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Abstract: Electronic health (e-health) system use is growing, which has improved healthcare services significantly but has created questions about 

the privacy and security of sensitive medical data. This research suggests a novel strategy to overcome these difficulties and strengthen the security 

of e-health systems while maintaining the privacy and confidentiality of patient data by utilising machine learning techniques. The security layers 

of e-health systems are strengthened by the comprehensive framework we propose in this paper, which incorporates cutting-edge machine learning 

algorithms. The suggested framework includes data encryption, access control, and anomaly detection as its three main elements. First, to prevent 

unauthorised access during transmission and storage, patient data is secured using cutting-edge encryption technologies. Second, to make sure that 

only authorised staff can access sensitive medical records, access control mechanisms are strengthened using machine learning models that 

examine user behaviour patterns. This research's inclusion of machine learning-based anomaly detection is its most inventive feature. The 

technology may identify variations from typical data access and usage patterns, thereby quickly spotting potential security breaches or unauthorised 

activity, by training models on past e-health data. This proactive strategy improves the system's capacity to successfully address new threats. 

Extensive experiments were carried out employing a broad dataset made up of real-world e-health scenarios to verify the efficacy of the suggested 

approach. The findings showed a marked improvement in the protection of confidentiality and privacy, along with a considerable decline in security 

breaches and unauthorised access events. 
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I. INTRODUCTION 

In a time when technology is advancing at an exponential rate, 

the adoption of electronic health (e-health) systems has 

completely changed the healthcare industry by providing 

unmatched opportunities for effective patient management and 

healthcare delivery. The digitization of medical records, remote 

patient monitoring, and telemedicine have all contributed to the 

growth of e-health, which has many advantages including 

improved patient engagement, easier access to medical 

services, and lower administrative costs. The security, 

confidentiality, and privacy of sensitive medical data have, 

however, come under intense scrutiny as a result of this quick 

transformation. It is critical to address these issues and 

strengthen the security controls within e-health systems 

because protecting patient data from unauthorised access, 

breaches, and misuse is of the utmost importance. The crucial 

topic of e-health security is explored in this paper, with a 

particular emphasis on the need to strengthen confidentiality 

and privacy preservation. As the interconnection of healthcare 

networks grows and the number of electronic health 

information expands, traditional techniques of data protection 

are no longer viable. The integrity of diagnoses, treatments, and 

the standard of care as a whole are all put at risk by the flaws in 

e-health systems, in addition to exposing patients' private and 

medical information. Exploring cutting-edge security 

techniques and technologies is now crucial given the 

complexity of the risks that exist.  

 
Figure 1: E- Health data sharing typical framework 

This paper seeks to highlight the urgent requirement for a 

comprehensive approach to enhancing confidentiality and 

privacy preservation by analysing the current state of e-health 

security protocols and the changing threats they face. We aim 

to elucidate possible routes for enhancing the security of e-

health systems by delving into cryptographic techniques, access 

controls, secure data transmission, and compliance with 

pertinent regulations. Additionally, the balance between strict 

security measures and a seamless user experience will be 

covered in the discussion, highlighting the significance of 

upholding user confidence and satisfaction in the e-health 

ecosystem.  Finding the ideal balance between innovation and 

security is no longer an option; it is now a necessity in a world 
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where the digital sphere is intricately woven into the fabric of 

healthcare delivery. As we begin this investigation, it is clear 

that a coordinated effort from researchers, technology 

developers, healthcare professionals, and policymakers is 

necessary to achieve improved e-health security. In order to 

fully capitalise on the advantages of e-health without 

jeopardising patients' confidentiality and privacy, this paper 

aims to contribute to the ongoing conversation on protecting 

sensitive medical data. 

The convergence of e-health records, account data, and 

prescription information with the Internet of Things (IoT) 

paradigm has ushered in transformative changes for the 

healthcare industry [1]. Healthcare has advanced to include 

invaluable patient data collection, streamlined workflows, 

insights into disease patterns, remote care facilitation, and 

increased patient empowerment thanks to IoT-based medical 

devices [2]. IoT devices' ability to monitor patients in real-time 

has the potential to lower readmission and hospitalisation costs 

while also facilitating early diagnosis via alert systems. The 

decentralised nature of healthcare data across numerous 

institutions, however, creates issues with security and 

confidentiality [3]. The COVID-19 pandemic brought to light 

the importance of cutting-edge medical technology, especially 

in the context of respiratory monitoring with temperature 

sensors [5], [34]. IoT and e-health technologies became more 

popular during the pandemic as methods of ensuring healthcare 

continuity without having to interact directly with patients [6]. 

Given the prevalence of related conditions and the virus's 

effects on vulnerable populations, hypertension monitoring has 

also become more crucial [6]. E-health systems provide 

effective methods to manage patient data and enhance 

diagnostics, thanks to developments like machine learning [8]. 

Yet, the issue of data privacy persists, with concerns about data 

breaches and patient confidentiality [8]. 

Blockchain technology emerges as a potential solution to 

address these challenges. With its decentralized and tamper-

resistant nature, blockchain holds promise for secure data 

sharing and storage in healthcare [9]. Blockchain and AI 

integration, as seen in platforms like Innoplexus and BlockRx, 

enables safe and international data sharing [10]. The inherent 

characteristics of blockchain, such as decentralised storage, 

data integrity, and authentication, have the power to completely 

transform healthcare systems [11]. By using smart contracts to 

replace intermediaries, it lowers administrative costs [12]. Peer-

to-peer networking, public key encryption, and concurrency 

control are components of the blockchain framework. 

Blockchain networks can be categorized into public, private, 

and consortium blockchains based on authorization control [12] 

[37]. Through techniques like proof-of-work or proof-of-stake, 

public blockchains offer transparency and anonymity while 

ensuring secure transactions. In contrast, private blockchains 

are controlled by single entities, maintaining data within their 

network. The ability of blockchain to improve data security, 

sharing, and management has the potential to transform 

healthcare processes [11]. As we examine blockchain's 

potential applications in healthcare, it becomes clear that this 

technology has the potential to promote a system that is more 

reliable, effective, and patient-focused. 

Through permanently timestamped blocks, blockchain creates 

a distributed storage system using a peer-to-peer network. Due 

to the fact that each member of the network participates to the 

block distribution, this decentralised approach does away with 

the necessity for centralised control. Nevertheless, given the 

huge volume of data, it is still difficult to guarantee data 

security and user confidentiality. While the open and 

transparent design of the blockchain puts user anonymity at 

danger, it's essential to give vetted healthcare practitioners 

access to patient data. By enabling users to control encryption 

keys, permissions, and access for trusted healthcare 

professionals, the Health-chain solution tackles these issues and 

improves the security of health data. 

 
Figure 2: The block diagram for architecture of blockchain for medical record transaction 
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The study that has been presented introduces a cutting-edge 

access control architecture built on blockchain to protect patient 

privacy. The design obtains medical data about patients rather 

than storing raw data. The study improves the fundamental 

blockchain framework to maximise efficiency in the medical 

industry by grouping miners to reduce redundant data and speed 

up consensus procedures. In order to reduce network overhead, 

blockchain transmission efficiency is also prioritised by 

limiting data size. By empowering data owners to create access 

policies, BCHealth ensures granular control over sensitive data. 

The proposed Blockchain health architecture requires patient 

authorization before sharing data on the network, unlike 

standard blockchain practises that first disseminate patient data 

across the network and then apply access controls. Instead of 

depending primarily on centralised health information centres, 

the architecture embraces edge computing by storing data on 

devices that are closest to patients. This tactical change results 

in significant communication cost and delay reductions, 

improving system responsiveness and efficiency. 

The contribution of paper is given as: 

1. The paper elucidates the transformative role of the 

Internet of Things (IoT) in modernizing healthcare 

through remote patient monitoring, data collection, and 

streamlined workflows. However, it highlights the 

challenge of securely processing electronic health records 

(EHR) dispersed across multiple medical facilities.  

2. Addressing the vulnerability of centralized healthcare 

systems, the paper introduces blockchain technology as a 

solution to bolster security and privacy in e-health 

environments 

3. The paper concludes with a forward-looking perspective, 

projecting the potential impact of blockchain adoption in 

healthcare systems. By referencing predictions of 

significant cost savings and improvements in data 

security due to blockchain technology, the paper presents 

a compelling case for its widespread adoption. 

 

II. REVIEW OF LITERATURE 

This work proposes a novel approach to safeguarding clinical 

data stored in hybrid cloud servers. By utilizing a K-means 

clustering technique, the high-dimensional data is segmented 

into distinct clusters, and mean estimation is applied. A contrast 

between mean cluster values and member values is calculated. 

The privacy of sensitive data is fortified using Geometric Data 

Perturbation (GDP), reducing the need for extensive private 

cloud storage. Empirical results highlight GDP's superior 

privacy preservation compared to existing methods, paving the 

way for enhanced security and data privacy in e-health 

systems.The paper [12] introduces a comprehensive solution 

for securing health-related IoT data, leveraging blockchain and 

artificial intelligence technologies. It addresses the challenge of 

protecting personal information within a plethora of IoT 

devices. By segregating personal data in a privacy-isolation 

zone and using deep learning-based predictive analytics, the 

proposed solution ensures secure cloud-based analysis while 

preserving user privacy. The research demonstrates the 

system's performance and durability, while also suggesting 

future improvements for enhanced semantic privacy. 

A privacy-preserving framework called PriMIA is introduced 

to enable secure and aggregated learning on medical image data 

using homomorphic encryption. The study showcases how this 

framework facilitates secure deep learning while protecting 

patient data from malicious attacks and breaches [36]. The 

research highlights the potential for enhanced data privacy 

while acknowledging the trade-offs in terms of computational 

requirements and performance. 

Addressing the challenge of preserving privacy in time-series 

medical imaging, the paper presents the HE-CLSTM approach 

that combines homomorphic encryption and deep learning 

techniques. By employing LSTM-based analysis layers and 

convolutional blocks, the method retains both temporal and 

spatial information from encrypted image sequences. The 

research demonstrates promising results, emphasizing the 

framework's ability to encode valuable clinical insights while 

maintaining data privacy.This [14] work introduces an 

innovative strategy for secure data gathering and mining in 

electronic health record (EHR) systems. The proposed 

approach leverages source anonymization to protect patient 

privacy while allowing centralized data mining. The 

effectiveness of the approach is demonstrated through 

theoretical analysis and experimental results. However, future 

work could consider handling dynamic changes in EHR system 

participation. 

Confidentiality: Safeguarding patient health data from 

unauthorized access is crucial. With the increasing data volume 

and device usage, the risk of data exposure to external parties 

grows. Maintaining patient trust hinges on ensuring data 

confidentiality. Access control and encryption techniques play 

a pivotal role in achieving this goal. 

Integrity: Data integrity ensures that information remains 

unaltered. Healthcare organizations are required to protect 

electronic healthcare data from unauthorized alteration or 

destruction. Hashing mechanisms or checksums can help 

maintain data integrity. Blockchain technology, due to its 

immutable nature, offers a robust solution to ensure integrity. 

Availability: Healthcare information must be accessible at all 

times. Business-critical systems need to be highly available to 

minimize downtime and service interruptions. Clustering and 

high availability setups contribute to continuous availability. 

Data Violations: Data breaches can damage a company's 

reputation and erode customer trust. Competitors gaining 

unauthorized access to intellectual property can lead to 
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significant business impacts, including financial losses and 

legal consequences. 

Misconfigurations: Cloud resources are shared, and any 

misconfiguration can lead to unintended exposure of customer 

data. Ensuring proper configuration of data centers is essential 

to prevent such vulnerabilities. 

Lack of Security Technologies: Transitioning to cloud 

computing requires a robust security architecture to counter 

cyber threats. Organizations must understand that migrating to 

the cloud involves more than simply shifting existing IT assets. 

Knowledge of shared security responsibilities is crucial to a 

successful migration. 

Account Hijacking: Attackers gaining access to accounts and 

exploiting sensitive privileges pose a significant risk. Breaches 

in cloud systems, stolen credentials, and other vulnerabilities 

can lead to account compromise. 

Insider Threat: Insider threats, such as employees mishandling 

sensitive data, pose serious risks. Malicious actions by 

employees or insiders, whether intentional or accidental, can 

compromise sensitive information. 

Unsecured APIs: Cloud service providers offer user interfaces 

and APIs for managing and interacting with cloud services. The 

security of these APIs is integral to the overall security of the 

cloud infrastructure. Poorly designed or vulnerable APIs can 

lead to misuse and data breaches.In the healthcare sector, these 

challenges hold even greater significance. Protecting patient 

data and designing secure interfaces for online connectivity are 

paramount. Healthcare organizations must comprehensively 

understand safety requirements and implement robust security 

measures to safeguard patient information, maintain data 

integrity, and ensure uninterrupted service delivery. This entails 

a proactive approach that addresses the unique security 

concerns of the healthcare industry within the context of cloud 

computing. 

 

Table 1: Summary of related work 

Method Algorithm Approach Limitation Advantages 

Blockchain-based 

Data Encryption 

Blockchain 

Technology 

Utilizing blockchain for 

data encryption and 

access control 

Limited scalability due 

to computational 

overhead 

Immutable data records, 

Enhanced data security, 

Transparent audit trail 

Homomorphic 

Encryption for 

Data Privacy 

Homomorphic 

Encryption 

Applying homomorphic 

encryption to secure 

data while performing 

computations 

High computational 

complexity affecting 

processing speed 

Secure computations on 

encrypted data, Preserved data 

privacy 

Federated Learning 

for Privacy-

Preserving 

Analysis 

Federated Learning Implementing federated 

learning to analyze data 

locally and share model 

updates 

Limited by device 

heterogeneity and 

communication costs 

Data remains on user devices, 

Reduced data exposure, 

Improved privacy 

Differential 

Privacy for 

Aggregated Data 

Differential 

Privacy 

Introducing noise to 

aggregated data to 

protect individual 

information 

Balancing noise level 

for privacy and data 

utility 

Preserved individual privacy, 

Accurate aggregated insights 

Multi-factor 

Authentication and 

Access Control 

Multi-factor 

Authentication 

Implementing multi-

factor authentication 

for user access 

User inconvenience and 

setup complexity 

Enhanced data access security, 

Reduced unauthorized access 

Data Minimization 

and Retention 

Policies 

Data Minimization Minimizing collected 

data and implementing 

data retention policies 

Limited historical data 

for analysis 

Reduced data exposure, 

Compliance with privacy 

regulations 

 

III. METHODOLOGY 

The Trusted Execution Environment (TEE), which combines 

trusted computing with virtualization isolation approaches, 

functions as a fortified enclave within computing platforms. 

This enclave provides a secure execution environment for 

programmes with sensitive security requirements while also 

protecting the confidentiality and integrity of related data. The 

TrustZone technology from ARM implements hardware-

isolated methods primarily for processors in embedded mobile 

terminals. The secure and nonsecure domains are clearly 

separated by these techniques. Intel Software Guard Extensions 

(SGX), a version of the TEE that enhances the ARM 

architecture, was released. SGX is a set of guidelines that 

improves the security of application code and data by giving 

them more resistance to unauthorised disclosure and alteration. 

The design of an eCall interface and the specification of the data 

structure and transmission size are required before a 

programme may be invoked within the trusted domain. 
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Intel SGX provides commendable protections for the integrity 

and confidentiality of its applications because to its foundation 

in hardware-level implementation. Since its debut, it has 

attracted significant interest from academics and industry, and 

it has been used in a variety of contexts, including outsourced 

cloud computing and the collection of sensitive data. Databases 

run inside the boundaries of a secure enclave thanks to 

Microsoft's EnclaveDB design, which is based on SGX. This 

strategy ensures that hackers are prevented from accessing the 

protected data even in situations when the server operating 

system is compromised. Kunkel et al. have taken the risk of 

introducing machine learning into the secure world of SGX in 

addition to its use in database applications. This modification 

makes it easier to carry out training and prediction operations 

for machine learning inside the secure enclave. This innovation 

represents a significant step towards improving the security of 

machine learning operations and guaranteeing that crucial 

activities are protected from outside threats. 

A. Smart Contract:  

Within computing systems, the Trusted Execution Environment 

(TEE), which blends trusted computing with virtualization 

isolation methods, serves as a fortified enclave. This enclave 

safeguards the confidentiality and integrity of associated data 

while providing a secure execution environment for 

programmes with delicate security needs. Hardware-isolated 

techniques are implemented by the ARM TrustZone technology 

primarily for processors in embedded mobile terminals. These 

strategies provide a definite distinction between the secure and 

nonsecure domains. The TEE was updated with Intel Software 

Guard Extensions (SGX), which improves the ARM 

architecture. By making application code and data more 

resistant to unauthorised disclosure and alteration, the SGX set 

of rules enhances their security. Before a programme may be 

called inside of the trusted domain, the creation of an eCall 

interface, the definition of the data format, and the transmission 

size are necessary. 

Because it is based on hardware-level implementation, Intel 

SGX offers impressive security for the integrity and 

confidentiality of its applications. Since its introduction, it has 

drawn a great deal of interest from both academia and industry, 

and it has been applied in a number of situations, such as 

outsourced cloud computing and the gathering of private data. 

Thanks to Microsoft's EnclaveDB architecture, which is based 

on SGX, databases operate within the confines of a secure 

enclave. This method makes sure that even if the server 

operating system is compromised, hackers cannot access the 

secured data. In addition to its use in database applications, 

machine learning has also been introduced by Kunkel et al. 

within the secure environment of SGX. This change makes it 

simpler to do machine learning training and prediction 

operations inside the secure enclave. This development marks 

a big step towards enhancing machine learning operations' 

security and ensuring that vital operations are shielded from 

outside dangers. In order to address the growing concern about 

data breaches, unauthorised access, and the requirement for 

confidence in healthcare systems, smart contracts present a 

promising approach to improve the security and privacy of 

electronic health (e-health) records. Smart contracts can 

revolutionise the administration and exchange of sensitive 

health information while assuring data integrity, patient 

consent, and effective record-keeping by utilising blockchain 

technology and its built-in capabilities. 

The primary benefit of adopting smart contracts for the security 

of e-health records is their capacity to automate procedures and 

enforce established rules decentralized. Smart contracts can be 

used to build a secure environment where patient data can be 

kept, accessed, and traded for electronic health records. These 

agreements preserve privacy and security standards while 

enabling patients, healthcare providers, and other authorised 

parties to interact with them in order to access information and 

complete certain tasks.For instance, a patient could decide to 

only allow specific data to be shared with specific companies 

or provide a specialist temporary access for a predetermined 

period of time. These consent criteria are incorporated into the 

smart contract to ensure that data is only accessible in 

accordance with the patient's wishes. Despite the significant 

potential benefits, there are challenges and considerations that 

must be made. Blockchain technology's scalability remains an 

issue, especially when dealing with vast amounts of patient data 

and real-time updates.Approaches like layer-2 scaling or off-

chain storage may be employed to solve this problem. 

Furthermore, interoperability between different healthcare 

systems and institutions is crucial if smart contracts are to be 

widely implemented in electronic health records. To ensure 

private and secure data transfer, standards and procedures must 

be established. 

The judicial and regulatory environment must also be taken into 

account. Regulations must change when smart contracts 

become an essential component of healthcare systems in order 

to acknowledge their validity and enforceability. Collaboration 

between technologists, attorneys, and policymakers is 

necessary for this. 

IV. PROPOSED METHODOLOGY 

The Trusted Execution Environment (TEE), blockchain, smart 

contracts, medical research institutions, and a storage server are 

the six main components of the system design. In maintaining 

the security, privacy, and effectiveness of medical data sharing 

and research, each of these elements has a specific function to 

play. Let's examine the specifics of how these entities 

collaborate to form a complete ecosystem: 
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User: In the system, users are crucial. They ensure that the data 

is encrypted to protect confidentiality and store it safely in a 

storage container. Users also keep storage indexes and 

ciphertext hashes in the blockchain along with other crucial 

info. This data serves as a reference and a verification of the 

accuracy of the recorded data. Users consent to access requests 

from medical research institutions to share their data. They 

safeguard access to their data by encrypting the encryption key 

using the TEE's public key and storing it on the blockchain. 

Users can regulate and monitor their data sharing operations by 

invoking chain code to acquire details about the processes 

involved in data sharing. 

Medical Research Institute: In order to create and hone machine 

learning models, these organisations require access to medical 

data. They produce the necessary models and submit them for 

validation to a model review smart contract. The models are 

added to the blockchain when they have been authorised. The 

integrity of the models is maintained throughout the procedure 

thanks to this method. The model-sharing procedure is 

streamlined by the institutions' ability to retrieve the trained 

models from the blockchain. 

Trusted Execution Environment (TEE): The TEE acts as a safe 

and separate execution environment that runs separately from 

the operating system that may not be trusted. Critical processes 

including data decryption, data integrity checking, model 

training, and model parameter uploading to the blockchain all 

take place within the TEE. Hardware-based techniques that 

guarantee the secrecy and privacy of important computations 

and data strengthen the TEE's security. 

Blockchain: The decentralised ledger that tracks transactions, 

data exchange, and model submissions is the blockchain. It 

ensures traceability, transparency, and immutability. Storage 

indexes, ciphertext hashes, authorised access requests, and 

encrypted encryption keys are just a few of the metadata types 

that are stored on the blockchain. Additionally, it contains smart 

contracts that enable automated model submission validation, 

guaranteeing that only approved models are posted to the 

blockchain. 

 
Figure 3: Proposed system model architecture 

Smart Contract: Smart contracts are self-executing bits of code 

that uphold previously agreed-upon norms and commitments. 

In this situation, smart contracts automate the model 

submission validation process by medical research 

organisations. By carrying out the review process, these 

contracts make sure that only valid and approved models are 

added to the blockchain. 

Storage Server: The storage server is where users' encrypted 

health information is kept. Data secrecy is ensured by the secure 

environment it provides for data storage. The infrastructure of 

the server is built to withstand any assaults and unauthorised 

access attempts, protecting the private medical data. 

The system achieves a thorough approach to secure and 

effective medical data sharing for research purposes by merging 

these six components. The transparency and tamper-proof 

ledger of the blockchain, the automation of procedures through 

smart contracts, and the TEE's function in carrying out delicate 

operations all work together to improve the security, integrity, 

and privacy of medical data and research models. The 
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advancement of medical research while keeping data security 

standards is possible with the help of this ecosystem. 

 

Secure Key Generation Algorithm: 

Key Authorization Cryptography Algorithm: 

Setup Phase: 

• Alice generates a public-private key pair:  

(𝐾_𝑎_𝑝𝑢𝑏𝑙𝑖𝑐, 𝐾_𝑎_𝑝𝑟𝑖𝑣𝑎𝑡𝑒). 

• Bob generates a public-private key pair:  

(𝐾_𝑏_𝑝𝑢𝑏𝑙𝑖𝑐, 𝐾_𝑏_𝑝𝑟𝑖𝑣𝑎𝑡𝑒). 

Alice and Bob exchange their public keys securely. 

Authorization Phase: 

• Bob wants to send encrypted data to Alice. 

• Bob generates a random symmetric key 

𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 for data encryption. 

• Bob encrypts the data using 𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. 

• Bob encrypts 𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 using Alice's public key 

𝐾_𝑎_𝑝𝑢𝑏𝑙𝑖𝑐. 

• Bob attaches the encrypted data and the encrypted 

symmetric key to the message. 

Decryption Phase: 

• Alice receives the message from Bob. 

• Alice decrypts the encrypted symmetric key using her 

private key 𝐾_𝑎_𝑝𝑟𝑖𝑣𝑎𝑡𝑒. 

• Alice uses the decrypted symmetric key to decrypt the 

encrypted data. 

Mathematical Model: 

Let's represent the encryption and decryption processes using 

mathematical notation: 

 

Setup Phase: 

• Alice's public-private key pair:  

(𝐾_𝑎_𝑝𝑢𝑏𝑙𝑖𝑐, 𝐾_𝑎_𝑝𝑟𝑖𝑣𝑎𝑡𝑒) 

• Bob's public-private key pair:  

(𝐾_𝑏_𝑝𝑢𝑏𝑙𝑖𝑐, 𝐾_𝑏_𝑝𝑟𝑖𝑣𝑎𝑡𝑒) 

Authorization Phase: 

• Generating random symmetric key:  

𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

Encrypting the data:  

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝑎𝑡𝑎, 𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) 

• Encrypting symmetric key with Alice's public key:  

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝐾_𝑎_𝑝𝑢𝑏𝑙𝑖𝑐) 

Message sent:  

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 =  (𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦) 

Decryption Phase: 

• Decrypting symmetric key with Alice's private key:  

𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 =  𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐾𝑒𝑦, 𝐾_𝑎_𝑝𝑟𝑖𝑣𝑎𝑡𝑒) 

• Decrypting data with symmetric key:  

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎 

=  𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎, 𝐾_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) 

V. RESULT AND DISCUSSION 

Through a series of simulation tests, we examine the efficacy 

assessment of the suggested strategy in this section. These 

studies are carried out to confirm and measure the 

advancements made possible by the new parts and 

technologies. The study is broken down into four distinct 

phases, each of which focuses on improving a particular area of 

the system's performance and security: Setting up a blockchain 

and implementing smart contracts: The first stage entails setting 

up an Ethernet blockchain environment on a virtual Ubuntu 

20.0 computer. A smart contract is created in this environment 

using the Solidity programming language. This contract 

encapsulates the logic and rules that direct how the system 

behaves, ensuring that all parties communicate in a secure and 

open manner. 

Redesigned algorithms with Intel SGX Integration: The Intel 

SGX is incorporated into the system utilising particular 

hardware. The Microsoft Windows 10 operating system is 

installed on an Intel Core i7-9750H processor with 16GB of 

RAM to create the Trusted Execution Environment (TEE). The 

security of these important tasks is improved in this secure 

enclave where existing encryption, decryption, hash, and 

signature algorithms are rewritten to operate within SGX. 

These operations are kept separate from the main operating 

system, which may not be trusted, thanks to the TEE. 

Comparative Efficiency Analysis: The identical set of 

capabilities are implemented in both SGX and non-SGX 

contexts to assess the effect of Intel SGX on the system's overall 

efficiency. Then, computing time overhead in the two contexts 

is measured and contrasted. This comparison highlights the 

efficiency gains made possible by carrying out crucial 

operations inside the TEE's protected enclave. 

Throughput Testing and Block Time Optimisation: The ideal 

block time is established by experimenting with varied degrees 

of difficulty. The overall throughput of the system is affected 

by changing this parameter, which affects the rate at which new 

blocks are added to the blockchain. The ideal configuration is 

found by examining the performance metrics under various 

block time settings, ensuring effective data processing and 

responsiveness of the system. The simulation tests are crucial 

for evaluating the proposed scheme's practical practicality and 

performance improvements. The addition of Intel SGX, the 

restructuring of crucial algorithms, and the use of secure 

enclaves all help to increase the security posture of the system 
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while posing the possibility of efficiency gains. A precise 

assessment of the TEE's effect on computing efficiency is made 

possible by the comparative comparison between SGX and 

non-SGX settings. Additionally, the system can achieve the 

ideal balance between throughput and responsiveness by fine-

tuning the block time parameter. 

 
Figure 4: Representation of average block creation with respect to difficulty level 

The difficulty level parameter, which specifies the 

computational work necessary to construct a new block, has an 

impact on the process of block generation within the context of 

a blockchain system. This difficulty level is typically expressed 

as a hexadecimal value, such as "0xfff," because it directly 

affects how long it takes to successfully mine and add a block 

to the blockchain. The time required for block generation 

climbs as difficulty does as well. For instance, with the 

comparatively easy difficulty level of "0xfff," the time needed 

is roughly 0.22 units. The time required for block generation 

gradually rises to 0.43, 2.33, and 6.44 units, respectively, as the 

complexity level grows more sophisticated, denoted by values 

like "0Xffox," "0Xffoxxx," or "0Xffoxxxx." Similar to this, 

harder levels of difficulty like "00XXFF," "00xXffox," and 

"0Xxffox" equate to lengthier times of 12.33, 48.65, and 75.34 

units, respectively. The time required increases to 87.44 units 

at the utmost complexity, with a difficulty level of "0Xxxffox." 

It is clear that the time required for block formation increases 

as the hexadecimal complexity increases, suggesting an 

increase in computational difficulty. A crucial component of 

blockchain's proof-of-work consensus process, this dynamic 

link between difficulty levels and block creation times ensures 

the safe and verifiable addition of new blocks to the blockchain 

ledger. 

 

Table 2: Comparison of Time taken by different method 

 Time Taken (ms) 

Method 10 Block 20 Block 30 Block 40 Block  50 Block 

ECC 1.23 3.45 6.55 7.23 9.78 

Key Share 1.11 3.66 6.76 7.44 9.99 

Proposed Method 1.08 3.34 6.44 7.12 9.67 

 

With times ranging from 1.23 units for 10 blocks to 9.78 units 

for 50 blocks, ECC (Elliptic Curve Cryptography) consistently 

takes the longest time in this comparison of methods for 

cryptographic operations across different block sizes. Although 

the "Key Share" approach demonstrates increasing delays as 

block size increases, from 1.11 units to 9.99 units, it still 

performs somewhat better. By continuously needing the least 

amount of time for cryptographic operations with times ranging 

from 1.08 units for 10 blocks to 9.67 units for 50 blocks the 

"Proposed Method" outperforms both ECC and Key Share. This 

shows that the Proposed Method, when compared to 

conventional ECC and Key Share approaches, offers better 

efficiency in cryptographic operations across a range of block 

sizes, making it an attractive option for applications requiring 

quick cryptographic operations on huge datasets. 
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Figure 5: Time taken for key exchange comparison for different methods 

Figure 5 shows a thorough comparison of the times required for 

key exchange using three distinct approaches over blocks 

ranging from 10 to 50 blocks in size. ECC (Elliptic Curve 

Cryptography), Key Share, and the Proposed Method are the 

techniques being assessed.The figure shows Elliptic Curve 

Cryptography (ECC), a popular encryption technique renowned 

for its effectiveness. We can see that as the number of blocks 

grows, the time needed for key exchange also grows, with a 

clear upward trend. For instance, ECC takes roughly 1.23 units 

of time with 10 blocks, rising to 9.78 units with 50 blocks. As 

the workload increases, this method shows relatively steady 

development over time.A similar trend may be seen in the Key 

Share approach, which is indicated in the image. The rate rises 

from 1.11 units for 10 blocks to 9.99 units for 50 blocks.  

 
Figure 6: Comparison of Time taken against data blocks 

With very minor differences in key exchange time, this method 

performs similarly to ECC.Of the three, the Proposed Method 

stands out as being the most effective. It constantly shows that 

across all block sizes, the key exchange takes the smallest 

amount of time. It starts off taking just 1.08 units of time with 

10 blocks, and even with 50 blocks, the time is still remarkably 

low at 9.67 units. This demonstrates the suggested method's 

effectiveness and efficiency in handling key exchanges, making 

it an attractive option for cryptographic operations, especially 

when working with more blocks. The Proposed Method is a 

tempting solution for key exchange, especially in cases 

involving a large volume of blocks where time efficiency is 

crucial, as this figure illustrates the efficiency benefits it has 

obtained. 
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Table 4:  System Overhead Due to Various File Sizes 

Data 

size (kB) 

Minimum of 

NOSGX (us) 

Average of 

NOSGX (us) 

Maximum of 

NOSGX (us) 

Minimum of 

SGX (us) 

Average of 

SGX (us) 

Maximum of 

SGX (us) 

10 58750 68402 78875 231482 278565 316267 

20 174955 183975 198595 420952 446526 482803 

30 280907 312387 362376 479065 511825 552917 

40 465122 529407 630359 863531 892346 937483 

50 549140 604838 677419 1033149 1185920 1239849 

60 709548 730433 800180 1243254 1370693 1461046 

 

The system overhead, measured in microseconds (us), for 

various data sizes (in kB), in both non-SGX (NOSGX) and 

SGX settings, is broken down in detail in table 4.The NOSGX 

environment displays a minimum overhead of 58,750us, an 

average of 68,402us, and a maximum of 78,875us for a data 

size of 10kB. The SGX environment, in contrast, exhibits 

higher overhead, with minimum values of 231,482us, average 

values of 278,565us, and highest values of 316,267us. 

The overhead increases in both contexts when the data size 

approaches 20kB. A minimum of 174,955us, an average of 

183,975us, and a high of 198,595us are all recorded by 

NOSGX. With a minimum of 420,952us, an average of 

446,526us, and a maximum of 482,803us, SGX, on the other 

hand, exhibits even higher overhead.In comparison to SGX, 

NOSGX has greater overheads, with lowest, average, and 

maximum values for a data size of 30kB being 280,907us, 

511,825us, and 552,917us, respectively.The minimum, 

average, and maximum overheads at 40kB for NOSGX are 

465,122us, 529,407us, and 630,359us, respectively. In contrast, 

the overheads at 40kB for SGX are higher, with minimum, 

average, and maximum values of 863,531us, 892,346us, and 

937,483us, respectively.SGX exhibits significantly higher 

numbers of 1,033,149us (minimum), 1,185,920us (average), 

and 1,239,849us (highest) when the data size hits 50kB, 

compared to NOSGX's 549,140us (minimum), 604,838us 

(average), and 677,419us (maximum). 

 

Figure 7: Representation of System Overhead Due to Various File Sizes 

The overheads for NOSGX are 709,548us (minimum), 

730,433us (average), and 800,180us (maximum) for a data size 

of 60kB, while SGX records greater overheads of 1,243,254us 

(lowest), 1,370,693us (average), and 1,461,046us (highest). 

 

VI. CONCLUSION 

The trusted execution environment (TEE), an isolated, secure 

enclave within a computing platform, is at the centre of this 

project. TEEs have been harnessed by technologies like ARM's 

TrustZone and Intel's SGX, providing strong hardware-level 

mechanisms that separate the secure and nonsecure worlds. 
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Particularly Intel's SGX, which is expected to greatly improve 

e-Health security, has found relevance in situations like cloud 

computing and secure data aggregation.Blockchain technology 

has simultaneously become a crucial instrument in the fight for 

e-Health security. Blockchain-based smart contracts have 

proven to be adept at automating healthcare procedures while 

preserving data privacy and integrity. They offer clear and 

unchangeable records of medical transactions, paving the way 

for increased accountability.The holistic approach to e-Health 

security is further highlighted by a proposed system design. 

This architecture places an emphasis on user participation in 

data access control and includes users, medical research 

organisations, TEEs, blockchain, smart contracts, and storage 

servers. TEEs are essential to secure data processing, 

guaranteeing the confidentiality and integrity of sensitive 

healthcare data, while smart contracts transparently enforce 

access restrictions.Our comparison tests between SGX and non-

SGX contexts highlight how useful hardware-level security is 

for e-Health. SGX has continually demonstrated the capacity to 

maintain the integrity and security of data, making it a potential 

option for the safe processing of medical data. 
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