediabewerkingssysteem dat in
staat is om zowel reguliere taken voor datastromen als onregelmatige, data-
afhankelijke taken uit te voeren. Om voor dergelijke systemen een kosten-
effectieve implementatie te maken, moeten de videobewerkingsalgoritmen
en de architectuur goed op elkaar worden afgestemd binnen de beperkingen
van o.a. kosten, vermogensverbruik, schaalbaarheid naar toekomstige pro-
ducten, en flexibiliteit om toekomstige functionaliteit toe te voegen. Het
maken van deze afwegingen is een complex multidimensionaal ontwerp-
probleem. Dit proefschrift gaat over het onderzoeken van een integraal
ontwerpproces van de videobewerkingsalgoritmen en de bijbehorende sys-
teemarchitectuur.

Het analyseren van de trends in het televisiedomein maakt duidelijk dat
de complexiteit van systemen alsmaar groeit, dat steeds meer flexibiliteit
vereist is voor een grote verscheidenheid van taken, en dat ook hergebruik
van het ontwerp voor toekomstige producten belangrijk wordt om kosten
te reduceren. Hoewel een volledig programmeerbare en generieke oplossing
aantrekkelijk lijkt, blijkt uit een inventarisatie van de videobewerkingsfunc-
ties dat hiervoor miljarden operaties per seconde nodig zijn. Het is dan ook
onmogelijk om dit kosteneffectief te realiseren met een volledig program-
meerbare en generieke oplossing. Hoewel een rigide applicatiespecifieke
hardwareoplossing een prestatiedichtheid (prestatie per eenheid siliciumop-
pervlakte en vermogen) levert die twee orden hoger is, biedt deze oplossing
onvoldoende flexibiliteit voor o.a. het schalen van de oplossing over een
grotere verscheidenheid van producten en het uitbreiden met toekomstige
nieuwe functies.

319

320 Summary

Na een uiteenzetting van het genoemde ontwerpprobleem zal worden in-
gegaan op de ontwikkelingen van videobewerkingsarchitecturen, gevolgd
door een historisch overzicht van programmeerbare systemen met steeds
meer parallellisme. Hierbij wordt continu een afweging gemaakt tussen
de hoeveelheid applicatiespecifieke hardware en de bijbehorende kosten.
Het aansturen van dergelijke flexibele hardware kan hiërarchisch worden
opgedeeld in applicaties, functies, videobewerkingstaken en fijnkorrelige
operaties. Om inzicht te verwerven in systeemarchitectuur, worden enige
videobewerkingssystemen geëvalueerd en worden de voor- en nadelen voor
toepassing in toekomstige systemen uiteengezet.

Om een nieuwe architectuur voor televisiesystemen te definiëren, maken we
eerst een schatting van de benodigde systeembehoeften zoals rekenkracht,
geheugengebruik en communicatiebandbreedte. Om dit te begrijpen, wordt
uitgebreid ingegaan op de algoritmen van een geavanceerde scherpteverbe-
tering en een videoschaler. Daaruit blijkt duidelijk dat functies gëımple-
menteerd kunnen worden met verschillende algoritmen, afhankelijk van o.a.
de beeldkwaliteitseisen en de gewenste flexibiliteit. Naast deze gebruikers-
eisen zijn er ook beperkingen die vanuit de architectuur worden opgelegd,
zoals de snelheid van de processors, de beschikbare hoeveelheid geheugen,
het voldoen aan gestandaardiseerde verbindingen, en communicatieproto-
collen. Door middel van een scherpteverbeteringsfunctie wordt het verschil
aangetoond tussen verschillende algoritmen, afhankelijk van de opgelegde
eisen en systeembeperkingen. Hieruit mag worden geconcludeerd dat het
integraal ontwikkelen van de videobewerkingsalgoritmen en de bijbehorende
architectuur met heterogene multiprocessors onvermijdelijk is.

Vervolgens wordt het voorstel van een nieuwe architectuur voor hoogkwa-
litatieve televisiesystemen (TVP) beschreven. Het systeem beschikt over
de mogelijkheid om het signaalpad door de set van bewerkingseenheden
(coprocessors) met behulp van software dynamisch te wijzigen. Hiermee
kunnen bijv. naadloze overgangen worden gemaakt tussen een ’Picture-in-
Picture’ (PiP)-functie, een zoomfunctie om geselecteerde uitsneden van een
beeld uit te vergroten, en een functie die door een externe processor wordt
uitgevoerd. Traditioneel moet voorafgaand aan de beeldbewerking, voor
iedere instelling van het systeem een tijdschema worden gemaakt om alle
hardware op de juiste momenten aan te sturen. Het TVP-systeem bevat
een Kahn-bewerkingsnetwerk, wat inhoudt dat het communicatienetwerk
zelf de videobewerkingsfuncties activeert op het moment dat er voldoende
data aanwezig zijn op de ingang en er voldoende geheugenruimte is aan

Summary 321

de uitgang om het resultaat weg te schrijven. Een andere belangrijke toe-
voeging aan het systeem is de ontkoppeling van de datacommunicatie ener-
zijds en de functionele bewerkingen anderzijds, waardoor de coprocessors
volledig onafhankelijk van elkaar opereren. De implementatie van het sys-
teem bestaat uit twee chips: een ’microcontroller’-chip inclusief een aantal
extra bewerkingseenheden voor de taken die minder tijdkritisch en meer
irregulier van karakter zijn, en een matrix van coprocessors voor rekenin-
tensieve videobewerking met veel parallellisme.

Door de continuerende integratie van steeds complexere functies op een
chip blijft het externe geheugen een kostbaar onderdeel van het systeem.
Vooral de behoefte aan een gecentraliseerd extern geheugen leidt tot een
knelpunt voor de geheugenbandbreedte. Om de benodigde bandbreedte te
reduceren, hebben we bestaande geheugenchips bestudeerd en een realis-
tisch model gëımplementeerd voor het simuleren van de geheugencommu-
nicatie. Dit model maakt gebruik van zogenaamde data-eenheden waarin
de videodata zijn opgeslagen. Vervolgens wordt de selectie van pixels voor
iedere data-eenheid geoptimaliseerd voor de meest efficiënte communicatie.
Deze selecties van pixels zijn afhankelijk van de verzoeken die door de speci-
fieke videoapplicatie gedaan worden aan het geheugen. Experimenten met
een MPEG-2-decoder laten zien dat de geheugenbandbreedte met 35 %
afneemt. Naast dit geoptimaliseerde gebruik van het geheugen worden ook
nog enige extra technieken beschreven, die als doel hebben de geheugen-
bandbreedte te beperken. De eerste techniek betreft een relatief eenvoudige
compressiemethode waarmee de bandbreedte met bijna 40 % afneemt. De
tweede techniek omvat een studie over het gebruik van een functiespecifieke
cache. Hiermee wordt aangetoond dat met een kleine cache van 3 kByte
met een één-op-één-afbeelding (’direct-mapped’) de geheugenbandbreedte
voor hogeresolutie-MPEG-2-decodering met meer dan 30 % afneemt. Het
grote verschil tussen deze technieken is dat de eerste het behoud van beeld-
kwaliteit garandeert, terwijl de tweede een gegarandeerde afname van de
bandbreedte geeft.

Het genoemde TVP-systeem heeft een programmeerbare communicatie-
infrastructuur, die niet makkelijk te schalen is naar complexe applicaties
met meer bewerkingseenheden. Deze observatie leidt tot een hiërarchisch
ontwerp van de communicatie-infrastructuur en de geheugenarchitectuur.
Wij stellen voor om de hiërarchie van het ontwerp overeen te laten komen
met de hiërarchie die van nature in de videobewerkingsapplicatie zit. Daar-
door kan de communicatie lokaal en efficiënt bij de videobewerkingseen-
heden worden uitgevoerd en is er alleen globale communicatie via de hogere

322 Summary

lagen van de hiërarchie. Bovendien kan hierdoor de hardware onafhanke-
lijk van elkaar worden aangestuurd op ieder niveau van de hiërarchie. Deze
hiërarchische aanpak is een centraal thema van het zogenaamde Eclipse-
systeem, dat uitvoerig wordt besproken voor de implementatie van MPEG-4-
decodering. Dit systeem bestaat uit een hoogniveaucommunicatienetwerk
voor grofkorrelige bewerkingseenheden in samenwerking met een extern
geheugen, en een tweedeniveaucommunicatienetwerk dat bestaat uit een
lokaal gëıntegreerd geheugen en bewerkingseenheden die minder grofkor-
relig zijn. Dit tweedeniveaucommunicatienetwerk bevat een heterogene
mix van applicatiespecifieke coprocessors, maar staat ook volledig program-
meerbare generieke processors toe. Hierdoor kan een deel van de MPEG-4-
decodertaken worden afgebeeld op de applicatiespecifieke taken, terwijl de
overige taken worden uitgevoerd in software. Net zoals het TVP-systeem
bevat het Eclipse-systeem een Kahn-bewerkingsnetwerk om het program-
meren eenvoudig te houden en om de volgorde van functies te kunnen ver-
anderen.

Voor veel bestaande videobewerkingssystemen is het ontwerp van de ar-
chitectuur en de videobewerkingsalgoritmen onafhankelijk gedaan. Het be-
langrijkste resultaat van dit proefschrift is het aantonen van de toegevoegde
waarde van het gecombineerd ontwerpen van de architectuur en de videobe-
werkingsalgoritmen. Deze conclusie is ontstaan uit het expliciet koppelen
van aspecten zoals de bandbreedte en programmeerbaarheid met het ana-
lyseren van videobewerking functies van het systeem.

Het proefschrift wordt afgesloten met een blik op de toekomst. Hierbij
wordt een multimediasysteem gepresenteerd, dat hiërarchische communi-
catie biedt met een mix van heterogene bewerkingseenheden zoals ASIP’s,
DSP’s en CPU’s. Het clusteren van de bewerkingseenheden op de verschil-
lende hiërarchische niveaus van het systeem is afgestemd met de natuurlijke
hiërarchie van videofuncties.

Biography

Egbert Jaspers was born in Nij-
megen, the Netherlands, in 1969.
He studied Electrical Engineering
at the Venlo Polytechnical Col-
lege, which resulted in the B.Sc.
degree in 1992. Subsequently, he
joined Philips Research Laborato-
ries in Eindhoven. For one year,
he worked on video compression
for digital HDTV recording in the
Magnetic Recording Systems de-
partment. In 1993, he left Philips
for three years to pursue a M.Sc.
degree at the Eindhoven Univer-
sity of Technology, from which he
graduated in 1996. In the same
year he joined the Philips Research

Laboratories in Eindhoven as a Research Scientist in the Video Process-
ing and Visual Perception Group. He participated in the design of several
video-processing functions for implementation in an advanced video proces-
sor system. Gradually, he refocused his research to the architecture-related
aspects of video processing and contributed to projects, developing het-
erogeneous multiprocessor architectures for consumer systems. In 2000 he
received a Chester Sall Award for the best papers of the IEEE CE Transac-
tions in 1999. His current interest focusses on scalability and reuse aspects
of system design for implementation of complex video-processing functions.
He has published a number of papers on international conferences and was
member of the review committee of the ICECS (Int. Conf. on Electron-
ics, Circuits and Systems) and member of the program committee of the
PDIVM (Parallel and Distributed Computing in Image Processing, Video
Processing, and Multimedia) where he also attended as an invited lecturer.

323

324 Biography

Index

A
AC/DC prediction 251
access statistics 185
active video part 129
adaptive

coring .67
DPCM 191
IIR filter 94

address
generation 287
line . 286

ADSPsee Advanced Digital
Signal Processor

Advanced Digital Signal Proces-
sor40,43

aliasing . 11
alignment grid 191, 285
alpha blending 137
ALU . . . see arithmetic logic unit
Amdahl’s law 29
API see application

programmers interface
application programmers interface

. .14
application-specific hardware . 23
arithmetic

decoding239
logic unit 25

autonomous processing113

B
bandwidth

dynamics 215
reduction 202

bank interleaving 169
blanking 115, 129
block-based

access 185
storage 213

block-based access 278
blocking

semantic 116
branch prediction 27, 244
brightness

accommodation 65
adaptation 88

buffer management235
burst

access mode165, 269
interruption . . . 167, 184, 213
length 273, 283

C
cache

line 203, 291
line coordinates 295
miss . 213
performance 286
set 204, 294
size . 208
subset 205, 297

caching 202, 213, 226, 289
CAS latency 273
centralized shared memory . . . 13

325

326 Index

circuit switching 266
clipping prevention 88
CMOS technology 7
codesign . 98
color

decoder 4
keying 140
look-up table 140

color-space
converter 137
matrix 139

column
address line 164
address strobe 164

communication
infrastructure 265
network265
resources 265
topology 13

compiler . 27
complexity reduction 210
composition 237, 239
compressed domain 218
compression ratio . .191, 192, 194
computational

complexity237
power . 12
requirements 12

computer architecture 23
computing architectures256
context-based arithmetic decoder

. 251
control overhead 32
convergence trend 220
coprocessor 112

architecture225
array 134
connection 233

core visual profile 222
correlation 188
CPA see video coprocessor array

critical word first 271
crossbar network 41
cyclic addressing 231

D
data

entity 188, 190, 191
data block request 175, 192
data unit 170, 191, 192, 203

coordinates 295
size . 191

data-driven processing . 115, 231
data-flow model 115
database . 182
DDR SDRAM . see double-data-

rate SDRAM
deadlock . 117
decorrelate 192
dedicated hardware 30
delivery

layer . 238
mechanism250
multimedia integration frame-

work238
demodulator4, 102
demultiplexing 250
design parameters 2
design-space exploration 206
destructive read165
differential pulse code modulation

.189, 199
digital

scan . 148
video broadcast 8

direct mapped cache . . . 203, 204,
. 290, 292

discrete cosine transform 231
DMIF . . see delivery multimedia

integration framework
double-data-rate synchronous

DRAM 163
down-scaling 139

Index 327

DPCM see differential pulse code
modulation

DSP architecture23
DVB .see digital video broadcast
dynamic

noise reduction 139
RAM 162
range . 89

dynamical behavior 215, 232,
. 234, 261

E
Eclipse .219
electronic programming guide 151
elementary streams 238
embedded

compression187, 213
DRAM 163
memory156, 233

Emotion Engine processor . . .166
entropy decoding250
error resilience 7
expansion . 93
expenses . 11

F
face animation 239
feature size25
FeRAM . . see ferro-electric RAM
ferro-electric RAM 163
FIFO buffers 114
finite impulse response 88
FIR filter see finite impulse

response
fixed compression ratio191
flash memories 163
frame-rate conversion 95
full associative cache 206,

. 211, 292
full page . 271
function clustering 262
function-specific blocks222

future systems on chip 260

G
GOP see group of pictures
graphical user interface 264
graphics 11, 127, 149, 252

blending 137, 152
profile 240
RAM 163
rendering 258

grayscale alpha shape coding 222,
. 242

group of pictures 179
GUI . see graphical user interface

H
H-pulse . 129
hard real-time 106
hardware sharing 264
hardware-software

codesign 14
partitioning 14, 229

Harvard architecture 26
Harvard RISC processor87
HD see high definition
heterogeneous architecture . . . 14
heuristic rules 2
hierarchical

architecture249
communication 260
level 31, 261
memory system 290
partitioning 265

high-definition 209
hit rate206, 211, 290
horizontal sampling-rate converter

. 139
horizontal spatial locality . . . 208
host processor 235
HRT see hard real-time
human visual system 65

I

328 Index

IIR see infinite impulse response
ILP see instruction-level

parallelism
image composition 146
Imagine processor 166, 221
infinite impulse response 145
instruction-level parallelism . .29,

. 222
inter-field processing 145
interconnection 266
interlace factor 173
interlaced video 146
Internet browser 143
interrupt handeling 121
intra-field processing 145
inverse

DCT see discrete cosine
transform

quantization 231
issue slots . 29

J
JTAG .136
juggler . 140

K
Kahn process network . 115, 154,

. 229

L
largest Manhattan distance .211,

. 300
latency132, 289
layered model 237
least

frequently used 299
recently used211, 299
recently written 211, 299

LFU . . . see least frequently used
line flicker 146
line-based access 278
locality . 290

look-up table 90, 94
loop unrolling 27
lossless compression 188
low-cost compression 189
LRU see least recently used
LRW . . see least recently written

M
M-PIRE codec 221
macroblock 176
magnetic RAM 163
main-memory interface 173
mapping strategy 170
Master Processor41
ME see memory element
media objects 239
median filter 93, 147
memory

arbiter 124
arbitration 112
bandwidth 160
bank 164, 270
bottleneck 289
coherency226
command scheduling 213
commands 174
controller 136, 287
element 38
hierarchy 227
interface 193, 283
latency 289
mapping 170
page . 188
sharing 10, 34
technology 162

MemoryStick 258
meshes .239
micro-controller 136
miss rate .290
Moore’s law 62
motion

compensated prediction 189,

Index 329

. 190, 231
compensation 176
JPEG 253

MP see Master Processor
MPact . 27
MPEG-2 decoding 166, 189, 193,

. 202, 210, 213, 278
MPEG-4 decoding .219, 227, 237
MRAM see magnetic RAM
multi-window9, 152
Multimedia Video Processor . 40,

. 103
MultiMediaCard 258
multiprocessor 225

system 29
multitasking229, 232, 264
MVP see Multimedia Video

Processor

N
noise reduction 89, 258
non-preemptive 229

O
object

decoding239
descriptors 239

off-chip memory160
on screen display149
OpenGL . 248
OpenML . 248
operation frequency 25
OSD see on screen display

P
packet switching 266
padding .251
page register 270
PALplus 5, 9, 102
parallelism13, 33, 35
partitioning 39
PEsee processing element

peak signal-to-noise ratio199
performance density 222, 225
peripheral interconnect134
PI . . . see peripheral interconnect
picture

enhancement258
offset 296
quality assessment 198
reordering 227

picture in picture 142
PiP see picture in picture
pipelining 27, 160, 244
pixel

coordinates 295
overhead 168, 170

PixelPlus 264
polygons . 248
polyphase filter 138
power dissipation 24
precharging 165, 270
predictability 265
predictable behavior 261
prefetching 160, 293
presentation devices240
probability function 173, 193
processing

characteristics221, 244
element 38
task . 106

production volume 98
profiles .237
programmability 14
progressive video 147
PSNR . . see peak signal-to-noise

ratio

Q
quantization error198

R
RAS see row address strobe
rasterization 248

330 Index

real-time
constraints246
requirement265

reconfigurable architecture 7
recursive block matching 96
reference

frames 189
picture 227, 280

refresh rate 273
register file224
relative transfer bandwidth . 190
rendering 237, 239
replacement strategy . . 204, 211,

. 299
resource

management 240, 250
sharing 116

reusability 244
reverse network 116
ringing . 11
router .266
row

activate command 273
activation165
address line 164
address strobe 164

RTB see relative transfer
bandwidth

S
sampling-rate converter 92
scalability265
scalable

architecture231
compression 199
system . 7

scaling . 11
scene

description239
graph management .240, 250
graph profiles 240

scheduling 39

SD see standard definition
SDRAM see synchronous DRAM
set associative cache 292
set-associative cache203, 204
set-top box 7, 257
shape decoder251
shared memory 228
sharpness

enhancement 63, 88, 139
improvement258

signal-to-noise ratio 67
SIMD see single instruction

multiple data
simple visual profile 222
single instruction

multiple data 25
single data 25

SISD see single instruction single
data

SoC see system on chip
soft real-time 106
spatial locality 202, 290
speculative

calculation 27
execution 244

speed margin 216
sprite

decoding 222, 247, 251
objects 242

SRAM see static RAM
SRTsee soft real-time
stall cycles 233
standard definition 214
state

saving 233
space 117

static
RAM 162
schedule 115

statistics . 182
still-texture

Index 331

coding 220, 239
decoding 251, 265

stream-oriented processing . . 235
streaming applications 227
subgraphs110
superscalar27
supply voltage 25
switch matrix . . 13, 37, 120, 152,

. 156
synchronization 130

layer . 238
network231

synchronous DRAM 162, 190
system on chip . . . 2, 62, 220, 257

T
tag . 291
task

graph 106, 152
scheduling 232
switching 232

task-level parallelism 222
task-level parallelism 29, 35, 114
TCP see telecommunication and

control processor
telecommunication and control

processor 148
Teletext 5, 102
Television Processor System .221
temporal

locality 202, 290
noise reduction 93, 152

threshold voltage25
throughput performance 234
time slots 119
time to market 62
time-space-time network 118
time-to-market 244
timing parameters 273
TLP . . . see task-level parallelism
TMS320C6x processor 221
toolbox concept 237

transfer overhead . 182, 190, 278,
. 284

transistor density 160
transmux streams 238
transparent 202
transport

layer . 237
stream 241

transposed mode 139
Trimedia . 27
TST network see

time-space-time network
TV systems 4
TVP see television processor

system
two-dimensional locality203

U
UART 136, 149
up-scaling139

V
V-pulse . 129
valid bit . 292
variable-length decoded 230
vertical spatial locality . 208, 211
very long instruction word . . . 27
video

conferencing 40
coprocessor array 150
input module 131
juggler 126
object plain 247, 251
output module 131
rendering 220
scaling 14

Video Signal Processor . . 37, 103
video-specific cache 202
virtual memory 226
virtual reality modelling language

. 248

332 Index

VLIW . see very long instruction
word

Von Neumann architecture . . . 26
VOP see video object plain
VRMLsee virtual reality

modelling language
VSP . see Video Signal Processor

W
weakly programmable 106

	Front
	Voorwoord
	Contents
	List of Tables
	List of Figures
	Introduction and motivation
	Problem statement
	Trends and developments of TV systems
	Functional requirements
	Computational effort
	Architectural requirements
	Outline of the thesis
	Background and motivation of the chapters
	The main contributions of the author

	Developments in video computing architectures
	Introduction
	Exploiting parallelism in computing systems
	Aspects of application-specific parallelism
	Parallelism and control
	Examples of media processor architectures
	Introduction to media processors
	The Video Signal Processor
	The Multimedia Video Processor (MVP)
	The TriMedia processor
	The Emotion Engine

	Concluding remarks

	Examples of video functions and their expenses
	Tradeoffs in system design
	Sharpness enhancement
	Introduction to sharpness enhancement
	Local intensity level and related noise visibility
	Local sharpness of the input signal
	Noise contained by the signal (adaptive coring)
	Prevention of aliasing from non-linear processing
	The system including all controls
	Results and conclusions

	Advanced sampling-rate conversion
	Introduction to video scaling
	Basic theory of sampling-rate conversion
	Considerations for SRC implementation
	Transposition of a sampling-rate converter
	Requirements for transposed filters
	Experiments and results for polyphase filters
	Conclusions on video scaling

	Computational costs of video functions
	Estimation model for complexity
	Sharpness Enhancement complexity estimation
	Sampling-rate conversion complexity estimation
	Temporal noise reduction
	Motion-Compensated frame-rate conversion

	Conclusion

	Flexible television processor system
	Preliminary statements and requirements
	Consequences from the requirements
	Computational aspects
	Off-chip memory considerations

	Analysis of TV applications
	Architecture design
	Top-level architecture

	Signal-processing subsystem
	Tasks and task graphs
	Processor model
	Communication network
	Interaction between controller and processor

	Memory
	Partitioning of internal versus external memory
	Communication between subsystems
	Memory resources versus quality
	Interfacing with the real-time world

	Implementation example of the architecture
	Introductory system presentation
	Overview of hardware functions
	Video applications

	Conclusions
	Concluding remarks about the proposal
	Modifications for future systems

	Off-chip memory communication
	Problem statement for off-chip memories
	Memory technology
	Prospects of emerging RAMs
	Functioning of SDRAM-based memories

	Video-data storage in SDRAM memory
	The concept of data units
	The mapping of pixels into the memory
	Architecture model for simulation
	MPEG decoding as application example
	Model simulation results

	Concluding remarks

	Communication bandwidth improvement
	Embedded compression
	Related work in compression
	Feasibility of bandwidth reduction
	Bandwidth Calculations
	Extraction of feasible solutions
	Picture quality assessment
	Conclusions

	Caching
	Experimental results for MPEG decoding
	Conclusions

	Combined techniques

	System study on MPEG-4 decoding
	Introduction into hybrid systems
	Analysis of various MPEG-4 architectures
	Grain size of parallelism and the amount hierarchy
	Memory in hierarchy communication

	Processor system overview
	Grain size of computation and communication
	Synchronization
	Multitasking
	Programmable processors
	Programming of the configuration
	Processor system wrap-up

	Decoder functionality
	TransMux, Delivery, and Synchronization Layers
	Object decoding
	Rendering & composition and presentation
	Scene-graph and resource management
	Application domain for the target architecture
	Desired selection of Profiles and Levels

	Analysis of the functions
	Decoder framework
	MPEG-4 processing task properties
	Hardware/software partitioning

	Mapping proposal
	Conclusions

	Conclusions
	Recapitalization of the individual chapters
	State-of-the-art system design
	Future system design
	Concluding statement

	Operation of SDRAM-based memories
	Memory commands
	Timing constraints

	MPEG decoding with reduced memory access
	Refinement of the access alignment grid
	Single addressable memory
	Separately addressable memory

	Video-specific caching
	Basics of caching
	Caching of 2-D video data
	Associating cache lines within the set of a cache
	Two-dimensional set-associative caching
	MPEG-specific caching

	Replacement strategy

	References
	Summary
	Samenvatting
	Biography
	Index
	Back

