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uniform circular arrays for direction-of-arrival estimation
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Abstract

An analytical circuit model with a limited number of parameters is presented to describe mutual coupling in uniform
circular arrays. The model, which is based on a spherical-mode expansion, provides physical insight into the frequency
dependence and the dependence on azimuth and elevation angle of the coupling between antenna elements. It is shown that
the number of circuit elements, required to describe the open-circuit voltages and the mutual impedances at the different
antenna ports, depends on the overall size of the array and not on the spacing between the antenna elements. Based on
this observation, an analytical technique is described to derive a coupling matrix representing the mutual coupling effects.
Relying on the phase-mode-based circuit elements, dedicated eigenstructure techniques are developed for direction-of-arrival
(DOA) estimation with uniform circular arrays. By considering several synthetic reference scenarios, it is shown that even
in the presence of severe mutual coupling, root-MUSIC combined with a limited number of phase-mode components gives
very robust DOA estimations for the azimuth angle, when all signals are incident on the array from a fixed elevation angle.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

Antenna arrays play a key role in the development of high-
performance mobile communications systems. Although a
lot of theoretical work has been done on how the use of
antenna arrays improves the system performance, relatively
few contributions take into account the actual electromag-
netic (EM) characteristics of the antenna system. Several
authors, however, have shown that mutual coupling between
antenna elements can drastically change the system behav-
ior and its communication characteristics. This is due to
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a different EM behavior of the antenna elements in an array
configuration, compared to their stand-alone characteristics,
because of two important effects. First, terminal currents
induced in the loads of neighboring elements introduce an
extra voltage contribution in the antenna element under
consideration. This effect is described by the impedance

matrix Z. In [1], this impedance matrix is used to study the
effect of mutual coupling on the performance of an adaptive
linear array. A second important effect is the deformation
of the radiation pattern of the stand-alone antenna elements
due the detailed current distributions induced in the open-
circuited neighboring antenna elements (shadowing effects)
or neighboring scatterers (platform effects). As this effect
occurs for a zero terminal current in the neighboring an-
tenna elements, it only influences the diagonal elements
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of the impedance matrix Z, but not the off-diagonal ele-
ments. Instead, for a receiving antenna array, the open-circuit
voltage at a particular terminal, which results not only from
the current distributions induced in the antenna element it-
self, but also from the induced current distributions of the
open-circuited neighboring antenna elements and neighbor-
ing scatterers, then depends on the direction of the incoming
signal, even if the array consists of omnidirectional stand-
alone antenna elements. To accommodate for this second
phenomenon as well, in [2] the concept of impedance ma-

trix Z is generalized to a coupling matrix C to account for
mutual coupling. Based on this approach, the multiple signal
classification (MUSIC) algorithm is modified in [3] to take
into account mutual coupling. As described in [4,5], in many
cases the coupling matrix is able to compensate for mu-
tual coupling. It is also demonstrated, however, that in some
cases mutual coupling cannot be accounted for by means of
a coupling matrix. This is especially so when platform ef-
fects play an important role. In [6–8], compensation of the
mutual coupling effects in wire antenna arrays is performed
by means of simulation data obtained by the Method-of-
Moments (MoM), and in [9,10] numerical simulation data
from full-wave [EM] solvers is applied to eliminate mutual
coupling in planar and conformal arrays. In [11], an esti-
mated current distribution is used to compensate for mutual
coupling in arrays consisting of dipole elements and in [12],
the mutual coupling is estimated together with the direc-
tions of arrival. The effect of mutual coupling on capacity
of multi-element antenna systems is studied in [13–16].

In this paper, we construct an analytical circuit model de-
scribing mutual coupling effects in a uniform circular array
(UCA). The classical circuit models for antenna arrays in
transmit and receive mode, as reviewed in Section 2, do not
allow to fully exploit the symmetries present in an UCA. By
expanding the open-circuit voltages and the impedance ma-
trix of the UCA into phase modes, introduced in [17], and
spherical modes, we reduce the number of circuit elements
in the model without reducing its accuracy, as shown in Sec-
tion 2. The use of phase-modes allows to fully exploit the
rotational symmetry in the UCA, both for the open-circuit
voltage and the array impedance matrix contributions. It is
shown that the number of circuit elements, required to de-
scribe the open-circuit voltages and the mutual impedances
at the different antenna ports, depends on the overall size of
the array but neither on the element spacing nor on the de-
gree of mutual coupling between the antenna elements. In
[18], dedicated eigenstructure techniques for direction-of-
arrival (DOA) estimation with uniform circular arrays are
considered, without taking into account mutual coupling ef-
fects. In Sections 3 and 4, these techniques are extended to
include both mutual coupling phenomena described in Sec-
tion 1. Existing techniques that compensate for mutual cou-

pling using the impedance matrix Z, as in [1], or using the

coupling matrix C, as in [2,3], have been proven to be in-
accurate in certain cases. In [4,5], this problem is identified

without further investigating the physical reasons. In this
paper, however, it is shown that the problem is due to the
second phenomenon described in Section 1: the deformation
of the radiation pattern. Expanding the open-circuit voltage
of the receiving antenna elements into spherical modes pro-
vides physical insight into this problem and allows to dis-
tinguish between cases for which compensation guarantees
accurate results and the cases where radiation pattern defor-
mation cannot be compensated. Therefore, in Section 5 we
show how to construct a coupling matrix based on phase
modes and we derive a criterion that shows that an accurate
description is possible as long as the number of elements
in the UCA is large compared to the largest electrical di-
mension of the array. The only assumption about the con-
figuration is that the mutual coupling and the environment
factors are rotationally invariant. In Section 6, the dedicated
MUSIC algorithms and the use of a coupling matrix are ap-
plied for UCAs composed of dipole and dual-band dipole
antenna elements. For the UCAs composed of dipole ele-
ments, we introduce a simple platform effect by placing a
short-circuited dipole element in the center of the array. The
effect of the electrical size of the array, the number of an-
tenna elements, the impedance mismatch, and the frequency
on DOA estimation techniques are investigated.

2. Describing the circuit model of a uniform
circular array in terms of spherical modes

It is well-known that the EM behavior of an antenna
in transmit mode is described by a radiation impedance,
whereas in receive mode the antenna is characterized by the
identical radiation impedance together with an open-circuit
voltage source that depends on the radiation pattern of the
antenna in transmit mode Fi (�, �) and the incoming field
Einc(�, �) [19, Chapter 2]. For antennas in an array config-
uration, additional mutual impedances appear in the circuit
model describing mutual coupling. Explicitly, for a simple
array consisting of two antenna elements in receive mode we
obtain the circuit model shown in Fig. 1. Clearly, the system
is completely characterized by a two-port impedance ma-

trix Z and a vector V0 containing the open-circuit voltage
sources. The elements of the impedance matrix are found
by exciting each port in turn with a 1A current source and
measuring the voltage at that port as well as all open-circuit

port 1

I 1

Z 11

Z 12I 2

V1,0

Z 0

port2

I 2

Z 22

Z 21I 1

V2,0

Z 0

Fig. 1. Circuit models for a simple antenna array in receive mode.
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voltages at the other ports. During the same process, a radia-
tion pattern vector Fi (�, �) is obtained for each such excita-
tion scheme. This radiation pattern is directly related to the
open-circuit voltage Vi,0 in receive mode by [19, Chapter 2]

Vi,0(�, �) = −2j�

Rc
Einc(�, �) · Fi (�, �), (1)

where the vector Einc(�, �) represents an incoming plane
wave at angles (�, �), where � is the wavelength and Rc
the impedance of the medium in which the antenna radiates.
Note the angular dependence of the open-circuit voltages.
This means that, in order to fully characterize mutual cou-
pling in an array as a function of frequency, the impedance
matrix must be known as a function of frequency as well
as the open-circuit voltage vector, both as a function of fre-
quency and as a function of all relevant angles of incidence.
Note that the parameters used here to describe mutual cou-
pling are related to arrays consisting of wire and patch an-
tennes. However, by making use of duality, the concepts de-
scribed here can be extended the UCAs of slot antennas as
well.

Uniform circular arrays clearly exhibit a high degree of
symmetry, which can be exploited to reduce the number
of parameters in the circuit model for the array. We there-
fore make use of phase modes, as described in [17], and of
spherical modes [20, Chapter 6]. To understand the physics
behind these modes, we focus on a hypothetical multiport
antenna that is defined by its current distribution C(r, �, z)

on a surface S, being a circle with radius r. This current
distribution can, for example, be computed by the NEC-2
code, for an array of wire antennas, thereby including all
full-wave effects, such as mutual coupling. Let us for rea-
sons of simplicity assume that the currents are z-oriented.
Then, the z-oriented radiation pattern F(�, �) is related to
the current distribution by

F(�, �) = − j��0 sin �
∫ 2�

�′=0

∫
z

[
C(r, �′, z)

×ejk0(r sin � cos(�−�′)+z cos �)
]

d�′ dz (2)

with k0 = 2�/�, � the angular frequency and �0 the free-
space permeability. First, we deal with the dependence of
the radiation pattern on azimuth and expand F(�, �) into a
Fourier series of phase modes [20, Chapter 5]

F(�, �) =
+∞∑

m=−∞
F

�
m(�)ejm�. (3)

The far field of the mth phase mode is then given by

F
�
m(�) = − j��0 sin �

2�

∫ 2�

�=0

∫ 2�

�′=0

∫
z

[
C(r, �′, z)

×ejk0(r sin � cos(�−�′)+z cos �)e−jm�
]

d�′ dz d�

= − jm−1��0 sin �Jm(k0r sin �)

×
∫ 2�

�′=0

∫
z

C(r, �′, z)e−jm�′
ejk0z cos � d�′ dz.

(4)

The latter relation has two important implications. First, the

phase-mode component of the radiation pattern F
�
m(�) is di-

rectly related to the phase-mode component of the same or-
der in the current distribution C(r, �′, z) as the correspond-
ing phase mode. Second, the amplitude of the coefficients

F
�
m(�) quickly decreases when the order m of the Bessel

function Jm, corresponding to the angular mode number, is
larger than its argument, thus when m > k0r .

In a second step, we deal with the dependence on elevation

and expand the phase-mode coefficients F
�
m(�) in the follow-

ing series of associated Legendre polynomials P
|m|
n (cos �)

[20, Chapter 6]:

F
�
m(�) = sin �

+∞∑
n=0

F
�,�
m,nP |m|

n (cos �). (5)

The far field of the nth spherical mode is then given by

F
�,�
m,n = −jm−1��0

∫ 2�

�′=0

∫
z

C(r,�′, z)

×
[∫ �

�=0
Jm(k0r sin �)ejk0z cos �P

|m|
n (cos �) sin � d�

]
e−jm�′

d�′ dz

= (−1)
n
2 (−j)m−1��0

∫ 2�

�′=0

∫
z

C(r,�′, z)

× jn

(
k0

√
r2 + z2

)
P

|m|
n

(
z√

r2 + z2

)

× e−jm�′
d�′ dz. (6)

Again, the amplitude of the coefficients F
�,�
m,n quickly de-

creases when the order n of the spherical Bessel function jn

[20, App. D-20], corresponding to the spherical mode num-
ber, is larger than its argument, thus when n > k0

√
r2 + z2

max.
We conclude that the number of coefficients, (2M + 1) ×
(N + 1), required for expanding the radiation pattern of a
circular array in spherical modes

F(�, �) = sin �
+M∑

m=−M

+N∑
n=0

F
�,�
m,nP |m|

n (cos �)ejm� (7)

is limited by the overall dimensions of the array both as a
function of the angular index m and the spherical index n.

Consider a uniform circular array, consisting of Ne el-
ements. We can measure or calculate the radiation pattern
Fi (�, �) at one particular port. Probably, the pattern will be
available as LK data samples along L uniformly distributed
azimuth angles �l = 2�l/L and K uniformly distributed el-
evation angles �k = �k/K . For each elevation angle �k , it
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can first be decomposed into its phase-mode contributions
by calculating

F�
i,m(�k) = 1

L

L−1∑
l=0

Fi

(
�k,

2�l

L

)
e−j 2�lm

L , (8)

which can be efficiently evaluated as a Fast Fourier Trans-
form (FFT). Since for all elevation angles, the number of
relevant coefficients is related to the array dimensions k0r ,
a limited number of terms in the phase-mode series will be
sufficient to reconstruct the radiation patterns in small arrays
that suffer from large mutual coupling effects. This results in
a first reduction of the number of coefficients describing the
mutual coupling. A second reduction is obtained by relying
on symmetry. Indeed, once we know the series expansion
for a certain port i, we can construct the radiation pattern at
an arbitrary port p

Fp(�, �) = Fi (�, � − �p + �i )

=
+M∑

m=−M

F�
i,m(�)ejm(�−�p+�i ). (9)

Finally, by applying the expansion (5), the continuous func-

tions F�
i,m(�) reduce to the discrete coefficients F

�,�
m,n , which

are found by relying on the orthogonality of the associated
Legendre polynomials and by performing numerical integra-

tion over the discrete samples F�
i,m(�k) along the elevation

angles �k .
By the same procedure, we expand the open-circuit volt-

ages into a series of spherical-mode voltages V
�,�
0,m,n

Vi,0(�, �) = V1,0(�, � − �i )

= sin �
+M∑

m=−M

+N∑
n=0

V
�,�
0,m,nP

|m|
n (cos �)ejm(�−�i ).

(10)

Similarly, all relevant voltages and currents are expanded
following (10). By inserting these in the circuit model of

Fig. 1, for each phase mode m the impedance matrix Z

reduces to the phase-sequence impedance Z
�
m, given by

Z
�
m =

Ne∑
n=1

Zi,ne−jm 2�(i−n)
Ne . (11)

Because of symmetry, this impedance does not depend on a
particular port i. The mutual coupling in a UCA is thus fully
described by the phase-mode circuit model shown in Fig. 2.
In this model, the phase-mode currents and voltages at the
different ports are uncoupled for different mode orders m.

In order not to complicate things too much, we now con-
centrate on a fixed elevation angle �. The relevant open-
circuit voltages at that angle can always be found from the
expansion of Eq. (10). Note then that an Ne element UCA is
able to excite phase modes up to the order �Ne−1

2 �, by apply-
ing the correct amplitude and phase to the current sources

Fig. 2. Phase-mode circuit model of the UCA in receive mode,
including mutual coupling.

at the different ports. The normalized beamforming weight
vector that excites phase mode m is given by

wH
m = 1

Ne

[
1, ej 2�m

Ne , . . . , ej 2�(Ne−1)m
Ne

]
. (12)

The resulting radiation pattern

Fw
m(�) =

+∞∑
k=−∞

F�
1,m+Nek

(�)ej(m+Nek)�

is not monomodal, however, since beside phase mode m,
also modes with mode numbers m+Nek (k ∈ Z) are excited,
in correspondence with Nyquist’s sampling theorem. When
the array fulfills Ne?k0r , the contributions of higher-order
modes, however, can be kept arbitrary small.

3. Real-beamspace MUSIC

Let us develop some specialized DOA-estimation tech-
nique for UCAs with mutually coupled antenna elements,
using the phase-mode circuit model in receive mode de-
rived in the previous section. In [18], dedicated eigenstruc-
ture techniques for uniform circular arrays were considered,
without taking into account mutual coupling effects. Here,
we use the reduced model described in Section 2 to extend
these techniques when mutual coupling is important in uni-
form circular arrays.

Let us, for reasons of simplicity, start from an open-
voltage situation: a(�, �) = V0(�, �). Whenever a load
impedance Z0 is present, one follows the same line of rea-
soning as below for deriving the real-beamspace MUSIC
algorithm, but one replaces the phase-mode voltage V0,m,

corresponding to mode m, by Z0

Z0+Z
�
m

V0,m, with Z
�
m given

by Eq. (11). Furthermore, we assume that all signals are
incident on the array from a fixed elevation angle �. To
transform the problem of DOA-finding from the element
space to the beam space, we first apply the normalized
beamforming weight vectors of Eq. (12), cast in the matrix

V =√
Ne

[
w−M

... · · · ...w0
... · · · ...wM

]
. As discussed in the pre-

vious section, for Ne sufficiently large, application of this
vector to an array manifold vector results in

V
�
0 (�)v(�) ≈ V

H
V0(�, �) (13)
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with superscript T denoting transpose and H the conjugate
transpose,

v(�) =
[
e−jM�, . . . , e−j�, 1, ej�, . . . , ejM�

]
(14)

and

V
�
0 (�) = diag

[
V

�
0,M(�), . . . , V

�
0,1(�), V

�
0,0(�),

V
�
0,1(�), . . . , V

�
0,M(�)

]
(15)

a diagonal matrix containing the phase-mode voltages. To
develop a real-beamspace MUSIC algorithm as in [18], we

now transform the vector V
�
0 (�)v(�) into a centro-Hermitian

vector [21], by premultiplying by the diagonal matrix

Cv(�) = diag

[
e−j	 V

�
0,M(�)

, . . . , e−j	 V
�
0,1(�)

, e−j	 V
�
0,0(�)

,

e−j	 V
�
0,1(�)

, . . . , e−j 	 V
�
0,M(�)

]
. (16)

Finally, the real-valued beamspace manifold is found by
premultiplying by

W = 1√
M ′

[
v(�−M)

... · · · ...v(�0)
... · · · ...v(�M)

]
(17)

with M ′ = 2M + 1 and �i = 2�i
M ′ . Applying all these differ-

ent steps to the array manifold a(�, �) yields a real-valued
beamspace manifold b(�, �) of the form:

b(�, �) = W
H
Cv(�)V

H
a(�, �) = F

H

r a(�, �) (18)

= [
f (�, � − �−M), . . . , f (�, � − �−1), f (�, �),

f (�, � − �1), . . . , f (�, � − �M)
]

(19)

with

f (�, �) =
√

N

M ′

[
|V �

0,0| + 2
M∑

m=1

|V �
0,m| cos(m�)

]
.

The beamspace MUSIC algorithm then proceeds as fol-
lows: let sl(t) correspond to the electric field strength of a
signal impinging on the array from a DOA (�, �l ). When
measuring the open-circuit voltages at the antenna termi-
nals, we use (1) to find the Ne-dimensional vector of data
samples x(t) =∑L

l=1 vl (�, �l )sl(t) + n(t), with L the num-
ber of sources, vl (�, �l ) the array manifold vector and n(t)

and additive white Gaussian noise component. In this con-
tribution, at each antenna element the signal-to-noise ratio
(SNR) is defined by

SNR = E[|v0,1(t)|2]
E[|n(t)|2] .

Thus, as the reference value for the signal contribution we
take the mean square of the open-circuit voltage induced
by an incoming plane wave with |Ez| = 1. We chose not
to use the measured voltage over the load Z0, represented

by |vl(�, �l )|, in the definition of SNR, so that an antenna
that has a severe mismatch with respect to the load Z0
will also show bad performance. (We note in passing that
the effect of a mismatch on the SNR is seldom taken into
account in the implementation of signal processing algo-
rithms for DOA estimation.) The vector x(t) is first trans-
formed into the beamspace by applying the steps described

above: y(t)=W
H
Cv(�)V

H
x(t). The correlation matrix Ry=

E
[
y(t)yH(t)

]
is then computed and the signal and noise

subspaces for its real part Re(Ry) are constructed by means
of a real eigenvalue decomposition. The MUSIC spectrum
is obtained in the classical way by projecting the real-valued
beamspace manifold b(�, �) on the noise subspace.

4. Real-beamspace root-MUSIC

Whereas the standard MUSIC algorithm can be applied
to very general arrays, its root-MUSIC implementation re-
quires a well-defined structure in the array manifold, so that
its straightforward implementation in the element-space is
only feasible for uniform linear arrays in the absence of
mutual coupling. For UCAs in the presence of mutual cou-
pling, however, we can use the beamspace MUSIC tech-
nique derived in the previous section as a starting point
for a root-MUSIC implementation in the beamspace. This
root-MUSIC algorithm is applicable to UCAs even in the
presence of mutual coupling. In the element space, the root-
MUSIC algorithm can only be applied to uniform linear

arrays. Let G be an orthogonal matrix spanning the noise
subspace, derived from a real eigenvalue decomposition of

Re(Ry), as in Section 3. The DOAs then correspond to the
minima of the function

vH(�)V
�,a

0 (�)WGG
T
W

H
V

�,a

0 (�)v(�)

= vH(�)Q(�)v(�) (20)

with

V
�,a

0 (�) = diag
[
|V �

0,M(�)|, . . . , |V �
0,1(�)|, |V �

0,0(�)|,
|V �

0,1(�)|, . . . , |V �
0,M(�)|

]
. (21)

Since v(�) is given by (14), the null-spectrum can be written
as

V (�, �) =
M ′−1∑

l=−M ′+1

a�(l)e
jl� (22)

with a�(l)=
∑

i,j ;j=i+l Qi,j (�). Setting z=ej� in (22) results
in a polynomial equation, whose roots zi that are close to
the unit circle yield azimuth estimates for the DOAs: �i =
arg(zi).
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5. Constructing a coupling matrix based on
phase modes

The use of a coupling matrix is a very popular way to
represent mutual coupling in arrays. Often, this matrix is
estimated by fitting the actual array response to the ideal
array response at a number of discrete angles [4]. We will
now present a procedure to derive the elements of a coupling
matrix based on the phase-mode parameters of the UCA.
Assuming that all signals arrive from the same elevation
angle � and that all antenna ports of the UCA are loaded by
an impedance Z0, we know that the voltage over the loads
is given by (Fig. 1)

VZ0(�, �) = Z0(Z + Z0I )−1 · V0(�, �). (23)

An equivalent, but scalar, relation exists for the phase-mode
voltages of order m (Fig. 2)

V
�
Z0,m

(�) = Z0

Z
�
m + Z0

V
�
0,m(�). (24)

Assume now that the response of an ideal array without
mutual coupling is given by

V(NC)
Z0

(�, �) = V
(1)
0 (�, �)

(
ejk0r cos(�), ejk0r cos(�− 2�

Ne
)

, . . . , ejk0r cos(�− 2(Ne−1)�
Ne

)
)T

(25)

with V
(1)
0 (�, �) the open-circuit voltage of a stand-alone

antenna element of the UCA or of a stand-alone reference
antenna element such as a dipole. The ideal array mani-
fold (25) can also be decomposed into phase-mode volt-

ages V
�,(NC)

0,m (�). As both the real and the ideal array have
about the same size, the number of relevant phase modes
is identical, only the way they are distributed differs. The
correct distribution of phase modes for the real array can
be reconstructed from the phase modes describing the ideal
array manifold by loading the ideal array with an appropri-
ate phase-sequence impedance for each phase mode. This
means that, for each phase-mode m of the ideal array, we

calculate a phase-sequence impedance Z
�,(MC)
m by solving

V
�
Z0,m

(�) = Z0

Z
�
m + Z0

V
�
0,m(�)

= Z0

Z
�,(MC)
m + Z0

V
�,(NC)

0,m (�). (26)

This equation maps the ideal phase-mode voltages

V
�,(NC)

0,m (�) on the actual phase-mode voltage V
�
Z0,m

(�).
For an Ne element UCA, we are able to correct Ne mode
components, i.e. M = −Ne−1

2 , . . . , Ne−1
2 when Ne is odd,

or M = −Ne−2
2 , . . . , Ne

2 when Ne is even. Thus, we can
correct mutual coupling with high accuracy by means of a
coupling matrix, provided that Ne?k0r . Once all relevant
phase-sequence impedances for compensating the ideal

array manifold are known, the compensating impedance

matrix ZMC is found by using an inverse discrete fourier
transform (inverse of relation (11)). Finally, one obtains for

the coupling matrix C

VZ0(�, �) = C · V(NC)
Z0

(�, �)

= Z0

(
ZMC + Z0I

)−1 · V(NC)
Z0

(�, �). (27)

6. Examples

6.1. An eight-port array of dipoles

Consider an eight-port array of thin dipole antennas tuned
to 900 MHz (dipole length l=16.12 cm). The array elements
are distributed uniformly on a circle with diameter d = l(≈
�
2 ). In [4], it is mentioned that for an array consisting of just
dipoles, the mutual coupling is well represented by means of
a coupling matrix. This is not the case when a short-circuited
dipole with length l =16.12 cm is added in the center of the
circle. This element acts as a platform effect, as described
in [4], and compensation of mutual coupling by means of
a coupling matrix is not straightforward. Now choose the
number of element ports Ne = 8, in order to satisfy the
criterion Ne > k0

d
2 at 900 MHz, so that the real-beamspace

MUSIC algorithm of Section 3 can be applied. To validate

this statement, the spherical-mode voltages |V �,�
0,m,|m|+n| for

the eight-element array are shown in Fig. 3. At 900 MHz,
the most significant expansion coefficients are found in the
region |m|�3 and n�2 and all relevant components are
covered by choosing M = 3 and M ′ = 7.

To demonstrate the MUSIC algorithm, consider three
uncorrelated sources emitting 10 000 bit pseudo-random
bit sequences. All signals are incident along the xy-plane
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| for the
eight-element array at 900 MHz.
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Table 1. Mean and standard deviation for DOA estimation at 900 MHz

SNR MUSIC RB-MUSIC root MUSIC

3 dB 10 dB 3 dB 10 dB 3 dB 10 dB

DOA 1 55.0◦(0.3◦) 55.0◦(0.0◦) 55.1◦(0.3◦) 55.1◦(0.1◦) 55.0◦(0.3◦) 55.0◦(0.1◦)
DOA 2 96.0◦(0.6◦) 95.0◦(0.1◦) 95.3◦(0.5◦) 95.3◦(0.2◦) 95.3◦(0.5◦) 95.3◦(0.2◦)
DOA 3 143.0◦(0.2◦) 143.0◦(0.0◦) 143.2◦(0.3◦) 143.2◦(0.1◦) 143.2◦(0.3◦) 143.2◦(0.1◦)

Table 2. Resolving power at 900 MHz: incoming signals at 55◦ and 55◦ + �, with SNR = 10 dB

� MUSIC RB-MUSIC root MUSIC

5◦ 10◦ 5◦ 10◦ 5◦ 10◦

DOA 1 57.5◦(1.4◦) 55.3◦(0.5◦) 57.5◦(1.9◦) 55.2◦(0.5◦) 54.6◦(1.4◦) 54.9◦(0.5◦)
DOA 2 238.0◦(22◦) 64.7◦(0.6◦) 220.0◦(55◦) 64.3◦(0.5◦) 59.9◦(1.2◦) 64.6◦(0.4◦)

Table 3. Detection power at 900 MHz: incoming signals at 55◦ and 85◦, with SNR = 30 dB

� MUSIC root MUSIC RB-MUSIC

30 dB 40 dB 30 dB 40 dB 30 dB 40 dB

DOA 1 55.0◦(0◦) 55.0◦(0◦) 55.1◦(0.02◦) 55.1◦(0.05◦) 55.1◦(0.0◦) 55.1◦(0◦)
DOA 2 85.0◦(0.6◦) 120.0◦(71◦) 85.1◦(0.5◦) 85.4◦(3.2◦) 85.1◦(0.5◦) 85.1◦(16◦)

Power of second signal reduced by factor � compared to the first signal.

(elevation �= 90◦). The signals are received in the presence
of additive white Gaussian noise. We calculate the mean and
standard deviation for an ensemble consisting of 500 imple-
mentations: in Table 1, for equally strong signals at DOAs
�1 = 55◦, �2 = 95◦ and �3 = 143◦ at different SNR levels,
in Table 2, for equally strong signals at DOAs �1 = 55◦ and
�2 = 55◦ + � with SNR = 10 dB, and in Table 3 for signals
at DOAs �1 =55◦ and �2 =85◦ with SNR = 30 dB and with
the power of second signal reduced by factor � compared to
the first signal. Throughout the manuscript the tables show
the DOA estimates averaged over the ensemble under con-
sideration. The value between brackets, behind each average
value, is the standard deviation. Three implementations are
considered: the (element-space) MUSIC algorithm, requir-
ing full knowledge of the open-circuit voltages as a function
of �, for all ports, the real-beamspace algorithm, based on
the knowledge of the phase-mode voltages for m=−3, . . . , 3
and the root-MUSIC implementation described in Section 4.
For the conventional MUSIC algorithm, the voltages were
calculated with the NEC-2 code and listed in a table with a
1◦ angular resolution. This means that the conventional tech-
nique requires the knowledge of 8 × 360 parameters to de-
scribe the array manifold at that resolution. From this table,
the phase-mode voltages were then computed by means of
an FFT. The EM behavior of the array in the real-beamspace
and the root-MUSIC implementation is characterized by 7

phase-mode voltages only. Still, the root-MUSIC algorithm
discriminates DOAs with an angle separation of 5◦ and de-
tects a DOA in the presence of another signal which is 40 dB
stronger. In both these cases, the element-space MUSIC al-
gorithm fails to detect both DOAs correctly. Furthermore,
for the 500-element ensemble simulated in MatLab 6.5 on
a 2.4 GHz Pentium IV processor, the real-beamspace algo-
rithm (average Matlab runtime 48 s, where the average is
taken over 20 Matlab runs) and the root-MUSIC implemen-
tation (average Matlab runtime 45 s, where the average is
taken over 20 Matlab runs) were significantly faster than the
element-space MUSIC approach (average Matlab runtime
55 s, where the average is taken over 20 Matlab runs). The
latter technique also requires more storage, as 2880 param-
eters must be stored for each elevation angle, compared to
7 parameters for the beamspace approaches.

Let us now try to increase the detection performance and
the resolving power of the array. In theory, this can be
achieved by increasing the diameter of the array, or, equiv-
alently, increasing the frequency. Consider the same array
at 1800 MHz. Fig. 4 now shows that by choosing M = 3
and M ′ =7, not all the relevant phase-mode voltage compo-
nents are covered, since the relevant expansion coefficients
are located in the region |m|�4 and n�6. This has an im-
mediate effect on the accuracy of the DOA estimation. For
example, when using the root MUSIC implementation to de-
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Fig. 4. Spherical-mode coefficients |V �,�
0,m,|m|+n

| for the
eight-element array at 1800 MHz.

tect equally strong signals at DOAs �1 = 55◦, �2 = 95◦ and
�3 = 143◦ at SNR = 30 dB, a 500 element ensemble yields
following average DOA estimates: �1 =56.28◦, �2 =99.08◦
and �3 = 145.93◦. Although the standard variation drops to
0.02, as a result of the increased electrical size of the array,
biased results are obtained because of the inaccurate model
for the mutual coupling. In contrast, the element space MU-
SIC algorithm, based on the complete knowledge of the ar-
ray manifold gives correct estimates.

6.2. A nine-port array of dipoles

The accuracy of the real-beamspace MUSIC algorithm at
1800 MHz is much improved by adding an additional an-
tenna element to the array, so that the algorithm can rely
on the phase-mode voltages for m = −4, . . . , 4. As one can
verify in Fig. 4, the most relevant phase-mode voltages for
describing the mutual coupling effects are now incorporated
into our model. Now, the root-MUSIC implementation de-
scribed in Section 4 yields the following ensemble aver-
ages for the DOAs estimates at SNR = 10 dB: �1 = 55.16◦,
�2 = 95.09◦ and �3 = 143.00◦.

In order to get an idea on how inaccurate modelling of
mutual coupling influences the DOA estimation, we now ap-
ply the real-beamspace MUSIC algorithm based on an array
manifold that ignores mutual coupling, since it consists of
the open-circuit voltages of the individual antenna elements
in the absence of the other array elements. As a reference
we again use the element-space MUSIC technique with the
correct array manifold including mutual coupling effects. In
Fig. 5 both MUSIC DOA spectra at 1800 MHz for a sin-
gle implementation are shown. It is seen that by neglecting
mutual coupling we fail to reconstruct the three DOAs.

The same effect is seen for the root-MUSIC algorithm,
which gives following estimates for the DOAs: �1 = 54.9◦,

0 50 100 150 200 250 300 350
100

101
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103

104

105

106

φ

neglecting mutual coupling
reference

Fig. 5. MUSIC spectrum at 1800 MHz for nine antenna elements,
not including mutual coupling.
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Fig. 6. Phase-mode voltages at �=90◦ for the array at 1800 MHz.

�2 = 93.2◦ and �3 = 143.9◦. This clearly shows that ne-
glecting the mutual coupling results in a severe loss of DOA
estimation accuracy. The reason for this loss in accuracy in
clearly seen in Fig. 6, where the phase-mode components
are shown for an expansion in the azimuth plane (� = 90◦).
Although both in the presence and the absence of mutual
coupling, the main contributions of the phase-mode voltages
tend to concentrate between m=−4 and 4, mutual coupling
clearly leads to a different distribution of the phase-mode
components.

Let us now load all the antenna terminals with a termi-
nation Z0 = 73 �. This represents a rather good match at
f =900 MHz, but a severe mismatch at f =1800 MHz. To ac-
count for mutual coupling we either use the real-beamspace
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Table 4. Nine-element UCA with Z0 = 73 �: mean and standard deviation for DOA estimation

SNR = 10 dB 900 MHz 1800 MHz

Open-circuit MUSIC Comp. MUSIC RB-MUSIC root MUSIC root MUSIC

DOA 1 39.0◦(0.2◦) 55.0◦(0.2◦) 55.0◦(0.2◦) 55.0◦(0.2◦) 36.5◦(51◦)
DOA 2 95.7◦(0.5◦) 95.0◦(0.1◦) 95.0◦(0.3◦) 95.0◦(0.3◦) 90.9◦(15◦)
DOA 3 157.1◦(0.3◦) 143.0◦(0.04◦) 143.0◦(0.2◦) 143.0◦(0.2◦) 142.0◦(8◦)

15.23 cm6.65 cm

1.30 cm

r=0.37 cm

8.06 cm

nine–element UCA constellation sleeve dipole

Fig. 7. Nine-element UCA consisting of dual-band dipole antennas.

MUSIC approach discussed in Sections 3 and 4, or we
construct a coupling matrix as described in Section 5 and
use the element-space MUSIC algorithm. Moreover, these
results are compared with the open-circuit voltage method
described in [1]. In Table 4, the estimation of the three in-
coming signals is shown for different algorithms, at 900
and 1800 MHz and for SNR = 10 dB. At 900 MHz, all tech-
niques presented in this paper, i.e. the compensated MUSIC
approach, the real-beamspace and the root real-beamspace
methods give accurate results. At this frequency, the cou-
pling matrix in combination with the conventional MUSIC
technique is able to compensate for mutual coupling. On
the other hand, if one simply uses the open-circuit voltage
method described in [1] to compensate for mutual coupling,
one obtains rather inaccurate DOA estimates, proving that
for this configuration, the open-circuit voltage method is
not able to fully compensate for mutual coupling, even at
900 MHz. At 1800 MHz, due to antenna mismatch, both the
conventional MUSIC algorithm compensated by the cou-
pling matrix and the real-beamspace MUSIC approach fail
to resolve the three signals. The root MUSIC technique re-
solves the three signals, but the accuracy is very poor.

6.3. An array of dual-band dipole antennas

Dipole antenna elements are relatively narrow-band,
which can result in a severe impedance mismatch when us-
ing these elements to perform DOA estimation at different
frequencies [6]. Therefore, more complex wire antennas
should be used to cover multiple frequencies. In Fig. 7, we
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Fig. 8. Spherical-mode coefficients |V �,�
0,m,|m|+n

| for the dual-band
dipole array at 1800 MHz.

have tuned a dual-band dipole antenna to match 50 � at
900 and 1800 MHz (S11 < − 10 dB). Let us first consider
a UCA consisting of nine such antenna elements (Fig. 7).
The antenna feeds are distributed uniformly on a circle of
radius r = 8.06 cm, of identical size as for the nine-element
dipole array in the previous subsection. Note, however, that
the overall array dimensions are now slightly larger because
of the dimensions of the dual-band dipole antennas. Even
though the antenna elements are more complex than in the
dipole array case, at 900 MHz, the most significant expan-
sion coefficients are found in the region |m|�4 and n�2
and thus all relevant components are covered by choosing
M = 4 and M ′ = 9. Again, at 1800 MHz, not all the rele-
vant phase-mode voltage components are covered, as seen
in Fig. 8, since the relevant expansion coefficients are then
located in the region |m|�5 and n�6. Let us now load
all antenna terminals with 50 � terminations and consider
incoming signals in the azimuth plane. When constructing
the coupling matrix, we use a stand-alone dipole antenna as
a reference.

Consider two signals with equal power, incident at �1 =
55◦ and �2 = 65◦, with an SNR = 10 dB. At 900 MHz, mu-
tual coupling can be compensated by a coupling matrix. This
results in accurate average estimates for the compensated
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Table 5. Dualband UCA: mean and standard deviation for DOA estimation at 1800 MHz: incoming signals at 55◦ and 65◦, with SNR = 10 dB

Ne root MUSIC comp MUSIC

9 11 13 9 11 13

DOA 1 54.9◦(0.6◦) 55.2◦(0.04◦) 55.0◦(0.03◦) — 56.0◦(0◦) 55.0◦(0◦)
DOA 2 65.1◦(0.6◦) 63.5◦(0.06◦) 65.0◦(0.03◦) — 63.9◦(0.3◦) 65.0◦(0◦)

Table 6. Thirteen-element dualband UCA: mean and standard de-
viation for DOA estimation at 1800 MHz for incoming signals at
55◦ and 55◦ + �, with SNR = 10 dB

� root MUSIC

2◦ 3◦ 4◦ 5◦

DOA 1 55.8◦(0.3◦) 55.4◦(0.6◦) 55.8◦(1.2◦) 55.0◦(0.02◦)
DOA 2 57.0◦(0.3◦) 57.8◦(0.5◦) 58.2◦(1.2◦) 60.0◦(0.02◦)

element-space MUSIC when considering a 500-element en-
semble: �1=55.02◦ and �2=64.97◦ and even slightly better
average estimates for the root-MUSIC approach: �1=55.00◦
and �2 = 64.99◦. Table 5 shows that, at 1800 MHz for a
nine-element array, the compensated element-MUSIC algo-
rithm is not able to resolve the DOAs, whereas the aver-
age DOA estimates are not so accurate at 1800 MHz when
using the root-MUSIC approach. One can also observe in
Table 5, however, a gradual increase in estimation accuracy
when the number of elements increases.

When using 13 antenna elements, all relevant phase-mode
components are covered. For this configuration, Table 6
shows that the root-MUSIC algorithm is able to accurately
resolve DOAs down to an angle separation of 2◦.

7. Conclusions

An expansion of the open-circuit voltages and the mutual
impedances into phase modes and spherical modes was
used to derive a rigorous circuit model with a limited num-
ber of parameters that describes mutual coupling in uniform
circular arrays. The model provides physical insight on
how mutual coupling between antenna elements depends
on frequency, azimuth angle, and on the overall size of the
array. It was shown that the number of circuit elements, re-
quired to describe the open-circuit voltages and the mutual
impedances at the different antenna ports, depends on the
overall size of the array. For a fixed overall size of the array,
the number of circuit elements did not depend on the ele-
ment spacing nor on the degree of mutual coupling between
the antenna elements. Based on this observation, an ana-
lytical technique was described to derive a coupling matrix
representing the mutual coupling effects. This technique can
compensate for all mutual coupling and environment effects,
provided they are rotationally invariant. Relying on the
phase-mode-based circuit elements, dedicated eigenstruc-

ture techniques are developed for DOA estimation in such
arrays. In the presence of antenna mismatch and of errors
in modelling the mutual coupling effects, the root real-
beamspace implementation in general provides more robust
DOA estimates than the real-beamspace and the use of the
coupling matrix together with the element-space MUSIC
implementation. It is expected that the model for describing
mutual coupling can also be combined with recently derived
DOA estimation techniques, such as the rank-reduction
(RARE) estimator [22] and the unitary root-MUSIC tech-
nique [23] for UCAs.
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