96 research outputs found

    Multi-sensor data fusion in mobile devices for the identification of Activities of Daily Living

    Get PDF
    Following the recent advances in technology and the growing use of mobile devices such as smartphones, several solutions may be developed to improve the quality of life of users in the context of Ambient Assisted Living (AAL). Mobile devices have different available sensors, e.g., accelerometer, gyroscope, magnetometer, microphone and Global Positioning System (GPS) receiver, which allow the acquisition of physical and physiological parameters for the recognition of different Activities of Daily Living (ADL) and the environments in which they are performed. The definition of ADL includes a well-known set of tasks, which include basic selfcare tasks, based on the types of skills that people usually learn in early childhood, including feeding, bathing, dressing, grooming, walking, running, jumping, climbing stairs, sleeping, watching TV, working, listening to music, cooking, eating and others. On the context of AAL, some individuals (henceforth called user or users) need particular assistance, either because the user has some sort of impairment, or because the user is old, or simply because users need/want to monitor their lifestyle. The research and development of systems that provide a particular assistance to people is increasing in many areas of application. In particular, in the future, the recognition of ADL will be an important element for the development of a personal digital life coach, providing assistance to different types of users. To support the recognition of ADL, the surrounding environments should be also recognized to increase the reliability of these systems. The main focus of this Thesis is the research on methods for the fusion and classification of the data acquired by the sensors available in off-the-shelf mobile devices in order to recognize ADL in almost real-time, taking into account the large diversity of the capabilities and characteristics of the mobile devices available in the market. In order to achieve this objective, this Thesis started with the review of the existing methods and technologies to define the architecture and modules of the method for the identification of ADL. With this review and based on the knowledge acquired about the sensors available in off-the-shelf mobile devices, a set of tasks that may be reliably identified was defined as a basis for the remaining research and development to be carried out in this Thesis. This review also identified the main stages for the development of a new method for the identification of the ADL using the sensors available in off-the-shelf mobile devices; these stages are data acquisition, data processing, data cleaning, data imputation, feature extraction, data fusion and artificial intelligence. One of the challenges is related to the different types of data acquired from the different sensors, but other challenges were found, including the presence of environmental noise, the positioning of the mobile device during the daily activities, the limited capabilities of the mobile devices and others. Based on the acquired data, the processing was performed, implementing data cleaning and feature extraction methods, in order to define a new framework for the recognition of ADL. The data imputation methods were not applied, because at this stage of the research their implementation does not have influence in the results of the identification of the ADL and environments, as the features are extracted from a set of data acquired during a defined time interval and there are no missing values during this stage. The joint selection of the set of usable sensors and the identifiable set of tasks will then allow the development of a framework that, considering multi-sensor data fusion technologies and context awareness, in coordination with other information available from the user context, such as his/her agenda and the time of the day, will allow to establish a profile of the tasks that the user performs in a regular activity day. The classification method and the algorithm for the fusion of the features for the recognition of ADL and its environments needs to be deployed in a machine with some computational power, while the mobile device that will use the created framework, can perform the identification of the ADL using a much less computational power. Based on the results reported in the literature, the method chosen for the recognition of the ADL is composed by three variants of Artificial Neural Networks (ANN), including simple Multilayer Perceptron (MLP) networks, Feedforward Neural Networks (FNN) with Backpropagation, and Deep Neural Networks (DNN). Data acquisition can be performed with standard methods. After the acquisition, the data must be processed at the data processing stage, which includes data cleaning and feature extraction methods. The data cleaning method used for motion and magnetic sensors is the low pass filter, in order to reduce the noise acquired; but for the acoustic data, the Fast Fourier Transform (FFT) was applied to extract the different frequencies. When the data is clean, several features are then extracted based on the types of sensors used, including the mean, standard deviation, variance, maximum value, minimum value and median of raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance and median of the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the five greatest distances between the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance, median and 26 Mel- Frequency Cepstral Coefficients (MFCC) of the frequencies obtained with FFT based on the raw data acquired from the microphone data; and the distance travelled calculated with the data acquired from the GPS receiver. After the extraction of the features, these will be grouped in different datasets for the application of the ANN methods and to discover the method and dataset that reports better results. The classification stage was incrementally developed, starting with the identification of the most common ADL (i.e., walking, running, going upstairs, going downstairs and standing activities) with motion and magnetic sensors. Next, the environments were identified with acoustic data, i.e., bedroom, bar, classroom, gym, kitchen, living room, hall, street and library. After the environments are recognized, and based on the different sets of sensors commonly available in the mobile devices, the data acquired from the motion and magnetic sensors were combined with the recognized environment in order to differentiate some activities without motion, i.e., sleeping and watching TV. The number of recognized activities in this stage was increased with the use of the distance travelled, extracted from the GPS receiver data, allowing also to recognize the driving activity. After the implementation of the three classification methods with different numbers of iterations, datasets and remaining configurations in a machine with high processing capabilities, the reported results proved that the best method for the recognition of the most common ADL and activities without motion is the DNN method, but the best method for the recognition of environments is the FNN method with Backpropagation. Depending on the number of sensors used, this implementation reports a mean accuracy between 85.89% and 89.51% for the recognition of the most common ADL, equals to 86.50% for the recognition of environments, and equals to 100% for the recognition of activities without motion, reporting an overall accuracy between 85.89% and 92.00%. The last stage of this research work was the implementation of the structured framework for the mobile devices, verifying that the FNN method requires a high processing power for the recognition of environments and the results reported with the mobile application are lower than the results reported with the machine with high processing capabilities used. Thus, the DNN method was also implemented for the recognition of the environments with the mobile devices. Finally, the results reported with the mobile devices show an accuracy between 86.39% and 89.15% for the recognition of the most common ADL, equal to 45.68% for the recognition of environments, and equal to 100% for the recognition of activities without motion, reporting an overall accuracy between 58.02% and 89.15%. Compared with the literature, the results returned by the implemented framework show only a residual improvement. However, the results reported in this research work comprehend the identification of more ADL than the ones described in other studies. The improvement in the recognition of ADL based on the mean of the accuracies is equal to 2.93%, but the maximum number of ADL and environments previously recognized was 13, while the number of ADL and environments recognized with the framework resulting from this research is 16. In conclusion, the framework developed has a mean improvement of 2.93% in the accuracy of the recognition for a larger number of ADL and environments than previously reported. In the future, the achievements reported by this PhD research may be considered as a start point of the development of a personal digital life coach, but the number of ADL and environments recognized by the framework should be increased and the experiments should be performed with different types of devices (i.e., smartphones and smartwatches), and the data imputation and other machine learning methods should be explored in order to attempt to increase the reliability of the framework for the recognition of ADL and its environments.Após os recentes avanços tecnológicos e o crescente uso dos dispositivos móveis, como por exemplo os smartphones, várias soluções podem ser desenvolvidas para melhorar a qualidade de vida dos utilizadores no contexto de Ambientes de Vida Assistida (AVA) ou Ambient Assisted Living (AAL). Os dispositivos móveis integram vários sensores, tais como acelerómetro, giroscópio, magnetómetro, microfone e recetor de Sistema de Posicionamento Global (GPS), que permitem a aquisição de vários parâmetros físicos e fisiológicos para o reconhecimento de diferentes Atividades da Vida Diária (AVD) e os seus ambientes. A definição de AVD inclui um conjunto bem conhecido de tarefas que são tarefas básicas de autocuidado, baseadas nos tipos de habilidades que as pessoas geralmente aprendem na infância. Essas tarefas incluem alimentar-se, tomar banho, vestir-se, fazer os cuidados pessoais, caminhar, correr, pular, subir escadas, dormir, ver televisão, trabalhar, ouvir música, cozinhar, comer, entre outras. No contexto de AVA, alguns indivíduos (comumente chamados de utilizadores) precisam de assistência particular, seja porque o utilizador tem algum tipo de deficiência, seja porque é idoso, ou simplesmente porque o utilizador precisa/quer monitorizar e treinar o seu estilo de vida. A investigação e desenvolvimento de sistemas que fornecem algum tipo de assistência particular está em crescente em muitas áreas de aplicação. Em particular, no futuro, o reconhecimento das AVD é uma parte importante para o desenvolvimento de um assistente pessoal digital, fornecendo uma assistência pessoal de baixo custo aos diferentes tipos de pessoas. pessoas. Para ajudar no reconhecimento das AVD, os ambientes em que estas se desenrolam devem ser reconhecidos para aumentar a fiabilidade destes sistemas. O foco principal desta Tese é o desenvolvimento de métodos para a fusão e classificação dos dados adquiridos a partir dos sensores disponíveis nos dispositivos móveis, para o reconhecimento quase em tempo real das AVD, tendo em consideração a grande diversidade das características dos dispositivos móveis disponíveis no mercado. Para atingir este objetivo, esta Tese iniciou-se com a revisão dos métodos e tecnologias existentes para definir a arquitetura e os módulos do novo método de identificação das AVD. Com esta revisão da literatura e com base no conhecimento adquirido sobre os sensores disponíveis nos dispositivos móveis disponíveis no mercado, um conjunto de tarefas que podem ser identificadas foi definido para as pesquisas e desenvolvimentos desta Tese. Esta revisão também identifica os principais conceitos para o desenvolvimento do novo método de identificação das AVD, utilizando os sensores, são eles: aquisição de dados, processamento de dados, correção de dados, imputação de dados, extração de características, fusão de dados e extração de resultados recorrendo a métodos de inteligência artificial. Um dos desafios está relacionado aos diferentes tipos de dados adquiridos pelos diferentes sensores, mas outros desafios foram encontrados, sendo os mais relevantes o ruído ambiental, o posicionamento do dispositivo durante a realização das atividades diárias, as capacidades limitadas dos dispositivos móveis. As diferentes características das pessoas podem igualmente influenciar a criação dos métodos, escolhendo pessoas com diferentes estilos de vida e características físicas para a aquisição e identificação dos dados adquiridos a partir de sensores. Com base nos dados adquiridos, realizou-se o processamento dos dados, implementando-se métodos de correção dos dados e a extração de características, para iniciar a criação do novo método para o reconhecimento das AVD. Os métodos de imputação de dados foram excluídos da implementação, pois não iriam influenciar os resultados da identificação das AVD e dos ambientes, na medida em que são utilizadas as características extraídas de um conjunto de dados adquiridos durante um intervalo de tempo definido. A seleção dos sensores utilizáveis, bem como das AVD identificáveis, permitirá o desenvolvimento de um método que, considerando o uso de tecnologias para a fusão de dados adquiridos com múltiplos sensores em coordenação com outras informações relativas ao contexto do utilizador, tais como a agenda do utilizador, permitindo estabelecer um perfil de tarefas que o utilizador realiza diariamente. Com base nos resultados obtidos na literatura, o método escolhido para o reconhecimento das AVD são as diferentes variantes das Redes Neuronais Artificiais (RNA), incluindo Multilayer Perceptron (MLP), Feedforward Neural Networks (FNN) with Backpropagation and Deep Neural Networks (DNN). No final, após a criação dos métodos para cada fase do método para o reconhecimento das AVD e ambientes, a implementação sequencial dos diferentes métodos foi realizada num dispositivo móvel para testes adicionais. Após a definição da estrutura do método para o reconhecimento de AVD e ambientes usando dispositivos móveis, verificou-se que a aquisição de dados pode ser realizada com os métodos comuns. Após a aquisição de dados, os mesmos devem ser processados no módulo de processamento de dados, que inclui os métodos de correção de dados e de extração de características. O método de correção de dados utilizado para sensores de movimento e magnéticos é o filtro passa-baixo de modo a reduzir o ruído, mas para os dados acústicos, a Transformada Rápida de Fourier (FFT) foi aplicada para extrair as diferentes frequências. Após a correção dos dados, as diferentes características foram extraídas com base nos tipos de sensores usados, sendo a média, desvio padrão, variância, valor máximo, valor mínimo e mediana de dados adquiridos pelos sensores magnéticos e de movimento, a média, desvio padrão, variância e mediana dos picos máximos calculados com base nos dados adquiridos pelos sensores magnéticos e de movimento, as cinco maiores distâncias entre os picos máximos calculados com os dados adquiridos dos sensores de movimento e magnéticos, a média, desvio padrão, variância e 26 Mel-Frequency Cepstral Coefficients (MFCC) das frequências obtidas com FFT com base nos dados obtidos a partir do microfone, e a distância calculada com os dados adquiridos pelo recetor de GPS. Após a extração das características, as mesmas são agrupadas em diferentes conjuntos de dados para a aplicação dos métodos de RNA de modo a descobrir o método e o conjunto de características que reporta melhores resultados. O módulo de classificação de dados foi incrementalmente desenvolvido, começando com a identificação das AVD comuns com sensores magnéticos e de movimento, i.e., andar, correr, subir escadas, descer escadas e parado. Em seguida, os ambientes são identificados com dados de sensores acústicos, i.e., quarto, bar, sala de aula, ginásio, cozinha, sala de estar, hall, rua e biblioteca. Com base nos ambientes reconhecidos e os restantes sensores disponíveis nos dispositivos móveis, os dados adquiridos dos sensores magnéticos e de movimento foram combinados com o ambiente reconhecido para diferenciar algumas atividades sem movimento (i.e., dormir e ver televisão), onde o número de atividades reconhecidas nesta fase aumenta com a fusão da distância percorrida, extraída a partir dos dados do recetor GPS, permitindo também reconhecer a atividade de conduzir. Após a implementação dos três métodos de classificação com diferentes números de iterações, conjuntos de dados e configurações numa máquina com alta capacidade de processamento, os resultados relatados provaram que o melhor método para o reconhecimento das atividades comuns de AVD e atividades sem movimento é o método DNN, mas o melhor método para o reconhecimento de ambientes é o método FNN with Backpropagation. Dependendo do número de sensores utilizados, esta implementação reporta uma exatidão média entre 85,89% e 89,51% para o reconhecimento das AVD comuns, igual a 86,50% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão global entre 85,89% e 92,00%. A última etapa desta Tese foi a implementação do método nos dispositivos móveis, verificando que o método FNN requer um alto poder de processamento para o reconhecimento de ambientes e os resultados reportados com estes dispositivos são inferiores aos resultados reportados com a máquina com alta capacidade de processamento utilizada no desenvolvimento do método. Assim, o método DNN foi igualmente implementado para o reconhecimento dos ambientes com os dispositivos móveis. Finalmente, os resultados relatados com os dispositivos móveis reportam uma exatidão entre 86,39% e 89,15% para o reconhecimento das AVD comuns, igual a 45,68% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão geral entre 58,02% e 89,15%. Com base nos resultados relatados na literatura, os resultados do método desenvolvido mostram uma melhoria residual, mas os resultados desta Tese identificam mais AVD que os demais estudos disponíveis na literatura. A melhoria no reconhecimento das AVD com base na média das exatidões é igual a 2,93%, mas o número máximo de AVD e ambientes reconhecidos pelos estudos disponíveis na literatura é 13, enquanto o número de AVD e ambientes reconhecidos com o método implementado é 16. Assim, o método desenvolvido tem uma melhoria de 2,93% na exatidão do reconhecimento num maior número de AVD e ambientes. Como trabalho futuro, os resultados reportados nesta Tese podem ser considerados um ponto de partida para o desenvolvimento de um assistente digital pessoal, mas o número de ADL e ambientes reconhecidos pelo método deve ser aumentado e as experiências devem ser repetidas com diferentes tipos de dispositivos móveis (i.e., smartphones e smartwatches), e os métodos de imputação e outros métodos de classificação de dados devem ser explorados de modo a tentar aumentar a confiabilidade do método para o reconhecimento das AVD e ambientes

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas

    Sustainable Smart Cities and Smart Villages Research

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [There is ever more research on smart cities and new interdisciplinary approaches proposed on the study of smart cities. At the same time, problems pertinent to communities inhabiting rural areas are being addressed, as part of discussions in contigious fields of research, be it environmental studies, sociology, or agriculture. Even if rural areas and countryside communities have previously been a subject of concern for robust policy frameworks, such as the European Union’s Cohesion Policy and Common Agricultural Policy Arguably, the concept of ‘the village’ has been largely absent in the debate. As a result, when advances in sophisticated information and communication technology (ICT) led to the emergence of a rich body of research on smart cities, the application and usability of ICT in the context of a village has remained underdiscussed in the literature. Against this backdrop, this volume delivers on four objectives. It delineates the conceptual boundaries of the concept of ‘smart village’. It highlights in which ways ‘smart village’ is distinct from ‘smart city’. It examines in which ways smart cities research can enrich smart villages research. It sheds light on the smart village research agenda as it unfolds in European and global contexts.

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Langattomien anturiverkkojen sotilas-, agroteknologia- ja energiatutkimussovelluksia

    Get PDF
    The physical quantities nowadays are widely measured by using electronic sensors. Wireless sensor networks (WSNs) are low-cost, low-power electronic devices capable of collecting data using their onboard sensors. Some wireless sensor nodes are equipped with actuators, providing the possibility to change the state of the physical world. The ability to change the state of a physical system means that WSNs can be used in control and automation applications. This research focuses on appropriate system design for four different wireless measurement and control cases. The first case provides a hardware and software solution for camera integration to a wireless sensor node. The images are captured and processed inside the sensor node using low power computational techniques. In the second application, two different wireless sensor networks function in cooperation to overcome seeding problems in agricultural machinery. The third case focuses on indoor deployment of the wireless sensor nodes into an area of urban crisis, where the nodes supply localization information to friendly assets such as soldiers, firefighters and medical personnel. The last application focuses on a feasibility study for energy harvesting from asphalt surfaces in the form of heat.Fysikaaliset suureet mitataan nykyisin elektronisten anturien avulla. Langattomat anturiverkot ovat kustannustasoltaan edullisia, matalan tehonkulutuksen elektronisia laitteita, jotka kykenevät suorittamaan mittauksia niissä olevilla antureilla. Langattomat anturinoodit voidaan myös liittää toimilaitteisiin, jolloin ne voivat vaikuttaa fyysiseen ympäristöönsä. Koska langattomilla anturi- ja toimilaiteverkoilla voidaan vaikuttaa niiden fysikaalisen ympäristön tilaan, niiden avulla voidaan toteuttaa säätö- ja automaatiosovelluksia. Tässä väitöskirjaty össä suunnitellaan ja toteutetaan neljä erilaista langattomien anturi- ja toimilaiteverkkojen automaatiosovellusta. Ensimmäisenä tapauksena toteutetaan elektroniikka- ja ohjelmistosovellus, jolla integroidaan kamera langattomaan anturinoodiin. Kuvat tallennetaan ja prosessoidaan anturinoodissa vähän energiaa kuluttavia laskentamenetelmiä käyttäen. Toisessa sovelluksessa kahdesta erilaisesta langattomasta anturiverkosta koostuvalla järjestelmällä valvotaan siementen syöttöä kylvökoneessa. Kolmannessa sovelluksessa levitetään kaupunkiympäristössä kriisitilanteessa rakennuksen sisätiloihin langaton anturiverkko. Sen anturinoodit välittävät paikkatietoa rakennuksessa operoiville omille joukoille, jotka voivat tilanteesta riippuen olla esimerkiksi sotilaita, palomiehiä tai lääkintähenkilökuntaa. Neljännessä sovelluksessa toteutetaan langaton anturiverkko, jonka keräämää mittausdataa käytetään arvioitaessa lämpöenergian keräämismahdollisuuksia asfalttipinnoilta.fi=vertaisarvioitu|en=peerReviewed

    Rethinking FPGA Architectures for Deep Neural Network applications

    Get PDF
    The prominence of machine learning-powered solutions instituted an unprecedented trend of integration into virtually all applications with a broad range of deployment constraints from tiny embedded systems to large-scale warehouse computing machines. While recent research confirms the edges of using contemporary FPGAs to deploy or accelerate machine learning applications, especially where the latency and energy consumption are strictly limited, their pre-machine learning optimised architectures remain a barrier to the overall efficiency and performance. Realizing this shortcoming, this thesis demonstrates an architectural study aiming at solutions that enable hidden potentials in the FPGA technology, primarily for machine learning algorithms. Particularly, it shows how slight alterations to the state-of-the-art architectures could significantly enhance the FPGAs toward becoming more machine learning-friendly while maintaining the near-promised performance for the rest of the applications. Eventually, it presents a novel systematic approach to deriving new block architectures guided by designing limitations and machine learning algorithm characteristics through benchmarking. First, through three modifications to Xilinx DSP48E2 blocks, an enhanced digital signal processing (DSP) block for important computations in embedded deep neural network (DNN) accelerators is described. Then, two tiers of modifications to FPGA logic cell architecture are explained that deliver a variety of performance and utilisation benefits with only minor area overheads. Eventually, with the goal of exploring this new design space in a methodical manner, a problem formulation involving computing nested loops over multiply-accumulate (MAC) operations is first proposed. A quantitative methodology for deriving efficient coarse-grained compute block architectures from benchmarks is then suggested together with a family of new embedded blocks, called MLBlocks

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: • Community detection • Complex network modelling • Complex network analysis • Node classification • Information spreading and control • Network robustness • Social networks • Network medicin
    corecore