7 research outputs found

    A Design That Incorporates Adaptive Reservation into Mixed-Criticality Systems

    Get PDF

    Parallelizing dynamic sequential programs using polyhedral process networks

    Get PDF
    The Polyhedral Process Network (PPN) is a suitable parallel model of computation (MoC) used to specify embedded streaming applications in a parallel form facilitating the efficient mapping onto embedded parallel execution platforms. Unfortunately, specifying an application using a parallel MoC is a very difficult and highly error-prone task. To overcome the associated difficulties, we have developed the pn compiler, which derives PPN specifications from sequential static affine nested loop programs (SANLPs). However, there are many applications that have adaptive and dynamic behavior which cannot be expressed as SANLPs. In order to handle such dynamic applications, in this dissertation we address an important question: whether some of the static restrictions of the SANLPs can be relaxed while keeping the ability to perform compile-time analysis and to derive PPNs in an automated way. Achieving this will significantly extend the range of applications that can be parallelized in an automated way. By studying different dynamic applications we distinguished three relaxations to SANLP programs that would allow one to specify dynamic applications as sequential programs. These relaxations allow dynamic if-conditions, for-loops with dynamic bounds and while-loops in a program. The first relaxation has already been considered. In this dissertation, we consider the other two more difficult relaxations.UBL - phd migration 201

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Jahresbericht 2009 der Fakultät für Informatik

    Get PDF

    Erreichen von Performance in Netzwerken-On-Chip für Echtzeitsysteme

    Get PDF
    In many new applications, such as in automatic driving, high performance requirements have reached safety critical real-time systems. Consequently, Networks-on-Chip (NoCs) must efficiently host new sets of highly dynamic workloads e.g., high resolution sensor fusion and data processing, autonomous decision’s making combined with machine learning. The static platform management, as used in current safety critical systems, is no more sufficient to provide the needed level of service. A dynamic platform management could meet the challenge, but it usually suffers from a lack of predictability and the simplicity necessary for certification of safety and real-time properties. In this work, we propose a novel, global and dynamic arbitration for NoCs with real-time QoS requirements. The mechanism decouples the admission control from arbitration in routers thereby simplifying a dynamic adaptation and real-time analysis. Consequently, the proposed solution allows the deployment of a sophisticated contract-based QoS provisioning without introducing complicated and hard to maintain schemes, known from the frequently applied static arbiters. The presented work introduces an overlay network to synchronize transmissions using arbitration units called Resource Managers (RMs), which allows global and work-conserving scheduling. The description of resource allocation strategies is supplemented by protocol design and verification methodology bringing adaptive control to NoC communication in setups with different QoS requirements and traffic classes. For doing that, a formal worst-case timing analysis for the mechanism has been proposed which demonstrates that this solution not only exposes higher performance in simulation but, even more importantly, consistently reaches smaller formally guaranteed worst-case latencies than other strategies for realistic levels of system's utilization. The approach is not limited to a specific network architecture or topology as the mechanism does not require modifications of routers and therefore can be used together with the majority of existing manycore systems. Indeed, the evaluation followed using the generic performance optimized router designs, as well as two systems-on-chip focused on real-time deployments. The results confirmed that the proposed approach proves to exhibit significantly higher average performance in simulation and execution.In vielen neuen sicherheitskritische Anwendungen, wie z.B. dem automatisierten Fahren, werden große Anforderungen an die Leistung von Echtzeitsysteme gestellt. Daher müssen Networks-on-Chip (NoCs) neue, hochdynamische Workloads wie z.B. hochauflösende Sensorfusion und Datenverarbeitung oder autonome Entscheidungsfindung kombiniert mit maschineller Lernen, effizient auf einem System unterbringen. Die Steuerung der zugrunde liegenden NoC-Architektur, muss die Systemsicherheit vor Fehlern, resultierend aus dem dynamischen Verhalten des Systems schützen und gleichzeitig die geforderte Performance bereitstellen. In dieser Arbeit schlagen wir eine neuartige, globale und dynamische Steuerung für NoCs mit Echtzeit QoS Anforderungen vor. Das Schema entkoppelt die Zutrittskontrolle von der Arbitrierung in Routern. Hierdurch wird eine dynamische Anpassung ermöglicht und die Echtzeitanalyse vereinfacht. Der Einsatz einer ausgefeilten vertragsbasierten Ressourcen-Zuweisung wird so ermöglicht, ohne komplexe und schwer wartbare Mechanismen, welche bereits aus dem statischen Plattformmanagement bekannt sind einzuführen. Diese Arbeit stellt ein übergelagertes Netzwerk vor, welches Übertragungen mit Hilfe von Arbitrierungseinheiten, den so genannten Resource Managern (RMs), synchronisiert. Dieses überlagerte Netzwerk ermöglicht eine globale und lasterhaltende Steuerung. Die Beschreibung verschiedener Ressourcenzuweisungstrategien wird ergänzt durch ein Protokolldesign und Methoden zur Verifikation der adaptiven NoC Steuerung mit unterschiedlichen QoS Anforderungen und Verkehrsklassen. Hierfür wird eine formale Worst Case Timing Analyse präsentiert, welche das vorgestellte Verfahren abbildet. Die Resultate bestätitgen, dass die präsentierte Lösung nicht nur eine höhere Performance in der Simulation bietet, sondern auch formal kleinere Worst-Case Latenzen für realistische Systemauslastungen als andere Strategien garantiert. Der vorgestellte Ansatz ist nicht auf eine bestimmte Netzwerkarchitektur oder Topologie beschränkt, da der Mechanismus keine Änderungen an den unterliegenden Routern erfordert und kann daher zusammen mit bestehenden Manycore-Systemen eingesetzt werden. Die Evaluierung erfolgte auf Basis eines leistungsoptimierten Router-Designs sowie zwei auf Echtzeit-Anwendungen fokusierten Platformen. Die Ergebnisse bestätigten, dass der vorgeschlagene Ansatz im Durchschnitt eine deutlich höhere Leistung in der Simulation und Ausführung liefert
    corecore