694 research outputs found

    SPSA-Based Tracking Method for Single-Channel-Receiver Array

    Get PDF
    A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective

    Rationale for and design of a generic tiled hierarchical phased array beamforming architecture

    Get PDF
    The purpose of the phased array beamforming project is to develop a generic flexible efficient phased array receiver platform, using a mixed signal hardware/software-codesign approach. The results will be applicable to any radio (RF) system, but we will focus on satellite receiver (DVB-S) and radar applications. We will present a preliminary mapping of beamforming processing on a tiled architecture and determine its scalability.\ud \ud The functionality, size and cost constraints imply an integrated mixed signal CMOS solution. For a generic flexible multi-standard solution, a software defined radio approach is taken. Because a scalable and dependable solution is needed, a tiled hierarchical architecture is proposed with reconfigurable hardware to regain flexibility. A mapping is provided of beamforming on the proposed architecture. The advantages and disadvantages of each solution are discussed with respect to applicability and scalability.\ud \ud Different beamforming processing solutions can be mapped on the same proposed tiled hierarchical architecture. This provides a flexible, scalable and reconfigurable solution for a wide application domain. Beamforming is a data-driven streaming process which lends itself well for a regular scalable architecture. Beamsteering on the other hand is much more control-oriented and future work will focus on how to support beamsteering on the proposed architecture as well

    Performance Comparison Between Music And Esprit Algorithms For Direction Estimation Of Arrival Signals

    Get PDF
    This thesis examines and compares the performance of Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) for the estimation of Direction of Arrival (DOA) of incoming signals to the smart antenna. The comparison of these two algorithms was done on the basis of parameters like number of array elements, number of incoming signals, angle difference between the incoming signals, number of the samples taken of signal, processing time and SNR ratio. These two algorithms were implemented with MATLAB and SIMULINK for the experimental purpose. After all the experiments performed, it was analyzed that results obtained from both of the software were almost same. Comparing MUSIC\u27s results with ESPRIT, it was found that MUSIC is less prone to error than ESPRIT for almost all parametric tests. This superiority of MUSIC made it desirable to recommend it for DOA estimation in smart antenna system

    Performances of conformal and planar arrays

    Get PDF
    Static and dynamic deformations can have a severe impact on the performance of conformal antennas on aircrafts and other vehicles. Therefore it is essential to study the different deformation and vibration mechanisms and their influence on the antenna's radiation pattern. This presentation gives an overview of different approaches concerning electromagnetic modelling of array antennas and investigations on antenna deformations presented in the scope of TG20

    Frequency invariant MVDR beamforming without filters and implementation using MIMO radar

    Get PDF
    Frequency invariant beamforming with sensor arrays is generally achieved using filters in the form of tapped delay-lines following each sensor. However it has been recently shown that with the help of the rectangular smart antenna array, it is possible to generate frequency invariant beampattern without using filters. In this paper, this frequency invariant beamforming technique is utilized to perform MVDR beamforming in the beamspace by designing frequency invariant beams spanning the desired range of azimuthal angles and optimally combining them. However, the performance of the frequency invariant beamformer depends on the number of sensors which could be large for a rectangular array of size M × N. Making use of the virtual array concept used in MIMO radar, a novel method of producing the same frequency invariant beam, using only M transmitting and N receiving antennas, is proposed and a design example is provided to demonstrate the idea

    Detect and Pointing Algorithms Performance for a 2D Adaptive Antenna Array

    Get PDF
    In recent decades, we have witnessed a great progress in wireless communications. The huge amount of data that users expect to access has required an effort to increase the capacity of wireless networks. The main limitation of these communication systems is the increasing interference between channels and multipath fading. Smart antennas technology has emerged, solving some of these problems and improving the performance of wireless networks. This chapter addresses a group of algorithms, directions of arrival (DOA) and beamforming, applied to planar antenna arrays. The algorithms are simulated, and their performance is evaluated in terms of runtime, accuracy and dependence with signal-to-noise ratio (SNR), applied to a smart antenna system
    • 

    corecore