
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

 INformation Systems

Designing interactive ambient multimedia applications: 
requirements and implementation challenges 

Z. Obrenovic, F.-M. Nack, L. Hardman

REPORT INS-E0605 JULY 2006

INS
Information Systems



Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and 
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681



Designing interactive ambient multimedia
applications: requirements and implementation
challenges

ABSTRACT
Ambient intelligence opens new possibilities for interactive multimedia, leading towards
applications where the selection, generation and playback of multimedia content can be
directed and influenced by multiple users in an ambient sensor network. In this paper, we derive
the basic requirements for a flexible infrastructure that can support the integration of multimedia
and ambient intelligence, and enable rapid tailoring of interactive multimedia applications. We
describe our implementation of the proposed infrastructure, and demonstrate its functionality
through several prototype applications.

1998 ACM Computing Classification System: H.5.1; H.1.2
Keywords and Phrases: Adaptive multimedia; ambient intelligence; software platform
Note: This work was carried out under project INS2 - Passepartout





Designing Interactive Ambient Multimedia Applications: 
Requirements and Implementation Challenges  

 
Zeljko Obrenovic, Frank Nack, Lynda Hardman 

CWI, P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands 
Firstname.Lastname@cwi.nl 

 
 

 
ABSTRACT 
Ambient intelligence opens new possibilities for interactive 
multimedia, leading towards applications where the selection, 
generation and playback of multimedia content can be directed 
and influenced by multiple users in an ambient sensor network. In 
this paper, we derive the basic requirements for a flexible 
infrastructure that can support the integration of multimedia and 
ambient intelligence, and enable rapid tailoring of interactive 
multimedia applications. We describe our implementation of the 
proposed infrastructure, and demonstrate its functionality through 
several prototype applications. 

Categories and Subject Descriptors 
H.5.1 [Multimedia Information Systems], H.1.2 [User/Machine 
Systems], D.2.11 [Software Architectures] 

General Terms 
Design, Human Factors. 

Keywords 
Adaptive multimedia, ambient intelligence, software platform. 

1. INTRODUCTION 
The vision of ambient intelligence is to create environments that 
are sensitive to the presence of people and responsive to their 
needs [1]. Ambient intelligence is an umbrella term for a set of 
technologies that lead us toward this goal, going beyond today’s 
common mode of interaction where a single user operates a mouse 
and keyboard in front of a single display controlled by a single 
machine. Ambient intelligence opens new possibilities for 
interactive multimedia. Multimedia is not just “powerpoint on the 
screen”, but it is also concerned with different input and output 
modalities, often simultaneously used by several users to 
communicate multimedia information in a shared environment 
[4]. Embedding multimedia in sensor-enhanced ambient 

environments can enhance the range of interaction techniques 
even further.  

However, designing applications that can exploit the 
potentials of the marriage between multimedia and ambient 
intelligence is a challenging task. There are many open issues, and 
to date there is no clear model of how this integration could be 
done. One of the main problems is the huge space of possible 
solutions, with different devices, sensors, usage scenarios, and 
personalization factors. It is practically impossible to hardcode 
solutions for each of the individual combinations. If we want to 
develop ambient multimedia applications efficiently, we need to 
rethink how they are specified and implemented. 

In this paper, we describe the requirements for a generic 
platform for the integration of multimedia and ambient 
intelligence. We also discuss the main implementation challenges, 
based on our implementation of this platform. This platform is 
used as a core part of a broader project that explores the design of 
new interactive multimedia applications, where the selection, 
generation and playback of multimedia content can be directed 
and influenced by an ambient sensor network. Our goal is to 
enable multimedia developers to experiment with interaction 
techniques in sensor-enhanced ambient environments, while 
allowing for as much reuse of their previous work as possible. 

We first describe a number of existing solutions, and discus 
their common issues. We then outline basic requirements for a 
flexible ambient multimedia platform. The main part of the paper 
describes a platform we have developed based on these 
requirements. We illustrate the flexibility of the platform through 
a number of prototypes of interactive multimedia applications, 
which explore the usage of camera-based techniques, speech, and 
biometric data to control and adapt multimedia content and 
environment.  

2. EXISTING SOLUTIONS 
Combining multimedia with ambient intelligence has already been 
explored by several research groups, in particular in gaming and 
artistic settings. Our goal is not to create a comprehensive list of 
existing solutions, but to illustrate the range of scenarios that even 
simple forms of ambient intelligence make possible. The common 
issues extracted from theses scenarios form the basis for deriving 
requirements for the flexible infrastructure that can support more 
efficient integration of multimedia with ambient intelligence. 

2.1 Ambient Interaction Applications 
Enriching working spaces, such as offices or meeting rooms, with 
ambient sensors has been explored with several research groups. 
For example, Stanford’s "Interactive Workspaces" project 

 
 



explores new ways for people to work together in technology-rich 
environments. Interactive Workspaces combine large displays 
with smaller interaction devices [13]. 

Artistic performances and multimedia events have exploited 
a number of new sensing and interaction techniques. For example, 
the "Multisensory Integrated Expressive Environments" 
framework has been used in performing arts, such as interactive 
dance, music, or video installations [6]. In these performances, 
sensors captured player movements, face expressions, or gestures, 
and transformed them into parameters used to automatically 
control scene elements, such as music. 

Enriching public physical spaces with sensors can extend the 
experience of visitors. For example, the eXspot system uses small 
radio-frequency identifier (RFID) reader packages mounted on 
museum exhibits, together with a radio-frequency (RF) tag carried 
by visitors on a card or necklace, connected in a wireless network, 
and used with a registration kiosk to dynamically generate Web 
pages [11]. The Situating Hybrid Assemblies in Public 
Environments (SHAPE) project has also explored how emerging 
ubiquitous technologies and ambient intelligence can support 
museum visiting experiences. The project has investigated how to 
support visitors to manipulate physical and digital material, and to 
collaborate with other visitors [2].  

Games are another area where multimedia and ambient 
technologies begin to merge. The aim is to unchain the game 
players from the console using alternative interaction modalities. 
Systems like Human Pacman [3], where users have to run in order 
to control avatars, extend the gaming experience into the real 
world — a living room, streets, or the remote wilderness. In such 
systems, sensors capture information about players' current 
context, such as location, actions, and emotional state, and use 
this data to adapt the game flow. By supporting learning through 
physical role play, these games also have an educational potential. 
In their platform for physical play, Wakkary et al. explored the 
more general design issues of sensing, displaying, user modeling, 
and using interaction models in designing a system based on a 
game structure [24]. Their system supports game structures such 
as word puzzles, levels, body states, goals and game skills, 
connecting them with body movements and positions, through 
real-time motion capture. 

Interactive music systems have also been used with ambient 
sensing techniques. For example, Healey et al. developed a system 
that aids in music selection by incorporating physiological 
variables that might indicate the user’s present mood. They 
developed a wearable computer that perceives and responds to the 
wearer’s affective state, capturing patterns from many kinds of 
user behavior [10]. The Viktoria Institute's Future Applications 
Lab, and the Interactive Institute's PLAY Studi from Sweden 
developed the Sonic City, a form of interactive music instrument 
using the city ambient as an interface. Sonic City enables users to 
create a real-time personalized music by walking through and 
interacting with urban environments [16]. 

2.2 Common issues 
While the described systems have been used in different domains, 
each of them addresses several common issues, including: 

• sensing and affecting the user and environment, 
• modeling the context, by analyzing data available from the 

sensors, 
• higher-level reasoning and integrated interpretation of 

sensory and contextual data, and 

• integration mechanisms, which enables efficient 
communication between devices, modeling modules, and 
reasoning modules. 

Sensing and Affecting the User and Environment 
One of the most important elements of an ambient intelligence 
system is maintaining the communication with sensors, and, if 
necessary, performing operations such as sensor calibration, high-
pass filtering and mean value calculations, or applying more 
sophisticated signal processing. In most of the systems, sensor 
processing modules are an integral part of the application. 
Hardware includes RFID sensors, cameras, microphones, 
temperature sensors, accelerometers, as well as bio-sensors, such 
as heart rate or galvanic skin response (GSR) sensors. Sensor 
processing modules vary from simple, providing digitally 
converted data without applying complex processing, to very 
complex ones that use sophisticated signal processing algorithms 
to derive values, such as a trajectory of the user or the user state. 
Devices often include simple actuators such as lights, fans or 
vibrators, which can be used to affect the user. Sensors also 
communicate through both wired, (e.g. RS-232, USB, or 
Ethernet) or wireless interfaces (e.g. Bluetooth).  

Modeling Users, Devices and the Environment 
In most cases, ambient systems include modules that track the 
context in which they are used, keeping relevant models about 
users, devices, and the environment. The techniques to create and 
update these models vary depending on the environment in which 
the system operates. Systems used in public spaces, focus on 
modeling environment and devices, while systems used in more 
personal environments include more detailed user models. The 
core activity of these modules is to track the changes in the 
environment, and store relevant data about ongoing interactions. 
For example, Perring et al. [19] developed a system where mobile 
devices could be used with other devices in the room. To enable 
seamless integration between the services of each device, the 
system has to maintain service description that a device provides, 
and track the temporary relations between devices.  

Reasoning  
In addition to interpreting data from individual sensors, ambient 
intelligence solutions often include modules that use data from all 
the sensors, together with information from other sources to 
facilitate higher-level reasoning. These reasoning modules usually 
form the "intelligent" part of ambient intelligence. Techniques 
used vary from simple analysis to more complex artifical 
intelligence techniques. For example, Wakkary et al. use a rule-
based reasoning engine to interpret the sensor data, identifying the 
level of body state completion, which was then used to control the 
narrative flow of the experience [24]. In some cases, solutions did 
not require complex reasoning. For example, some approaches 
focused more on providing simple metaphors that can be easily 
manipulated by developers, rather than using complex modules 
that do this automatically. Kameas et al, for example, illustrated 
that even users can become “creators” of ambient applications if 
they are given simple metaphors and usable (but not necessarily 
intelligent) manipulation tools [14]. 

Integration Mechanism 
In ambient intelligence settings, it is important to provide efficient 
communication mechanisms to connect all the components. Most 
existing systems have solved the integration problem by directly 



connecting sensor data to modules that use it. Some ambient 
intelligence systems have tried to provide more generic and 
reusable integration mechanism that can enable plug-in 
integration of components. For example, the EventHype system, 
used in the Interactive Workspaces project, addresses the issue of 
integration through the design of a centralized event exchange 
system for workspace devices [13]. 

 

3. REQUIREMENTS FOR AN AMBIENT 
MULTIMEDIA PLATFORM 
The bottleneck for more efficient development of interactive 
ambient multimedia environments is integration. In most existing 
systems, integration is hardcoded for a particular scenario, making 
individual parts of the system hard to reuse. Our aim is to 
establish a flexible integration platform that facilitates the needs 
of the common process modules. In this section, we identify basic 
requirements for a flexible platform for rapid tailoring of novel 
interactive multimedia applications in ambient intelligence 
environments. Our aim is not to create a comprehensive list of 
requirements, but to identify those that allow us to go beyond 
simply connecting sensors in an ad-hoc manner.  

3.1 Supporting a Wide Range of Scenarios 
Scenarios range from single user environments in an office or 
home environment, to multi-user interaction in outdoor and urban 
environments. Each situation requires different sensors, user 
profiles, device profiles and environmental context. Components 
are typically not easily extensible or reusable for scenarios other 
than the one for which they were designed. The platform has to 
support the varied needs of applications in a wide range of 
scenarios, without restricting unforeseen uses of sensors or other 
components. 

3.2 Supporting Different Sensing Modules 
Input can be obtained from a wide range of sensing modules, 
connected over different communication interfaces. Some sensing 
modules send low-level data frequently, others send high-level 
process data infrequently. Sensing modules may also use different 
communication models. For example, some sensing modules work 
in push mode, automatically sending data, others work in client-
server mode, sending data upon request. The infrastructure should 
support both models, and allow flexible communication of data 
among modules. In most existing solutions, sensing modules are 
an integral part, crafted for a particular scenario. This inhibits 
reuse of existing sensor modules in other applications. The 
platform should enable the integration of sensing modules using 
different interfaces and communication models. Introduction of 
new sensing modules should require only minor changes in other 
components. 

3.3 Modeling and Reasoning Support 
In most cases, the environment has to be aware of many 
parameters, such as the device used, users present, and/or their 
current physiological state. The range and complexity of 
approaches to modeling and analyzing these parameters varies 
significantly. Reasoning engines may also need access to data 
from other sources, such as user and device profiles stored in 
external sources (such as, files, databases, or web repositories). 
The platform should enable the integration of modeling and 
reasoning mechanism of differing complexities. It also has to be 

able to import data from external sources, in addition to sensor 
data. 

3.4 Dynamic Integration 
Configuration of connections among sensing modules and other 
components is a basic requirement for any ambient system.  
Current systems and tools, however, require the developer to 
specify these connections manually.  This is sufficient where the 
system is static and connections are not overly complex.  Where 
there are many sensing modules inputting data to different 
processing modules,  and where the configuration is likely to 
change over time, for example when a user becomes more expert 
in using the system, then support for specifying connections 
amongst modules is required. Optimal interaction configuration 
can also differ from user to user. The platform has to be able to 
dynamically reconnect sensing modules with modules depending 
on the current state of the system. 

 

4. IMPLEMENTING AN AMBIENT 
MULTIMEDIA PLATFORM 
Based on the requirements, we have implemented a generic 
platform that enables multimedia developers to experiment with 
ambient intelligence interaction techniques. In this section, we 
give an overview of the platform, and describe its implementation 
details. 

4.1 System Overview 
Our platform supports building interactive multimedia 
applications using a component-based approach [15]. Sensing, 
modeling, reasoning, and application modules are treated as 
independent components that can run on different machines in a 
distributed environment. Support for a wide range of scenarios is 
achieved through providing different connections among these 
components. We use a loosely-coupled model to connect the 
components through a centralized communicator system (Figure 
1). The communicator decouples the components both spatially 
and temporally. This indirect communication provides 
extensibility by allowing usage of sensing and other modules in 
different configurations. Furthermore, it allows modules to 
intercept and translate all communication events. 
 

 

Figure 1. Connecting components through centralized 
communicator system. 

 



 
Components in our system communicate by exchanging 

events via the communicator. We have provided several interfaces 
and communication models to support integration of different 
sensing, modeling and reasoning modules. For greater flexibility, 
we abstracted the events send by components into the concept of a 
variable. One variable can be updated or derived by different 
events. For example, a variable that represents a number of people 
in the room can be updated by a RFID sensing module or by a 
camera sensing module. Applications can register for this 
variable, not being concerned with the details of the sensing 
module used to instantiate it. Modules could also derive new 
variables by processing existing variables.   

One of the key differences between our communicator and 
other event exchange systems is the variable derivation part. This 
enables instantiation of new variables from variables updated by 
sensing modules and applications. New variables are derived by 
using a set of variable transformations. Therefore, applications do 
not have to directly use low-level sensor variables, but can add 
transformations that adapt these variables for their needs. In this 
way, the communicator not only exchanges events, but also 
provides a means for the creation of higher-level semantics from 
low-level events. An important goal of our transformation 
framework is to enable variable transformations in several steps. 
For example, one transformation can start from low-level sensor 
data, and transform them into intermediate variables. These 
intermediate variables can then be used by other transformations 
that transform them into application specific variables. Usage of 
intermediate variables can also simplify integration of new 
sensing modules, as we can reuse transformation from 
intermediate to application specific variables, and add only 
transformations of sensor-specific variables to intermediate 
variables.  

Figure 2 illustrates variable derivation using a camera-based 
playback control. A face detector sends coordinates of detected 
faces. The communicator then runs variable transformations that 
derive several other variables: one describing the number of 
detected faces, and, for each face, a variable containing the 
coordinates for that face. The number of faces directly correlates 
to the number of people in the room, while the coordinates of the 
faces facilitate the derivation of the average height of faces, what 
roughly correlates to the distance of people from the camera. The 
derived distance variable can then be used to change the variables 
used to control presentation of the content, for example the 
volume intensity or font size. Although we could directly obtain 
playback controls from a sensor variable, deriving variables in 
several layers is a more flexible approach. For example, playback 
control could also be derived from a speech recognizer that 
updates the same variable. In this way, the player can be 
controlled, through speech or movement, but it does not have to 
be reconfigured, as all the sensing modules update the same 
variables, but using different transformations. 

The communicator also provides interfaces for dynamically 
loading and changing the custom defined transformations, 
providing support for dynamic integration of components. Our 
platform, therefore, provides a dynamic middleware that 
applications can adapt to support different interaction scenarios. 
This is also the main difference between our system and existing 
component systems, which usually require the developer to 
specify connections among components manually [5]. 

 

 

Figure 2. Derivation of variables in a camera based 
control of multimedia playback. 

4.2 Implementation Details 
The communicator forms the core of our platform. Its main task is 
to enable the flexible connection of all components with 
applications. It is implemented in Java, using standard Java 
libraries. The communicator and its external modules can be 
downloaded from our Web site1. 

The communicator keeps a pool of variables, which can be 
updated by sensing modules or applications, and distributed to 
clients upon request or automatically after a state change. 
Applications and sensing modules can update or read variables 
using simple UDP and TCP communication interfaces, or they can 

                                                                 
1 http://amico.sourceforge.net/ 



use higher-level communication modules realized on top of the 
communicator, e.g. generic communication adapters such as the 
XML-RPC adapter. For example, a speech recognizer can send an 
event with a recognized speech phrase by sending a UDP package 
with content "UPDATE speech-phrase-variable 
value". The communicator also provides a user interface that 
enables users to see which variables are currently used and to 
associate a privacy control tag with them.  

Components receive values of variables in several 
communication models, including: 

• Push model: a component registers for specific variables, 
providing a command template where parts of the command 
are replaced with the concrete variable values. When a 
trigger value is changed, these templates are evaluated and 
returned. 

• Pull model: clients can connect to our platform, and request 
a list of values. The component could also send a template, 
which will be populated with variables present in the 
communicator and returned. 

• Direct connection: sensing modules communicate with the 
clients avoiding the processing part of our platform. This 
communication model enables the efficient communication 
of large streams of data to clients. 

The transformations used to derive new variables are 
described in the Extensible Stylesheet Transformation (XSLT) 
language. XSLT is a standardized, commonly used transformation 
language, familiar to many developers and supported by many 
existing tools. Transformations also allow sensing modules, as 
well as applications, to be simpler and reusable in different 
situations, as a part of processing can be present in the 
transformations. By merging the transformation and routing logic 
in the communicator, we can keep client libraries simple and easy 
to port as well as reduce the administration needed on each 
component. In addition, developers could use other components 
to derive variables, integrating them with the communicator 
through our interfaces.  

The communicator is able to load variables dynamically from 
files or Web pages. In this way, the communicator can load 
variables from user or device profiles, making them accessible to 
other modules, for example, to a reasoning engine that has to 
derive a user state based on threshold values from a user profile. 
We use a simple XML format for describing variables, and the 
communicator can load these variables from a given URL. This 
URL can reference a local file, or a dynamic Web page that 
generates the file from a database. 

Users can share a communicator instance on some common 
machine, but they can also run their own communicator. 
Communicators could also be interconnected, so that one or more 
communicators could receive events derived by some other 
communicator. 

The communicator also includes components that can 
provide help in debugging and rapid prototyping of the 
applications. Scenarios are often based on still undeveloped 
components. A partial implementation of the system cannot show 
the full potential, while a complete implementation might be 
impractical [7]. Therefore, we have also developed tools that can 
enable developers to model some undeveloped or unstable 
component by simulating them manually or automatically.  

5. APPLICATION ADAPTERS 
The communicator provides flexible communication mechanisms 
that can be directly used by different applications and sensing 
modules. However, in order to ease the integration of existing and 
new multimedia applications, we have developed additional 
components that further simplify this process. We will firstly 
introduce some of the generic application adapters, and then 
illustrate adapters that can be used to integrate Web-based 
multimedia applications. 

5.1 Generic Applications Modules 
In order to improve the basic functionality of the communicator 
with respect to structure and applicability, we have developed 
several modules that provide extended interfaces. Those interfaces 
improve the interoperability of the communicator with other 
components and existing applications. The first set of these 
modules consists of generic communication interfaces, including: 
• a XML-RPC interface for accessing communicator 

variables, mapping the variables to XML-RPC function 
calls, and updating the variables with the results of the calls.  

• an OpenSound Control (OSC) interface, which is similar to 
the XML-RPC interface only that it uses the OSC protocol. 

• a sensing adapters package, such as RS-232 or USB 
adapters. 

We have used these generic adapters to integrate existing 
multimedia applications and sensing modules. For example, we 
use the OSC interface to control the VeeJay system [23], to create 
visual performances and interactive video installations that 
manipulate video in realtime using different devices, such as the 
cushions (Section 6.4). 

We are also working on creating some application specific 
adapters for other multimedia environments such as Macromedia 
Director, by using its Xtras C++ extension mechanism [17]. 

5.2 Web Applications Modules 
The World Wide Web is one of today's main channels for 
distribution of online multimedia content. Broadcast companies 
already distribute their content over the Internet, primarily using a 
Web interface. Also, there are many adaptive multimedia 
applications which are developed as Web applications and 
services. For example, some automatic presentation generation 
systems produce Synchronized Multimedia Interchange Language 
(SMIL) content based on parameters they receive with calls [22]. 
Therefore, large amount of multimedia content from different 
Web servers is already available for consumption and 
manipulation. On the other hand, Web browsers offer a flexible 
architecture for playing multimedia content, by supporting many 
standards and formats. Although the Web infrastructure does not 
provide a direct means for integration of novel interaction 
modalities, mechanism and interfaces that exist there can be used 
to extend basic functionalities of Web applications. For example, 
the functionality of Web browsers can be extended with 
mechanisms such as scripting and applets. On the other hand, 
multimedia applications, such as RealPlayer, extend their 
functionality by embedding Web browsers. Scripting in Web 
servers and clients also enables more flexible rapid prototyping. 
We have, therefore, used these Web mechanisms to integrate 
existing web-based multimedia applications with our system to 
enable interaction with multimedia content through new sensing 
devices. To make this possible, we have developed two 
components, namely: 



• A template-based content changer that facilitates flexible 
multimedia content selection;  

• A scripting applet that controls the playback and interaction 
with multimedia content by mapping variables from the 
communicator to calls of script functions inside a Web 
browser. 

Template-Based Content Changer 
Currently, online multimedia content providers usually offer their 
content in a fixed Web HTML interface. These interfaces, 
however, limit the flexibility of content usage.  

Instead of providing fixed HTML pages with embedded links 
to multimedia content, we have developed a more flexible 
content-changer system that can enable playback of multimedia on 
the Web. The basic idea is to enable the dynamic building and 
control of player settings based on the values present in the 
communicator. Our content-changer component loads two lists of 
links. The first list contains links to multimedia content, such as a 
link to a movie, or a link to a VRML scene. A link could refer to 
static content on some server, or to a dynamic Web page that 
generates multimedia content on-the-fly. Every link from this list 
is also associated with a list of players that can be used to open 
the linked content, optionally with the target window in which it 
should be played. The second list contains links to dynamic Web 
pages that embed players for each of the supported multimedia 
content types. Each of these pages requires a link to content that it 
will play. We have developed several of these dynamic pages, 
using PHP, JSP and ASP technologies, with embedded players for 
different content types (for example, RealPlayer, Windows Media 
Player, VRML players). Our player pages also embed a scripting 
applet, described in the following section, that enables the control 
of audio-visual playback by using a sensing module, such as a 
speech recognizer or a camera-based face detector. When a user 
selects the content from the list, the content changer automatically 
selects an appropriate player Web page, and generates the link to 
the selected content. 

Links to content and player pages are described in the form 
of templates that can be populated with variables present in our 
communicator.  This means that parts of URLs can be replaced 
with actual variables from the communicator, enabling run-time 
selection of content and adaptation of players. For example, 
parameters to dynamic Web pages can be replaced with actual 
values, such as user state, or preferred colors. Active player Web 
pages can receive parameters about the dimensions of the screen, 
and adapt the dimension of the player window.  

The content changer is implemented as a Java application 
that communicates with the communicator in several ways (Figure 
3). Firstly, the content changer registers for the commands, such 
as reload of current content, or selection of previous and next 
content item from the list, so it can be controlled with any 
component that updates this variable. The content changer also 
updates variables based on the currently selected content and 
player, and can reload the content when some of the variables 
change. For example, dynamically generated content can be 
sensitive to changes in the user state, and can be automatically 
adapted with the described technology. Finally, the content 
changer can update the variables with one or more URLs of 
currently selected content. This variable can be used with any 
application that wants to present this content. A simple content 
change applet that registers for this variable, and reloads the 
content in the Web browser each time new content is selected, 

facilitates automation of the process. The content changer is 
configured with links to player and content templates, which can 
be files, or an active Web page that generates these lists based on 
user queries for multimedia content. 

 
Figure 3. Template-based content changer and its 
interaction with the communicator. 

Scripting Applet 
In order to control multimedia content in Web browsers using 
interaction modalities not present in the user interface of the 
browser, we have developed a flexible mechanism for mapping of 
communicator variables to Web browser controls. Browsers 
usually provide several ways in which they can be extended. For 
example, it is possible to develop new plug-in modules, or toolbar 
extension, and in that way affect the content loaded in the Web 
browser. However, this approach requires development of 
components for each browser and platform, and requires that 
users install them in order to be used. Instead of that, we provide a 
simpler, but equally functional way of controlling the content 
loaded in the Web browser using a scripting applet. The scripting 
applet transforms notifications sent from the communicator into 
calls of scripting functions. The scripting applet is completely 
reconfigurable, and developers can use it to control any scriptable 
element in the HTML page.  

<script> 
 function p_start() { document.movieclip.DoPlay() } 
 function p_pause() { document.movieclip.DoPause() } 
 function p_stop() { document.movieclip.DoStop() } 
 function p_set_volume(volume) { 
  document.movieclip.SetVolume(volume) 
 } 
 function p_set_bgColor(color) { 
  document.bgColor=color 
 } 

</script> 
…… 
<applet code="ScriptingApplet.class" 
                         width="0" width="0" MAYSCRIPT> 
    <param name="port" value="3320"> 
    <param name="command-template-1" 
          value="ADD TEMPLATE DIFF player-action  
                        p_<%=player-action%>"> 
    <param name="command-template-2" 
          value="ADD TEMPLATE DIFF bg-color 
                        p_set_bgColor <%=bg-color%>"> 
</applet> 
Figure 4. Parameters for the ScriptingApplet used to 
control the playback of the RealPlayer plugin.  



Figure 4 illustrate parameters of the scripting applet used to 
control the playback of the RealPlayer plugin. The applet registers 
for change of variables named 'player-action' ('start', 'pause', 'stop', 
or 'set_volume <value>'), and variable 'bg-color'. Whenever these 
variables change, the applet receives a string such as 'p_start', and 
it calls the script function with the same name. 

We have used our applet to control interaction in Mozilla, 
Firefox, and Internet Explorer Web browsers, including:  

• Controlling standard elements of HTML page through 
DOM interfaces, changing content, such as text in some 
paragraph, style elements, such as background color, or the 
layout, like moving image controls by camera.  

• Controlling playback in multimedia movie and music 
plugins, such as RealPlayer, Windows Media Player, and 
QuickTime players, 

• Accessing and manipulating VRML scenes, using VRML 
External Authoring Interface (EAI) scripting API exposed 
by VRML players. 

6. PROTOTYPE APPLICATIONS 
The proposed framework has been applied to and tested in 
different applications, several of which we describe in this 
section. The adaptable communication model and tools that we 
developed enable us to combine many components by simply 
reconfiguring the system. We start with straight-forward 
examples, which illustrate the use of off-the-shelf sensor modules 
for building interactive multimedia applications. We then describe 
a more complex example where the communicator is used in a 
complex multi-user and multi-sensory environment. 

6.1 Camera-Based Playback Control 
In this prototype, we have evaluated how camera based face 
detection, and other real-time computer vision techniques, can be 
used to control the playback of multimedia content. The basic 
scenario is that the system starts a playback when there is at least 
one person looking at the screen, it pauses playback when there is 
no one there, and continues again when someone else appears.  

 
Figure 5. Basic configuration of components, and data flow 
in our camera-based playback control example. 

For the face detection component we have used OpenCV, an 
open source computer vision library [18]. The data from the face 
detector, i.e. coordinates of detected faces, are transformed by the 
communicator transformations into variables that control the 
ScriptingApplet to influence the playback of multimedia content 
in players such as RealPlayer and Windows Media Player. The 
derivation of variables in the camera-based control of multimedia 
playback is described earlier in Figure 2. The basic configuration 
and data flow are described in Figure 5. 

In a similar way we also enabled that parts of the screen, 
such as background color, can be changed based on the number of 
the detected faces. The face-detecting sensing module can also 
recognize other object profiles, such as frontal face, profile, upper 
body, lower body, whole body, and it can be configured with the 
minimum size of an object. Minimal size of an object is an 
important parameter if we want to detect people or objects within 
a limited distance. 

We also used other external sensing modules that can process 
camera input, such as EyesWeb [8]. We have adapted several 
examples earlier developed within the EyesWeb platform. As we 
use simple network protocols for updating the variables in the 
communicator, in most cases the modification consisted of 
converting detected variables to a string, concatenating it with a 
prefix to meet the requirements of our protocol, and using 
EyesWeb’s NetSender component to send this new string value to 
our communicator. For instance, we used an EyesWeb example 
that tracks motion of human body, with our scripting applet to 
control an animated character in a simple HTML game. 

Described ways of interaction can be particularly useful in 
active public interfaces, which already have started to use 
techniques to visually sense humans [25].  

6.2 Speech-Based Content Selection and 
Playback  
In this application we have used a speech recognizer (Sphinx-4, 
an open source speech recognition platform [21]) to control the 
content-changer component and parameters of multimedia players 
using our scripting applet (Figure 6). 

 
Figure 6. Basic configuration of components, and data flow 
in our TTS news reader with speech control example. 



When the speech engine recognizes a phrase, it updates the 
registered variable in the communicator. This event also triggers a 
transformation that maps the speech variable into command 
variables for the scripting applet and/or content changer (for 
example phrases 'reload', 'previous' and 'next' are used to control 
the content changer, while phrases 'play', 'stop', 'quiet' and 'loader' 
are used to control the playback and volume in multimedia players 
such as RealPlayer).  

We also enabled the dynamic reconfiguration of the speech 
recognizer with data from the communicator. To increase the 
overall performance of the player adaptation, the speech 
recognizer is configured to recognize a limited set of phrases. The 
speech recognizer receives the grammar of phrases that can be 
recognized, and then reconfigures to recognize these phrases. The 
speech recognizer can also receive a link to files with training data 
of the user loaded from the user profile.  

6.3 TTS News Reader with Speech Control 
This example combines an RSS reader, with a text-to-speech 
(TTS) engine, and the speech recognizer (Figure 7). The RSS 
reader component is based on ROME open-source syndication 
library [20], while the TTS engine uses FreeTTS open source 
library [9]. We used the same speech recognizer as in the previous 
example. 

 
Figure 7. Basic configuration of components, and data flow 
in our TTS news reader with speech control example. 

 
The RSS reader is configured so that it loads RSS feed in the 

communicator variable as soon as the TTS engine is ready (after it 
has started, or when it has finished reading previous text). The 
TTS engine is configured to read the text from the same variable 
that the RSS reader updates. In this way, both components are 
configured to trigger each other. We have also used the 
ConceptNet service to extract basic concepts and to guess the 
mood of RSS feeds [12]. ConceptNet is a freely available 
commonsense knowledgebase and natural-language-processing 

toolkit, which can be run as XML-RPC server. Data derived in the 
ConceptNet server is put in several communicator variables, and 
used by other modules, for example by our search engine pages 
which are triggered by these values, so that a user can further 
explore context of the news using engines such as Google or 
Wikipedia. Finally, the RSS reader can receive commands from 
the speech recognizer, so that a user can request news again, skip 
to news, and jump to some news item. 

6.4 MOVE.ME:  Content and Environment 
Adaptation Based on Biometric Data 
The move.me prototype is ongoing research in an interactive 
environment in which several users can manipulate the audio-
visual content presented on screens through interaction with 
sensor-enhanced objects, in our case cushions. The sensors 
embedded in these objects include pressure, galvanic skin 
response (GSR), movement patterns, and presence (RFID reader). 
Moreover, each object can be equipped with output devices, such 
as fans, vibrators or light-emissive fibers. The cushions within the 
environment are provided with different sets of sensors and output 
devices. A simple pressure-based cushion looks like the one 
portrayed in Figure 8. In order to support interaction with these 
types of devices in a home entertainment environment, we have 
been developing a system that detects the user’s current 
excitement state and compares the retrieved sensor data with 
established excitement thresholds in the user model. Based on the 
outcome of this comparison the system adapts the presentation of 
the content the user is currently involved in or it alters the 
environment if required. For example, the system might change 
presentation attributes such as font size or volume due to 
decreasing excitement values. 

Figure 8: A pressure-sensor cushion, where the pressure pad 
is located in the center grey area. 

 
To support the interaction with such sensor-enhanced 

devices we have developed several components on top of the 
communicator, including: 

• The Device manager, is a complex sensing module which 
instantiates the device drivers for one or more cushions and 
runs the interpretation engine for each of the sensors. This 
module updates the variables in the communicator based on 
the values interpreted from the cushion’s sensors, and 
receives the variables transferring them into the sensors’ 
commands, such as activating the cushion’s light or vibrator 
to communicate with the user. 

• The Context manager updates the current status of users and 
devices present in the environment. For example it tracks 



the spatial and interaction relation between cushions and 
users, based on RFID tags and change of sensor data.  

• The Adaptation engine collects information from the context 
and device managers to draw inferences on the current state 
changes of a user. Based on established thresholds it 
determines the appropriate adaptation method and provides 
the communicator with instructions about the source to be 
adapted and the means of adaptation. 

 
Each of the managers generates data structures that might be 

potentially relevant for other system components. The basic 
configuration and the data flow is described in Figure 9. This 
basic configuration has been used in several settings, with 
additional modules. For example, in one of the settings we use 
data from these managers to control the dynamic of interactive 
video in the VeeJay system [23]. 

The communicator provides the flexibility and easy 
reconfigurability to facilitate such a data exchange. It proved 
useful during the preparation phase of several workshops where 
we evaluate the usability of sensor-sets for a cushion in different 
environment settings. We apply the same fast development cycles 
in the preparation of the final installation, which needs to be set 
up by autumn of 2006. 

 

 
Figure 9. Basic configuration of components in content and 
environment adaptation based on biometric data. 

 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a generic platform that facilitates 
more flexible development of interactive multimedia in sensor-
enhanced ambient environments. We have outlined basic 
requirements and described a platform we have developed based 
on these requirements. We have illustrated the flexibility of our 
platform through a number of prototypes of interactive 
multimedia applications, which explore the usage of camera-based 
techniques, speech, and biometric data to control and adapt 
multimedia content and environment. 

Our platform supports building interactive multimedia 
applications using a component-based approach. We have used a 
loosely-coupled model to connect the components through a 
centralized communicator system. This indirect communication 
provides extensibility by allowing dynamic integration of 
components. The ability of our platform to dynamically 
reconfigure connections among sensing modules and other 
components proved useful, especially where developers needed to 
rapidly reconfigure interactive systems according to their needs. 
For example, our platform is used as a part of an artistic work that 
goes beyond commonly used interaction modalities, and has 
enabled artists to test their visions within the tight schedule 
provided for the installations. Usage of application adapters also 
enabled us to use existing multimedia content creation and 
playback systems without changing them, or with implementation 
of simple wrappers.  

In future work we would like to explore how end-users could 
exploit the flexibility of our platform, and configure the system to 
use interaction modalities they prefer. The biggest challenge, 
therefore, is to develop tools that can automatically configure the 
system based on high-level description of interaction. The 
platform still lacks tools that can enable end-users to configure the 
system easily. Currently, the platform requires administration of 
configuration files, which, even with simple tools, is usually 
beyond the skills of ordinary users. This mechanism has to take 
into account the description of devices, supported interaction 
modalities, transformations, and application interfaces 
automatically. We would also like to explore the potential of our 
platform in education, to enable students to easily connect and 
experiment with interaction components without intensive 
programming efforts. 

Our mechanism for embedding novel interaction modalities 
in Web browsers currently cannot be directly used with existing 
Web pages, as it requires Web pages to include our scripting 
applet. To solve this problem, we are also working on extending 
Web proxy servers that could embed such scripting code in 
existing Web pages on-the-fly. Proxies could also adapt the 
multimedia Web content based on the settings of the 
communicator, for example, by reducing the size or quality of 
content to suit the user device settings. 

 
 
 

8. REFERENCES 
[1] Aarts E., "Ambient Intelligence Drives Open Innovation", 

interactions, July-August 2005, pp. 66-68. 

[2] Bannon L et al., "Hybrid design creates innovative museum 
experiences", Comm. of the ACM, Vol. 48, No. 3, March 
2005, pp. 62-65. 

[3] Benford S. et al., "Bridging the physical and digital in 
pervasive gaming", Comm. of the ACM, Vol. 48, No. 3, 
March 2005, pp. 54-57. 

[4] Blattner M.M. and Glinter E.P., "Multimodal Integration", 
IEEE Multimedia, Winter 1996, pp. 14-24. 

[5] Cabello-Miguel T., Fernández-Barracel O., and García-
Panyella O., "iGlue.v3: An Electronics Metaphor for 
Multimedia Technologies Integration", Proceedings of the 



12th annual ACM international conference on Multimedia, 
New York, NY, USA, October 2004 , pp. 664-651. 

[6] Camurri A. et al., "Communicating Expressiveness and 
Affect in Multimodal Interactive Systems", IEEE 
Multimedia, January-March 2005, pp. 43-53. 

[7] Davies N. et al., "Rapid Prototyping for Ubiquitous 
Computing: Introduction", IEEE Pervasive Computing, Vol. 
4, No. 4, pp. 15-17, Oct-Dec, 2005. 

[8] EyesWeb Platform Web Site, http://www.eyesweb.org/, Last 
visited: April 11, 2006. 

[9] FreeTTS Project Web site, http://freetts.sourceforge.net/, 
Last visited: April 11, 2006. 

[10] Healey J., Picard R., and Dabek F., "A New Affect-
Perceiving Interface and Its Application to Personalized 
MUSIC Selection", Perceptual User Interfaces (PUI) 
Workshop, San Francisco, CA, November 4-6, 1998. 

[11] His S., and Fait H., "RFID enhances visitors' museum 
experience at the Exploratorium", Comm. of the ACM, 
September 2005, Vol. 48, No. 9, pp. 60-65. 

[12] Hugo Liu, Push Singh, "ConceptNet: A Practical 
Commonsense Reasoning Toolkit", BT Technology Journal, 
Vol. 22, No. 4, October 2004, pp. 211-226. 

[13] Johanson B., Winograd T., and Fox T., "Interactive 
Workspaces", Computer, Vol. 36, No. 4, April 2003, pp. 99-
101. 

[14] Kameas A., and Mavrommati I., "Extrovert gadgets", Comm. 
of the ACM, Sept 2005, Vol. 48, No. 9, page 69. 

[15] Kozaczynski W., Booch G., "Component-Based Software 
Engineering," IEEE Software, Vol. 15, No. 5, Sept-Oct, 
1998, pp. 34-36. 

[16] Lalya Gaye, Lars Erik Holmquist and Ramia Mazé, "Sonic 
City: The Urban Environment as a Musical Interface", 
Proceedings of NIME 2003 New Interfaces for Musical 
Expression, McGill University, Montreal, Canada, May 
2003, pp. 109-115. 

[17] Macromedia Director Xtra Extensions Web site, 
http://www.macromedia.com/software/director/productinfo/x
tras/, Last visited: April 11, 2006. 

[18] OpenCV Project Web site, http://www.intel.com/technology/ 
computing/opencv/, Last visited: April 11, 2006. 

[19] Pering T., Ballagas R., and Want R., "Spontaneous marriages 
of mobile devices and interactive spaces", Comm. of the 
ACM, September 2005, Vol. 48, No. 9, pp. 53-59. 

[20] ROME Project Web site, https://rome.dev.java.net/, Last 
visited: April 11, 2006. 

[21] Sphinx-4 Web site, http://cmusphinx.sourceforge.net/ 
sphinx4/, Last visited: April 11, 2006. 

[22] Stefano Bocconi et al, "Vox populi: a tool for automatically 
generating video documentaries", Proceedings of the 
sixteenth ACM Conference on Hypertext and Hypermedia 
2005, September 2005, pp. 292-294. 

[23] VeeJay Web site, http://veejay.dyne.org/, Last visited: April 
11, 2006. 

[24] Wakkary R. et al., "An ambient intelligence platform for 
physical play", Proceedings of the 13th annual ACM 
international conference on Multimedia, Singapore, 2005, 
pp. 764-773. 

[25] Waters K. et al., "Visual Sensing of Humans for Active 
Public Interfaces", In R. Cipolla and A. Pentland (Eds.), 
Computer Vision for Human-Machine Interaction, 
Cambridge University Press, 1998, pp. 83-96. 

 




