2,736 research outputs found

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project Phase 5

    Get PDF
    Motivation and Context: One of the key elements of the SERC's research strategy is transforming the practice of systems engineering and associated management practices- "SE and Management Transformation (SEMT)." The Grand Challenge goal for SEMT is to transform the DoD community 's current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first ,document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08-D-0171 and HQ0034-13-D-0004 (TO 0060).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08-D-0171 and HQ0034-13-D-0004 (TO 0060)

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Towards Safety Concepts for Automated Vehicles by the Example of the Project UNICARagil

    Get PDF
    Striving towards deployment of SAE level 4+ vehicles in public traffic, researchers and developers face several challenges due to the targeted operation in an open environment. Due to the absence of a human supervisor, ensuring and validating safety while driving automatically is one of the key challenges. The arising complexity of the technical system must be handled during the entire research and development process. In this contribution, we outline the coherence of different safety-activities in the research project UNICARagi/. We derive high-level safety requirements and present the central safety mechanisms applied to automated diriving. Moreover, we outline the approaches of the project UNICARagi/ to address the validation challenge for automated vehicles. In order to demonstrate the overall approach towards a coherent safety argumentation, the connection of high-level safety requirements, safety mechanisms, as weil as validation approaches is illustrated by means of a selected example scenario

    SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving

    Full text link
    Autonomous driving confronts great challenges in complex traffic scenarios, where the risk of Safety of the Intended Functionality (SOTIF) can be triggered by the dynamic operational environment and system insufficiencies. The SOTIF risk is reflected not only intuitively in the collision risk with objects outside the autonomous vehicles (AVs), but also inherently in the performance limitation risk of the implemented algorithms themselves. How to minimize the SOTIF risk for autonomous driving is currently a critical, difficult, and unresolved issue. Therefore, this paper proposes the "Self-Surveillance and Self-Adaption System" as a systematic approach to online minimize the SOTIF risk, which aims to provide a systematic solution for monitoring, quantification, and mitigation of inherent and external risks. The core of this system is the risk monitoring of the implemented artificial intelligence algorithms within the AV. As a demonstration of the Self-Surveillance and Self-Adaption System, the risk monitoring of the perception algorithm, i.e., YOLOv5 is highlighted. Moreover, the inherent perception algorithm risk and external collision risk are jointly quantified via SOTIF entropy, which is then propagated downstream to the decision-making module and mitigated. Finally, several challenging scenarios are demonstrated, and the Hardware-in-the-Loop experiments are conducted to verify the efficiency and effectiveness of the system. The results demonstrate that the Self-Surveillance and Self-Adaption System enables dependable online monitoring, quantification, and mitigation of SOTIF risk in real-time critical traffic environments.Comment: 16 pages, 10 figures, 2 tables, submitted to IEEE TIT

    Enhancing Confidentiality and Privacy Preservation in e-Health to Enhanced Security

    Get PDF
    Electronic health (e-health) system use is growing, which has improved healthcare services significantly but has created questions about the privacy and security of sensitive medical data. This research suggests a novel strategy to overcome these difficulties and strengthen the security of e-health systems while maintaining the privacy and confidentiality of patient data by utilising machine learning techniques. The security layers of e-health systems are strengthened by the comprehensive framework we propose in this paper, which incorporates cutting-edge machine learning algorithms. The suggested framework includes data encryption, access control, and anomaly detection as its three main elements. First, to prevent unauthorised access during transmission and storage, patient data is secured using cutting-edge encryption technologies. Second, to make sure that only authorised staff can access sensitive medical records, access control mechanisms are strengthened using machine learning models that examine user behaviour patterns. This research's inclusion of machine learning-based anomaly detection is its most inventive feature. The technology may identify variations from typical data access and usage patterns, thereby quickly spotting potential security breaches or unauthorised activity, by training models on past e-health data. This proactive strategy improves the system's capacity to successfully address new threats. Extensive experiments were carried out employing a broad dataset made up of real-world e-health scenarios to verify the efficacy of the suggested approach. The findings showed a marked improvement in the protection of confidentiality and privacy, along with a considerable decline in security breaches and unauthorised access events

    A systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality.

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. ์ตœํƒœํ˜„.The society is anticipated to gain a lot from Autonomous Vehicles (AV), such as improved traffic flow and a decrease in accidents. They heavily rely on improvements in various Artificial Intelligence (AI) processes and strategies. Though some researchers in this field believe AV is the key to enhancing safety, others believe AV creates new challenges when it comes to ensuring the security of these new technology/systems and applications. The article conducts a systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality. According to inclusion and exclusion criteria, articles from EBSCO, ProQuest, IEEE Explorer, Web of Science were chosen, and they were then sorted. The findings reveal that the most of these publications have been published in advanced transport-related journals. Future improvements in the automobile industry and the development of intelligent transportation systems could help reduce the number of fatal traffic accidents. Technologies for autonomous cars provide effective ways to enhance the driving experience and reduce the number of traffic accidents. A multitude of driving-related problems, such as crashes, traffic, energy usage, and environmental pollution, will be helped by autonomous driving technology. More research is needed for the significant majority of the studies that were assessed. They need to be expanded so that they can be tested in real-world or computer-simulated scenarios, in better and more realistic scenarios, with better and more data, and in experimental designs where the results of the proposed strategy are compared to those of industry standards and competing strategies. Therefore, additional study with improved methods is needed. Another major area that requires additional research is the moral and ethical choices made by AVs. Government, policy makers, manufacturers, and designers all need to do many actions in order to deploy autonomous vehicles on the road effectively. The government should develop laws, rules, and an action plan in particular. It is important to create more effective programs that might encourage the adoption of emerging technology in transportation systems, such as driverless vehicles. In this regard, user perception becomes essential since it may inform designers about current issues and observations made by people. The perceptions of autonomous car users in developing countries like Azerbaijan haven't been thoroughly studied up to this point. The manufacturer has to fix the system flaw and needs a good data set for efficient operation. In the not-too-distant future, the widespread use of highly automated vehicles (AVs) may open up intriguing new possibilities for resolving persistent issues in current safety-related research. Further research is required to better understand and quantify the significant policy implications of Avs, taking into consideration factors like penetration rate, public adoption, technological advancements, traffic patterns, and business models. It only needs to take into account peer-reviewed, full-text journal papers for the investigation, but it's clear that a larger database and more documents would provide more results and a more thorough analysis.์ž์œจ์ฃผํ–‰์ฐจ(AV)๋ฅผ ํ†ตํ•ด ๊ตํ†ต ํ๋ฆ„์ด ๊ฐœ์„ ๋˜๊ณ  ์‚ฌ๊ณ ๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋“ฑ ์‚ฌํšŒ๊ฐ€ ์–ป๋Š” ๊ฒƒ์ด ๋งŽ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ทธ๋“ค์€ ๋‹ค์–‘ํ•œ ์ธ๊ณต์ง€๋Šฅ(AI) ํ”„๋กœ์„ธ์Šค์™€ ์ „๋žต์˜ ๊ฐœ์„ ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ด ๋ถ„์•ผ์˜ ์ผ๋ถ€ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์—ด์‡ ๋ผ๊ณ  ๋ฏฟ์ง€๋งŒ, ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ /์‹œ์Šคํ…œ ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ๋ณด์•ˆ์„ ๋ณด์žฅํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰์ฐจ ๊ธฐ์ˆ ๊ณผ ๊ตํ†ต ๊ด€๋ จ ์‚ฌ๋ง๋ฅ  ์‚ฌ์ด์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ๋ฌธํ—Œ ๊ฒ€ํ† ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํฌํ•จ ๋ฐ ์ œ์™ธ ๊ธฐ์ค€์— ๋”ฐ๋ผ EBSCO, ProQuest, IEEE Explorer ๋ฐ Web of Science์˜ ๊ธฐ์‚ฌ๋ฅผ ์„ ํƒํ•˜๊ณ  ๋ถ„๋ฅ˜ํ–ˆ๋‹ค.์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ด๋Ÿฌํ•œ ์ถœํŒ๋ฌผ์˜ ๋Œ€๋ถ€๋ถ„์ด ๊ณ ๊ธ‰ ์šด์†ก ๊ด€๋ จ ์ €๋„์— ๊ฒŒ์žฌ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ฏธ๋ž˜์˜ ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ฐœ์„ ๊ณผ ์ง€๋Šฅํ˜• ๊ตํ†ต ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์€ ์น˜๋ช…์ ์ธ ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ ๊ธฐ์ˆ ์€ ์šด์ „ ๊ฒฝํ—˜์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ์ถฉ๋Œ, ๊ตํ†ต, ์—๋„ˆ์ง€ ์‚ฌ์šฉ, ํ™˜๊ฒฝ ์˜ค์—ผ๊ณผ ๊ฐ™์€ ์ˆ˜๋งŽ์€ ์šด์ „ ๊ด€๋ จ ๋ฌธ์ œ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์— ์˜ํ•ด ๋„์›€์„ ๋ฐ›์„ ๊ฒƒ์ด๋‹ค. ํ‰๊ฐ€๋œ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ์— ๋Œ€ํ•ด ๋” ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์‹ค์ œ ๋˜๋Š” ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ํ˜„์‹ค์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ „๋žต ๊ฒฐ๊ณผ๊ฐ€ ์‚ฐ์—… ํ‘œ์ค€ ๋ฐ ๊ฒฝ์Ÿ ์ „๋žต์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋˜๋Š” ์‹คํ—˜ ์„ค๊ณ„์—์„œ ํ…Œ์ŠคํŠธ๋  ์ˆ˜ ์žˆ๋„๋ก ํ™•์žฅ๋˜์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐœ์„ ๋œ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ๋˜ ๋‹ค๋ฅธ ์ฃผ์š” ๋ถ„์•ผ๋Š” AV์˜ ๋„๋•์ , ์œค๋ฆฌ์  ์„ ํƒ์ด๋‹ค. ์ •๋ถ€, ์ •์ฑ… ์ž…์•ˆ์ž, ์ œ์กฐ์—…์ฒด ๋ฐ ์„ค๊ณ„์ž๋Š” ๋ชจ๋‘ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์„ ํšจ๊ณผ์ ์œผ๋กœ ๋„๋กœ์— ๋ฐฐ์น˜ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์กฐ์น˜๋ฅผ ์ทจํ•ด์•ผ ํ•œ๋‹ค. ์ •๋ถ€๋Š” ํŠนํžˆ ๋ฒ•, ๊ทœ์น™, ์‹คํ–‰ ๊ณ„ํš์„ ๊ฐœ๋ฐœํ•ด์•ผ ํ•œ๋‹ค. ์šด์ „์ž ์—†๋Š” ์ฐจ๋Ÿ‰๊ณผ ๊ฐ™์€ ์šด์†ก ์‹œ์Šคํ…œ์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์˜ ์ฑ„ํƒ์„ ์žฅ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ๋ณด๋‹ค ํšจ๊ณผ์ ์ธ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ์„ค๊ณ„์ž์—๊ฒŒ ํ˜„์žฌ ์ด์Šˆ์™€ ์‚ฌ๋žŒ์— ์˜ํ•œ ๊ด€์ฐฐ์„ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž ์ธ์‹์ด ํ•„์ˆ˜์ ์ด ๋œ๋‹ค.์ œ์กฐ์—…์ฒด๋Š” ์‹œ์Šคํ…œ ๊ฒฐํ•จ์„ ์ˆ˜์ •ํ•ด์•ผ ํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ์ž‘๋™์„ ์œ„ํ•ด ์ข‹์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ฉ€์ง€ ์•Š์€ ๋ฏธ๋ž˜์—, ๊ณ ๋„๋กœ ์ž๋™ํ™”๋œ ์ฐจ๋Ÿ‰(AV)์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์‚ฌ์šฉ์€ ํ˜„์žฌ์˜ ์•ˆ์ „ ๊ด€๋ จ ์—ฐ๊ตฌ์—์„œ ์ง€์†์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํฅ๋ฏธ๋กœ์šด ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณด๊ธ‰๋ฅ , ๊ณต๊ณต ์ฑ„ํƒ, ๊ธฐ์ˆ  ๋ฐœ์ „, ๊ตํ†ต ํŒจํ„ด ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ Avs์˜ ์ค‘์š”ํ•œ ์ •์ฑ… ์˜ํ–ฅ์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์กฐ์‚ฌ๋ฅผ ์œ„ํ•ด ๋™๋ฃŒ ๊ฒ€ํ† ๋ฅผ ๊ฑฐ์นœ ์ „๋ฌธ ์ €๋„ ๋…ผ๋ฌธ๋งŒ ๊ณ ๋ คํ•˜๋ฉด ๋˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์ปค์ง€๊ณ  ๋ฌธ์„œ๊ฐ€ ๋งŽ์•„์ง€๋ฉด ๋” ๋งŽ์€ ๊ฒฐ๊ณผ์™€ ๋” ์ฒ ์ €ํ•œ ๋ถ„์„์ด ์ œ๊ณต๋  ๊ฒƒ์ด ๋ถ„๋ช…ํ•˜๋‹ค.Abstract 3 Table of Contents 6 List of Tables 7 List of Figures 7 List of Appendix 7 CHAPTER 1: INTRODUCTION 8 1.1. Background 8 1.2. Purpose of Research 13 CHAPTER 2: AUTONOMOUS VEHICLES 21 2.1. Intelligent Traffic Systems 21 2.2. System Architecture for Autonomous Vehicles 22 2.3. Key components in AV classification 27 CHAPTER 3: METHODOLOGY AND DATA COLLECTION PROCEDURE 35 CHAPTER 4: FINDINGS AND DISCUSSION 39 4.1. RQ1: Do autonomous vehicles reduce traffic-related deaths 40 4.2. RQ2: Are there any challenges to using autonomous vehicles 63 4.3. RQ3: As a developing country, how effective is the use of autonomous vehicles for reducing traffic mortality 72 CHAPTER 5: CONCLUSION 76 5.1. Summary 76 5.2. Implications and Recommendations 80 5.3. Limitation of the study 91 Bibliography 93 List of Tables Table 1: The 6 Levels of Autonomous Vehicles Table 2: Search strings Table 3: Inclusion and exclusion criteria List of Figures Figure 1: Traffic Death Comparison with Europe Figure 2: Research strategy and study selection process List of Appendix Appendix 1: List of selected articles์„

    Traffic Road Congestion System using by the internet of vehicles (IoV)

    Full text link
    Traffic problems have increased in modern life due to a huge number of vehicles, big cities, and ignoring the traffic rules. Vehicular ad hoc network (VANET) has improved the traffic system in previous some and plays a vital role in the best traffic control system in big cities. But due to some limitations, it is not enough to control some problems in specific conditions. Now a day invention of new technologies of the Internet of Things (IoT) is used for collaboratively and efficiently performing tasks. This technology was also introduced in the transportation system which makes it an intelligent transportation system (ITS), this is called the Internet of vehicles (IOV). We will elaborate on traffic problems in the traditional system and elaborate on the benefits, enhancements, and reasons to better IOV by Systematic Literature Review (SLR). This technique will be implemented by targeting needed papers through many search phrases. A systematic literature review is used for 121 articles between 2014 and 2023. The IoV technologies and tools are required to create the IoV and resolve some traffic rules through SUMO (simulation of urban mobility) which is used for the design and simulation the road traffic. We have tried to contribute to the best model of the traffic control system. This paper will analysis two vehicular congestion control models in term of select the optimized and efficient model and elaborate on the reasons for efficiency by searching the solution SLR based questions. Due to some efficient features, we have suggested the IOV based on vehicular clouds. These efficient features make this model the best and most effective than the traditional model which is a great reason to enhance the network system.Comment: pages 16, figures
    • โ€ฆ
    corecore