151 research outputs found

    A PLL Exploiting Sub-Sampling of the VCO Output to Reduce In-band Phase Noise

    Get PDF
    Abstract— In this paper, we present a 2.2-GHz low jitter PLL based on sub-sampling. It uses a phase-detector/charge-pump (PD/CP) that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. A frequency locked loop guarantees correct frequency locking without degenerating jitter performance. The PLL implemented in a standard 0.18-ÎŒm CMOS process consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 × 0.45 mm2. The in-band phase noise at 200 kHz offset is measured to be -126 dBc/Hz and the rms PLL output jitter integrated from 10 kHz to 40 MHz is 0.15 ps

    Phase Noise in CMOS Phase-Locked Loop Circuits

    Get PDF
    Phase-locked loops (PLLs) have been widely used in mixed-signal integrated circuits. With the continuously increasing demand of market for high speed, low noise devices, PLLs are playing a more important role in communications. In this dissertation, phase noise and jitter performances are investigated in different types of PLL designs. Hot carrier and negative bias temperature instability effects are analyzed from simulations and experiments. Phase noise of a CMOS phase-locked loop as a frequency synthesizer circuit is modeled from the superposition of noises from its building blocks: voltage-controlled oscillator, frequency divider, phase-frequency detector, loop filter and auxiliary input reference clock. A linear time invariant model with additive noise sources in frequency domain is presented to analyze the phase noise. The modeled phase noise results are compared with the corresponding experimentally measured results on phase-locked loop chips fabricated in 0.5 m n-well CMOS process. With the scaling of CMOS technology and the increase of electrical field, MOS transistors have become very sensitive to hot carrier effect (HCE) and negative bias temperature instability (NBTI). These two reliability issues pose challenges to designers for designing of chips in deep submicron CMOS technologies. A new strategy of switchable CMOS phase-locked loop frequency synthesizer is proposed to increase its tuning range. The switchable PLL which integrates two phase-locked loops with different tuning frequencies are designed and fabricated in 0.5 ”m CMOS process to analyze the effects under HCE and NBTI. A 3V 1.2 GHz programmable phase-locked loop frequency synthesizer is designed in 0.5 Όm CMOS technology. The frequency synthesizer is implemented using LC voltage-controlled oscillator (VCO) and a low power dual-modulus prescaler. The LC VCO working range is from 900MHz to 1.4GHz. Current mode logic (CML) is used in designing high speed D flip-flop in the dual-modulus prescaler circuits for low power consumption. The power consumption of the PLL chip is under 30mW. Fully differential LC VCO is used to provide high oscillation frequency. A new design of LC VCO using carbon nanotube (CNT) wire inductor has been proposed. The PLL design using CNT-LC VCO shows significant improvement in phase noise due to high-Q LC circuit

    Design of injection locked frequency divider in 65nm CMOS technology for mmW applications

    Get PDF
    In this paper, an Injection Locking Frequency Divider (ILFD) in 65 nm RF CMOS Technology for applications in millimeter-wave (mm-W) band is presented. The proposed circuit achieves 12.69% of locking range without any tuning mechanism and it can cover the entire mm-W band in presence of Process, Voltage and Temperature (PVT) variations by changing the Injection Locking Oscillator (ILO) voltage control. A design methodology flow is proposed for ILFD design and an overview regarding CMOS capabilities and opportunities for mm-W transceiver implementation is also exposed.Postprint (published version

    A Fully Integrated Multi-Band Multi-Output Synthesizer with Wide-Locking-Range 1/3 Injection Locked Divider Utilizing Self-Injection Technique for Multi-Band Microwave Systems

    Get PDF
    This dissertation reports the development of a new multi-band multi-output synthesizer, 1/2 dual-injection locked divider, 1/3 injection-locked divider with phase-tuning, and 1/3 injection-locked divider with self-injection using 0.18-micrometer CMOS technology. The synthesizer is used for a multi-band multi-polarization radar system operating in the K- and Ka-band. The synthesizer is a fully integrated concurrent tri-band, tri-output phase-locked loop (PLL) with divide-by-3 injection locked frequency divider (ILFD). A new locking mechanism for the ILFD based on the gain control of the feedback amplifier is utilized to enable tunable and enhanced locking range which facilitates the attainment of stable locking states. The PLL has three concurrent multiband outputs: 3.47-4.313 GHz, 6.94-8.626 GHz and 19.44-21.42-GHz. High second-order harmonic suppression of 62.2 dBc is achieved without using a filter through optimization of the balance between the differential outputs. The proposed technique enables the use of an integer-N architecture for multi-band and microwave systems, while maintaining the benefit of the integer-N architecture; an optimal performance in area and power consumption. The 1/2 dual-ILFD with wide locking range and low-power consumption is analyzed and designed together with a divide-by-2 current mode logic (CML) divider. The 1/2 dual-ILFD enhances the locking range with low-power consumption through optimized load quality factor (QL) and output current amplitude (iOSC) simultaneously. The 1/2 dual-ILFD achieves a locking range of 692 MHz between 7.512 and 8.204 GHz. The new 1/2 dual-ILFD is especially attractive for microwave phase-locked loops and frequency synthesizers requiring low power and wide locking range. The 3.5-GHz divide-by-3 (1/3) ILFD consists of an internal 10.5-GHz Voltage Controlled Oscillator (VCO) functioning as an injection source, 1/3 ILFD core, and output inverter buffer. A phase tuner implemented on an asymmetric inductor is proposed to increase the locking range. The other divide-by-3 ILFD utilizes self-injection technique. The self-injection technique substantially enhances the locking range and phase noise, and reduces the minimum power of the injection signal needed for the 1/3 ILFD. The locking range is increased by 47.8 % and the phase noise is reduced by 14.77 dBc/Hz at 1-MHz offset

    Millimeter-wave Communication and Radar Sensing — Opportunities, Challenges, and Solutions

    Get PDF
    With the development of communication and radar sensing technology, people are able to seek for a more convenient life and better experiences. The fifth generation (5G) mobile network provides high speed communication and internet services with a data rate up to several gigabit per second (Gbps). In addition, 5G offers great opportunities of emerging applications, for example, manufacture automation with the help of precise wireless sensing. For future communication and sensing systems, increasing capacity and accuracy is desired, which can be realized at millimeter-wave spectrum from 30 GHz to 300 GHz with several tens of GHz available bandwidth. Wavelength reduces at higher frequency, this implies more compact transceivers and antennas, and high sensing accuracy and imaging resolution. Challenges arise with these application opportunities when it comes to realizing prototype or demonstrators in practice. This thesis proposes some of the solutions addressing such challenges in a laboratory environment.High data rate millimeter-wave transmission experiments have been demonstrated with the help of advanced instrumentations. These demonstrations show the potential of transceiver chipsets. On the other hand, the real-time communication demonstrations are limited to either low modulation order signals or low symbol rate transmissions. The reason for that is the lack of commercially available high-speed analog-to-digital converters (ADCs); therefore, conventional digital synchronization methods are difficult to implement in real-time systems at very high data rates. In this thesis, two synchronous baseband receivers are proposed with carrier recovery subsystems which only require low-speed ADCs [A][B].Besides synchronization, high-frequency signal generation is also a challenge in millimeter-wave communications. The frequency divider is a critical component of a millimeter-wave frequency synthesizer. Having both wide locking range and high working frequencies is a challenge. In this thesis, a tunable delay gated ring oscillator topology is proposed for dual-mode operation and bandwidth extension [C]. Millimeter-wave radar offers advantages for high accuracy sensing. Traditional millimeter-wave radar with frequency-modulated continuous-wave (FMCW), or continuous-wave (CW), all have their disadvantages. Typically, the FMCW radar cannot share the spectrum with other FMCW radars.\ua0 With limited bandwidth, the number of FMCW radars that could coexist in the same area is limited. CW radars have a limited ambiguous distance of a wavelength. In this thesis, a phase-modulated radar with micrometer accuracy is presented [D]. It is applicable in a multi-radar scenario without occupying more bandwidth, and its ambiguous distance is also much larger than the CW radar. Orthogonal frequency-division multiplexing (OFDM) radar has similar properties. However, its traditional fast calculation method, fast Fourier transform (FFT), limits its measurement accuracy. In this thesis, an accuracy enhancement technique is introduced to increase the measurement accuracy up to the micrometer level [E]

    A Low-Power BFSK/OOK Transmitter for Wireless Sensors

    Get PDF
    In recent years, significant improvements in semiconductor technology have allowed consistent development of wireless chipsets in terms of functionality and form factor. This has opened up a broad range of applications for implantable wireless sensors and telemetry devices in multiple categories, such as military, industrial, and medical uses. The nature of these applications often requires the wireless sensors to be low-weight and energy-efficient to achieve long battery life. Among the various functions of these sensors, the communication block, used to transmit the gathered data, is typically the most power-hungry block. In typical wireless sensor networks, transmission range is below 10 meters and required radiated power is below 1 milliwatt. In such cases, power consumption of the frequency-synthesis circuits prior to the power amplifier of the transmitter becomes significant. Reducing this power consumption is currently the focus of various research endeavors. A popular method of achieving this goal is using a direct-modulation transmitter where the generated carrier is directly modulated with baseband data using simple modulation schemes. Among the different variations of direct-modulation transmitters, transmitters using unlocked digitally-controlled oscillators and transmitters with injection or resonator-locked oscillators are widely investigated because of their simple structure. These transmitters can achieve low-power and stable operation either with the help of recalibration or by sacrificing tuning capability. In contrast, phase-locked-loop-based (PLL) transmitters are less researched. The PLL uses a feedback loop to lock the carrier to a reference frequency with a programmable ratio and thus achieves good frequency stability and convenient tunability. This work focuses on PLL-based transmitters. The initial goal of this work is to reduce the power consumption of the oscillator and frequency divider, the two most power-consuming blocks in a PLL. Novel topologies for these two blocks are proposed which achieve ultra-low-power operation. Along with measured performance, mathematical analysis to derive rule-of-thumb design approaches are presented. Finally, the full transmitter is implemented using these blocks in a 130 nanometer CMOS process and is successfully tested for low-power operation

    Ultra high data rate CMOS FEs

    Get PDF
    The availability of numerous mm-wave frequency bands for wireless communication has motived the exploration of multi-band and multi-mode integrated components and systems in the main stream CMOS technology. This opportunity has faced the RF designer with the transition between schematic and layout. Modeling the performance of circuits after layout and taking into account the parasitic effects resulting from the layout are two issues that are more important and influential at high frequency design. Performaning measurements using on-wafer probing at 60GHz has its own complexities. The very short wave-length of the signals at mm-wave frequencies makes the measurements very sensitiv to the effective length and bending of the interfaces. This paper presents different 60GHz corner blocks, e.g. Low Noise Amplifier, Zero IF mixer, Phase-Locked Loop, A Dual-Mode Mm-Wave Injection-Locked Frequency Divider and an active transformed power amplifiers implemented in CMOS technologies. These results emphasize the feasibility of the realization 60GHZ integrated components and systems in the main stream CMOS technology

    A study of phase noise and jitter in submicron CMOS phase-locked loop circuits

    Get PDF
    Phase-locked loops (PLLs) are widely used in communication systems. With the continuously expanding of market for high speed, portable communication devices, low noise CMOS submicron integrated circuit designs of PLL for different applications are in large demand. In this dissertation, phase noise and jitter properties of PLL and its building blocks are investigated both at the physical and system levels. At the physical level, hot carrier effect in submicron MOSFETs has been considered. As one of the most dominant noise sources of PLL, the voltage-controlled oscillator (VCO) is considered when investigating the noise degradation induced by the hot carrier effect. Experimental results of jitter degradation due to hot carrier effects are presented for different ring oscillator types VCOs designed in 0.5 micron n-well CMOS technology. An increase in RMS jitter by 25% and 10% decrease in oscillation frequency of VCO can be observed after 4 hours hot carrier stress. The hot carrier induced noise degradation on PLL is also presented based on the performance degradation in VCO. Simulation results show 40% decrease in VCO gain after 4 hours stress and a 23% decrease in damping factor and loop bandwidth. Moreover, degradation on PLL noise performance includes a left shift peak in phase noise and a 17% increase in RMS jitter. At the system level, noise sources in a PLL system are investigated including the input reference noise, VCO noise and the frequency divider noise. Phase noise prediction method for PLL is developed. Experimental phase noise measurement results on 0.5 micron CMOS PLL systems based on different types of VCOs are in close agreement with the predicted phase noise. Therefore, the phase noise prediction method is verified. On the other hand, a 3 GHz adaptive bandwidth PLL based on LC-VCO is designed in 0.25 micron n-well CMOS technology to investigate the phase noise and jitter performance by varying the loop parameters. By considering the noise simulation results based on the adaptive bandwidth feature and the quality factor of the on-chip inductor, PLL loop parameters can be carefully chosen at the design phase to achieve an optimal noise performance

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits

    A power efficient frequency divider with 55 GHz self-oscillating frequency in SiGe BiCMOS

    Get PDF
    A power efficient static frequency divider in commercial 55 nm SiGe BiCMOS technology isreported. A standard Current Mode Logic (CML)-based architecture is adopted, and optimizationof layout, biasing and transistor sizes allows achieving a maximum input frequency of 63 GHz anda self-oscillating frequency of 55 GHz, while consuming 23.7 mW from a 3 V supply. This resultsin high efficiency with respect to other static frequency dividers in BiCMOS technology presentedin the literature. The divider topology does not use inductors, thus optimizing the area footprint:the divider core occupies 60×65ÎŒm2on silicon
    • 

    corecore