216 research outputs found

    High level coordination and decision making of a simulated robotic soccer team

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    A novel dual surface type-2 fuzzy logic controller for a micro robot

    Get PDF
    Over the last few years there has been an increasing interest in the area of type-2 fuzzy logic sets and systems in academic and industrial circles. Within robotic research the majority of type-2 fuzzy logic investigations has been centred on large autonomous mobile robots, where resource availability (memory and computing power) is not an issue. These large robots usually have a variation of a Unix operating system on board. This allows the implementation of complex fuzzy logic systems to control the motors. Specifically the implementation of interval and geometric type-2 fuzzy logic controllers is of interest as they are shown to outperform type-1 fuzzy logic controllers in uncertain environments. However when it comes to using micro robots it is not practical to use type-1 and type-2 fuzzy logic controllers, due to the lack of memory and the processor time needed to calculate a control output value. The choice of motor controller is usually either fixed pre-set values, a variable scaled value or a PID controller to generate wheel velocities. In this research novel ways of implementing type-1 and interval type-2 fuzzy logic controllers on micro robots with limited resources are investigated. The solution thatis being proposed is the use of pre-calculated 3D surfaces generated by an off-line Fuzzy Logic System covering the expected ranges of the input and output variables. The surfaces are then loaded into the memory of the micro robots and can be accessed by the motor controller. The aim of the research is to test if there is an advantage of using type-2 fuzzy logic controllers implemented as surfaces over type-1 and PID controllers on a micro robot with limited resources. Control surfaces were generated for both type-1 and average interval type-2 fuzzy logic controllers. Each control surface was then accessed using bilinear interpolation to provide the crisp output value that was used to control the motor. Previously when this method has been used a single surface was employed to hold the information. This thesis presents the novel approach of the dual surface type-2 fuzzy logic controller on micro robots. The lower and upper values that are averaged for the classic interval type-2 controller are generated as surfaces and installed on the micro robots. The advantage is that nuances and features of both the lower and upper surfaces are available to be exploited, rather than being lost due to the averaging process. Having conducted the experiments it is concluded that the best approach to controlling micro robots is to use fuzzy logic controllers over the classical PID controllers where ever possible. When fuzzy controllers are used then type-2 fuzzy controllers (dual or single surface) should be used over type-1 fuzzy controllers when applied as surfaces on micro robots. When a type-2 fuzzy controller is used then the novel dual surface type-2 fuzzy logic controller should be used over the classic average surface. The novel dual surface controller offers a dynamic, weighted, adaptive and superior response over all the other fuzzy controllers examined

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Generic coordination methodologies applied to the robocup simulation leagues

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations
    corecore