5,102 research outputs found

    A Multi-channel Application Framework for Customer Care Service Using Best-First Search Technique

    Get PDF
    It has become imperative to find a solution to the dissatisfaction in response by mobile service providers when interacting with their customer care centres. Problems faced with Human to Human Interaction (H2H) between customer care centres and their customers include delayed response time, inconsistent solutions to questions or enquires and lack of dedicated access channels for interaction with customer care centres in some cases. This paper presents a framework and development techniques for a multi-channel application providing Human to System (H2S) interaction for customer care centre of a mobile telecommunication provider. The proposed solution is called Interactive Customer Service Agent (ICSA). Based on single-authoring, it will provide three media of interaction with the customer care centre of a mobile telecommunication operator: voice, phone and web browsing. A mathematical search technique called Best-First Search to generate accurate results in a search environmen

    GAMESPECT: A Composition Framework and Meta-Level Domain Specific Aspect Language for Unreal Engine 4

    Get PDF
    Game engine programming involves a great number of software components, many of which perform similar tasks; for example, memory allocation must take place in the renderer as well as in the creation routines while other tasks such as error logging must take place everywhere. One area of all games which is critical to the success of the game is that of game balance and tuning. These balancing initiatives cut across all areas of code from the player and AI to the mission manager. In computer science, we’ve come to call these types of concerns “cross cutting”. Aspect oriented programming was developed, in part, to solve the problems of cross cutting: employing “advice” which can be incorporated across different pieces of functionality. Yet, despite the prevalence of a solution, very little work has been done to bring cross cutting to game engine programming. Additionally, the discipline involves a heavy amount of code rewriting and reuse while simultaneously relying on many common design patterns that are copied from one project to another. In the case of game balance, the code may be wildly different across two different games despite the fact that similar tasks are being done. These two problems are exacerbated by the fact that almost every game engine has its own custom DSL (domain specific language) unique to that situation. If a DSL could showcase the areas of cross cutting concerns while highlighting the ability to capture design patterns that can be used across games, significant productivity savings could be achieved while simultaneously creating a common thread for discussion of shared problems within the domain. This dissertation sought to do exactly that- create a metalanguage called GAMESPECT which supports multiple styles of DSLs while bringing aspect-oriented programming into the DSL’s to make them DSAL (domain specific aspect languages). The example cross cutting concern was game balance and tuning since it’s so pervasive and important to gaming. We have created GAMESPECT as a language and a composition framework which can assist engine developers and game designers in balancing their games, forming one central place for game balancing concerns even while these concerns may cross different languages and locations inside the source code. Generality was measured by showcasing the composition specifications in multiple contexts and languages. In addition to evaluating generality and performance metrics, effectiveness was be measured. Specifically, comparisons were made between a balancing initiative when performed with GAMESPECT vs a traditional methodology. In doing so, this work shows a clear advantage to using a Metalanguage such as GAMESPECT for this task. In general, a line of code reduction of 9-40% per task was achieved with negligible effects to performance. The use of a metalanguage in Unreal Engine 4 is a starting point to further discussions concerning other game engines. In addition, this work has implications beyond video game programming. The work described highlights benefits which might be achieved in other disciplines where design pattern implementations and cross-cutting concern usage is high; the real time simulation field and the field of Windows GUI programming are two examples of future domains

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Designing interactive ambient multimedia applications: requirements and implementation challenges

    Get PDF
    Ambient intelligence opens new possibilities for interactive multimedia, leading towards applications where the selection, generation and playback of multimedia content can be directed and influenced by multiple users in an ambient sensor network. In this paper, we derive the basic requirements for a flexible infrastructure that can support the integration of multimedia and ambient intelligence, and enable rapid tailoring of interactive multimedia applications. We describe our implementation of the proposed infrastructure, and demonstrate its functionality through several prototype application

    Designing interactive ambient multimedia applications: requirements and implementation challenges

    Get PDF
    Ambient intelligence opens new possibilities for interactive multimedia, leading towards applications where the selection, generation and playback of multimedia content can be directed and influenced by multiple users in an ambient sensor network. In this paper, we derive the basic requirements for a flexible infrastructure that can support the integration of multimedia and ambient intelligence, and enable rapid tailoring of interactive multimedia applications. We describe our implementation of the proposed infrastructure, and demonstrate its functionality through several prototype application

    Image processing for the extraction of nutritional information from food labels

    Get PDF
    Current techniques for tracking nutritional data require undesirable amounts of either time or man-power. People must choose between tediously recording and updating dietary information or depending on unreliable crowd-sourced or costly maintained databases. Our project looks to overcome these pitfalls by providing a programming interface for image analysis that will read and report the information present on a nutrition label directly. Our solution involves a C++ library that combines image pre-processing, optical character recognition, and post-processing techniques to pull the relevant information from an image of a nutrition label. We apply an understanding of a nutrition label\u27s content and data organization to approach the accuracy of traditional data-entry methods. Our system currently provides around 80% accuracy for most label images, and we will continue to work to improve our accuracy

    Interactive exploration of population scale pharmacoepidemiology datasets

    Full text link
    Population-scale drug prescription data linked with adverse drug reaction (ADR) data supports the fitting of models large enough to detect drug use and ADR patterns that are not detectable using traditional methods on smaller datasets. However, detecting ADR patterns in large datasets requires tools for scalable data processing, machine learning for data analysis, and interactive visualization. To our knowledge no existing pharmacoepidemiology tool supports all three requirements. We have therefore created a tool for interactive exploration of patterns in prescription datasets with millions of samples. We use Spark to preprocess the data for machine learning and for analyses using SQL queries. We have implemented models in Keras and the scikit-learn framework. The model results are visualized and interpreted using live Python coding in Jupyter. We apply our tool to explore a 384 million prescription data set from the Norwegian Prescription Database combined with a 62 million prescriptions for elders that were hospitalized. We preprocess the data in two minutes, train models in seconds, and plot the results in milliseconds. Our results show the power of combining computational power, short computation times, and ease of use for analysis of population scale pharmacoepidemiology datasets. The code is open source and available at: https://github.com/uit-hdl/norpd_prescription_analyse
    corecore