24 research outputs found

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Certification Considerations for Adaptive Systems

    Get PDF
    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach

    Cyber Law and Espionage Law as Communicating Vessels

    Get PDF
    Professor Lubin\u27s contribution is Cyber Law and Espionage Law as Communicating Vessels, pp. 203-225. Existing legal literature would have us assume that espionage operations and “below-the-threshold” cyber operations are doctrinally distinct. Whereas one is subject to the scant, amorphous, and under-developed legal framework of espionage law, the other is subject to an emerging, ever-evolving body of legal rules, known cumulatively as cyber law. This dichotomy, however, is erroneous and misleading. In practice, espionage and cyber law function as communicating vessels, and so are better conceived as two elements of a complex system, Information Warfare (IW). This paper therefore first draws attention to the similarities between the practices – the fact that the actors, technologies, and targets are interchangeable, as are the knee-jerk legal reactions of the international community. In light of the convergence between peacetime Low-Intensity Cyber Operations (LICOs) and peacetime Espionage Operations (EOs) the two should be subjected to a single regulatory framework, one which recognizes the role intelligence plays in our public world order and which adopts a contextual and consequential method of inquiry. The paper proceeds in the following order: Part 2 provides a descriptive account of the unique symbiotic relationship between espionage and cyber law, and further explains the reasons for this dynamic. Part 3 places the discussion surrounding this relationship within the broader discourse on IW, making the claim that the convergence between EOs and LICOs, as described in Part 2, could further be explained by an even larger convergence across all the various elements of the informational environment. Parts 2 and 3 then serve as the backdrop for Part 4, which details the attempt of the drafters of the Tallinn Manual 2.0 to compartmentalize espionage law and cyber law, and the deficits of their approach. The paper concludes by proposing an alternative holistic understanding of espionage law, grounded in general principles of law, which is more practically transferable to the cyber realmhttps://www.repository.law.indiana.edu/facbooks/1220/thumbnail.jp

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Transportation evacuation strategies based on vehicular disaster management system in urban network environment Zubaida

    Get PDF
    The importance of emergency response systems have grown tremendously in the recent times due to the many manmade and natural disasters in recent years such as September 2001, July 2005 London bombings and the 2011 Japan earthquake and tsunami disaster. Disasters cost huge human, social and financial losses. For example, in Typhoon Haiyan, as of November 2013, the official death toll from Philippines‟s devastating storm has passed 10,000 people. In addition, based on early estimates, the reconstruction costs could come to as much as $20bn (£12.3bn). Conventional methods for disaster management have shown little prospects of realizing the true potential of current and emerging technologies.This PhD research aims to propose and evaluate a disaster management system based on the emerging ICT technologies with a focus on transportation in urban environments. This work is presented on an Intelligent Disaster Management System based on Vehicular Ad hoc Networks (VANETs) and Cloud Computing. Our research objective is to increase the safety and system efficiency, to reduce the accidents, congestion, and manage the emergencies and disasters. The effectiveness of the intelligent system has been demonstrated through modelling the impact of disaster on real city transport environments and compares it with the case where the intelligent proposed system was in place, and ability of generalizing the concept was increased through applying the proposed system on different cities. By applying our system, substantial benefits have been achieved in terms of improved and balanced traffic flow and smooth evacuation rates.Furthermore, a micro-simulation software model has been developed which employs the vehicular disaster management system in order to investigate the transportation evacuation strategies potential in reducing the human and economic losses.The particular contribution of my thesis is in the modelling and simulation of the traffic for disaster and evacuation scenarios. To this end, this project uses a range and mix of modelling and simulation technologies including macroscopic and microscopic simulation models; OmniTRANS and S-Paramics transport planning software.xixDuring the course of this PhD, disaster scenarios of varying scales involving 2-3 different cities of various sizes and characteristics have been modelled and analysed, thereby presenting a system which deliver advanced services in managing disasters which results in lower losses.Also, the Average Vehicle Occupancy impact on the evacuation process time has been investigated. Literally, it represents the higher number of car occupancy which means less number of trips required to the evacuation process. The results have shown that AVO contributes effectively in evacuation plans that are in place.Additionally, two different evacuation strategies have been applied and evaluated simultaneously and isolated. Subsequently, either continues the processes or perhaps there is a need to change the strategy where applicable and appropriate. In other words, after propagating the evacuation strategy, the traffic situation has been assessed and observed the effectiveness of the disaster management system on the network by comparing the performance of the proposed system against the traditional system. To sum up, the comparison between both scenarios shows the ability to secure more of vehicles, up to double the number, and hence improve the network performance in terms of safety. Moreover, there is an improvement in flow rate of many critical links. Many blocked links are turned into some reds and blues which means an improvement seemed to occur to the whole network

    Integrating Context-Awareness in the IP Multimedia Subsystem for Enhanced Session Control and Service Provisioning Capabilities

    Get PDF
    The 3GPP-defined IP Multimedia Subsystem (IMS) is becoming the de-facto standard for IP-based multimedia communication services. It consists of an overlay control and service layer that is deployed on top of IP-based mobile and fixed networks. This layer encompasses a set of common functions (e.g. session control functions allowing the initiation/modification/termination of sessions) and service logics that are needed for the seamless provisioning of IP multimedia services to users, via different access technologies. As it continues to evolve, the IMS still faces several challenges including: the enabling of innovative and personalized services that would appeal to users and increase network operators' revenues; its interaction with other types of networks (e.g. wireless sensor networks) as means to enhance its capabilities; and the support of advanced QoS schemes that would manage the network resources in an efficient and adaptive manner. The context-awareness concept, which comes from the pervasive computing field, signifies the ability to use situational information (or context) in support to operations and decision making and for the provision of relevant services to the user. Context-awareness is considered to enhance users' experience and is seen as an enabler to adaptability and service personalization - two capabilities that could play important roles in telecommunication environments. This thesis focuses on the introduction of the context-awareness technology in the IMS, as means to enhance its session control and service provisioning capabilities. It starts by presenting the necessary background information, followed by a derivation of requirements and a review of the related work. To ensure the availability of contextual information within the network, we then propose an architecture for context information acquisition and management in the IMS. This architecture leverages and extends the 3GPP presence framework. Building on the capabilities of this architecture, we demonstrate how the managed information could be integrated in IMS operations, at the control and service levels. Showcasing control level integration, we propose a novel context-aware call differentiation framework as means to offer enhanced QoS support (for sessions/calls) in IMS-based networks. This framework enables the differentiation between different categories of calls at the IMS session control level, via dynamic and adaptive resource allocation, in addition to supporting a specialized charging model. Furthermore, we also propose a framework for enhanced IMS emergency communication services. This framework addresses the limitations of existing IP-based emergency solutions, by offering three main improvements: a QoS-enhanced emergency service; a context-aware personalized emergency service; and a conferencing-enhanced emergency service. We demonstrate the use of context awareness at the IMS service level using two new context-aware IMS applications. Finally, to validate our solutions and evaluate their performance, we build various proof-of-concept prototypes and OPNET simulation model

    Bioinspired metaheuristic algorithms for global optimization

    Get PDF
    This paper presents concise comparison study of newly developed bioinspired algorithms for global optimization problems. Three different metaheuristic techniques, namely Accelerated Particle Swarm Optimization (APSO), Firefly Algorithm (FA), and Grey Wolf Optimizer (GWO) are investigated and implemented in Matlab environment. These methods are compared on four unimodal and multimodal nonlinear functions in order to find global optimum values. Computational results indicate that GWO outperforms other intelligent techniques, and that all aforementioned algorithms can be successfully used for optimization of continuous functions
    corecore