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Application of Particle Swarm Optimization 
Algorithm in Smart Antenna Array Systems 

May M.M. Wagih and Hassan M. Elkamchouchi 
Alexandria University, Faculty of Engineering  

Egypt 

1. Introduction  

In wireless applications the antenna pattern is shaped so as to cancel interfering signals 
(placing nulls) and produce or steer a strong beam towards the wanted signal according to 
signal direction of arrival (DOA). Such antenna system is called smart antenna array. 
This chapter presents the efficiency of Particle Swarm Optimization algorithm (PSO) 
compared to Genetic algorithm (GA) in solving antenna array pattern synthesis problem. 
Also PSO is applied to determine optimal antenna elements feed that provide null 
(minimum power) in the directions of the interfering signals while to maximize of radiation 
in the direction of the useful signal. Application for PSO algorithm in Direct Data Domain 
Least Squares (D3LS) approach that is used to estimate incoming signal is illustrated.  
Due to environment changing the target goal is changing so modification in the algorithm is 
proposed to provide optimal solution for varying real time target (to track the desired users 
and reject interference sources). The problem is formulated and solved by means of the 
proposed algorithm. Examples are simulated to demonstrate the effectiveness and the 
design flexibility of PSO in the framework of electromagnetic synthesis of linear arrays. 

2. Smart Antenna Array System Overview 

The ability to communicate with people on the move has evolved remarkably since Marconi 
first demonstrated radio’s ability to provide continuous contact with ships sailing the 
English Channel in 1897. There onwards, new wireless methods and services have been 
adopted. Smart antenna system represents one of the valuable parts that support the 
increasing requirement and needs to higher quality wireless services.  
Smart antenna systems processes signals arriving from different directions to detect 
(estimate) desired signal direction of arrival DOA. Biased on the estimated DOA the 
beamformer optimize antenna elements weights such that the radiation pattern of the 
antenna array is adjusted to minimize a certain error function or to maximize a certain 
reward function derived by the adaptive algorithm. Figure 1. Presents block diagram for 
Smart antenna system. Smart antenna processing core is represented in three areas the 
adaptive algorithms the DOA estimation algorithm and the beamformer control. 
One of the simplest geometries for an array is a linear array in which the centers of the 
antenna elements are aligned along a straight line. For simplicity consider the uniformly 
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spaced linear array of N elements and that there is M signals received. We assume that K 
samples are observed by the array then output vector ܆ሺ݊ሻ is 

ሺ݊ሻ܆  ൌ ሺ݊ሻ܁ሻߠሺۯ ൅ ݊               ,ሺ݊ሻ۽ ൌ ͳ,ʹ, ሺ݊ሻ is ሺܰ܆ (1) .… ൈ  ሻߠሺۯ ,ሻ  matrix of array output signals at any given instant (sampling time) nܭ
is ሺܰ ൈ ܯሺ݊ሻ is ሺ܁ ,ሻ  steering matrixܯ ൈ  ሺ݊ሻ is noise matrix. The array۽ ,ሻ signal matrixܭ
steering matrix (array manifold) ۯሺߠሻ  is  

ሻߠሺۯ   ൌ ሾ܉ሺߠଵሻ, ,ଶሻߠሺ܉ ڮ ڮ  ሻሿ (2)ۼߠሺ܉

Where  

௜ሻߠሺ܉  ൌ ቂͳ, exp ቀଶగௗ ୱ୧୬ ఏ೔ఒ ቁ , ڮ ڮ exp ቀଶగௗሺNିଵሻ ୱ୧୬ ఏMఒ ቁቃ ,    (3)     ݅ ൌ ͳ,ʹ, … . M ܉ሺߠ௜ሻ  is the response of the linear array to the ݅௧௛ source arriving from direction ሺߠ௜ሻ. The 
array manifold is defined as the one-dimensional manifold composed of all the steering 
vectors as ߠ ranges over all possible angles i.e. ߠ א ሾͲ,  . ሿߨʹ

 

Figure 1. Block diagram of smart antenna array system and linear array signal model 

The array manifold used to calibrate the array for direction finding estimation. Each element 
output is multiplied by a complex weight ݓ௜כ, suggested by the adaptive algorithm then the 
beamformer update the phase and amplitude relation between the branches, and sum them 
to give information signal ܇ሺnሻ 

ሺ݊ሻ܇     ൌ ܅ ሺ݊ሻ (4)܆ሺ݊ሻ்܅ ൌ ሾݓଵ    ݓଶ  ݓଷ …  ேሿݓ
3. PSO for Smart Antenna System 

The smart antenna changes their directional pattern with the help of few adjustable 
parameters in according to the estimation and analysis to received signal, environment and 
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pre-known information to improve the performance and capacity of the system. A 
promising way for the determination of a suitable parameter configuration for the antenna 
is the application of heuristic optimization procedures.  
Pattern synthesis problem (beamforming) is continuous varying target real time problem 
that needs fast optimal solution to adjust array pattern and support for the service required. 
Also the controlling parameters are limited due to practical design and cost aspects. 
Consequently Enhancement to PSO algorithm is proposed to support for these two major 
needs. 

3.1 PSO and Dynamic Real Environment Optimization 

For real time dynamic environment problem the goal value changes, original PSO algorithm 
has no method for detecting this change and the particles are still influenced by their 
memories of the original goal position. If the change in the goal is small, this problem is self-
correcting. Subsequent fitness evaluations will result in positions closer to the new goal 
location replacing earlier position ܆ vectors, and the swarm should follow, and eventually 
intersect the moving goal. 
However, if the movement of the goal is more pronounced, it moves too far from the swarm 

for subsequent fitness evaluations to return values better than the current personal best ۾௜௧ 
vector, and the particles do not track the moving goal. A proposed attempt to rectify this 

problem by having the particles periodically replaces their ۾௜௧  vector with their current ܆௜௧ 
vector, thus “forgetting” their experiences to that point. This differs from a restart, in that 
the particles, in retaining their current location, have retained the profits from their previous 
experiences, but are forced to redefine their relationship to the goal at that point. Figure 2 
present flow chart for the proposed PSO algorithm to support for varying dynamic target 
optimization problem. 

 

Figure 2. Dynamic Particle Swarm Algorithm 

 

 

Initialize population with random position(x) and velocity (v) 

vectors 

For each Iteration 
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Update agent’s velocity, and 
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3.2 PSO and bounded search space 

Constraint is usually set to the array parameters these constraints may be spatial, for 
example, that the interelement spacing be greater than a prescribed value or that the 
element positions be within specified limits. Other type of design constraint is the excitation 
where it may require that the elements feed is phase only or amplitude and that the current- 
taper ratio be less than or equal to a prescribed value. 
Introducing constraint to the PSO  will decrease degree of freedom. Search time will also 
increase if the concept of accept and after the each particle movement for each iteration 
according to boundaries. However, if we can convert the problem to an unconstrained one 
initially through using suitable transformations of the constraint parameter this will 
eliminate time lost in explore and probability of rejecting the particle movement. Illustration 
for such solution will be clear in next section while simulation. 

4. PSO use for pattern synthesis  

This section objects to reformulate and define antenna array adaptive beamforming in term 
of an optimization problem. Problem Search Space represented by array pattern controlling 
parameters is identified. Fitness function that measures the deviation of the optimal 
proposed solution from the target is defined.  

 

Figure 3.Linear array geometry 

Let us consider the linear array of ܯ non-uniformly spaced point source isotropic elements 
located along a straight line at the positions ݔ௞ , where ݇ ൌ Ͳ, … , ܯ െ ͳ. The beam pattern 
function ܲሺݑሻ of the array, is defined as follows,  

  ܲሺݑሻ ൌ ቤ෍ ࣅ௞݁࢐૛࣊ݓ ૚࢑ୀ૙ିࡹ࢑࢛࢞ ቤ  

௞ݓ  ൌן௞ expሺ݆ߚ௞ሻ  

ሻݑሺ݌   ൌ ฬ෍ ௞ן ݁௝ሺమഏഊ ௫ೖ௨ାఉೖሻெିଵ௞ୀ଴ ฬ    (5)  

 

Where ݓ௞ is the weight coefficient of the ݇௧௛ element, ߣ is the background wavelength, ݑ ൌsin ߠ െ sin  ఖ the incident angle of the impinging plane wave and the steeringߠ and ߠ ఖ, beingߠ
angle of the array, respectively.  In order to generate a beam pattern (BP) that attain specific 
characteristics e.g., sidelobes level (SLL) lower than a fixed threshold or reproduces a 
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desired shape ௗܲ஻௥௘௙ሺݑሻ, initially we have to identify the array designing parameters and their 

boundaries i.e. The particle search space in PSO algorithm.  
let vector ࣀ  be defined as follow,  ࣀ ൌ ሾܯ, ,଴ݔ … ;ெିଵݔ ଴ݓ … . ;ெିଵݓ    ;ሿ்ܦ
Where, ܯ  is number of array elements, ሾݔ଴, … ଴ݓெିଵሿ is array elements spacing vector, ሾݔ … . ௞ݓ ெିଵሿ is array elements feed vector generally represented asݓ ൌן௞  boundary limits has to be taken in account when solving the problem to ࣀ .is array length ܦ ௞ሻ, finallyߚሺ݆ ݌ݔ݁
facilitate practical and cost design needs. 
Then a quantized measure for the solution distance from the target required should be 
defined, this value will be function of the search space parameter vector ࣀ. Generally for 
antenna array pattern synthesis most of the well known target consideration is the main 
beam ெ݂஻, total pattern ஻݂௣, sidelobe level ௌ݂௅௅, number,  location and width of nulls ௡݂௨௟, 
number of array elements ே݂  then we can us define global antenna array fitness function ݂, 
as follows: 

  ݂ሺࣀሻ ൌ ଵ௖భ௙ಳುሺࣀሻା௖మ௙ಾಳሺࣀሻା௖య௙ೄಽಽሺࣀሻା௖ర௙೙ೠ೗ሺࣀሻା௖ఱ௙ಿ ሺࣀതሻ  (6) 

Where  

   ஻݂௉ሺࣀሻ ൌ න ቀ ௗܲ஻ሺݑሻ ܳ⁄ െ ௗܲ஻௥௘௙ሺݑሻቁ ஻א௨ݑ݀  (7) 

  ெ݂஻ሺࣀሻ ൌ ෎ ቆන ቀ ௗܲ஻ሺݑሻ ܳ⁄ െ ௗܲ஻௥௘௙ሺݑሻቁ ெ஻א௨ ݑ݀ ቇ௠௕
௜ୀଵ  (8) 

    ௌ݂௅௅ሺࣀሻ ൌ ொ௠௔௫ሼ௉೏ಳሺ௨ሻሽ ௦௧௔௥௧ݑ  ݎ݋݂       ൑ ݑ ൑ ͳ  (9) 

   ௡݂௨௟ሺࣀሻ ൌ ෎ ቆන ቀ ௗܲ஻ሺݑሻ ܳ⁄ െ ௗܲ஻௥௘௙ሺݑሻቁ ஻ே೔א௨ݑ݀ ቇ௡௟
௜ୀଵ     

ܤ    ௜ܰ ൌ ௡௨௟೔ݑ േ Ͳ.ͷ∆ݑ௡௨௟೔        (10) 

   ே݂ሺࣀሻ ൌ  (11) ;ܯ

Where ݑ௦௧௔௥௧   being a value that allows excluding the main lobe from the calculation of the 

SLL. Moreover, ܳ  is a normalizing constant, ܤ  represents visible region ;  while  ௗܲ஻௥௘௙ሺݑሻ 

represents the desired BP shape. ܤܯ represents the range of values covering the Main beam, 
mb number of beams in the pattern, ܰܤ corresponds to the nulls locations and ݈݊ is number 
of nulls required. Finally, ܿ୧ are coefficients that identify each criteria value. 
It is often necessary to impose a constraint on the interelement spacing to minimize the 
mutual coupling effects. For and array with an even number of elements the constraint may 
be expressed as follow  

ଵݔ   ൒ ௗଶ ௜ݔ         , െ ௜ିଵݔ  ൒ ݀        ݅ ൌ ʹ,͵, … …  (12)    ܯ

The above constrain can be represented using the following transformation:  ݔଵ ൌ ௗଶ ൅ ሺݔଵ́ሻଶ  ݔଶ ൌ ቀௗଶ ൅ ݀ቁ ൅ ሺݔଵ́ሻଶ ൅ ሺݔଶ́ሻଶ  
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Generally 

ሺݔ௜ሻ ൌ ൬݅ െ ͳʹ൰ ݀ ൅ ෍ሺݔ௞́ሻଶ   ,           ݅ ൌ ͳ,ʹ, … . ௜ܯ
௞ୀଵ  

For odd elements number array 

  ሺݔ௜ሻ ൌ ሺ݅ െ ͳሻ݀ ൅ ෌ ሺݔ௞́ሻଶ   ,         ݅ ൌ ʹ, … . ሺܯ െ ͳሻ/ʹ௜ିଵ௞ୀଵ   (13) 

Solving using equation 10 allows minimization to be carried out with the new primed 
variables, and it is readily seen that the constraints are always satisfied. 
Another type of constraint on spacing’s usually imposed is the one requiring the elements to 
lie within a specified range mainly required to avoid unacceptable practical array 
dimensions. Stated mathematically in the following form: 

 ܽ௜ ൑ ௜ݔ ൑ ܾ௜                            ݅ ൌ ͳ,ʹ, … .  (14) ܯ

the transformation to be used in this case is  

௜ݔ  ൌ ܽ௜ ൅ ሺܾ௜ െ ܽ௜ሻ ଶ݊݅ݏ ప́ݔ  (15)  

It is sometimes necessary to constrain the current taper to be within specified limits. That is, 

௜ܫ     ൑ ܫ േ ݅               ,ܥ ൌ ͳ,ʹ, ….  (16) 

It is easily verified that the transformation of the form in equation (15) will transform the 
constrained space into an unconstrained one  

௜ܫ    ൌ ܫ ൅ ܥ ݊݅ݏ పሖܫ   (17) 

Next section will investigate the efficiency of the PSO for solving linear array configuration 
compared to other algorithms.  

4.1 PSO and GA for Pattern Synthesis  

To validate the PSO approach, initially we apply PSO, to find the optimized element weight 
to achieve the Chebyshev pattern for 10 equispaced isotropic elements with λ/2 interelement 
spacing antenna array of minimum SLL of 26dB, and compare its performance to GA, for 
solving the same problem. The sample points, are chosen 300 equally distributed points over ݑ on a personal computer with a Pentium IV processor running at 1GHz. The target beam 

will be ௗܲ஻௥௘௙
 

 ௗܲ஻௥௘௙ ൌ ʹ.͹9 ݏ݋ܿ ݑ ൅ ʹ.Ͷ9 ݏ݋ܿ ݑ͵ െ Ͳ.9͹ ݏ݋ܿ ͷݑ ൅ ͳ.͵ͷ ݏ݋ܿ ͹ݑ ൅ ݏ݋ܿ  ݑ9

We consider 10 elements symmetric array with amplitude excitation only i.e. ߚ௜ ൌ Ͳ  then  ࣀ ൌ ൤ݓ଴ … . ቀಾమݓ ቁିଵ൨் ; ܯ      ൌ ͳͲ   

௞ାሺெݓ   ଶ⁄ ሻ ൌ ሺெݓ ଶ⁄ ሻିሺ௞ାଵሻ        ݇ ൌ Ͳ, … ܯ ʹ⁄   

஻݂௣ሺࣀሻ ൌ ʹ כ ඲ ൭ ௗܲ஻ሺݑሻܳ െ ௗܲ஻௥௘௙ሺݑሻ൱ ஻א௨ݑ݀ ; Ͳ ݎ݋݂          ൑ ݑ ൑ ͳ   
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ௌ݂௅௅ሺࣀሻ ൌ ଶ଺௠௔௫ೠೞ೟ೌೝ೟ರೠರభሼ௉೏ಳሺ௨ሻሽ                    ݑ௦௧௔௥௧ ൌ Ͳ.ʹͷ  ሺࣀሻ ൌ ଵ௙ೄಽಽሺࣀതሻା௙ಳುሺࣀതሻ        
Figure 4 presents the output pattern explored over the optimization process by one particle 
until it reaches the optimum solution. Corresponding proposed elements weigh for these 
local minima is as listed in Table 1.    

Iteration No ࢝૙, ࢝ૢ ࢝૚, ࢝ૡ ࢝૛, ࢝ૠ ࢝૜, ࢝૟ ࢝૝, ࢝૞ 
Max. SLL 
dB 

P1 (5) 0.3292 0.5337 0.7030 0.9883 1 -20 

P2 (30) 0.3543 0.3243 0.5679 1 0.7044 -15 

P3 (78) 0.3521 0.4688 0.7158 0.8378 1 -12 

P4 (122) 0.3574 0.4850 0.7055 0.8921 1 -26 

Table 1. Optimum proposed weight corresponding to one particle 

Figure 4, 5 shows behavior of the fitness values for solutions explored versus the number of 
iterations for one particle. Dotted curve represents the gbest fitness value where it intersects 
with the particles. Note that although the particle has achieved good fitness value in its 
exploring journey it was not trapped at these local minima at P1, P2, P3, P4. 

 

Figure 4.  Explored solution for one particle at  iteration 5, 30, 80, 120 compared to target 
pattern 

Figure 6 present comparisons between the fitness error per iteration for GA and PSO 
algorithms solving the above problem with same initial random feed using PSO and Genetic 
algorithm. It can be noticed the performance difference in reaching optimum solution is not 
big only difference comes for the time per iteration in each algorithm. According to output 
in Table 1 that the optimized proposed element feeds is the same for both algorithms.  
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Figure 5. Behavior of the fitness function per iteration for one particle, dotted curve 
represent  behavior of gbest fitness value per iteration 

 

Figure 6. Fitness per iteration behavior for PSO algorithm and GA algorithm 

Next section will search the capabilities of the PSO for solving array configuration. A 
simulation for steering single beam, introducing multiple beams in DOA and introducing 
nulls in  the imposed directions by controlling the excitations of the array elements feed or the 
elements spacing represented in term of λ. also the adaptive ability of PSO for changing the 
problem target in runtime is presented such feature is to be useful in digital beamforming.  

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

20

40

60

80

100

Iteration Number

%
 F

it
n
e
s
s
 e

rr
o
r

P3 P4

P1

P2

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

Iteration number

%
 F

it
n
e
s
s
 e

rr
o
r

 

 
GA

PSO

www.intechopen.com



Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems 

 

469 

Algorithm/ 
Normalized 
weight 

࢝૙, ࢝ૢ ࢝૚, ࢝ૡ ࢝૛, ࢝ૠ ࢝૜, ࢝૟ ࢝૝, ࢝૞ 
No. of 
Iteration 

Total 
time 
min. 

PSO 0.3574 0.4850 0.7055 0.8921 1.000 115 2 

GA 0.3563 0.4845 0.7055 0.891 1.000 122 9 

Table 2. Optimum proposed weight corresponding to PSO, GA algorithm 
 

4.2 PSO and Pattern Synthesis Phase Control 

The phase-only null synthesizing is attractive since in a phased array the required controls 
are available at no extra cost [Steyskal, H.,1986]. This section will illustrate different 
scenarios for pattern shaping using PSO to search suitable phase feed to fullfill-required 
pattern. Initially consider it is required to Introduce single null at direction ߠ ൌ50˚ and 
SLL<30dB with same mainbeam. PSO evaluated element weighting which fulfilled the 
requirements of the design using fitness function equation 6. 
Figure 7, shows the output pattern after 200, iteration notice that the SLL criterion is not 
achieved. 

 

 Figure 7. Pattern proposed after 200 iteration for null at 50˚ 

Now let us consider the target is moved. Assume it is required to steer the mainbeam to be 
at  ߠ ൌ110˚ and  presence of interference at ߠ ൌ150˚. PSO evaluated antenna array elements’ 
phase which fulfill these requirements of the design output proposed pattern as Figure 8a 
shows the output pattern  after 50, iteration as can be notices although that the SLL< 20dB 
was not achieved as the maximum level is 18dB. Assume surrounding environment is stable 
so the algorithm is to continue search for better feeding solution  Figure 8b shows the 
proposed pattern corresponding after 500 iteration maximum SLL of -22dB was achieved 
and also the null width and is increased. Figure 9 shows the total fitness value per iteration 
curve corresponding to Figure 7 and Figure 8.  
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 Figure 8. a) Pattern proposed for mainbeam steered to 110˚ and null at 150˚ after 50 
iterations 

 
Figure 8. b) Pattern proposed  for mainbeam steered to 110˚  and null at 150˚ after 500 
iteration 

 
Figure 9. Fitness per iteration curve corresponding to figure 7, 8 
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4.3 PSO and Pattern Synthesis Phase – Position Control 

The phase-only synthesis with equal element spacing requires a large number of elements 

compared to the amplitude only arrays. Controlling the inter element space and elements 
phases feed we can have the potential to circumvent this design challenge. Theoretically, the 
unequal spacing of antenna elements corresponds to nonuniform sampling of signals in the 
time domain.[ H. Unz, 1960] . 
 The PSO is applied to  search for the optimum element phases and positions of the uniform 
amplitude linear arrays to achieve target pattern and minimum side lobe level .We only 
consider symmetric arrays for the next results however same can be applied for non 
symmetric array. Synthesis of an unequally spaced array is carried out separately for the 
position-only and the position-phase cases for various limits in the distance between the 
elements. The number of elements considered for the PSO-based synthesis is 32; hence the 
number of parameters to be optimized is 16 for the position- only synthesis and 32 for the 
phase-position synthesis. 
The PSO synthesis results of positions and phases for the cases when ݀௠௔௫ ൌ Ͳ.͸λ and ݀௠௔௫ ൌ λ array patterns are shown in Figure. 10 and 11, respectively. From Figure 10, we can 
see that the maximum SLL for the position-phase synthesis is lower than that for the 
position-only synthesis. In Figure 11 When ݀௠௔௫ ൌ λ, the maximum SLL of the position- 
phase synthesis and position-only synthesis is 23.34 and 22.53 dB, respectively   
For the case ݀௠௔௫ ൌ λ , The time taken to reach -20 dB SLL was about 10 min, and the total 
time taken for 300 iterations was about 23 min for a  swarm of 320 agents. The simulations 
were carried out  on a PC based on an Intel Pentium-IV 3-GHz processor.  
 We can conclude that for smaller, ݀௠௔௫the element phases have a larger effect in lowering 
the SLL of an unequally spaced array with no significant difference in the directivity From 
Figures 10–11.  

 

 Figure 10. Array patterns for the PSO-based position-only (dashed line) the position-phase 
(solid line) for ݀௠௔௫ ൌ Ͳ.͸λ 
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Figure 11. Array patterns for the PSO-based position-only (dashed line) the position-phase 
(solid line) for ݀௠௔௫ ൌ λ 

We have seen that the unequally spaced array derived using the position-phase synthesis 
has lowered SLL compared to that of the unequally spaced arrays derived using the 
position-only synthesis. Let us consider the PSO-based position-phase synthesis and phase-
only synthesis for designing a pencil beam array. 

 
Figure 12. Array patterns for the PSO -based position-phase synthesis (solid line) and the 
phase-only synthesis (dashed line) of a pencil beam array of 60 elements 
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assumed to be 0.5λ. Figure 12 shows the corresponding array patterns shows the phases and 
positions derived using the PSO-based phase-only  synthesis and position-phase synthesis 
we can see that for the position-phase synthesis, the SLL is lower compared to that of the 
phase-only synthesis.  

5. PSO Application in Smart Antenna Array Signal Estimation 

Conventional adaptive beamforming algorithms are based on a stationary environment. 
Assume that the desired signal and interferers are not correlated. Using statistical theory, 
one requires several successive snapshots of the data to form a covariance matrix of the 
interference with independent identically distributed secondary data[B. D. Van, IEEE 1986]. 
The snapshots accumulation is quite time consuming. Thus when the environment becomes 
nonstationary, an inaccurate covariance matrix is derived, which results in that the 
interference cannot be rejected. Therefore the adaptive processing using a single snapshot 
[Markus E. Ali ] is more suitable  for a dynamic environment. A direct data domain least 
squares (D3LS) algorithm [T. K. Sarkar, 2000 ] has been developed to analyze the received 
data using a single snapshot.  
Although the D3LS algorithm has certain advantages, it has some drawbacks such that the 
degrees of freedom are limited to nearly half. Furthermore it is shown by simulations that 
while the jammers can be rejected, the main lobe of the antenna beam pattern is often 
deviated from the direction of the desired signal and the sidelobe level is relative high.  

5.1 Algorithm Formulation 

 Consider an array composed of ܰ sensors separated by a distance as shown in Figure 1. We 
assume that narrowband signals consisting of the desired signal plus possibly coherent 
multipath and jammers with center frequency °݂ are impinging on the array from various 
angles, with the constraint. For sake of simplicity, we assume that the incident fields are 
coplanar and that they are located in the far field of the array. 
Each received signal ݔ௠ሺ݇ሻ  includes additive, zero mean, Gaussian noise. Time is 

represented by the ݇௧௛ time sample. Thus, for   Xሺtሻ ൌ ሾݔଵሺ݇ሻ ଶሺ݇ሻݔ    Nሺ݇ሻሿTݔ

ሺ݇ሻݔ   ൌ ሾ തܽሺߠଵሻ  തܽሺߠଶሻ ….  തܽሺߠெሻሿ. ێێۏ
ۍێ ۑۑےெሺ݇ሻݏڭڭଶሺ݇ሻݏଵሺ݇ሻݏ

ېۑ ൅ ത݊ሺ݇ሻ                      (19) 

തܽሺߠ௜ሻ is ܯ-elements array steering vector for the ߠ௜ direction of arrival, ߣ wavelength and ݀ 
is the elements interspacing distance. ݏҧሺ݇ሻ is the vector of incident signals at time ݇ and ത݊ሺ݇ሻ 
is noise vector at each array element m, zero mean, variance. Then for ܣҧ ൌ ሾ തܽሺߠଵሻ  തܽሺߠଶሻ ….  തܽሺߠ஽ሻሿெൈ஽   
matrix of steering vectors തܽሺߠ௜ሻ 

  Xഥ ൌ .ҧܣ ҧሺ݇ሻݏ ൅ ത݊ሺ݇ሻ (20) 

Thus, each of the D-complex signals arrives at angles ߠ௜ and is intercepted by the M antenna 
elements. It is assumed the number of arriving signals D < M. It is understood that the 
arriving signals are time varying and thus our calculations are based upon time snapshots of 
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the incoming signal. Obviously if the transmitters are moving, the matrix of steering vectors 
is changing with time and the corresponding arrival angles are changing. 
Let ܵ௡ be the complex voltage induced in the nth array element at a particular instance of 
time due to a signal of unity amplitude coming from a direction ߠ௦, 

 ܵ௡ ൌ ݌ݔ݁ ቂ݆ʹߨ ቄሺ௡ିଵሻௗఒ  ௦ሻቅቃ (21)ߠሺ݊݅ݏ

Let ݔ௡ be the complex voltages that are measured at the nth element due to the actual signal, 
jammers and thermal noise 

௡ݔ  ൌ ௦ܵ௡ߙ ൅ Interference ൅ Noise    (22) 

௡ݔ   ൌ ௦ܵ௡ߙ ൅ ෎ ቆܣ௣݁݌ݔ ൬݆ ଶగሺ௡ିଵሻௗఒ ௣൯൰ቇߠ൫݊݅ݏ ൅ ݊௡஽ିଵ
௣ୀଵ    (23) 

Where ߙ௦ denotes the complex amplitude of the desired SOI, ܣ௣ and ߠ௣ are the amplitude 

and direction of arrival of the ݌ jammer signal, ݊௡ is the thermal noise at the nth element. 
There are ܦ  jammers and ܦ  ൏ ܯ െ ͳ/ʹ. With ܵ௡  and ܺ௡  (n=0,…,M)  the known received 
signal data, one can construct the matrix X and S such that  

ࢄ  ൌ ൦࢞૙ ࢞૚ … ૚࢞ࡸ࢞ ࢞૛ … ڭା૚ࡸ࢞ ڭ … ࡸ࢞ڭ ା૚ࡸ࢞ … ࡹ࢞ ൪ሺࡸା૚ሻൈሺࡸା૚ሻ     ࡿ ൌ ൦࢙૙ ࢙૚ … ૚࢙ࡸ࢙ ࢙૛ … ڭା૚ࡸ࢙ ڭ … ࡸ࢙ڭ ା૚ࡸ࢙ … ࡹ࢙ ൪ሺࡸା૚ሻൈሺࡸା૚ሻ (24) 

From equations (21) and (23) the matrix U ൌ X െ  represents the contribution due to ,ࡿ௦ߙ
signal multipaths, interferes, clutter and thermal noise (i.e., all the undesired components of 
the signals except SOI). In an adaptive beamforming, the adaptive weight vector w is chosen 
in such a way that the contribution from the jammers and thermal noise are minimized to 
enhance the output signal to interference plus noise ratio (SINR). Hence, the following 
generalized eigenvalue problem is obtained. 

 UW ൌ ሺX െ ௦ܵሻܹߙ ൌ Ͳ   (25) ݓഥ ൌ ሾݓଵ  ݓଶ   ேሿ்ݓ  .…

Note that U(1,1) and U(1,2) elements of the interference plus noise matrix, are given by 

 ܷሺͳ,ͳሻ ൌ ଵܺ െ  ௗଵ    (26)ܵߙ

 ܷሺͳ,ʹሻ ൌ ܺଶ െ  ௗଶ   (27)ܵߙ

Where  ଵܺ and ܺଶ are the voltages received at antenna elements 1 and 2 due to the signal, 
jammer, clutter and noise where as ܵௗଵ  and ܵௗଶ  are the values of the SOI only at those 
elements due to a signal of unit strength, let us define Z as follow  

ݖ  ൌ ݌ݔ݁ ቂ݆ʹߨ ቄௗఒ  ௦ሻቃ   (28)ߠሺ݊݅ݏ

 

Then ܷሺͳ,ͳሻ െ  ଵܷሺͳ,ʹሻ contains no component of the desired signal. In general, the sameିݖ
is true for  ܷሺ݅, ݆ሻ െ ,ଵܷሺ݅ିݖ ݆ ൅ ͳሻ, ሺ݅ ൌ ͳ, … , ܮ ൅ ͳ, ݆ ൌ ͳ, … , ሻܮ . Therefore one can form a 
square matrix F of dimension L+1, generated from ܷ. Therefore, in such way, one can form a 
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reduced rank matrix combined with a constraint that the gain of the subarray is C in the 
directionߠ௦, then one can obtain equation given as follow 

 ൦ ܼ଴ ܼଵ … ܼ௅ܺ଴ െ ܼିଵ ଵܺ … … ܺ௅ െ ܼିଵܺ௅ାଵڭ ڭ ڭ ଷ݂ڭ െ ସ݂ܼିଵ … … ܺெିଵ െ ܼିଵܺெ൪ ൦ ଴ܹܹଵܹڭ௅൪ ൌ ൦CͲͲͲ൪ (29) 

To obtain the desired signal component, equation (5.14) is represented as  

 ሾFሿሾWሿ ൌ ሾYሿ  (30) 

Using any optimization algorithm to solve equation (30) for, optimum weight vector [W] 
that provide maximum signal gain through minimizing objective function represented as 
equation (31)  

ሺW୧ሻߞ  ൌ ԡሾFሿሾW౟ሿିYԡԡYԡ ൑ ͳͲି଺ (31) 

Consequently SOI  the signal component  ߙ may be estimated from  

 α ൌ ଵC ∑ ሾW୧X୧ሿ୧ୀL୧ୀ଴  (32) 

The algorithm above is referred to as a “forward method” in the literature [8]. [6],[11].  note 
we can reformulate the problem using the same data to obtain independent estimate for the 
solution. This can be achieved by two methods: 
a. By reversing the data sequence and then complex conjugating each term of that 

sequence (Backward method) 
b. By combining the (forward-backwards method) to double the given data and thereby 

increase the number of weights (degrees of freedom) significantly over that of either the 
forward or backward method alone. The number of degrees of freedom can reach to ͳ ൅ ሺܰ െ ͳሻ/ͳ.ͷ. 

to investigate the method  let us we consider recovering signal using the previous presented 
algorithm let us consider a single tone signal with specs as table (3) received by liner array 
of 10 elements linear array. 

 Magnitude in V Phase DOA in degree 

Signal 1 0 45° 

Jammer #1 1.25 0 75° 

Jammer # 2 2 0 60° 

Jammer #3 0.5 0 0° 

Table 3. Incident signal characteristics 

The sampling frequency is 10 ݂; Using  PSO algorithm as an optimization tools to solve the 
optimum  W୧ for the objective equation (31) value  for each iteration we get  Wଵ= (1.2996248637+j*0.0724160744),    Wଶ=(0.9415241429+j*-0,3236468668) Wଷ=(-0.9898155714+j*-0.1071454180), Wସ = (- 1.2513334352+j*0.3583762104) 

Using these weights in equation 32 to get the value of SOI amplitude  
The first ten samplings of the signal and the system output are compared as follow  
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Initial transmitted signal  Estimated signal 

1 0.9999-j0.000003154 

0.809+j0.5877 0.809+j0.5877 

0.309+j0.951 0.309+j0.951 

-0.309+j0.951 -0.309+j0951 

-0.809+j0.5877 -0.809+j0.5877 

-1 -0.90.999+j0000003154

-0.809-j0.587 -0.809+j0.5877 

-0.309-j0.951 -0.309-j0.951 

0.3090-j0.951 0.309-j0.951 

0.809-j0.5877 0.80.90-j0.5877 

Table 4. Output estimated signal using D3LS and PSO algorithm as an optimization method 

The total CPU time taken for the above results is 1.19 sec. PSO is less computational 
operations compared to conjugate gradient method. 

6. Conclusion 

PSO application for solving different numerical problems in smart antenna is illustrated. 
Improvement is proposed to the algorithm to support the continuous real time varying 
target problem.  Also a solution is proposed to overcome the case of bounded search space 
through introducing of transformation function. Simulation for different scenarios is solved 
with the aid of PSO. Synthesis of an adaptive Beamforming using the phase only control 
where target is dynamic over time has been presented. PSO was introduced to solve 
position-only and position-phase synthesis, which is a bounded search space problem. 
Finally an investigation for using PSO to estimate signal amplitude though D3LS approach 
is presented. 
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