22,788 research outputs found

    BIG DATA ANALYTICS IN PHARMACOVIGILANCE - A GLOBAL TREND

    Get PDF
    Big data analysis has enhanced its demand nowadays in various sectors of health-care including pharmacovigilance. The exact definition of big data is not known to many people though it is routinely used by them. Big data refer to immense and voluminous computerized medical information which are obtained from electronic health records, administrative data, registries related to disease, drug monitoring, etc. This data are usually collected from doctors and pharmacists in a health-care facility. Analysis of big data in pharmacovigilance is useful for early raising of safety alerts, line listing them for signal detection of drugs and vaccines, and also for their validation. The present paper is intended to discuss big data analytics in pharmacovigilance focusing on global prospect and domestic country-India

    Comparing Grounded Theory and Topic Modeling: Extreme Divergence or Unlikely Convergence?

    Get PDF
    Researchers in information science and related areas have developed various methods for analyzing textual data, such as survey responses. This article describes the application of analysis methods from two distinct fields, one method from interpretive social science and one method from statistical machine learning, to the same survey data. The results show that the two analyses produce some similar and some complementary insights about the phenomenon of interest, in this case, nonuse of social media. We compare both the processes of conducting these analyses and the results they produce to derive insights about each method\u27s unique advantages and drawbacks, as well as the broader roles that these methods play in the respective fields where they are often used. These insights allow us to make more informed decisions about the tradeoffs in choosing different methods for analyzing textual data. Furthermore, this comparison suggests ways that such methods might be combined in novel and compelling ways

    Chapter Evolving Roles of Spontaneous Reporting Systems to Assess and Monitor Drug Safety

    Get PDF
    This chapter aims to describe current and emerging roles of spontaneous reporting systems (SRSs) for assessing and monitoring drug safety. Moreover, it offers a perspective on the near future, which entails the so-called era of Big Data, keeping in mind both regulator and researcher viewpoints. After a panorama on key data sources and analyses of post-marketing data of adverse drug reactions, a critical appraisal of methodological issues and debated future applications of SRSs will be presented, including the exploitation and challenges in evidence integration (i.e., merging and combining heterogeneous sources of data into a unique indicator of risk) and patient’s reporting via social media. Finally, a call for a responsible use of these studies is offered, with a proposal on a set of minimum requirements to assess the quality of disproportionality analysis in terms of study conception, performing and reporting

    Evolving Roles of Spontaneous Reporting Systems to Assess and Monitor Drug Safety

    Get PDF
    This chapter aims to describe current and emerging roles of spontaneous reporting systems (SRSs) for assessing and monitoring drug safety. Moreover, it offers a perspective on the near future, which entails the so-called era of Big Data, keeping in mind both regulator and researcher viewpoints. After a panorama on key data sources and analyses of post-marketing data of adverse drug reactions, a critical appraisal of methodological issues and debated future applications of SRSs will be presented, including the exploitation and challenges in evidence integration (i.e., merging and combining heterogeneous sources of data into a unique indicator of risk) and patient’s reporting via social media. Finally, a call for a responsible use of these studies is offered, with a proposal on a set of minimum requirements to assess the quality of disproportionality analysis in terms of study conception, performing and reporting

    Use of Text Data in Identifying and Prioritizing Potential Drug Repositioning Candidates

    Get PDF
    New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with a success rate of less than 10%. Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led to the launching of 30-40% of new drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates with significantly lower cost. A variety of resources have been utilized to identify novel drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this dissertation, we focused on using text data in identifying and prioritizing drug repositioning candidates and conducted five studies. In the first study, we aimed to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this was the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in the comments of patients. Our preliminary study shows that social media has the potential to be used in drug repurposing. In the second study, we investigated the significance of extracting information from multiple sentences specifically in the context of drug-disease relation discovery. We used multiple resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard in the Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted from multiple sentences in the literature. This highlights the significance of the need for discourse-level analysis in extracting the relations from biomedical literature. In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach revealed that nine of them have good potential for biological significance based on expert judgment. In the fourth study, we proposed a method, utilizing information surrounding causal findings, to prioritize discoveries generated by LBD systems. We focused on discovering drug-disease relations, which have the potential to identify drug repositioning candidates or adverse drug reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using sentences, as a source of causal findings, our ranking method trained a binary classifier to classify generated drug-disease relations into desired classes. We trained and tested our classifier for three different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these tasks. The number of causal findings of each hypothesis, which were classified as positive by the classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked by our method and one of the previous methods. Out of 181 true relations in the test dataset, the proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other method. In the last study, we used biomedical literature and clinical trials in ranking potential drug repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike previous approaches, in this study, we did not limit our method to LBD. First, we generated a list of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, we developed an information retrieval system to retrieve any evidence of those candidates co-occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 individual medications. We anticipate that these results will be highly useful for hypothesis generation in the field of drug repurposing

    DrugExBERT for Pharmacovigilance – A Novel Approach for Detecting Drug Experiences from User-Generated Content

    Get PDF
    Pharmaceutical companies have to maintain drug safety through pharmacovigilance systems by monitoring various sources of information about adverse drug experiences. Recently, user-generated content (UGC) has emerged as a valuable source of real-world drug experiences, posing new challenges due to its high volume and variety. We present DrugExBERT, a novel approach to extract adverse drug experiences (adverse reaction, lack of effect) and supportive drug experiences (effectiveness, intervention, indication, and off-label use) from UGC. To be able to verify the extracted drug experiences, DrugExBERT additionally provides explications in the form of UGC phrases that were critical for the extraction. In our evaluation, we demonstrate that DrugExBERT outperforms state-of-the-art pharmacovigilance approaches as well as ChatGPT on several performance measures and that DrugExBERT is data- and drug-agnostic. Thus, our novel approach can help pharmaceutical companies meet their legal obligations and ethical responsibility while ensuring patient safety and monitoring drug effectiveness

    Predicting Medication Prescription Rankings with Medication Relation Network

    Get PDF
    Medication prescription rankings and demands prediction could benefit both medication consumers and pharmaceutical companies from various aspects. Our study predicts the medication prescription rankings focusing on patients’ medication switch and combination behavior, which is an innovative genre of medication knowledge that could be learned from unstructured patient generated contents. We first construct two supervised machine learning systems for medication references identification and medication relations classification from unstructured patient’s reviews. We further map the medication switch and combination relations into directed and undirected networks respectively. An adjusted transition in and out (ATIO) system is proposed for medication prescription rankings prediction. The proposed system demonstrates the highest positive correlation with actual medication prescription amounts comparing to other network-based measures. In order to predict the prescription demand changes, we compare four predictive regression models. The model incorporated the network-based measure from ATIO system achieve the lowest mean square errors

    Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter

    Get PDF
    Introduction Prescription medication overdose is the fastest growing drug-related problem in the USA. The growing nature of this problem necessitates the implementation of improved monitoring strategies for investigating the prevalence and patterns of abuse of specific medications. Objectives Our primary aims were to assess the possibility of utilizing social media as a resource for automatic monitoring of prescription medication abuse and to devise an automatic classification technique that can identify potentially abuse-indicating user posts. Methods We collected Twitter user posts (tweets) associated with three commonly abused medications (Adderall®, oxycodone, and quetiapine). We manually annotated 6400 tweets mentioning these three medications and a control medication (metformin) that is not the subject of abuse due to its mechanism of action. We performed quantitative and qualitative analyses of the annotated data to determine whether posts on Twitter contain signals of prescription medication abuse. Finally, we designed an automatic supervised classification technique to distinguish posts containing signals of medication abuse from those that do not and assessed the utility of Twitter in investigating patterns of abuse over time. Results Our analyses show that clear signals of medication abuse can be drawn from Twitter posts and the percentage of tweets containing abuse signals are significantly higher for the three case medications (Adderall®: 23 %, quetiapine: 5.0 %, oxycodone: 12 %) than the proportion for the control medication (metformin: 0.3 %). Our automatic classification approach achieves 82 % accuracy overall (medication abuse class recall: 0.51, precision: 0.41, F measure: 0.46). To illustrate the utility of automatic classification, we show how the classification data can be used to analyze abuse patterns over time. Conclusion Our study indicates that social media can be a crucial resource for obtaining abuse-related information for medications, and that automatic approaches involving supervised classification and natural language processing hold promises for essential future monitoring and intervention tasks

    Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers

    Get PDF
    Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore ‘Challenges in Mining Drug Adverse Reactions’. This article is an outgrowth of the panel; each panelist has highlighted specific text mining application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for future challenge evaluations.M.K.: This work was supported in part through the collaboration between the Spanish Plan for the Advancement of Language Technology (Plan TL) and the Barcelona Supercomputing Center; we also acknowledge the 2020 Proyectos de I+D+i - RTI Tipo A (PID2020-119266RA-I00) for support. Ö.U.: This study was supported in part by the National Library of Medicine under Award Number R15LM013209 and R13LM013127.Peer ReviewedPostprint (published version
    • …
    corecore